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Let G be a complex connected reductive group and let G ∨ be its Langlands dual. Let us choose a triangular decomposition n -,∨ ⊕ h ∨ ⊕ n +,∨ of the Lie algebra of G ∨ . Braverman, Finkelberg and Gaitsgory show that the set of all Mirković-Vilonen cycles in the affine Grassmannian G C((t)) /G C[[t]] is a crystal isomorphic to the crystal of the canonical basis of U (n +,∨ ). Starting from the string parameter of an element of the canonical basis, we give an explicit description of a dense subset of the associated MV cycle. As a corollary, we show that the varieties involved in Lusztig's algebraic-geometric parametrization of the canonical basis are closely related to MV cycles. In addition, we prove that the bijection between LS paths and MV cycles constructed by Gaussent and Littelmann is an isomorphism of crystals.

Introduction

Let G be a complex connected reductive group, G ∨ be its Langlands dual, and G be its affine Grassmannian. The geometric Satake correspondence of Lusztig [START_REF] Lusztig | Singularities, character formulas, and a q-analog of weight multiplicities[END_REF], Ginzburg [START_REF] Ginzburg | Perverse sheaves on a loop group and Langlands duality[END_REF] and Beilinson and Drinfeld [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] is a tensor equivalence from the category of G(C[[t]])-equivariant perverse sheaves of C-vector spaces on G to the category of complex finite dimensional representations of G ∨ . In this equivalence, the representation that corresponds to a perverse sheaf L is the hypercohomology of L, endowed with a suitable action of G ∨ (which depends on the choice of a pinning of G).

We fix now a pair of opposite Borel subgroups in G, so as to be enabled to speak of weights and dominance. Then each dominant weight λ for G ∨ determines a G(C[[t]])-orbit G λ in G . Under the geometric Satake correspondence, the intersection cohomology of the (usually singular) closure G λ becomes the underlying space of the irreducible rational G ∨ -module L(λ) with highest weight λ.

In [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF], Mirković and Vilonen present a proof of the geometric Satake correspondence valid in any characteristic. Their main tool is a class Z (λ) of subvarieties of G λ , the so-called MV cycles, which affords a basis of the intersection cohomology of G λ . It is tempting to try to compare this construction with standard bases in L(λ), for instance with the canonical basis of Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] (also known as the global crystal basis of Kashiwara [START_REF] Kashiwara | On crystal bases of the Q-analogue of universal enveloping algebras[END_REF]).

Several works achieve such a comparison on a combinatorial level. More precisely, let us recall that the combinatorial object that indexes naturally the canonical basis of L(λ) is the crystal B(λ). In [START_REF] Braverman | Crystals via the affine Grassmannian[END_REF], Braverman and Gaitsgory endow the set Z (λ) with the structure of a crystal and show the existence of an isomorphism of crystals Ξ(λ) : B(λ) ≃ -→ Z (λ). In [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF], Gaussent and Littelmann introduce a set Γ + LS (γ λ ) of "LS galleries". They endow it with the structure of a crystal and they associate an MV cycle Z(δ) ∈ Z (λ) to each LS gallery δ ∈ Γ + LS (γ λ ). Finally they show the existence of an isomorphism of crystals χ : B(λ) ≃ -→ Γ + LS (γ λ ) and they prove that the map Z : Γ + LS (γ λ ) → Z (λ) is a bijection. One of the results of the present paper (Theorem 27) says that Gaussent and Littelmann's map Z is the composition Ξ(λ) • χ -1 ; in particular Z is an isomorphism of crystals.

Let Λ be the lattice of weights of G ∨ , let n -,∨ ⊕ h ⊕ n +,∨ be the triangular decomposition of the Lie algebra of G ∨ afforded by the pinning of G, and let B(-∞) be the crystal of the canonical basis of U (n +,∨ ). Then for each dominant weight λ, the crystal B(λ) can be embedded into a shifted version T w 0 λ ⊗ B(-∞) of B(-∞), where w 0 λ is the smallest weight of B(λ). It is thus natural to consider a big crystal B(-∞) = λ∈Λ T λ ⊗ B(-∞) in order to deal with all the B(λ) simultaneously. The isomorphisms Ξ(λ) : B(λ) ≃ -→ Z (λ) then assemble in a big bijection Ξ : B(-∞) ≃ -→ Z . The set Z here collects subvarieties of G that have been introduced by Anderson in [START_REF] Anderson | A polytope calculus for semisimple groups[END_REF]. These varieties are a slight generalization of the usual MV cycles; indeed Z ⊇ Z (λ) for each dominant weight λ. Kamnitzer [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF] calls the elements of Z "stable MV cycles", but we will simply call them MV cycles. The existence of the crystal structure on Z and of the isomorphism of crystals Ξ mentioned above is due to Braverman, Finkelberg and Gaitsgory [START_REF] Braverman | Uhlenbeck spaces via affine Lie algebras[END_REF].

The crystal B(-∞) can be parametrized in several ways. Two families of parametrizations, usually called the Lusztig parametrizations and the string parametrizations (see [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF]), depend on the choice of a reduced decomposition of the longest element in the Weyl group of G; they establish a bijection between B(-∞) and tuples of natural integers. On the contrary, Lusztig's algebraic-geometric parametrization [START_REF] Lusztig | An algebraic-geometric parametrization of the canonical basis[END_REF] is intrinsic and describes B(-∞) in terms of closed subvarieties in U -C[[t]] , where U -is the unipotent radical of the negative Borel subgroup of G.

A central result of the present paper (Theorem 16) provides an explicit description of the cycle Ξ(t 0 ⊗ b) starting from the string parameter of b ∈ B(-∞). In the course of his work on MV polytopes [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF], Kamnitzer obtains a similar result, this time starting from the Lusztig parameter of b. We explain in Section 4.3 that our result is equivalent to Kamnitzer's one. We feel that our approach, which is foreign to Kamnitzer's methods, has its own advantages. Indeed we obtain four new results. Firstly, we translate Braverman, Finkelberg and Gaitsgory's original definition of the crystal operations on Z in a concrete formula (Proposition 14). Secondly, we have an explicit birational morphism from a variety of the form C a × (C × ) b to Ξ(t 0 ⊗ b) (Remark 17). Thirdly, we show how the string cone (i.e., the domain of parameters for the string parametrization) appears naturally with MV cycles (Proposition 18). Fourthly, we explain why Lusztig's algebraic-geometric parametrization is closely related closed to MV cycles (Proposition 20).

The paper consists of four sections (plus the introduction). Section 2 fixes some notation and gathers facts and terminology from the theory of crystals bases. Section 3 recalls several standard constructions in the affine Grassmannian and presents the known results concerning MV cycles. Section 4 defines Braverman and Gaitsgory's crystal operations on MV cycles and presents our results concerning string parametrizations. Section 5 establishes that Gaussent and Littelmann's bijection Z : Γ + LS (γ λ ) → Z (λ) is a crystal isomorphism. Each section opens with a short summary which gives a more detailed account of its contents.

We wish to thank M. Ehrig, J. Kamnitzer, P. Littelmann, I. Mirković, S. Morier-Genoud and G. Rousseau for fruitful conversations, vital information and/or useful indications.

Preliminaries

The task devoted to Section 2.1 is to fix the notation concerning the pinned group G. In Section 2.2, we fix the notation concerning crystal bases for G ∨ -modules.

Notations for pinned groups

In this whole paper, G will be a complex connected reductive algebraic group. We assume that a Borel subgroup B + and a maximal torus T ⊆ B + are fixed. We let B -be the opposite Borel subgroup to B + relatively to T . We denote the unipotent radical of B ± by U ± . We denote the character group of T by X = X * (T ); we denote the lattice of all oneparameter subgroups of T by Λ = X * (T ). A point λ ∈ Λ is a morphism of algebraic groups C × → T, a → a λ . We denote the root system and the coroot system of (G, T ) by Φ and Φ ∨ = {α ∨ | α ∈ Φ}, respectively. The datum of B + splits Φ into the subset Φ + of positive roots and the subset Φ -of negative roots. We set Φ ∨ + = {α ∨ | α ∈ Φ + }. We denote by X ++ = {η ∈ X | ∀α ∨ ∈ Φ ∨ + , η, α ∨ 0} and Λ ++ = {λ ∈ Λ | ∀α ∈ Φ + , α, λ 0} the cones of dominant weights and coweights. We index the simple roots as (α i ) i∈I . The coroot lattice is the subgroup ZΦ ∨ generated by the coroots in Λ. The height of an element λ = i∈I n i α ∨ i in ZΦ ∨ is defined as ht(λ) = i∈I n i . The dominance order on X is the partial order defined by η θ ⇐⇒ η -θ ∈ NΦ + .

The dominance order on Λ is the partial order defined by

λ µ ⇐⇒ λ -µ ∈ NΦ ∨ + .
For each simple root α i , we choose a non-trivial additive subgroup x i of U + such that a λ x i (b)a -λ = x i a α i ,λ b holds for all λ ∈ Λ, a ∈ C × , b ∈ C. Then there is a unique morphism ϕ i : SL 2 → G such that

ϕ i 1 b 0 1 = x i (b) and ϕ i a 0 0 a -1 = a α ∨ i for all a ∈ C × , b ∈ C. We set y i (b) = ϕ i 1 0 b 1 and s i = ϕ i 0 1 -1 0 .
Let N G (T ) be the normalizer of T in G and let W = N G (T )/T be the Weyl group of (G, T ). Each element s i normalizes T ; its class s i modulo T is called a simple reflection. Endowed with the set of simple reflections, the Weyl group becomes a Coxeter system. Since the elements s i satisfy the braid relations, we may lift each element w ∈ W to an element w ∈ G so that w = s i 1 • • • s i l for any reduced decomposition s i 1 • • • s i l of w. For any two elements w and w ′ in W , there exists an element λ ∈ ZΦ ∨ such that ww ′ = (-1) λ w w ′ . We denote the longest element of W by w 0 . We extend the additive form ht to Λ by setting ht(λ) = ht(λ -w 0 λ)/2 (the result belongs to 1 2 Z).

Let α be a positive root. We make the choice of a simple root α i and of an element w ∈ W such that α = wα i . Then we define the one-parameter additive subgroups x α : b → w x i (b) w -1 and x -α : b → w y i (b) w -1

(1) and the element s α = w s i w -1 . Products in G may then be computed using several commutation rules:

• For all λ ∈ Λ, all root α, all a ∈ C × and all b ∈ C,

a λ x α (b) = x α a α,λ b a λ . (2) 
• For any root α and any a, b ∈ C such that 1 + ab = 0,

x α (a)x -α (b) = x -α b/(1 + ab) 1 + ab α ∨
x α a/(1 + ab) .

• For any positive root α and any a ∈ C × ,

x α (a) x -α (-a -1 ) x α (a) = x -α (-a -1 ) x α (a) x -α (-a -1 ) = a α ∨ s α = s α a -α ∨ .

• (Chevalley's commutator formula) If α and β are two linearly independent roots, then there are numbers C i,j,α,β ∈ {±1, ±2, ±3} such that

x β (b) -1 x α (a) -1 x β (b) x α (a) = i,j>0
x iα+jβ C i,j,α,β (-a) i b j

for all a and b in C. The product in the right-hand side is taken over all pairs of positive integers i, j for which iα + jβ is a root, in order of increasing i + j.

Crystals

Let G ∨ be the Langlands dual of G. This reductive group is equipped with a Borel subgroup B +,∨ and a maximal torus T ∨ ⊆ B +,∨ so that Λ is the weight lattice of T ∨ and Φ ∨ is the root system of (G ∨ , T ∨ ), the set of positive roots being Φ ∨ + . The Lie algebra g ∨ of G ∨ has a triangular decomposition

g ∨ = n -,∨ ⊕ h ∨ ⊕ n +,∨ .
A crystal for G ∨ (in the sense of Kashiwara [START_REF] Kashiwara | On crystal bases[END_REF]) is a set B endowed with applications ẽi , fi :

B → B ⊔ {0}, ε i , ϕ i : B → Z ⊔ {-∞}, and wt : B → Λ,
where 0 is a ghost element added to B in order that the maps ẽi and fi may be everywhere defined. These applications are required to satisfy certain axioms, which the reader may find in Section 7.2 of [START_REF] Kashiwara | On crystal bases[END_REF]. The application wt is called the weight.

A morphism from a crystal B to a crystal B ′ is an application ψ : B ⊔ {0} → B ′ ⊔ {0} satisfying ψ(0) = 0 and compatible with the structure maps ẽi , fi , ε i , ϕ i and wt. The conditions are written in full detail in [START_REF] Kashiwara | On crystal bases[END_REF].

Given a crystal B, one defines a crystal B ∨ whose elements are written b ∨ , where b ∈ B, and whose structure maps are given by wt(b ∨ ) = -wt(b),

ε i (b ∨ ) = ϕ i (b) and ϕ i (b ∨ ) = ε i (b), ẽi (b ∨ ) = ( fi b) ∨ and fi (b ∨ ) = (ẽ i b) ∨ ,
where one sets 0 ∨ = 0. The correspondence B B ∨ is a covariant functor. (Caution: Usually in this paper, the symbol ∨ is used to adorn inverse roots or objects related to the Langlands dual. Here and in Section 4.5 however, it will also be used to denote contragredient duality for crystals.)

The most important crystals for our work are the crystal B(∞) of the canonical basis of U (n -,∨ ) and the crystal B(-∞) of the canonical basis of U (n +,∨ ). The crystal B(∞) is a highest weight crystal; this means that it has an element annihilated by all operators ẽi and from which any other element of B(∞) can be obtained by applying the operators fi . This element is unique and its weight is 0; we denote it by 1. Likewise the crystal B(-∞) is a lowest weight crystal; its lowest weight element has weight 0 and is also denoted by 1.

The antiautomorphism of the algebra U (n -,∨ ) that fixes the Chevalley generators leaves stable its canonical basis; it therefore induces an involution b → b * of the set B(∞). This involution * preserves the weight. The operators fi and b → ( fi b * ) * correspond roughly to the left and right multiplication in U (n -,∨ ) by the Chevalley generator with index i (see Proposition 5.3.1 in [START_REF] Kashiwara | Global crystal bases of quantum groups[END_REF] for a more precise statement). One could therefore expect that fi and b → ( fj b * ) * commute for all i, j ∈ I. This does not hold but one can analyze precisely the mutual behavior of these operators. In return, one obtains a characterization of B(∞) as the unique highest weight crystal generated by a highest weight element of weight 0 and endowed with an involution * with specific properties (see Section 2 in [18], Proposition 3.2.3 in [20], and Section 12 in [START_REF] Braverman | Uhlenbeck spaces via affine Lie algebras[END_REF] for more details).

For any weight λ ∈ Λ, we consider the crystal T λ with unique element t λ , whose structure maps are given by [START_REF] Kashiwara | On crystal bases[END_REF]). There are two operations ⊕ and ⊗ on crystals (see Section 7.3 in [START_REF] Kashiwara | On crystal bases[END_REF]). We set B(-∞) = λ∈Λ T λ ⊗ B(-∞). Thus for any b ∈ B(-∞), any λ ∈ Λ and any i ∈ I,

wt(t λ ) = λ, ẽi t λ = fi t λ = 0 and ε i (t λ ) = ϕ i (t λ ) = -∞ (see Example 7.3 in
ε i (t λ ⊗ b) = ε i (b) -α i , λ , ẽi (t λ ⊗ b) = t λ ⊗ ẽi (b), ϕ i (t λ ⊗ b) = ϕ i (b), fi (t λ ⊗ b) = t λ ⊗ fi (b), wt(t λ ⊗ b) = wt(b) + λ.
We transport the involution * from B(∞) to B(-∞) by using the isomorphism B(-

∞) ∼ = B(∞) ∨ and by setting (b ∨ ) * = (b * ) ∨ for each b ∈ B(∞). Then we extend it to B(-∞) by setting (t λ ⊗ b) * = t -λ-wt(b) ⊗ b * .
For λ ∈ Λ, we denote by L(λ) the irreducible rational representation of G ∨ whose highest weight is the unique dominant weight in the orbit W λ. We denote the crystal of the canonical basis of L(λ) by B(λ). It has a unique highest weight element b high and a unique lowest weight element b low , which satisfy ẽi b high = fi b low = 0 for any i ∈ I. If λ is dominant, there is a unique embedding of crystals κ λ : B(λ) ֒→ B(∞) ⊗ T λ ; it maps the element b high to 1 ⊗ t λ and its image is [START_REF] Kashiwara | On crystal bases[END_REF]). If λ is antidominant, then the sequence

{b ⊗ t λ | b ∈ B(∞) such that ∀i ∈ I, ε i (b * ) α i , λ } (see Proposition 8.2 in
B(λ) ∼ = B(-λ) ∨ (κ -λ ) ∨ ----→ B(∞) ⊗ T -λ ∨ ∼ = T λ ⊗ B(-∞)
defines an embedding of crystals ι λ : B(λ) ֒→ T λ ⊗ B(-∞); it maps the element b low to t λ ⊗ 1 and its image is

{t λ ⊗ b | b ∈ B(-∞) such that ∀i ∈ I, ϕ i (b * ) -α i , λ }.

The affine Grassmannian

In Section 3.1, we recall the definition of an affine Grassmannian and explain that it is endowed with the structure of an ind-variety. In Section 3. 

Definitions

We denote the ring of formal power series by O = C[[t]] and we denote its field of fractions by K = C((t)). We denote the valuation of a non-zero Laurent series f ∈ K × by val(f ). Given a complex linear algebraic group H, we define the affine Grassmannian of H as the space H = H(K )/H(O). The class in H of an element h ∈ H(K ) will be denoted by [h].

Example. If H is the multiplicative group G m , then

H = K × /O × val ∼ = Z.
More generally, if H is a torus, then the map λ → [t λ ] is a bijection from the lattice X * (H) of one-parameter subgroups in H onto the affine Grassmannian H .

The affine Grassmannian H has the structure of an ind-scheme (see [START_REF] Beauville | Conformal blocks and generalized theta functions[END_REF] for H = GL n or SL n and Chapter 13 of [START_REF] Kumar | Kac-Moody groups, their flag varieties and representation theory[END_REF] for H simple). This means that H is a ringed space isomorphic to the direct limit of a system

H 0 ֒→ H 1 ֒→ H 2 ֒→ • • •
of schemes of finite type over C and of closed embeddings. We here observe that a subset of H which is noetherian for the induced topology is necessarily contained in H n for some n 0.

When H is reductive, H can be H(K )-equivariantly embedded in a projective space P(V ), where V is an infinite dimensional representation of H(K ). In other words, there is an H(K )-equivariant very ample line bundle on H . Moreover one can find an increasing and exhaustive filtration of V by H(O)-invariant finite dimensional subspaces V n . The assignment H n = H ∩ P(V n ) then defines a directed system as above, such that each H n is a projective variety and is invariant under the action of H(O).

The affine Grassmannian of the groups G and T considered in Section 2.1 will be denoted by G and T , respectively. The inclusion T ⊆ G gives rise to a closed embedding T ֒→ G .

Orbits

We first look at the action of the group G(O) on G by left multiplication. The orbit G(O)[t λ ] depends only on the W -orbit of λ in Λ, and the Cartan decomposition of G(K ) says that

G = W λ∈Λ/W G(O)[t λ ]. For each coweight λ ∈ Λ, the orbit G λ = G(O)[t λ ] is a quasiprojective scheme of finite type over C. If λ is dominant, then its closure is G λ = µ∈Λ ++ λ µ G µ ; (6) 
this is a projective scheme of finite type over C. From this, one can quickly deduce that it is often possible to truncate power series when dealing with the action of G(O) on G . Given an positive integer s, let G (s) denote the s-th congruence subgroup of G(O), that is, the kernel of the reduction map

G(O) → G(O/t s O). Proposition 1 For each noetherian subset Z of G , there exists a level s such that G (s) fixes Z pointwise. Proof. Consider G n = ν∈Λ ++ ht(ν) n G ν .
The Cartan decomposition shows that (G n ) n 0 is an increasing and exhaustive filtration of G , and Equation [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF] shows that each G n is closed. We conclude that each noetherian subset Z of G is contained in G n for n sufficiently large. To prove the proposition, it is thus enough to show that for each integer n, there is s 1 such that G (s) fixes G n pointwise.

Let λ ∈ Λ, and choose s 1 larger than α, λ for all α ∈ Φ. Using that G (s) is generated by elements (1 + t s p) λ and x α (t s p) with λ ∈ Λ, α ∈ Φ and p ∈ O, one readily checks that G (s) fixes the point [t λ ]. Since G (s) is normal in G(O), it pointwise fixes the orbit G λ . The proposition follows then from the fact that each G n is a finite union of G(O)-orbits.

We now look at the action of the unipotent group U ± (K ) on G . It can be described by the Iwasawa decomposition

G = λ∈Λ U ± (K )[t λ ].
We will denote the orbit U ± (K )[t λ ] by S ± λ . Proposition 3.1 (a) in [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF] asserts that the closure of a stratum S ± λ is the union

S ± λ = µ∈Λ ±(λ-µ) 0 S ± µ . (7) 
This equation implies in particular

S ± λ = S ± λ \ i∈I S ± λ∓α ∨ i ,
which shows that each stratum S ± λ is locally closed.

As pointed out by Mirković and Vilonen (Equation (3.5) in [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF]), these strata S ± λ can be understood in terms of a Bia lynicki-Birula decomposition: indeed the choice of a dominant and regular coweight ξ ∈ Λ defines an action of C × on G , and

S ± λ = {x ∈ G | lim a→0 a∈C × a ±ξ • x = [t λ ]}
for each λ ∈ Λ. We will generalize this result in Remark 9. For now, we record the following two (known and obvious) consequences:

• The set of points in G fixed by the action of T is precisely

{[t λ ] | λ ∈ Λ}; in other words, G T is the image of the embedding T ֒→ G . • If Z is a closed and T -invariant subset of G , then Z meets a stratum S ± λ if and only if [t λ ] ∈ Z.
The following proposition is in essence due to Kamnitzer (see Section 3.3 in [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF]).

Proposition 2 Let Z be an irreducible and noetherian subset of G . Then {λ ∈ Λ | Z ∩ S ± λ = ∅} is finite and has a largest or smallest element. Denoting this element by µ, the intersection

Z ∩ S ±
µ is open and dense in Z.

Given an irreducible and noetherian subset Z in G , we indicate the coweight µ exhibited in Proposition 2 by the notation µ ± (Z).

Proof of Proposition 2. We first observe that the Cartan decomposition and the equality

G T = {[t λ ] | λ ∈ Λ} imply that (G ν ) T = {[t wν ] | w ∈ W } for each coweight ν ∈ Λ. It follows that (G ν ) T is finite. Recall the subsets G n = ν∈Λ ++ ht(ν) n
G ν used in the proof of Proposition 1. Then (G n ) T is finite for each n ∈ N. Since G n is closed and T -invariant, this means that it meets only a finite number of strata S ± λ . Thus a noetherian subset of G meets only a finite number of strata S ± λ , for it is contained in G n for n big enough. Assume now that Z is an irreducible and noetherian subset of G . Each intersection Z ∩S ± λ is locally closed in Z and Z is covered by a finite number of such intersections, therefore there exists a coweight µ for which the intersection Z ∩S ± µ is dense in Z. Then Z ⊆ S ± µ ; by Equation [START_REF] Bia Lynicki-Birula | Some theorems on actions of algebraic groups[END_REF], this means that µ is the largest or the smallest element in {λ ∈ Λ | Z ∩S ± λ = ∅}. Moreover Z ∩ S ± µ is locally closed; it is therefore open in its closure in Z, which is Z.

Examples 3. • If Z is an irreducible and noetherian subset of G , then Z ∩ S + µ + (Z) ∩ S - µ -(Z)
is dense in Z. Thus Z and Z are contained in S + µ + (Z) ∩ S - µ - (Z) . One deduces from this the equality µ ± (Z) = µ ± (Z).

• For any coweight λ ∈ Λ, µ ± (G λ ) = µ ± G λ is the largest or smallest element in the orbit W λ.

We now present a method that allows to find the parameter λ of an orbit G λ or S ± λ to which a given point of G belongs. Given a C-vector space V , we may form the K -vector space V ⊗ C K by extending the base field and regard V as a subspace of it. In this situation, we define the valuation val(v) of a non-zero vector v ∈ V ⊗ C K as the largest n ∈ Z such that v ∈ V ⊗ t n O; thus the valuation of a non-zero element v ∈ V is zero. We define the valuation val(f ) of a non-zero endomorphism

f ∈ End K (V ⊗ C K ) as the largest n ∈ Z such that f (V ⊗ C O) ⊆ V ⊗ t n O; equivalently, val(f ) is the valuation of f viewed as an element in End C (V ) ⊗ C K .
For each weight η ∈ X, we denote by V (η) the simple rational representation of G whose highest weight is the dominant weight in the orbit W η, and we choose an extremal weight vector v η ∈ V (η) of weight η. The structure map g → g V (η) from G to End C (V (η)) of this representation extends to a map from G(K ) to End K (V (η) ⊗ C K ); we denote this latter also by g → g V (η) , or simply by g → (g•?) if there is no risk of confusion.

Proposition 4 Let g ∈ G (K ). (i) The antidominant coweight λ ∈ Λ such that [g] ∈ G λ is characterized by the equations ∀η ∈ X ++ , η, λ = val(g V (η) ). (ii) The coweight λ ∈ Λ such that [g] ∈ S ± λ is characterized by the equations ∀η ∈ X ++ , ± η, λ = -val(g -1 • v ±η ).
Proof. Assertion (ii) is due to Kamnitzer (this is Lemma 2.4 in [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF]), so we only have to prove Assertion (i). Let η ∈ X ++ . Then for each weight θ of V (η), the element t λ acts by t λ,θ on the θ-weight subspace of V (η). Here λ, θ λ, η , for λ is antidominant and θ η. It follows that val (t λ ) V (η) = λ, η ; in other words, the proposed formula holds for g = t λ . To conclude the proof, it suffices to observe that val(g V (η) ) depends only of the double coset G(O)gG(O), for the action of G(O) leaves V (η) ⊗ C O invariant.

We end this section with a proposition that gives some information concerning intersections of orbits. We agree to say that an assertion A(λ) depending on a coweight λ ∈ Λ holds when λ is enough antidominant if

(∃N ∈ Z) (∀λ ∈ Λ) (∀i ∈ I, α i , λ N ) =⇒ A(λ). Proposition 5 (i) Let λ, ν ∈ Λ. If S + λ ∩ S - ν = ∅, then λ ν. (ii) Let λ ∈ Λ. Then S + λ ∩ S - λ = [t λ ] . (iii) Let ν ∈ Λ such that ν 0. If λ ∈ Λ is enough antidominant, then S + λ+ν ∩S - λ = S + λ+ν ∩G λ .
The proof of this proposition requires a lemma.

Lemma 6 Let ν ∈ Λ such that ν 0. If λ ∈ Λ is enough antidominant, then S + λ+ν ∩S - λ ⊆ G λ .
Proof. For the whole proof, we fix ν ∈ Λ such that ν 0. For each η ∈ X ++ , we make the following construction. We form the list (θ 1 , θ 2 , . . . , θ N ) of all the weights of V (η), repeated according to their multiplicities and ordered in such a way that (θ i > θ j ⇒ i < j) for all indices i, j. Thus N = dim V (η), θ 1 = η > θ i for all i > 1, and

θ 1 + θ 2 + • • • + θ N is W -invariant hence orthogonal to ZΦ ∨ . We say then that a coweight λ ∈ Λ satisfies Condition A η (λ) if ∀j ∈ {1, . . . , N }, θ 1 -θ j , λ θ j + θ j+1 + • • • + θ N , ν .
Certainly Condition A η (λ) holds if λ is enough antidominant. Now we choose a finite subset Y ⊆ X ++ that spans the lattice X up to torsion. To prove the lemma, it is enough to show that S + λ+ν ∩ S - λ ⊆ G λ for all antidominant λ satisfying Condition A η (λ) for each η ∈ Y .

Let λ satisfying these requirements and let g ∈ U -(K )t λ be such that [g] ∈ S + λ+ν . We use Proposition 4 (i) to show that [g] ∈ G λ . Let η ∈ Y . Let (v 1 , v 2 , . . . , v N ) be a basis of V (η) such that for each i, v i is a vector of weight θ i . We denote the dual basis in

V (η) * by (v * 1 , v * 2 , . . . , v * N ); thus v * i is of weight -θ i . Then val(g V (η) ) = min val( v * j , g • v i ) 1 i, j N .
The choice g ∈ U -(K )t λ implies that the matrix of g V (η) in the basis (v i ) 1 i N is lower triangular, with diagonal entries t θ i ,λ 1 i N . Let i j be two indices. Then

g • (v i ∧ v j+1 ∧ v j+2 ∧ • • • ∧ v N ) = t θ j+1 +θ j+2 +•••+θ N ,λ (g • v i ) ∧ v j+1 ∧ v j+2 ∧ • • • ∧ v N . Therefore val( v * j , g • v i ) + θ j+1 + θ j+2 + • • • + θ N , λ = val( v * j ∧ v * j+1 ∧ v * j+2 ∧ • • • v * N , g • (v i ∧ v j+1 ∧ v j+2 ∧ • • • ∧ v N ) ) = val( g -1 • (v * j ∧ v * j+1 ∧ v * j+2 ∧ • • • v * N ), v i ∧ v j+1 ∧ v j+2 ∧ • • • ∧ v N ) val(g -1 • (v * j ∧ v * j+1 ∧ • • • ∧ v * N )) = θ j + θ j+1 + • • • + θ N , λ + ν ;
the last equality here comes from Proposition 4 (ii), taking into account that [g] ∈ S + λ+ν and that v

* j ∧ v * j+1 ∧ • • • ∧ v * N is a highest weight vector of weight -(θ j + θ j+1 + • • • + θ N ) in N -j+1 V (η) * . By Condition A η (λ), this implies val( v * j , g • v i ) θ j , λ + θ j + θ j+1 + • • • + θ N , ν η, λ .
Therefore val(g V (η) ) η, λ . On the other hand, val(g

V (η) ) val( v * 1 , g • v 1 ) = η, λ .
Thus the equality val(g V (η) ) = η, λ holds for each η ∈ Y , and we conclude by Proposition 4 (i) that [g] ∈ G λ .

Proof of Proposition 5. We first prove Assertion (i). We let C × act on G through a dominant and regular coweight ξ ∈ Λ. Let λ, ν ∈ Λ and assume there exists an element

x ∈ S + λ ∩ S - ν . Then [t ν ] = lim a→0 a -ξ • x belongs to S + λ = ν∈Λ λ ν S + ν .
This shows that λ ν.

If µ ∈ Λ is enough antidominant, then Lemma 6 and Formula (3.6) in [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF].

S + µ ∩ S - µ ⊆ S + µ ∩ G µ = [t µ ] by
Thus S + µ ∩ S - µ = [t µ ] if µ is enough antidominant. It follows that for each λ ∈ Λ, S + λ ∩ S - λ = t λ-µ • S + µ ∩ S - µ = t λ-µ • [t µ ] = [t λ ] . Assertion (ii) is proved.
Now let ν ∈ Λ such that ν 0. By Lemma 6, the property ∀σ, τ ∈ Λ, (0 τ ν and λ σ λ

+ ν) =⇒ (S + σ+τ ∩ S - σ ⊆ G σ ) (8) 
holds if λ is enough antidominant. We assume that this is the case and that moreover

W λ ∩ {σ ∈ Λ | σ λ + ν} = {λ}.
We now show the equality S + λ+ν ∩ S - λ = S + λ+ν ∩ G λ . Let us take x ∈ S + λ+ν ∩ G λ . Calling σ the coweight such that x ∈ S - σ , we necessarily have λ σ λ + ν. Setting τ = λ + ν -σ, we have 0 τ ν and x ∈ S + σ+τ ∩ S - σ , whence x ∈ G σ by our assumption [START_REF] Braverman | Uhlenbeck spaces via affine Lie algebras[END_REF]. This entails σ ∈ W λ, then σ = λ, and thus x ∈ S - λ . This reasoning shows S + λ+ν ∩ G λ ⊆ S + λ+ν ∩ S - λ . The converse inclusion also holds (set τ = ν and σ = λ in ( 8)). Assertion (iii) is proved.

Remark. Assertion (ii) of Proposition 5 can also be proved in the following way. Let K be the maximal compact subgroup of the torus T . The Lie algebra of 

K is k = i(Λ ⊗ Z R).

Mirković-Vilonen cycles

Let λ, ν ∈ Λ. In order that

S + ν ∩G λ = ∅, it is necessary that [t ν ] ∈ G λ T , hence that ν -λ ∈ ZΦ ∨
and that ν belongs to the convex hull of W λ in Λ ⊗ Z R. Assume that λ is antidominant and denote by L(w 0 λ) the irreducible rational representation of G ∨ with lowest weight λ. Mirković and Vilonen proved that the intersection S + ν ∩ G λ is of pure dimension ht(ν -λ) and has as much irreducible components as the dimension of the ν-weight subspace of L(w 0 λ) (Theorem 3.2 and Corollary 7.4 in [START_REF] Mirković | Geometric Langlands duality and representations of algebraic groups over commutative rings[END_REF]). From this result and from Proposition 5 (iii), one readily deduces the following fact.

Proposition 7 Let λ, ν ∈ Λ with ν 0.
Then the intersection S + λ+ν ∩ S - λ (viewed as a reduced subscheme of G ) is of pure dimension ht(ν) and has as much irreducible components as the dimension of the ν-weight subspace of U (n +,∨ ).

Proof. As an abstract variety, S +

λ+ν ∩ S - λ does not depend on λ, because the action of t µ on G maps S + λ+ν ∩ S - λ onto S + λ+µ+ν ∩ S - λ+µ , for any µ ∈ Λ. We may therefore assume that λ is enough antidominant so that the conclusion of Proposition 5 (iii) holds and that the (λ + ν)-weight space of L(w 0 λ) has the same dimension as the ν-weight subspace of U (n +,∨ ). The proposition follows then from Mirković and Vilonen results.

If X is a topological space, we denote the set of irreducible components of X by Irr(X). For λ, ν ∈ Λ, we set

Z (λ) ν = Irr S + ν ∩ G λ .
An element Z in a set Z (λ) ν is called an MV cycle. Such a Z is necessarily a closed, irreducible and noetherian subset of G . It is also T -invariant, for the action of the connected group T on S + ν ∩ G λ does not permute the irreducible components of this intersection closure. The coweight ν can be recovered from Z by the rule µ

+ (Z) = ν; indeed Z is the closure of an irreducible component Y of S + ν ∩ G λ , so that µ + (Z) = µ + (Y ) = ν. The union Z (λ) = ν∈Λ Z (λ) ν . is therefore disjoint. We finally set Z = λ,ν∈Λ λ ν Irr S + λ ∩ S - ν .
Arguing as above, one sees that if Z is an irreducible component of S + λ ∩ S - ν , then λ and ν are determined by Z through the equations µ + (Z) = λ and µ -(Z) = ν. Using Example 3, one checks without difficulty that for any irreducible and noetherian subset Z of G ,

Z ∈ Z ⇐⇒ Z is an irreducible component of S + µ + (Z) ∩ S - µ -(Z) ⇐⇒ dim Z = ht(µ + (Z) -µ -(Z)). (9) 
A result of Anderson (Proposition 3 in [START_REF] Anderson | A polytope calculus for semisimple groups[END_REF]) asserts that for any λ, ν ∈ Λ with λ antidominant,

Z (λ) ν = Z ∈ Z µ + (Z) = ν, µ -(Z) = λ and Z ⊆ G λ .
This fact implies that if λ µ are two antidominant coweights and if Z ∈ Z (µ), then t µ-λ • Z ∈ Z (λ). The set Z appears thus as the right way to stabilize the situation, namely

Z = t ν • Z ν ∈ Λ, Z ∈ λ∈Λ ++ Z (λ) .
It seems therefore legitimate to call MV cycles the elements of Z .

From now on, our main aim will be to describe MV cycles as precisely as possible. The easiest case is treated in the following example. Example 8. This example addresses the case where G has semisimple rank 1. Then there is just one simple root, say α. Let λ and ν in Λ such that λ ν; thus λ -ν = nα ∨ , where n = α, λ -ν /2 is a natural number. We specialize the equality

x -α (-a -1 ) = x α (-a) a α ∨ s α x α (-a)
to the value a = -qt n , where q ∈ O × . Multiplying on the left by t ν and noting that (-q) α ∨ s α x α (qt n ) ∈ G(O), we get the equality

x -α (q -1 t -α,λ+ν /2 ) t ν = x α (qt α,λ+ν /2 ) t λ
in G . The element displayed here depends only on the class of q modulo t n O, and the map q → x -α (q -1 t -α,λ+ν /2 ) t ν gives a bijection from

O/t n O × = a 0 + a 1 t + • • • + a n-1 t n-1 (a 0 , a 1 , . . . , a n-1 ) ∈ C n , a 0 = 0 onto S + λ ∩ S - ν . This latter is therefore isomorphic to the product C × × C n-1 , hence is irre- ducible. It follows that the intersection closure S + λ ∩ S - ν is either irreducible (if λ -ν ∈ NΦ ∨ + ) or empty (otherwise). In other words, the map Z → (µ + (Z), µ -(Z)) is a bijection from Z onto (λ, ν) λ -ν ∈ Nα ∨ .
To deal with the more general case requires an adequate indexation of Z . This will be done in Section 4 using Kashiwara's crystal bases.

Parabolic retractions

In Section (5.3.28) of [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF], Beilinson and Drinfeld describe a way to relate G with the affine Grassmannians of Levi subgroups of G. We rephrase their construction in a slightly less general context.

Let P be a parabolic subgroup of G which contains T , let M be the Levi factor of P that contains T , and let P and M be the affine Grassmannians of P and M . The diagram

G ←֓ P ։ M yields similar diagrams G(K ) ←֓ P (K ) ։ M (K ) and G i ← -P π -→ M .
The continuous map i is bijective but is not an homeomorphism in general (P has usually more connected components than G ). We may however define the (non-continuous) map

r P = π • i -1 from G to M .
To the inclusion M ⊆ G corresponds an embedding M j ֒→ G . The group P (K ) acts on M via the projection P (K ) ։ M (K ) and acts on G via the embedding P (K ) ֒→ G(K ). The map r P can then be characterized as the unique P (K )-equivariant section of j.

For instance, when P is the Borel subgroup B ± , the Levi factor M is the torus T and the group P (K ) contains the group U ± (K ). The map r B ± : G → T , being a U ± (K )equivariant section of the embedding T ֒→ G , sends the whole stratum S ± λ to the point [t λ ], for each λ ∈ Λ.

Remark 9. The map r P can also be understood in terms of a Bia lynicki-Birula decomposition. Indeed let g, p and t be the Lie algebras of G, P and T . We write g = t ⊕ α∈Φ g α for the root decomposition of g and put

Φ P = {α ∈ Φ | g α ⊆ p}. Choosing now ξ ∈ Λ such that ∀α ∈ Φ P , α, λ 0 and ∀α ∈ Φ \ Φ P , α, λ < 0, one may check that r P (x) = lim a→0 a∈C × a ξ • x for each x ∈ G .
This construction justifies the name of parabolic retraction we give to the map r P .

As noted by Beilinson and Drinfeld (see the proof of Proposition 5.3.29 in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF]), parabolic retractions enjoy a transitivity property. Namely considering a pair (P, M ) inside G as above and a pair (Q, N ) inside M , we get maps G

r P -→ M r Q -→ N . The preimage R of Q by the quotient map P ։ M is a parabolic subgroup of G, and N is the Levi factor of R that contains T . The composition r Q • r P is a R(K )-equivariant section of the embedding N ֒→ G ; it thus coincides with r R .
We will mainly apply these constructions to the case of standard parabolic subgroups. Let us fix the relevant terminology. For each subset J ⊆ I, we denote by U ± J the subgroup of G generated by the images of the morphisms x ±α j for j ∈ J. We denote the subgroup generated by T ∪ U + J ∪ U - J by M J and we denote the subgroup generated by B + ∪ M J by P J . Thus M J is the Levi factor of P J that contains T . We shorten the notation and denote the parabolic retraction r P J simply by r J . The Weyl group of M J can be identified with the parabolic subgroup W J of W generated by the simple reflections s j with j ∈ J; we denote the longest element of W J by w 0,J .

The Iwasawa decomposition for M J writes

M J = λ∈Λ U ± J (K )[t λ ].
For λ ∈ Λ, we denote the

U ± J (K )-orbit of [t λ ] by S ±,J λ . Lemma 10 For each λ ∈ Λ, S + λ = (r J ) -1 S +,J λ and w 0,J S + w -1 0,J λ = (r J ) -1 S -,J λ .
Proof. Consider the transitivity property r R = r Q • r P of parabolic retractions written above for P = P J , M = M J and N = T . For the first formula, one chooses moreover

Q = T U + J , so that R = B + . Recalling the equality (r B + ) -1 [t λ ] = S + λ and its analogue (r Q ) -1 [t λ ] = S +,J λ
for M J , we see that the desired formula simply computes the preimage of [t λ ] by the map

r R = r Q • r P . For the second formula, one chooses Q = T U - J , whence R = w 0,J B + w 0,J -1 . Here we have (r R ) -1 t λ = w 0,J (r B + ) -1 t w -1 0,J λ = w 0,J S + w -1 0,J λ and (r Q ) -1 [t λ ] = S -,J λ .
Again the desired formula simply computes the preimage of [t λ ] by the map r R = r Q • r P .

To conclude this section, we note that for any K -point h of the unipotent radical of P J , any g ∈ P J (K ) and any x ∈ G ,

r J (gh • x) = (ghg -1 ) • r J (gx) = r J (gx), (10) 
because ghg -1 is a K -point of the unipotent radical of P J and thus acts trivially on M J .

Crystal structure and string parametrizations

For each dominant coweight λ, the set Z (λ) yields a basis of the rational G ∨ -module L(λ).

One may therefore expect that Z (λ) can be turned in a natural way into a crystal isomorphic to B(λ), an idea made precise by Braverman and Gaitsgory in [START_REF] Braverman | Crystals via the affine Grassmannian[END_REF]. Later in [START_REF] Braverman | Uhlenbeck spaces via affine Lie algebras[END_REF], these two authors and Finkelberg extended this result by endowing Z with the structure of a crystal isomorphic to B(-∞). We recall this crucial result in Section 4.1; along the way, we characterize the crystal operations on Z in a suitable way for comparisons (Proposition In the course of his work on MV polytopes [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF][START_REF] Kamnitzer | The crystal structure on the set of Mirković-Vilonen polytopes[END_REF], Kamnitzer was lead to a similar construction of Ξ(t 0 ⊗ b), this time from the Lusztig parameter of b. In Section 4.3, we explain how Kamnitzer's result can be used to give another proof of our Theorem 16. In Section 4.4, we investigate further the subsets Ỹi,c when the tuple of integers c is not assumed to belong to the string cone C i . Our study here relies on Berenstein and Zelevinsky's characterization of C i in terms of i-trails [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF]. Finally Section 4.5 presents an application of Theorem 16: we explain how the algebraic-geometric parametrization of B(-∞) devised by Lusztig [START_REF] Lusztig | An algebraic-geometric parametrization of the canonical basis[END_REF] is related to MV cycles.

Braverman, Finkelberg and Gaitsgory's crystal structure

In Section 13 of [START_REF] Braverman | Uhlenbeck spaces via affine Lie algebras[END_REF], Braverman, Finkelberg and Gaitsgory endow Z with the structure of a crystal with an involution * . The main step of their construction is an analysis of the behaviour of MV cycles with respect to the standard parabolic retractions. For a subset J ⊆ I, we denote the analogues of the maps µ ± for the affine Grassmannian M J by µ J ± . The following theorem is due to Braverman, Finkelberg and Gaitsgory; we nevertheless recall quickly its proof since we ground the proof of the forthcoming Propositions 12 and 14 on it.

Theorem 11 Let J be a subset of I and let Z ∈ Z be an MV cycle. Set

Z J = r J Z ∩ S - ν ∩ S +,J λ ∩ S -,J ρ and Z J = Z ∩ (r J ) -1 ([t ρ ]) ∩ S - ν ,
where λ = µ + (Z), ν = µ -(Z) and ρ = w 0,J µ + (w 0,J -1 Z). Then the map Z → (Z J , Z J ) is a bijection from Z onto the set of all pairs (Z ′ , Z ′′ ), where Z ′ is an MV cycle in M J and Z ′′ is an MV cycle in G which satisfy

µ J -(Z ′ ) = µ + (Z ′′ ) = w 0,J µ + (w 0,J -1 Z ′′ ). ( 11 
)
Under this correspondence, one has

µ + (Z) = µ J + (Z J ), µ -(Z) = µ -(Z J ), w 0,J µ + (w 0,J -1 Z) = µ J -(Z J ) = µ + (Z J ) = w 0,J µ + (w 0,J -1 Z J ).
Proof. Let us consider two coweights ν, ρ ∈ Λ, unrelated to the MV cycle Z for the moment.

The group H = U - J (K ) acts on G , leaving S - ν stable. On the other hand, S -,J ρ is the H-orbit of [t ρ ]; we denote by K the stabilizer of [t ρ ] in H, so that S -,J ρ ∼ = H/K. Since the map r J is H-equivariant, the action of H leaves stable the intersection S - ν ∩ (r J ) -1 (S -,J ρ ), the action of K leaves stable the intersection

F = S - ν ∩ (r J ) -1 ([t ρ ]
), and we have a commutative diagram

F / / H × K F ≃ / / S - ν ∩ (r J ) -1 (S -,J ρ ) r J H/K ≃ / / S -,J ρ .
In this diagram, the two leftmost arrows define a fiber bundle. By Lemma 10,

F ⊆ S + ρ ∩ S - ν ; therefore the dimension of F is at most ht(ρ -ν). The group K is connected -indeed K = U - J (K ) ∩ t ρ G(O)t -ρ , so it leaves invariant each irreducible component of F . We thus have a canonical bijection C → C = H × K C from Irr(F ) onto Irr(H × K F ). If moreover X is a subspace of H/K = S -,J ρ , then the assignment (C, D) → C ∩ (r J ) -1 (D) is a bijection from Irr(F ) × Irr(X) onto Irr(S - ν ∩ (r J ) -1 (X)
). We will apply this fact to X = S -,J ρ ∩ S +,J λ , where λ ∈ Λ. In this case, each D ∈ Irr(X) has dimension ht(λ -ρ), so the dimension of C ∩ (r

J ) -1 (D) is dim C + ht(λ -ρ) ht(λ -ν).
Now let Z be an MV cycle and set λ = µ + (Z), ν = µ -(Z) and ρ = w 0,J µ + (w 0,J -1 Z) in the previous setting. By Proposition 2 and Lemma 10,

Z ∩ S - ν , Z ∩ S + λ = Z ∩ (r J ) -1 S +,J λ and w 0,J w 0,J -1 Z ∩ S + w -1 0,J ρ = Z ∩ (r J ) -1 S -,J
ρ are open and dense subsets in Z.

Thus Ż = Z ∩ S - ν ∩ (r J ) -1 S +,J λ ∩ S -,J ρ is a closed irreducible subset of S - ν ∩ (r J ) -1 S +,J λ ∩ S -,J ρ of dimension dim Z = ht(λ -ν). It is therefore an irreducible component C ∩ (r J ) -1 (D), with moreover dim C = ht(ρ -ν).
One observes then that:

• C ∩ (r J ) -1 D ∩ S -,J ρ = Z ∩ S - ν ∩ (r J ) -1 (S -,J ρ ), because both sides are equal to the closure of Ż in S - ν ∩ (r J ) -1 (S -,J ρ ); therefore C = Z ∩ (r J ) -1 ([t ρ ]) ∩ S - ν . • D = r J ( Ż) = r J Z ∩ S - ν ∩ S +,J λ ∩ S -,J ρ . • C ⊆ F = S - ν ∩ S + ρ ∩ w 0,J S + w -1 0,J ρ , so µ -(C) = ν and µ + (C) = w 0,J µ + (w 0,J -1 C) = ρ;
Equivalence (9) implies then that C is an MV cycle.

• D is an MV cycle in M J with µ J + (D) = λ and µ J -(D) = ρ. Thus Z J = D and Z J = C satisfy the conditions stated in the proposition.

Conversely, given Z ′ and Z ′′ as in the statement of the proposition, we set

λ = µ J + (Z ′ ), ν = µ -(Z ′′ ), ρ = µ J -(Z ′ ), C = Z ′′ ∩ F , D = Z ′ ∩ S -,J ρ ∩ S +,J λ and Ż = C ∩ (r J ) -1 (D).
Then C is an open and dense subset in Z ′′ ; it is therefore irreducible with the same dimension as Z ′′ , namely ht(ρ -ν). Since it is a closed subset of F , C is an irreducible component of F . On the other hand, D is an irreducible component of S -,J ρ ∩ S +,J λ . The first part of the reasoning above implies thus that Ż is irreducible of dimension dim

C + ht(λ -ρ) = ht(λ -ν). Since µ + ( Ż) = λ and µ -( Ż) = ν, it follows from Equivalence (9) that Z = Ż is an MV cycle.
It is then routine to check that the two maps Z → (Z J , Z J ) and (Z ′ , Z ′′ ) → Z are mutually converse bijections.

We are now ready to define Braverman, Finkelberg and Gaitsgory's crystal structure on Z . Let Z be an MV cycle. We set wt(Z) = µ + (Z).

Given i ∈ I, we apply Theorem 11 to Z and J = {i}. We set ρ = s i µ + (s i -1 Z) and get a decomposition (Z {i} , Z {i} ) of Z. Then we set

ε i (Z) = α i , -µ + (Z) -ρ 2 and ϕ i (Z) = α i , µ + (Z) -ρ 2 . ( 12 
) Since µ + (Z)-ρ = µ {i} + (Z {i} )-µ {i} -(Z {i} ) belongs to Nα ∨ i , the definition for ϕ i (Z) is equivalent to the equation µ + (Z) -ρ = ϕ i (Z) α ∨ i . (13) 
The MV cycles ẽi Z and fi Z are defined by the following requirements:

µ + (ẽ i Z) = µ + (Z) + α ∨ i , µ + ( fi Z) = µ + (Z) -α ∨ i , and (ẽ i Z) {i} = ( fi Z) {i} = Z {i} ; if µ + (Z) = ρ, that is, if ϕ i (Z) = 0, then we set fi Z = 0.
These conditions do define the MV cycles ẽi Z and fi Z. Indeed they prescribe the components (ẽ i Z) {i} and ( fi Z) {i} and require

µ {i} + (ẽ i Z) {i} = µ + (ẽ i Z) = µ + (Z) + α ∨ i = µ {i} + (Z {i} ) + α ∨ i µ {i} -(ẽ i Z) {i} = µ + (ẽ i Z) {i} = µ + (Z {i} ) = µ {i} -(Z {i} )
and

µ {i} + ( fi Z) {i} = µ + ( fi Z) = µ + (Z) -α ∨ i = µ {i} + (Z {i} ) -α ∨ i µ {i} -( fi Z) {i} = µ + ( fi Z) {i} = µ + (Z {i} ) = µ {i} -(Z {i} ).
These latter equations fully determine the components (ẽ i Z) {i} and ( fi Z) {i} because M {i} has semisimple rank 1 (see Example 8).

One checks without difficulty that Z , endowed with these applications wt, ε i , ϕ i , ẽi and fi , satisfies Kashiwara's axioms of a crystal. On the other hand, let g → g t be the antiautomorphism of G that fixes T pointwise and that maps x ±α (a) to x ∓α (a) for all simple root α and all a ∈ C. Then the involutive automorphism g → (g t ) -1 of G extends to G(K ) and induces an involution on G , which we denote by x → x * . The image of an MV cycle Z under this involution is an MV cycle Z * . The properties of this involution Z → Z * with respect to the crystal operations allow Braverman, Finkelberg and Gaitsgory [START_REF] Braverman | Uhlenbeck spaces via affine Lie algebras[END_REF] to establish the existence of an isomorphism of crystals Ξ : B(-∞) ≃ -→ Z . This isomorphism is unique and is compatible with the involutions * on B(-∞) and Z . One checks that

Ξ(t λ ⊗ 1) = [t λ ] , µ -Ξ(t λ ⊗ b) = λ, (14) 
Ξ(t λ ⊗ b) = t λ • Ξ(t 0 ⊗ b), dim Ξ(t λ ⊗ b) = ht(wt(b)), for all λ ∈ Λ and b ∈ B(-∞).
The following proposition gives a useful criterion which says when two MV cycles are related by an operator ẽi .

Proposition 12 Let Z and Z ′ be two MV cycles in G and let i ∈ I. Then Z ′ = ẽi Z if and only if the four following conditions hold:

µ -(Z ′ ) = µ -(Z), s i µ + (s i -1 Z ′ ) = s i µ + (s i -1 Z), µ + (Z ′ ) = µ + (Z) + α ∨ i , Z ′ ⊇ Z.
Proof. We first prove that the conditions in the statement of the proposition are sufficient to ensure that Z ′ = ẽi Z. We therefore assume that the two MV cycles Z and Z ′ enjoy the conditions above and we set

ρ = s i µ + (s i -1 Z) = s i µ + (s i -1 Z ′ ), ν = µ -(Z) = µ -(Z ′ ), F = S - ν ∩ (r {i} ) -1 ([t ρ ]).
The proof of Theorem 11 tells us that

C = Z ∩ (r {i} ) -1 ([t ρ ]) ∩ S - ν and C ′ = Z ′ ∩ (r {i} ) -1 ([t ρ ]) ∩ S - ν are two irreducible components of F . The condition Z ′ ⊇ Z entails then C ′ ⊇ C, and thus C ′ = C. It follows that Z {i} = C = C ′ = Z ′{i} .
This being known, the assumption µ

+ (Z ′ ) = µ + (Z) + α ∨ i implies Z ′ = ẽi Z.
Conversely, assume that Z ′ = ẽi Z. Routine arguments show then that the three first conditions in the statement of the proposition hold. Setting ρ, ν, F , C and C ′ as in the proof of the sufficiency condition, we get

C = C ∩ F = Z {i} ∩ F = Z ′{i} ∩ F = C ′ ∩ F = C ′ .
On the other hand,

Z {i} = S -,{i} ρ ∩ S +,{i} µ + (Z) ⊆ S -,{i} ρ ∩ S +,{i} µ + (Z ′ ) = Z ′ {i} .
Adopting the notation C from the proof of Theorem 11, we deduce that

Z ∩ S - ν ∩ (r {i} ) -1 (S -,{i} ρ ) = C ∩ (r {i} ) -1 (Z {i} ∩ S -,{i} ρ ) contains Z ′ ∩ S - ν ∩ (r {i} ) -1 (S -,{i} ρ ) = C ∩ (r {i} ) -1 (Z ′ {i} ∩ S -,{i} ρ ).
The closure Z of the first set is thus contained in the closure Z ′ of the second set.

For each dominant coweight λ ∈ Λ ++ , the two sets B(λ) and Z (λ) have the same cardinality; indeed they both index bases of two isomorphic vector spaces, namely the rational irreducible G ∨ -module with highest weight λ and the intersection cohomology of G λ , respectively. More is true: in [START_REF] Braverman | Crystals via the affine Grassmannian[END_REF], Braverman and Gaitsgory endow Z (λ) with the structure of a crystal and show the existence of an isomorphism of crystals Ξ(λ) : B(λ) ≃ -→ Z (λ) (see [START_REF] Braverman | Crystals via the affine Grassmannian[END_REF], p. 569).

Proposition 13

The following diagram commutes:

B(λ) _ ι w 0 λ Ξ(λ) / / Z (λ) _ T w 0 λ ⊗ B(-∞) Ξ / / Z .
Proof. Let Z, Z ′ ∈ Z (λ) and assume that Z ′ is the image of Z by the crystal operator defined in Section 3.3 of [START_REF] Braverman | Crystals via the affine Grassmannian[END_REF]. The definition of this operator is so similar to the definition of our (in fact, Braverman, Finkelberg and Gaitsgory's) crystal operator ẽi that a slight modification of the proof of Proposition 12 yields

µ -(Z ′ ) = µ -(Z), s i µ + (s i -1 Z ′ ) = s i µ + (s i -1 Z), µ + (Z ′ ) = µ + (Z) + α ∨ i , Z ′ ⊇ Z.
By Proposition 12, this implies that Z ′ is the image of Z by our crystal operator ẽi . In other words, the inclusion Z (λ) ֒→ Z is an embedding of crystals when Z (λ) is endowed with the crystal structure from [START_REF] Braverman | Crystals via the affine Grassmannian[END_REF].

Thus both maps Ξ•ι w 0 λ and Ξ(λ) are crystal embeddings of B(λ) into Z . Also both maps send the lowest weight element b low of B(λ) onto the MV cycle [t w 0 λ ] . The proposition follows then from the fact that each element of B(λ) can be obtained by applying a sequence of crystal operators to b low .

Remark. One can establish the equality Ξ • ι(B(λ)) = Z (λ) without using Braverman and Gaitsgory's isomorphism Ξ(λ) by the following direct argument. Let Z ∈ Z (λ). Certainly µ -(Z) = w 0 λ, so by Equation ( 14), Ξ -1 (Z) may be written

t w 0 λ ⊗ b with b ∈ B(-∞). Take i ∈ I and set ρ = s i µ -(s i -1 Z). Then s i -1 Z meets S - s -1 i ρ
, and thus t s -1 i ρ belongs to s i -1 Z,

for s i -1
Z is closed and T -stable. From the inclusion Z ⊆ G λ , we then deduce that [t ρ ] ∈ G λ . Using Equation ( 6) and the description (G µ ) T = [t wµ ] | w ∈ W , this yields ρ ∈ wµ w ∈ W, µ ∈ Λ ++ such that λ µ .

On the other side,

ρ -w 0 λ = s i µ -s i -1 Z -µ -(Z) = µ + (Z * ) -s i µ + s i -1 Z * = ϕ i (Z * )α ∨ i .
These two facts together entail ϕ i (Z * ) α i , -w 0 λ . Since

ϕ i (Z * ) = ϕ i (Ξ -1 (Z * )) = ϕ i (Ξ -1 (Z) * ) = ϕ i ((t w 0 λ ⊗ b) * ) = ϕ i (t -w 0 λ-wt(b) ⊗ b * ) = ϕ i (b * ),
we obtain ϕ i (b * ) α i , -w 0 λ . This inequality holds for each i ∈ I, therefore the element t w 0 λ ⊗ b belongs to ι w 0 λ (B(λ)). We have thus established the inclusion Ξ -1 (Z (λ)) ⊆ ι w 0 λ (B(λ)). Since B(λ) and Z (λ) have the same cardinality, this inclusion is an equality.

We end this section with a proposition that translates Braverman, Finkelberg and Gaitsgory's geometrical definition for the crystal operation ẽi into a more algebraic language. For each positive integer k, we consider the subset

C[t -1 ] • k = a -k t -k + • • • + a -1 t -1 | (a -k , . . . , a -1 ) ∈ C k , a -k = 0 of K . For k = 0, we set C[t -1 ] • k = {0}.
Proposition 14 Let Z be an MV cycle, let i ∈ I, and let k ∈ N. Then ẽk i (Z) is the closure of the set

y i pt ε i (Z) z p ∈ t -k O and z ∈ Z . Moreover the morphism (p, z) → y i pt ε i (Z) z from C[t -1 ] • k × Z to ẽk i (Z) is birational.
Proof. We adopt the notation used in the proof of Theorem 11, with here J = {i}. We

set λ = µ + (Z), ν = µ -(Z), ρ = s i µ + (s i -1 Z), Ż = Z ∩ S + λ ∩ S - ν ∩ s i S + s -1 i ρ . There is an irreducible component C of F = S - ν ∩ (r {i} ) -1 ([t ρ ]) and an irreducible component D of S -,{i} ρ ∩ S +,{i} λ such that Ż = C ∩ (r {i} ) -1 (D).
Example 8 and Formula [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF] imply that

D = S -,{i} ρ ∩ S +,{i} λ = y i (q -1 t ε i (Z) )[t ρ ] q ∈ O × . We set D k = S -,{i} ρ ∩ S +,{i} λ+kα ∨ i = y i (q -1 t -k+ε i (Z) )[t ρ ] q ∈ O × .
By Theorem 11, the closure

Z k of Żk = C ∩ (r {i} ) -1 (D k
) is an MV cycle; by definition of the crystal operations, Z k = ẽk i (Z). Assume for simplicity that k > 0 (the case k = 0 is similar but has a small notational complication). Then

D k = y i (pt ε i (Z) ) x p ∈ t -k O × and x ∈ D = y i (pt ε i (Z) ) r +,{i} (z) p ∈ t -k O × and z ∈ Ż . Moreover the map (p, x) → y i (pt ε i (Z) ) x from C[t -1 ] • k × D to D k is dominant and injective. Now consider the map f : t -k O × Z → G , (p, z) → y i (pt ε i (Z) ) z.
Since C is stable under the action of the group y i (K ), the P {i} -equivariance of r {i} imply that Żk = f (t -k O × × Ż) and that f induces a bijection from

C[t -1 ] • k × Ż onto a dense subset of Żk . We conclude that Z k is the closure of f (t -k O × Z) and that f defines a birational morphism from C[t -1 ] • k × Z to Z k .
Remark 15. Let Z be an MV cycle and i ∈ I. The particular case k = 0 of Proposition 14 implies that Z is stable under the action of y i pt ε i (Z) for any p ∈ O. It follows that for each integer c ∈ Z, the closure of

y i (p) z z ∈ Z and p ∈ K such that val(p) = c is ẽε i (Z)-c i (Z) if c ε i (Z)
and is Z otherwise. In any case, it is an MV cycle.

Description of an MV cycle from the string parameter

We first recall the definition of the string parameter of an element in B(-∞). To each sequence i = (i 1 , . . . , i l ) of elements of I, we associate an injective map Ψ i from B(-∞) to N l × B(-∞) by the following recursive definition: ∞) is the identity map.

• Ψ () : B(-∞) → B(-
• If l > 1 and b ∈ B(-∞), then Ψ i (b) = c 1 , Ψ j ( f c 1 i 1 b)
, where c 1 = ϕ i 1 (b) and j = (i 2 , . . . , i l ). To the sequence i, one also associates recursively an element w i ∈ W by asking that w i is the longest of the two elements w j and s i 1 w j , where j = (i 2 , . . . , i l ) as above. Finally, one defines the subset

B(-∞) i = b ∈ B(-∞) ∃(k 1 , . . . , k l ) ∈ N l , b = ẽk 1 i 1 • • • ẽk l i l 1
. From Kashiwara's work on Demazure modules [18] (see also Section 12.4 in [START_REF] Kashiwara | On crystal bases[END_REF]), one deduces that:

• B(-∞) i depends only on w i and not on i.

• If i is a reduced decomposition of the longest element w 0 of W , then B(-∞) i = B(-∞). • B(-∞) i is the set of all b ∈ B(-∞) such that Ψ i (b) has the form c i (b), 1 for a certain c i (b) ∈ N l .
The map c i : B(-∞) i → N l implicitly defined in the third item above is called the string parametrization in the direction i. Its image is called the string cone and is denoted by C i .

Given a sequence i = (i 1 , . . . , i l ) of elements of I and a sequence p = (p 1 , . . . , p l ) of elements of K , we form the element

y i (p) = y i 1 (p 1 ) • • • y i l (p l ).
Given the sequence i as above and a sequence c = (c 1 , . . . , c l ) of integers, we set

Ỹi,c = [y i (p)] p ∈ (K × ) l such that val(p j ) = cj , where cj = -c j -l k=j+1 c k α i j , α ∨ i k . Theorem 16 Let i ∈ I l and b ∈ B(-∞) i ; set c = c i (b). Then the MV cycle Ξ(t 0 ⊗ b) is the closure of Ỹi,c .
Proof. We use induction on the length l of the finite sequence i. The assertion certainly holds when l = 0, for in this case b = 1, c = (), and thus both Ỹi Since Ξ is an isomorphism of crystal, we deduce

Ξ(t 0 ⊗ b) = Ξ(t 0 ⊗ ẽc 1 i 1 b ′ ) = Ξ ẽc 1 i 1 (t 0 ⊗ b ′ ) = ẽc 1 i 1 Ỹj,d .
On the other hand, we turn the equality ϕ i 1 (b ′ ) = 0 to advantage by computing

ε i 1 Ỹj,d = ε i 1 (t 0 ⊗ b ′ ) = ε i 1 (b ′ ) = -α i 1 , wt(b ′ ) = - l k=2 c k α i 1 , α ∨ i k = c 1 + c1 .
Proposition 14 then says that ẽc 1 i 1 Ỹj,d = Ỹi,c , which concludes the proof.

Remark 17. The last assertion of Proposition 14 implies the following more precise statement.

Let i ∈ I l and b ∈ B(-∞) i . Write c i (b) = (c 1 , . . . , c l ) and set e j = l k=j+1 c k α i j , α ∨ i k . Then the map (p 1 , . . . , p l ) → y i 1 (p 1 t -e 1 ) • • • y i l (p l t -e l ) induces a birational morphism from C[t -1 ] • c 1 × • • • × C[t -1 ] • c l to the MV cycle Ξ(t 0 ⊗ b)
. This shows that MV cycles are rational varieties, a fact however already known from Gaussent and Littelmann's work (see for instance Theorem 4 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF]).

Link with Kamnitzer's construction

As we have seen in Section 4.2, the choice of a reduced decomposition i of w 0 determines a bijection c i : B(-∞) → C i , called the "string parametrization". The decomposition i also determines a bijection b i : N N → B(-∞), called the "Lusztig parametrization", which reflects Lusztig's original construction [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] of the canonical basis on a combinatorial level. We refer the reader to [START_REF] Lusztig | Introduction to quantized enveloping algebras[END_REF], [START_REF] Saito | PBW basis of quantized universal enveloping algebras[END_REF] and Section 3.1 in [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF] for additional information on the map b i and its construction.

Let b ∈ B(-∞) and let i be a reduced decomposition of w 0 . Theorem 16 explains how to construct a dense subset in the MV cycle Ξ(t 0 ⊗ b) when one knows the string parameter c i (b). In his work on MV polytopes, Kamnitzer [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF] presents a similar result, which provides a dense subset of Ξ(t 0 ⊗ b) from the datum of the Lusztig parameter b -1 i (b). Our aim in this section is to compare Kamnitzer's result with Theorem 16.

Our main tool here is Berenstein, Fomin and Zelevinsky's work. In a series of papers (among which [START_REF] Berenstein | Parametrizations of canonical bases and totally positive matrices[END_REF][START_REF] Berenstein | Total positivity in Schubert varieties[END_REF][START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF]), these three authors devise an elegant method that yields all transitions maps between the different parametrizations of B(-∞) we have met, namely the maps

b -1 j • b i : N N → N N , c j • b i : N N → C j , b -1 j • c -1 i : C i → N N , c j • c -1 i : C i → C j ,
where i and j are two reduced decomposition of w 0 . In recalling their results hereafter, we will slightly modify their notation; our modifications simplify the presentation, at the price of the loss of positivity results. We first alter the string parameter c i by defining a map ci from B(-∞) to Z N as follows: an element b ∈ B(-∞) with string parameter c i (b) = (c 1 , . . . , c N ) in direction i is sent to the N -tuple (c 1 , . . . , cN ), where cj = -c j -N k=j+1 c k α i j , α ∨ i k . We denote the image of this map ci by Ci .

Let i = (i 1 , . . . , i l ) be a sequence of elements of I and let a = (a 1 , . . . , a l ) be a sequence of elements of C × . Assuming that the product s i 1 • • • s i l is a reduced decomposition of an element w ∈ W , Theorem 1.2 in [START_REF] Berenstein | Total positivity in Schubert varieties[END_REF] implies the existence of an element z i (a) in U -whose image in B + \G is the same as y i (a) w -1 ; this theorem also implies that if i is a reduced decomposition of w 0 , then the map z i is a birational morphism from (C × ) N to U -. Now under the same assumption, the map y i is also a birational morphism from (C × ) N to U -. If i and j are both reduced decompositions of w 0 , we therefore get birational applications

z -1 j • z i , y -1 j • z i , z -1 j • y i and y -1 j • y i (15) 
from C N to itself. After extension of the base field, we may view them as birational applications from K N to itself.

We need now to define the process of tropicalization. Here we go off Berenstein, Fomin and Zelevinsky's purely algebraic way based on total positivity and semifields and follow a more pedestrian path.

Let k and l be two positive integers and let f : K k → K l be a rational map, represented as a sequence (f 1 , . . . , f l ) of rational functions in k indeterminates. These indeterminates are collectively denoted as a sequence p = (p 1 , . . . , p k ). We suppose that no component f j vanishes identically. Now choose j ∈ {1, . . . , l} and m = (m 1 , . . . , m k ) ∈ Z k . There exists a non-empty (Zariski) open subset Ω ⊆ (C × ) k such that the valuation of f j (a 1 t m 1 , . . . , a k t m k ) is a constant fj , independent on the point a = (a 1 , . . . , a k ) in Ω. (It is here implicitely understood that if a ∈ Ω, then neither the numerator nor the denominator of the rational function f j vanishes after substitution.) The term of lowest degree in f j (a 1 t m 1 , . . . , a k t m k ) may then be written fj (a)t fj , where fj is a rational function with complex coefficients in the indeterminates a 1 , . . . , a k . Of course, fj and fj depend on the choice of m ∈ Z k , but the open subset Ω may be chosen to meet the demand simultaneously for all m. Indeed, as we make the substitution p i = a i t m i , each monomial in the indeterminates p 1 , . . . , p k in the numerator or the denominator of f j becomes a non-zero element of K . To find the term fj (a)t fj of lowest degree in f j (a 1 t m 1 , . . . , a k t m k ), we collect the monomials in the numerator of f j that get minimal valuation, and likewise in the denominator. The rôle of the condition a ∈ Ω is to ensure that no accidental cancellation occurs when we make the sum of these monomials, in the numerator as well as in the denominator. Since there are only finitely many monomials, there are only finitely many possibilities for accidental cancellations, hence finitely many conditions on a to be prescribed by Ω. Moreover monomials in the numerator or the denominator of f j are selected or discarded according to their valuation, and we can divide R k into a finite number of regions, say R k = D (1) ⊔ • • • ⊔ D (t) , so that the set of selected monomials depends only on the domain D (r) to which m belongs. Since the valuation of each monomial depends affinely on m, the regions D (1) , . . . , D (t) are indeed intersections of affine hyperplanes and open affine half-spaces, hence are locally closed, convex and polyhedral. For the same reason, fj depends affinely on m in each region D (r) ; for its part, fj remains constant when m varies inside a region D (r) . Finally we note that the choice of the domain

Ω ⊆ (C × ) k , the decomposition R k = D (1) ⊔ • • • ⊔ D (t)
and the reduction f j → ( fj , fj ) may be carried out for all j ∈ {1, . . . , l} at the same time. In particular each m ∈ Z k yields a tuple f = ( f1 , . . . , fl ) of integers and a rational map f = ( f1 , . . . , fl ) from C k to C l . We summarize these observations in a formalized statement:

Let f : K k → K l be a rational map, without identically vanishing component. Then there exists a partition R k = D (1) ⊔ • • • ⊔ D (t) of R k into a finite number of locally closed polyhedral convex subsets, there exist affine maps f (1) , . . . , f (t) : R k → R l , there exist rational maps f (1) , . . . , f (t) : C k → C l , and there exists an open subset Ω ⊆ (C × ) k with the following property: for each r ∈ {1, . . . , t}, each lattice point m in D (r) ∩ Z k , each point a ∈ Ω, and each sequence p ∈ (K × ) k such that the lower degree term of p i is a i t m i , the map f has a well-defined value in (K × ) l at p, the map f (r) has a well-defined value in (C × ) l at a, and the term of lower degree of f j (p) has valuation f (r) j (m) and coefficient f (r) j (a). We define the tropicalization of f as the map f trop : R k → R l whose restriction to each D (r) coincides with the restriction of the corresponding f (r) ; this is a continuous piecewise affine map. If the rational map f we started with has complex coefficients (that is, if it comes from a rational map from C k to C l by extension of the base field), then the convex subsets D (r) are cones and the affine maps f (r) are linear.

With this notation and this terminology, Theorems 5.2 and 5.7 in [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF] implies that the maps

b -1 j • b i : N N → N N , cj • b i : N N → Cj , b -1 j • c-1 i : Ci → N N , cj • c-1 i :
Ci → Cj are restrictions of the tropicalizations of the maps in [START_REF] Kamnitzer | The crystal structure on the set of Mirković-Vilonen polytopes[END_REF].

One may here observe a hidden symmetry. Using the equality w 0 2 = (-1) 2ρ ∨ , where 2ρ ∨ is the sum of all positive coroots in Φ ∨ + , one checks that the birational maps y -1 j • z i and z -1 j • y i are equal. These maps have therefore the same tropicalization. In other words, cj • b i and b -1 j • c-1 i are given by the same piecewise affine formulas. The sentence following Theorem 3.8 in [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF] seems to indicate that this fact has escaped observation up to now.

In [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF], Kamnitzer introduces subsets A i (n • ) in G , where i is a reduced decomposition of w 0 and n • ∈ N N . Combining Theorem 4.7 in [START_REF] Kamnitzer | The crystal structure on the set of Mirković-Vilonen polytopes[END_REF] with the proof of Theorem 3.1 in [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF], one can see that Ξ(t 0 ⊗ b i (n • )) is the closure of A i (n • ). On the other hand, Theorem 4.5 in [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF] says that 

A i (n • ) = [z i (q)] q = (q 1 , . . . , q N ) ∈ (K × ) N such that val(q j ) = n j .
f trop (c) = n • and g trop (n • ) = c.
The analysis that we made to define the tropicalization of f and g shows the existence of open subsets Ω and Ω ′ of (C × ) N and of rational maps f and ḡ from C N to itself such that:

• For each a ∈ Ω and b ∈ Ω ′ , f (a) and ḡ(b) have well-defined values in (C × ) N .

• For any N -tuple p of Laurent series whose terms of lower degree are a 1 t c1 , . . . , a N t cN with (a 1 , . . . , a N ) ∈ Ω, the evaluation f (p) is a well-defined element q of (K × ) N ; moreover the lower degree terms of the components of q are f1 (a)t n 1 , . . . , fN (a)t n N .

• For any N -tuple q of Laurent series whose terms of lower degree are b 1 t n 1 , . . . , b N t n N with (b 1 , . . . , b N ) ∈ Ω ′ , the evaluation g(q) is a well-defined element p of (K × ) N ; moreover the lower degree terms of the components of p are ḡ1 (b)t c1 , . . . , ḡN (b)t cN .

Because f and g are mutually inverse birational maps, so are f and ḡ. One can then assume that these two latter maps are mutually inverse isomorphisms between Ω and Ω ′ , by shrinking these open subsets if necessary. Thus f and g set up a bijective correspondence between Ω = p ∈ (K × ) N each p j has lower degree term a j t cj with (a 1 , . . . , a N ) ∈ Ω

The only truly difficult point is to prove that c ∈ C i if µ + (Z) = λ. We will again ground our proof on Berenstein and Zelevinsky's work [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF], this time on the notion of i-trail. We first recall what it is about.

We denote the differential at 0 of the one-parameter subgroups x α i and x -α i by E i and F i , respectively; they are elements of the Lie algebra of G. Let i = (i 1 , . . . , i N ) be a reduced decomposition of w 0 , let γ and δ two weights in X, let V be a rational G-module, and write V = η∈X V η for its decomposition in weight subspaces. According to Definition 2.1 in [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF], an i-trail from γ to δ in V is a sequence of weights π = (γ = γ 0 , γ 1 , . . . , γ N = δ) such that each difference γ j-1 -γ j has the form n j α i j for some non-negative integer n j , and such that

E n 1 i 1 • • • E n N i N defines a non-zero map from V δ to V γ .
To such an i-trail π, Berenstein and Zelevinsky associate the sequence of integers d j (π) = γ j-1 + γ j , α ∨ i j /2. Assume moreover that G is simply connected. In that case X is the free Z-module with basis the set of fundamental weights ω i and we can speak of the simple rational G-module with highest weight ω i , which we denote by V (ω i ). Then by Theorem 3.10 in [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF], the string cone C i is the set of all (c 1 , . . . , c N ) ∈ Z N such that j d j (π)c j 0 for any i ∈ I and any i-trail π from ω i to w 0 s i ω i in V (ω i ).

The following lemma explains why i-trails are relevant to our problem.

Lemma 19 Let i, c, Z and λ be as in the statement of the proposition, let i ∈ I, and assume that G is simply connected. Then ω i , λ -µ + (Z) is the minimum of the numbers j d j (π)c j for all weight δ ∈ X and all i-trail π from ω i to δ in V (ω i ).

Proof. Let us consider an i-trail π = (γ 0 , γ 1 , . . . , γ N ) in V (ω i ) which starts from γ 0 = ω i .

Introducing the integers n j such that γ j-1 -γ j = n j α i j , we obtain γ j = ω i -j k=1 n k α i k for each j ∈ {1, . . . , N } and so

d j (π) = ω i , α ∨ i j - j-1 k=1 n k α i k , α ∨ i j -n j .
We then compute

N j=1 d j (π)c j -ω i , λ = N j=1 -n j - j-1 k=1 α i k , α ∨ i j n k c j = n 1 c1 + • • • + n N cN ,
where we set as usual cj = -c j -N k=j+1 c k α i j , α ∨ i k for each j ∈ {1, . . . , N }. We adopt the notational conventions set up before Proposition 4. In particular, we embed V (ω i ) inside V (ω i ) ⊗ C K and we view this latter as a representation of the group G(K ). We also consider a non-degenerate contravariant bilinear form (?, ?) on V (ω i ); it is compatible with the decomposition of V (ω i ) as the sum of its weight subspaces and it satisfies (v, E i v ′ ) = (F i v, v ′ ) for any i ∈ I and any vectors v and v ′ in V (ω i ). We extend the contravariant bilinear form to V (ω i ) ⊗ C K by multilinearity. By Proposition 2, ω i , µ + (Z) is the maximum of ω i , ν for those ν ∈ Λ such that S + ν meets Ỹc,i . Using Proposition 4 (ii), we deduce that

ω i , µ + (Z) = max -val g -1 • v ω i g ∈ G(K ) such that [g] ∈ Ỹc,i = max -val v, y i (p) -1 • v ω i v ∈ V (ω i ), p ∈ (K × ) N s. t. val(p j ) = cj ,
where we wrote p = (p 1 , . . . , p N ) as usual. Moreover we may ask that the vector v in the last maximum is a weight vector. Let us denote by M the minimum of the numbers j d j (π)c j for all i-trail π in V (ω i ) which start from ω i . We expand the product

y i (p) -1 = exp(-p N F i N ) • • • exp(-p 1 F i 1 ) = n 1 ,...,n N 0 (-1) n 1 +•••+n N p n 1 1 • • • p n N N n 1 ! • • • n N ! F n N i N • • • F n 1 i 1
and we substitute in v, y i (p) -1 • v ω i : we get a sum of terms of the form

(-1) n 1 +•••+n N p n 1 1 • • • p n N N n 1 ! • • • n N ! v, F n N i N • • • F n 1 i 1 • v ω i .
If such a term is not zero, then the sequence

π = (ω i , ω i -n 1 α i 1 , ω i -n 1 α i 1 -n 2 α i 2 , . . . , ω i -n 1 α i 1 -• • • -n N α i N )
is an i-trail and the term has valuation

n 1 c1 + • • • + n N cN = N j=1 d j (π)c j -ω i , λ M -ω i , λ .
Therefore the valuation of (v,

y i (p) -1 •v ω i ) is greater or equal to M -ω i , λ for any v ∈ V (ω i );
we conclude that ω i , µ + (Z) ω i , λ -M . Conversely, let π be an i-trail in V (ω i ) which starts from ω i such that j d j (π)c j = M . With this i-trail come the numbers n 1 , . . . , n N as before. By definition of an i-trail, there is then a weight vector v ∈ V (ω i ) such that

v, F n N i N • • • F n 1 i 1 • v ω i = 0.
Given (a 1 , . . . , a N ) ∈ (C × ) N , we set p = (a 1 t c1 , . . . , a N t cN ) and look at the coefficient

f of t M -ω i ,λ in v, y i (p) -1 • v ω i .
The computation above shows that f is a polynomial in (a 1 , . . . , a N ); it is not zero since the coefficient of

a n 1 1 • • • a n N N in f is (-1) n 1 +•••+n N n 1 ! • • • n N ! v, F n N i N • • • F n 1 i 1 • v ω i = 0. Therefore there exists p ∈ (K × ) N with val(p j ) = cj such that v, y i (p) -1 • v ω i has valuation M -ω i , λ . It follows that ω i , µ + (Z) ω i , λ -M , which completes the proof.
We now proceed to the proof of the proposition.

Proof of Proposition 18. Let i, c, Z and λ as in the statement of the proposition. That Z is an MV cycle is a direct consequence of Remark 15, applied repeatedly. Next we observe that Ỹi,c is contained in S - 0 , by definition of this latter; this entails that µ -(Z) = 0. If c is the string in direction i of an element b ∈ B(-∞), then Z = Ξ(t 0 ⊗ b) by Theorem 16 and therefore

µ + (Z) = wt(Z) = wt(t 0 ⊗ b) = wt(b) = wt ẽc 1 i 1 • • • ẽc N i N 1 = λ.
The equality µ + (Z) = λ holds therefore for each c ∈ C i . It remains to show that µ + (Z) -λ belongs to NΦ ∨ + and that it is zero only if c ∈ C i . To establish that, we may assume without loss of generality that G is simply connected; indeed our subset Ỹi,c is contained in the connected component of G that contains [START_REF] Anderson | A polytope calculus for semisimple groups[END_REF], and it is known that an isogeny of groups induces a morphism between their respective affine Grassmannians which restricts to an isomorphism between their "neutral" connected components (see for instance Section 2 of [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF]). We may then make use of the fundamental weights ω i and of the G-modules V (ω i ).

We first observe that µ + (Z) -µ -(Z), µ -(Z) and λ belong to the coroot lattice ZΦ ∨ ; therefore µ + (Z) -λ belongs to ZΦ ∨ . Now let i ∈ I. The sequence

π = (ω i , s i 1 ω i , s i 2 s i 1 ω i , . . . , w 0 ω i )
is an i-trail in V (ω i ) for which all d j (π) = 0 for each j. By Lemma 19, we deduce

ω i , λ -µ + (Z) j d j (π)c j = 0.
This is enough to guarantee that µ + (Z) -λ ∈ NΦ ∨ + . Suppose now that µ + (Z) = λ. Lemma 19 implies then that j d j (π)c j 0 for all i ∈ I, all weight δ ∈ X and all i-trail π from ω i to δ in V (ω i ). In particular, this holds for all i ∈ I and all i-trail π from ω i to w 0 s i ω i in V (ω i ). By Theorem 3.10 in [START_REF] Berenstein | Tensor product multiplicities, canonical bases and totally positive varieties[END_REF], this implies c ∈ C i .

Lusztig's algebraic-geometric parametrization of B

The Lusztig parametrizations b i are practical because they permit a study of B(-∞) by way of numerical data, but they are not intrinsic for they depend on the choice of a reduced decomposition i of w 0 . To avoid this drawback, Lusztig introduces in [START_REF] Lusztig | An algebraic-geometric parametrization of the canonical basis[END_REF] a parametrization of B(-∞) in terms of closed subvarieties in arc spaces on U -. We will first recall shortly his construction and then we will explain a relationship with MV cycles. For simplicity, Lusztig restricts himself to the case where G is simply laced, but he explains in the introduction of [START_REF] Lusztig | An algebraic-geometric parametrization of the canonical basis[END_REF] that his results hold in the general case as well.

Lusztig starts by recalling a general construction. To a complex algebraic variety X and a non-negative integer s, one can associate the space X s of all jets of curves drawn on X, of order s and at the origin. In formulas, one looks at the algebra C s = C[[t]]/(t s+1 ) and defines X s as the set of morphisms from Spec C s to X. If X is smooth of dimension n, then X s is smooth of dimension (s + 1)n. There exist morphisms of truncation

• • • → X s+1 → X s → • • • → X 1 → X 0 = X;
the projective limit of this inverse system of maps is the space X(O). Finally the assignment X X s is functorial, hence X s is a group as soon as X is one. Now let i be a reduced decomposition of w 0 . The morphism

y i : (a 1 , • • • , a N ) → y i 1 (a 1 ) • • • y i N (a N )
from (C) N to U -gives by functoriality a morphism (y i ) s : (C s ) N → (U -) s . Given an element d = (d 1 , . . . , d N ) in N N , we may look at the image of the subset

(t d 1 C s ) × • • • × (t d N C s ) ⊆ (C s ) N
by (y i ) s . This is a constructible, irreducible subset of (U -) s . If s is big enough, then the closure of this subset depends only on b = b i (d) and not on i and d individually. (This is Lemma 5.2 of [START_REF] Lusztig | An algebraic-geometric parametrization of the canonical basis[END_REF]; the precise condition is that s must be > ht(wt b).) One may therefore denote this closure by V b,s ; it is a closed irreducible subset of (U -) s of codimension ht(wt b). Proposition 7.5 in [START_REF] Lusztig | An algebraic-geometric parametrization of the canonical basis[END_REF] asserts that moreover the assignment b → V b,s is injective for s big enough: there is a constant M depending only on the root system Φ such that

V b,s = V b ′ ,s and s > M ht(wt b) =⇒ b = b ′ for any b, b ′ ∈ B(-∞).
Thus b → V b,s may be seen as a parametrization of B(-∞) by closed irreducible subvarieties of (U -) s .

Our next result shows that Lusztig's construction is related to MV cycles and to Braverman, Finkelberg and Gaitsgory's theorem. We fix a dominant coweight λ ∈ Λ ++ . By Proposition 1, the map

x → x • [t w 0 λ ] from G(O) to G factorizes through the reduction map G(O) → G s when s is big enough, defining thus a map Υ s : G s → G , x → x • [t w 0 λ ].
On the other hand, we may consider the two embeddings of crystals κ λ :

B(λ) ֒→ B(∞) ⊗ T λ and ι w 0 λ : B(λ) ֒→ T w 0 λ ⊗ B(-∞), as in Section 2.2. Finally, the isomorphism B(∞) ∨ ∼ = B(-∞) yields a bijection b → b ∨ from B(∞) onto B(-∞).
Proposition 20 We adopt the notations above and assume that s is big enough so that the map Υ s exists and that the closed subsets V b ∨ ,s are defined for each b ⊗ t λ in the image of κ λ . Then the diagram

B(λ) _ ι w 0 λ κ λ / / im(κ λ ) b⊗t λ →Υs(V b ∨ ,s ) T w 0 λ ⊗ B(-∞) Ξ / / Z commutes.
Proof. This is a consequence of Theorem 16, combined with a result of Morier-Genoud [START_REF] Morier-Genoud | Relèvement géométrique de la base canonique et involution de Schützenberger[END_REF]. We first look at the commutative diagram that defines the embedding ι w 0 λ , namely

B(λ) K k κ λ x x r r r r r r r r r r ≃ / / t ι w 0 λ ' ' N N N N N N N N N N N B(-w 0 λ) ∨ _ B(-w 0 λ) o o _ _ _ _ _ _ _ κ -w 0 λ B(∞) ⊗ T λ T w 0 λ ⊗ B(-∞) B(∞) ⊗ T -w 0 λ . o o _ _ _
The two arrows in broken line on this diagram are the maps b → b ∨ ; they are not morphisms of crystals. The map from B(-w 0 λ) to B(λ) obtained by composing the two arrows on the top line intertwines the raising operators ẽi with their lowering counterparts fi and sends the highest weight element of B(-w 0 λ) to the lowest weight element of B(λ); it therefore coincides with the application denoted by Φ -w 0 λ in [START_REF] Morier-Genoud | Relèvement géométrique de la base canonique et involution de Schützenberger[END_REF].

Now let b ∈ B(λ). We write κ λ (b) = b ′ ⊗ t λ and κ -w 0 λ (Φ -1 -w 0 λ (b)) = b ′′ ⊗ t -w 0 λ ; thus ι w 0 λ (b) = t w 0 λ ⊗ (b ′′ ) ∨ . We choose a reduced decomposition i of w 0 and we set (c 1 , . . . , cN ) = ci ((b ′′ ) ∨ ) and (d 1 , . . . , d N ) = b -1 i ((b ′ ) ∨ ) (see Section 4.
3 for the definition of the map ci ).

Corollary 3.5 in [START_REF] Morier-Genoud | Relèvement géométrique de la base canonique et involution de Schützenberger[END_REF] asserts then that d j = α i j , -w 0 λ + cj for all j. Setting now c = c i ((b ′′ ) ∨ ), comparing the definition of Lusztig's subset V b ′ ,s with the definition of Ỹi,c and using Theorem 16, we compute

V (b ′ ) ∨ ,s • [t w 0 λ ] = t w 0 λ • Ỹi,c = t w 0 λ • Ξ t 0 ⊗ (b ′′ ) ∨ = Ξ t w 0 λ ⊗ (b ′′ ) ∨ = (Ξ • ι w 0 λ )(b).

BFG crystal operations on MV cycles and root operators on LS galleries

Let λ ∈ Λ ++ be a dominant coweight. Littelmann's path model [START_REF] Littelmann | Paths and root operators in representation theory[END_REF] affords a concrete realization of the crystal B(λ) in terms of piecewise linear paths drawn on Λ ⊗ Z R; it depends on the choice of a path joining 0 to λ and contained in the dominant Weyl chamber. In [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF], Gaussent and Littelmann shape a variation of the path model, replacing piecewise linear paths by galleries in the Coxeter complex of the affine Weyl group W aff . They define a set Γ + LS (γ λ ) of "LS galleries", which depends on the choice of a minimal gallery γ λ joining 0 to λ and contained in the dominant Weyl chamber. Defining "root operators" e α and f α for each simple root α in Φ, they endow Γ + LS (γ λ ) with the structure of a crystal, which happens to be isomorphic to B(λ). Using a Bott-Samelson resolution π : Σ(γ λ ) → G λ and a Bia lynicki-Birula decomposition of Σ(γ λ ) into a disjoint union of cells C(δ), Gaussent and Littelmann associate a closed subvariety Z(δ) = π(C(δ)) of G to each LS gallery δ and show that the map Z is a bijection from Γ + LS (γ λ ) onto Z (λ). The main result of this section is Theorem 27, which says that Z is an isomorphism of crystals. In other words, the root operators on LS galleries match Braverman and Gaitsgory's crystal operations on MV cycles under the bijection Z.

Strictly speaking, our proof for this comparison result is valid only when λ is regular. The advantage of this situation is that elements in Γ + LS (γ λ ) are then galleries of alcoves. In the case where λ is singular, Gaussent and Littelmann's constructions involve a more general class of galleries (see Section 4 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF]). Such a sophistication is however not needed: our presentation of Gaussent and Littelmann's results in Section 5.2 below makes sense even if λ is singular. Within this framework, our comparison theorem is valid for any λ, regular or singular.

A key idea of Gaussent and Littelmann is to view the affine Grassmannian as a subset of the set of vertices of the (affine) Bruhat-Tits building of G(K ). In Section 5.1, we review quickly basic facts about the latter and study the stabilizer in U + (K ) of certain of its faces. We warn here the reader that we use our own convention pertaining the Bruhat-Tits building: indeed our Iwahori subgroup is the preimage of B -by the specialization map at t = 0 from G(O) to G, whereas Gaussent and Littelmann use the preimage of B + . Our convention is unusual, but it makes the statement of our comparison result more natural. Section 5.2 recalls the main steps in Gaussent and Littelmann's construction, in a way that encompasses the peculiarities of the case where λ is singular. The final Section 5.3 contains the proof of our comparison theorem. To prove the equality ẽi Z(δ) = Z(e α i δ) for each LS gallery δ and for each i ∈ I, we use the criterion of Proposition 12. The first three conditions are easily checked, while the inclusion Z(δ) ⊆ Z(e α i δ) is established in Proposition 30.

Affine roots, the Coxeter complex and the Bruhat-Tits building

We consider the vector space Λ R = Λ ⊗ Z R. We define a real root of the affine root system (for short, an affine root) as a pair (α, n) ∈ Φ × Z. To an affine root (α, n), we associate:

• the reflection s α,n : x → x -α, x -n α ∨ of Λ R ; • the affine hyperplane H α,n = {x ∈ Λ R | α, x = n} of fixed points of s α,n ; • the closed half-space H - α,n = {x ∈ Λ R | α, x n};
• the one-parameter additive subgroup x α,n : b → x α (bt n ) of G(K ); here b belongs to either C or K .

We denote the set of all affine roots by Φ aff . We embed Φ in Φ aff by identifying a root α ∈ Φ with the affine root (α, 0). We choose an element 0 that does not belong to I; we set I aff = I ⊔ {0} and α 0 = (-θ, -1), where θ is the highest root of Φ. The elements α i with i ∈ I aff are called simple affine roots. The subgroup of GL(Λ R ) generated by all reflections s α,n is called the affine Weyl group and is denoted by W aff . For each i ∈ I aff , we set s i = s α i . Then W aff is a Coxeter system when equipped with the set of generators {s i | i ∈ I aff }. The parabolic subgroup of W aff generated by the simple reflections s i with i ∈ I is isomorphic to W . For each λ ∈ ZΦ ∨ , the translation τ λ : x → x + λ belongs to W aff . All these translations form a normal subgroup in W aff , isomorphic to the coroot lattice ZΦ ∨ , and W aff is the semidirect product W aff = ZΦ ∨ ⋊ W .

The group W aff acts on the set Φ aff of affine roots: one demands that w(H - β ) = H - wβ for each element w ∈ W aff and each affine root β ∈ Φ aff . The action of an element w ∈ W or a translation τ λ on an affine root (α, n) ∈ Φ × Z is given by w (α, n) = (wα, n) or τ λ (α, n) = α, n + α, λ . One checks that ws α w -1 = s wα for all w ∈ W aff and α ∈ Φ aff . Using Equation (1), one checks that

(t λ w ) x α (a) (t λ w ) -1 = x τ λ w(α) (±a) (16) 
in G(K ), for all λ ∈ ZΦ ∨ , w ∈ W , α ∈ Φ aff and a ∈ K . We denote by H the arrangement formed by the hyperplanes H β , where β ∈ Φ aff . It divides the vector space Λ R into faces. Faces with maximal dimension are called alcoves; they are the connected components of Λ R \ H∈H H. Faces of codimension 1 are called facets; faces of dimension 0 are called vertices. The closure of a face is the disjoint union of faces of smaller dimension. Endowed with the set of all faces, Λ R becomes a polysimplicial complex, called the Coxeter complex A aff ; it is endowed with an action of W aff .

The dominant open Weyl chamber is the subset

C dom = {x ∈ Λ R | ∀i ∈ I, α i , x > 0}.
The fundamental alcove

A fund = {x ∈ C dom | θ, x < 1}
is the complement of i∈I aff H - α i . We label the faces contained in A fund by proper subsets of I aff by setting

φ J =   i∈J H α i   \   i∈I aff \J H - α i  
for each J ⊂ I aff . For instance φ ∅ is the alcove A fund and φ I is the vertex {0}. Any face of our arrangement H is conjugated under the action of W aff to exactly one face contained in A fund , because this latter is a fundamental domain for the action of W aff on Λ R . We say that a subset J ⊂ I aff is the type of a face F if F is conjugated to φ J under W aff .

We denote by B the (Iwahori) subgroup of G(K ) generated by the torus T and by the elements x α (ta) and x -α (a), where α ∈ Φ + and a ∈ O. In other words, B is the preimage of the Borel subgroup B -under the specialization map at t = 0 from G(O) to G. We lift the simple reflections s i to the group G(K ) by setting

s i = x α i (1)x -α i (-1)x α i (1) = x -α i (-1)x α i (1)x -α i (-1)
for each i ∈ I aff . We lift any element w ∈ W aff to an element w ∈ G(K ) so that w = s i 1 • • • s i l for each reduced decomposition s i 1 • • • s i l of w. This notation does not conflict with our earlier notation s i for i ∈ I and w for w ∈ W . For each λ ∈ ZΦ ∨ , the lift τ λ of the translation τ λ coincides with t λ up to a sign (i.e., up to the multiplication by an element of the form (-1) µ with µ ∈ ZΦ ∨ ).

The affine Bruhat-Tits building I aff is a polysimplicial complex endowed with an action of G(K ). The affine Coxeter complex A aff can be embedded in I aff as the subcomplex formed by the faces fixed by T ; in this identification, the action of an element w ∈ W aff on A aff matches the action of w on (I aff ) T . Each face of I aff is conjugated under the action of G(K ) to exactly one face contained in A fund ; we say that a subset J ⊂ I aff is the type of a face F if F is conjugated to φ J . Finally there is a G(K )-equivariant map of the affine Grassmannian G into I aff , which extends the map [t λ ] → {λ} from G T into A aff ∼ = (I aff ) T .

Given a subset J ⊆ I aff , we denote by PJ the subgroup of G(K ) generated by B and the elements s i for i ∈ J; thus B = P∅ and G(O) = PI . (The subgroup PJ is the stabilizer in G(K ) of the face φ J . For each g ∈ G(K ), the stabilizer of the face gφ J is thus the parahoric subgroup g PJ g -1 . This bijection between the set of faces in the affine building and the set of parahoric subgroups in G(K ) is indeed the starting point for the definition of the building, see §2.1 in [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF].) To shorten the notation, we will write Pi instead of P{i} for each i ∈ I aff . Similarly, for each i ∈ I aff , we will write W i to indicate the subgroup {1, s i } of W aff .

We denote the stabilizer in U + (K ) of a face F of the affine building by Stab + (F ). Our last task in this section is to determine as precisely as possible the group Stab + (F ) and the set Stab + (F ′ )/ Stab + (F ) when F and F ′ are faces of the Coxeter complex such that F ′ ⊆ F . We need additional notation for that. Given a real number a, we denote the smallest integer greater than a by ⌈a⌉. To a face F of the Coxeter complex, Bruhat and Tits (see (7.1.1) in [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF]) associate the function f F : α → sup x∈F α, x on the dual space of Λ R . If α ∈ Φ, then ⌈f F (α)⌉ is the smallest integer n such that F lies in the closed half-space H - α,n . The function f F is convex and positively homogeneous of degree 1; in particular, f F (iα + jβ) if F (α) + jf F (β) for all roots α, β ∈ Φ and all positive integers i, j. When F and F ′ are two faces of the Coxeter complex such that F ′ ⊆ F , we denote by Φ aff + (F ′ , F ) the set of all affine roots (ii) Let F and F ′ be two faces of the Coxeter complex such that F ′ ⊆ F . Then Stab + (F ′ , F ) is a set of representatives for the right cosets of Stab + (F ) in Stab + (F ′ ). For any total order on the set Φ aff + (F ′ , F ), the map

β ∈ Φ + × Z such that F ′ ⊆ H β and F ⊆ H - β ; in other words, (α, n) ∈ Φ aff + (F ′ , F ) if and only if α ∈ Φ + , n = f F ′ (α)
(a β ) β∈Φ aff + (F ′ ,F ) → β∈Φ aff + (F ′ ,F ) x β (a β ) is a bijection from C Φ aff + (F ′ ,F ) onto Stab + (F ′ , F ).
Proof. Item (i) is proved in Bruhat and Tits's paper [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF], see in particular Sections (7.4.4) and Equation (1) in Section (7.1.8). We note here that this fact implies that for any total order on Φ + , the map

(p α ) α∈Φ + → α∈Φ + x α p α t ⌈f F (α)⌉ is a bijection from O Φ + onto Stab + (F ).
We now turn to Item (ii). We first observe the following property of Φ aff + (F ′ , F ): for each pair i, j of positive integers and each pair (α, m), (β, n) of affine roots in Φ aff + (F ′ , F ) such that iα+jβ ∈ Φ, the affine root (iα+jβ, im+jn) belongs to Φ aff + (F ′ , F ). Indeed F ′ ⊆ H α,m ∩H β,n implies F ′ ⊆ H iα+jβ,im+jn , and the inequality

f F (iα + jβ) if F (α) -jf F (-β) = if F (α) + jn > im + jn shows that F ⊆ H - iα+jβ,im+jn .
Standard arguments based on Chevalley's commutator formula [START_REF] Berenstein | Total positivity in Schubert varieties[END_REF] show then the second assertion in Item (ii). Now the map (α, m) → α from Φ aff to Φ restricts to a bijection from Φ aff + (F ′ , F ) onto a subset Φ ′ + of Φ + . We set Φ ′′ + = Φ + \ Φ ′ + . We endow Φ + with a total order, chosen so that each element in Φ ′ + is smaller than all elements in Φ ′′ + , and we transport the order induced on Φ ′ + to Φ aff + (F ′ , F ). By Item (i), each element in Stab + (F ′ ) may be uniquely written as a product

α∈Φ + x α p α t ⌈f F ′ (α)⌉ (17) 
with (p α ) α∈Φ + in O Φ + . We write p α = a α + tq α for each α ∈ Φ ′ + , with a α ∈ C and q α ∈ O. Thus for each (α, m) ∈ Φ aff + (F ′ , F ), we have p α t ⌈f F ′ (α)⌉ = a α t m + q α t ⌈f F (α)⌉ . On the other hand, ⌈f F ′ (α)⌉ = ⌈f F (α)⌉ for each α ∈ Φ ′′ + . We may therefore rewrite the product in [START_REF] Kashiwara | Global crystal bases of quantum groups[END_REF] as

  (α,m)∈Φ aff + (F ′ ,F ) x α a α t m x α q α t ⌈f F (α)⌉     α∈Φ ′′ + x α p α t ⌈f F (α)⌉   .
We rearrange the first product above using again Chevalley's commutator formula: there exists a family (r α ) α∈Φ ′ + of power series such that this product is

  (α,m)∈Φ aff + (F ′ ,F ) x α a α t m     α∈Φ ′ + x α r α t ⌈f F (α)⌉   ,
and for fixed numbers a α , the map (q α ) → (r α ) is a bijection from O Φ ′ + onto itself. We conclude that the map

((a β ), (p α )) →   β∈Φ aff + (F ′ ,F ) x β a β     α∈Φ + x α p α t ⌈f F (α)⌉   is a bijection from C Φ aff + (F ′ ,F ) × O Φ + onto Stab + (F ′ )
. This means exactly that the map (g, h) → gh is a bijection from Stab + (F ′ , F ) × Stab + (F ) onto Stab + (F ′ ). The proof of Item (ii) is now complete.

Things are more easy to grasp when F is an alcove and F ′ is a facet of F , because then Φ aff + (F ′ , F ) has at most one element. In this particular case, certain commutators involving elements of Stab + (F ′ ) and Stab + (F ) automatically belong to Stab + (F ).

Lemma 22 Let F be an alcove of the Coxeter complex and let F ′ be a facet of F . Let (α, m) ∈ Φ + × Z be the affine root such that F ′ lies in the wall H α,m and let (β, n) ∈ Φ aff be such that F ⊆ H - β,n . We assume that β is either positive or is the opposite of a simple root, and that β = -α. Then for each q ∈ O and each v ∈ Stab + (F ′ , F ), the commutator x β,n (q) v x β,n (q) -1 v -1 belongs to Stab + (F ).

Proof. There is nothing to show if F ⊆ H - α,m since v = 1 in this case. We may thus assume that Stab + (F ′ , F ) = (α, m) ; then there is an a ∈ C such that v = x α,m (a).

Suppose first that β = α. Then

x β,n (q) v x β,n (q) -1 v -1 = x β,n (q) x α,m (a) x β,n (-q) x α,m (-a) = x α (qt n + at m -qt n -at m ) = 1.
Therefore the assertion holds in this case. Suppose now that β = α. The facet F ′ is contained in the closure of exactly two alcoves, F and say F * , the latter lying in H - α,m . Then f F * (α) = m. We observe that no wall other than H α,m separates F * and F . In particular, H β,n does not separate F * and F , because β = ±α. Since F lies in H - β,n , so does F * , and thus f F * (β) n. Therefore for any pair of positive integers i, j such that iα + jβ is a root, f F * (iα + jβ) im + jn. This means that F * lies in the half-space H - iα+jβ,im+jn . Again, the wall H iα+jβ,im+jn does not separate F * and F , and we conclude that F lies in the half-space H - iα+jβ,im+jn . Chevalley's commutator formula [START_REF] Berenstein | Total positivity in Schubert varieties[END_REF] implies that

x β,n (q) v x β,n (q) -1 v -1 = x β,n (q) x α,m (a) x β,n (-q) x α,m (-a) = i,j>0
x iα+jβ,im+jn C i,j,α,β a i (-q) j .

Here the product is taken over all pairs of positive integers i, j such that iα + jβ is a root.

The assumption about β in the statement of the lemma implies that such a root iα + jβ is necessarily positive. By Proposition 21 (i), each factor x iα+jβ,im+jn C i,j,α,β a i (-q) j belongs to Stab + (F ). Thus the commutator x β,n (q) v x β,n (q) -1 v -1 belongs to Stab + (F ).

Remark. The first assertion in Proposition 21 (ii) means that Stab + (F ′ ) has the structure of a bicrossed product Stab + (F ′ , F ) ⋊ ⋉ Stab + (F ) (see [START_REF] Takeuchi | Matched pairs of groups and bismash products of Hopf algebras[END_REF]) whenever F and F ′ are two faces in the Coxeter complex such that F ′ ⊆ F . Suppose now that F is an alcove and that F ′ is a facet of F . Then Proposition 21 (i) and Lemma 22 imply that each element v ∈ Stab + (F ′ , F ) normalizes the group Stab + (F ). Thus Stab + (F ) is a normal subgroup of Stab + (F ′ ) and Stab + (F ′ ) is the semidirect product Stab + (F ′ , F ) ⋉ Stab + (F ).

Galleries, cells and MV cycles

We fix a dominant coweight λ ∈ Λ ++ . As usual, we denote by P λ the standard parabolic subgroup P J of G, where J = {j ∈ I | α j , λ = 0}. Besides, we denote by {λ fund } the vertex in A fund with the same type as {λ}. Finally, there is a unique element w λ in W aff with minimal length such that λ = w λ (λ fund ). Thus among all alcoves in A aff having {λ} as vertex, w λ (A fund ) is the one closest to A fund .

We denote the length of w λ by p and we choose a reduced decomposition s i 1 • • • s ip of it, with (i 1 , . . . , i p ) ∈ (I aff ) p . The geometric translation of this choice is the datum of the sequence

γ λ = {0} ⊂ Γ 0 ⊃ Γ ′ 1 ⊂ Γ 1 ⊃ • • • ⊃ Γ ′ p ⊂ Γ p ⊃
{λ} of alcoves and facets (also known as a gallery) in A aff , where

Γ j = s i 1 • • • s i j (A fund ) and Γ ′ j = s i 1 • • • s i j-1 (φ {i j } ).
By Proposition 2.19 (iv) in [START_REF] Tits | Buildings of spherical type and finite BN-pairs[END_REF], these alcoves and facets are all contained in the dominant Weyl chamber C dom . The choice of the reduced decomposition s i 1 • • • s ip of w λ and the notations P λ , λ fund , γ λ will be kept for the rest of Section 5.

We define the Bott-Samelson variety as the smooth projective variety

Σ(γ λ ) = G(O) × B Pi 1 × B • • • × B Pip / B.
We will denote the image in Σ(γ λ ) of an element (g 0 , g 

] → g 0 g 1 • • • g p t λ fund from Σ(γ λ ) onto G λ .
The geometric language of buildings is of great convenience in the study of the Bott-Samelson variety. Indeed each element d = [g 0 , g 1 , . . . , g p ] in Σ(γ λ ) may be viewed as a gallery

δ = {0} = ∆ ′ 0 ⊂ ∆ 0 ⊃ ∆ ′ 1 ⊂ ∆ 1 ⊃ • • • ⊃ ∆ ′ p ⊂ ∆ p ⊃ ∆ ′ p+1 (18) 
in I aff , where

∆ j = g 0 • • • g j (A fund ) for 0 j p, ∆ ′ j = g 0 • • • g j-1 (φ {i j } ) for 1 j p, and ∆ p+1 = g 0 • • • g p {λ fund }.
(This gallery has the same type as γ λ , that is, each facet ∆ ′ j of δ has the same type as the corresponding element Γ ′ j in γ λ . We also observe that the vertex ∆ ′ p+1 of the affine building corresponds to the element π(d) of the affine Grassmannian.) Thus for instance the point 1, s i 1 , s i 2 , . . . , s ip in Σ(γ λ ) is viewed as the gallery γ λ . With this picture in mind, one proves easily the following proposition.

Proposition 23

The restriction of π to π -1 (G λ ) is a fiber bundle with fiber isomorphic to P λ /B + . Proof. Let J = {j ∈ I | α j , λ = 0}. The set S of alcoves whose closure contains φ J is in canonical bijection with the set of all Iwahori subgroups of G(K ) contained in PJ , hence with PJ / B ∼ = P J /B + . In particular, P J acts transitively on S.

Now let F = π -1 t λ and let H be the stabilizer of [t λ ] in G(O); thus H ⊇ P λ = P J . Since π is G(O)-equivariant, H acts on F and there is a commutative diagram

π -1 (G λ ) ≃ / / π G(O) × H F G λ ≃ / / G(O)/H.
It thus suffices to prove that F is isomorphic to S.

Each element d ∈ F can be viewed as a gallery δ in I aff stretching from {0} to {λ}, as in (18). We claim that ∆ 0 always contains φ J . When all faces of δ belong to A aff , this claim follows from the proof of Proposition 2.29 in [START_REF] Tits | Buildings of spherical type and finite BN-pairs[END_REF] (with proj {0} {λ} = φ J ); the general case is obtained by retracting δ onto A aff from the fundamental alcove, see Lemma 3.6 in [START_REF] Tits | Buildings of spherical type and finite BN-pairs[END_REF].

We finally consider the map f : d → ∆ 0 from F to S. Corollary 3.4 in [START_REF] Tits | Buildings of spherical type and finite BN-pairs[END_REF] implies that f is injective, because in any apartment, there is only one non-stammering gallery of the same type as γ λ that starts from a given chamber ∆ 0 . On the other side, f is P λ -equivariant; it is thus surjective, for P λ acts transitively on the codomain. We conclude that f is an isomorphism from F onto S. This proposition implies the following equality, which we record for later use:

Φ + + p = dim Σ(γ λ ) = dim G λ + dim(P λ /B + ) = ht(λ -w 0 λ) + dim(P λ /B + ). ( 19 
)
Our next task is to obtain a Bia lynicki-Birula decomposition of the Bott-Samelson variety. The torus T acts on the latter by left multiplication on the first factor. If we represent an element d ∈ Σ(γ λ ) by a gallery δ as in (18), then d is fixed by T if and only if all the faces ∆ j and ∆ ′ j are in the Coxeter complex A aff ∼ = (I aff ) T . We devote a word to this situation: a gallery δ as in (18), of the same type as γ λ , all of whose faces are in A aff , is called a combinatorial gallery. The weight ν such that ∆ ′ p+1 = {ν} is called the weight of δ; it belongs to λ + ZΦ ∨ , because {ν} has the same type as {λ}.

We denote the set of all combinatorial galleries by Γ(γ λ ). This set is in bijection with

W ×W i 1 ו • •×W ip ; indeed the map (δ 0 , δ 1 , . . . , δ p ) → δ 0 , δ 1 , . . . , δ p from W ×W i 1 ו • •×W ip to Σ(γ λ ) is injective and its image is the set of T -fixed points in the codomain. Concretely this correspondence maps (δ 0 , δ 1 , . . . , δ p ) ∈ W × W i 1 × • • • × W ip to the combinatorial gallery whose faces are ∆ j = δ 0 • • • δ j (A fund ) and ∆ ′ j = δ 0 • • • δ j-1 (φ {i j } ) (20) 
and whose weight is

ν = δ 0 δ 1 • • • δ p λ fund . (21) 
The retraction r ∅ from G onto G T ∼ = Λ can be extended to a map of polysimplicial complexes from I aff onto (I aff ) T ∼ = A aff . Following Section 7 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF], we further extend this retraction to a map from Σ(γ λ ) onto Σ(γ λ ) T ∼ = Γ(γ λ ) by applying it componentwise to galleries. The preimage by this map of a combinatorial gallery δ will be denoted by C(δ).

Our aim now is to describe precisely the cell C(δ) associated to a combinatorial gallery δ. Representing the latter as in (18), we introduce the notation

Stab + (δ) = Stab + (∆ ′ 0 , ∆ 0 ) × Stab + (∆ ′ 1 , ∆ 1 ) × • • • × Stab + (∆ ′ p , ∆ p ).
Proposition 24 Let δ be a combinatorial gallery and let (δ 0 , δ 1 , . . . , δ p ) be the sequence in

W × W i 1 × • • • × W ip associated to δ by Equations (20). Then the map (v 0 , v 1 , . . . , v p ) → v 0 δ 0 , δ 0 -1 v 1 δ 0 δ 1 , δ 0 δ 1 -1 v 2 δ 0 δ 1 δ 2 , . . . , δ 0 • • • δ p-1 -1 v p δ 0 • • • δ p from Stab + (δ) to Σ(γ λ ) is injective and its image is C(δ). Proof. Set Stab + (δ) = Stab + (∆ ′ 0 ) × Stab + (∆ 0 ) Stab + (∆ ′ 1 ) × Stab + (∆ 1 ) • • • × Stab + (∆ p-1 ) Stab + (∆ ′ p )/ Stab + (∆ p ).
From the inclusions

Stab + (∆ j ) ⊆ δ 0 • • • δ j B δ 0 • • • δ j -1
(for 0 j p),

Stab + (∆ ′ 0 ) ⊆ G(O)δ 0 -1 , Stab + (∆ ′ j ) ⊆ δ 0 • • • δ j-1 Pi j δ 0 • • • δ j -1
(for 1 j p), standard arguments imply that the map

f : [v 0 , v 1 , . . . , v p ] → v 0 δ 0 , δ 0 -1 v 1 δ 0 δ 1 , δ 0 δ 1 -1 v 2 δ 0 δ 1 δ 2 , . . . , δ 0 • • • δ p-1 -1 v p δ 0 • • • δ p from Stab + (δ) to Σ(γ λ ) is well-defined.
The proof of Proposition 6 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF] says that an element d = [g 0 , g 1 , . . . , g p ] in the Bott-Samelson variety belongs to the cell C(δ) if and only if there exists u 0 , u 1 , . . . , u p ∈ U + (K ) such that g 0 g 1 • • • g j A fund = u j ∆ j and u j-1 ∆ ′ j = u j ∆ ′ j for each j. Setting v 0 = u 0 and v j = u -1 j-1 u j for 1 j p, the conditions above can be rewritten

g 0 g 1 • • • g j B = v 0 v 1 • • • v j δ 0 δ 1 • • • δ j B and v j ∈ Stab + (∆ ′ j ), which shows that f ([v 0 , v 1 , . . . , v p ]) = d.
Therefore the image of f contains the cell C(δ). The reverse inclusion can be established similarly.

The map f is injective. Indeed suppose that two elements

v = [v 0 , v 1 , . . . , v p ] and v ′ = [v ′ 0 , v ′ 1 , . . . , v ′ p ] in Stab + (δ) have the same image. Then v 0 v 1 • • • v j δ 0 δ 1 • • • δ j B = v ′ 0 v ′ 1 • • • v ′ j δ 0 δ 1 • • • δ j B
for each j ∈ {0, . . . , p}. This means geometrically that

v 0 v 1 • • • v j δ 0 δ 1 • • • δ j A fund = v ′ 0 v ′ 1 • • • v ′ j δ 0 δ 1 • • • δ j A fund ; in other words, v 0 v 1 • • • v j and v ′ 0 v ′ 1 • • • v ′ j are equal in U + (K )/ Stab + (∆ j ).
Since this holds for each j, the two elements v and v ′ are equal in Stab + (δ).

We conclude that f induces a bijection from Stab + (δ) onto C(δ). It then remains to observe that the map (v 0 , v 1 , . . . , v p ) → [v 0 , v 1 , . . . , v p ] from Stab + (δ) to Stab + (δ) is bijective. This follows from Proposition 21 (ii): indeed for each [a 0 , a 1 , . . . , a p ] ∈ Stab + (δ), the element (v 0 , v 1 , . . . , v p ) ∈ Stab + (δ) such that [v 0 , v 1 , . . . , v p ] = [a 0 , a 1 , . . . , a p ] is uniquely determined by the condition that for all j ∈ {0, 1, . . . , p},

v j ∈ (v 0 • • • v j-1 ) -1 (a 0 • • • a j ) Stab + (∆ j ) ∩ Stab + (∆ ′ j , ∆ j ).
The definition of the map π, Equation ( 21), Proposition 21 (ii) and Proposition 24 yield the following explicit description of the image of the cell C(δ) by the map π.

Corollary 25 Let δ be a combinatorial gallery of weight ν, as in (18), and equip the set Φ aff + (∆ ′ 0 , ∆ 0 ) with a total order. Then π(C(δ)) is the image of the map

(a j,β ) → p j=0    β∈Φ aff + (∆ ′ j ,∆ j ) x β (a j,β )    [t ν ] from p j=0 C Φ aff + (∆ ′ j ,∆ j ) to G .
Certainly the notation used in Corollary 25 is more complicated than really needed. Indeed except perhaps for j = 0, each set Φ aff + (∆ ′ j , ∆ j ) has at most one element. Each inner product is therefore almost always empty or reduced to one factor. Keeping this fact in mind may help understand the proofs of Lemma 29 and Proposition 30 in Section 5.3.

We now endow Γ(γ λ ) with the structure of a crystal. To do that, we introduce "root operators" e α and f α for each simple root α of the root system Φ. These operators act on Γ(γ λ ) and are defined by the following recipe (see Section 6 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF]).

Let δ be a combinatorial gallery, as in Equation (18). We call m ∈ Z the smallest integer such that the hyperplane H α,m contains a face ∆ ′ j , where 0 j p + 1.

• If m = 0, then e α δ is not defined. Otherwise we find k ∈ {1, . . . , p + 1} minimal such that ∆ ′ k ⊆ H α,m , we find j ∈ {0, . . . , k -1} maximal such that ∆ ′ j ⊆ H α,m+1 , and we define the combinatorial gallery e α δ as

{0} = ∆ ′ 0 ⊂ ∆ 0 ⊃ ∆ ′ 1 ⊂ ∆ 1 ⊃ • • • ⊃ ∆ ′ j ⊂ s α,m+1 (∆ j ) ⊃ s α,m+1 (∆ ′ j+1 ) ⊂ • • • ⊃ s α,m+1 (∆ ′ k-1 ) ⊂ s α,m+1 (∆ k-1 ) ⊃ τ α ∨ (∆ ′ k ) ⊂ τ α ∨ (∆ k ) ⊃ • • • ⊂ τ α ∨ (∆ p ) ⊃ τ α ∨ (∆ ′ p+1 ) = {ν + α ∨ } .
Thus we reflect all faces between ∆ ′ j and ∆ ′ k across the hyperplane H α,m+1 and we translate all faces after ∆ ′ k by α ∨ . (Note here that s α,m+1 (∆ ′ j ) = ∆ ′ j and that s α,m+1 (∆ ′ k ) = τ α ∨ (∆ ′ k ).)

• If m = α, ν , then f α δ is not defined. Otherwise we find j ∈ {0, . . . , p} maximal such that ∆ ′ j ⊆ H α,m , we find k ∈ {j + 1, . . . , p + 1} minimal such that ∆ ′ k ⊆ H α,m+1 , and we define the combinatorial gallery f α δ as

{0} = ∆ ′ 0 ⊂ ∆ 0 ⊃ ∆ ′ 1 ⊂ ∆ 1 ⊃ • • • ⊃ ∆ ′ j ⊂ s α,m (∆ j ) ⊃ s α,m (∆ ′ j+1 ) ⊂ • • • ⊃ s α,m (∆ ′ k-1 ) ⊂ s α,m (∆ k-1 ) ⊃ τ -α ∨ (∆ ′ k ) ⊂ τ -α ∨ (∆ k ) ⊃ • • • ⊂ τ -α ∨ (∆ p ) ⊃ τ -α ∨ (∆ ′ p+1 ) = {ν -α ∨ } .
Thus we reflect all faces between ∆ ′ j and ∆ ′ k across the hyperplane H α,m and we translate all faces after ∆ ′ k by -α ∨ . (Note here that s α,m (∆ ′ j ) = ∆ ′ j and that s α,m (∆ ′ k ) = τ -α ∨ (∆ ′ k ).)

With the notations above, the maximal integer n such that (e α ) n δ is defined is equal to -m, and the maximal integer n such that (f α ) n δ is defined is equal to α, ν -m.

The crystal structure on Γ(γ λ ) is then defined as follows. Given δ ∈ Γ(γ λ ), written as in (18), and i ∈ I, we set wt(δ) = ν, ε i (δ) = -m and ϕ i (δ) = α i , ν -m, where ν is the weight of δ and m ∈ Z is the smallest integer such that the hyperplane H α i ,m contains a face ∆ ′ j , with 0 j p + 1. Finally ẽi and fi are given by the root operators e α i and f α i .

Let δ be a combinatorial gallery, written as in (18). We say that δ is positively folded if ∀j ∈ {1, . . . , p}, ∆ j-1 = ∆ j =⇒ Φ aff + (∆ ′ j , ∆ j ) = ∅.

We define the dimension of δ as dim δ = p j=0 Φ aff + (∆ ′ j , ∆ j ) .

(These are Definitions 16 and 17 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF].) Thus for instance the gallery γ λ is positively folded of dimension dim γ λ = Φ + + p = ht(λ -w 0 λ) + dim(P λ /B + ), [START_REF] Littelmann | Paths and root operators in representation theory[END_REF] by Equation [START_REF] Kashiwara | On crystal bases[END_REF]. We denote the set of positively folded combinatorial gallery by Γ + (γ λ ). Arguing as in the proof of Proposition 4 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF], one shows that for each δ ∈ Γ + (γ λ ) of weight ν, dim γ λ -dim δ ht(λ -ν).

We say that a positively folded combinatorial gallery δ is an LS gallery if this inequality is in fact an equality. The set of LS galleries is denoted by Γ + LS (γ λ ). Then Corollary 2 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF] says that Γ + LS (γ λ ) is a subcrystal of Γ(γ λ ) and that for any gallery δ ∈ Γ + LS (γ λ ), there is a sequence (α 1 , . . . , α t ) of simple roots such that δ = f α 1 • • • f αt γ λ . The following proposition makes the link between LS galleries and MV cycles; it is equivalent to Corollary 5 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF] when λ is regular.

Proposition 26

The map Z : δ → π(C(δ)) is a bijection from Γ + LS (γ λ ) onto Z (λ); it maps a combinatorial gallery of weight ν to a MV cycle in Z (λ) ν .

Proof. We fix ν ∈ Λ. We denote the set of combinatorial galleries of weight ν by Γ(γ λ , ν) and we set Γ + (γ λ , ν) = Γ + (γ λ ) ∩ Γ(γ λ , ν). By construction, π -1 (S + ν ) = δ∈Γ(γ λ ,ν)

C(δ).

We set Σ = π -1 G λ and X = π -1 S + ν ∩ G λ . Since S + ν ∩ G λ is of pure dimension ht(ν -w 0 λ), Proposition 23 and Equation [START_REF] Littelmann | Paths and root operators in representation theory[END_REF] imply that X is of pure dimension ht(ν -w 0 λ) + dim(P λ /B + ) = dim γ λ -ht(λ -ν).

Proposition 23 implies also that the map Z → π -1 (Z) is a bijection from the set of irreducible components of S + ν ∩ G λ onto the set of irreducible components of X. By Lemma 11 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF], a cell C(δ) meets Σ if and only if δ is positively folded. Therefore for each δ ∈ Γ + (γ λ , ν), since C(δ) ∩ Σ is dense in C(δ).

Root operators and the comparison theorem

The aim of this section is to show the following result.

Theorem 27 The bijection Z : Γ + LS (γ λ ) → Z (λ) is an isomorphism of crystals.

The existence of an isomorphism of crystals from B(λ) onto Γ + LS (γ λ ) was already known; see for instance Theorem 2 in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF] for the case λ regular. The theorem above says that the map Z -1 • Ξ(λ) is actually such an isomorphism. For its proof, we need two propositions and a lemma.

Proposition 28 Let δ be a combinatorial gallery of weight ν, as in (18), and let i ∈ I. Call m the smallest integer such that the hyperplane H α i ,m contains a face ∆ ′ j of the gallery, where 0 j p + 1.

(i) The image of π(C(δ)) by the retraction r {i} is x α i (pt m )[t ν ] p ∈ O .

(ii) The following equality holds:

s i µ + s i -1 π(C(δ)) = ν -α i , ν -m α ∨ i .
Assertion (i) allows us to find (v ′ k+1 , . . . , v ′ p ) ∈ Stab + (δ) k+1 such that p

-α ∨ v k+1 • • • v p [t ν ] = v ′ k+1 • • • v ′ p [t ν ],
with the further property that v ′ ks = v ks = x α,m (c s ) for each s ∈ {1, . . . , r}. We apply then the inductive assumption and find (v ′′ k+1 , . . . , v ′′ p ) ∈ Stab + (δ) k+1 such that

x -α,-m (1/c) v ′ k+1 • • • v ′ p [t ν ] = v ′′ k+1 • • • v ′′ p [t ν ]. Then x -α,-m (1/c) v k v k+1 • • • v p [t ν ] = p -α ∨ v k v ′′ k+1 • • • v ′′ p [t ν ],
and a final application of Assertion (ii) concludes the proof of Assertion (iii) at k in this second case. Applying the inductive assumption, we find (v ′ k+1 , . . . , v ′ p ) ∈ Stab + (δ) k+1 such that

x -α,-m (1/(b + c)) v k+1 • • • v p [t ν ] = v ′ k+1 • • • v ′ p [t ν ].
Using now Assertion (ii), we see that

x -α,-m (1/c) v k v k+1 • • • v p [t ν ] = x α,m (bc/(b + c)) (1 + b/c) -α ∨ v ′ k+1 • • • v ′ p [t ν ]
belongs to π(C(δ)) k . This concludes the proof of Assertion (iii) at k.

At the end of their paper [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF], Gaussent and Littelmann describe several cases where one can read on the LS galleries that the MV cycles associated to them are included one in another. This question is further investigated by Ehrig, who computes an extensive list of examples in [START_REF] Ehrig | Inklusionsverhalten von Mirković-Vilonen Zykeln in Spezialfällen, Diplomarbeit[END_REF]. The next proposition proposes a sufficient condition.

Proposition 30 Let δ be an LS gallery and let α be a simple root of the system Φ. If the gallery e α δ is defined, then Z(δ) ⊆ Z(e α δ).

Proof. We represent δ as in (18). We assume that e α δ is defined and we let m ∈ Z and 0 j < k p + 1 be as in the definition of e α δ. We call (k = k 0 , k 1 , . . . , k r ) the list in increasing order of indices l ∈ {1, . . . , p} such that Φ aff + (∆ ′ l , ∆ l ) = (α, m) . Finally we equip Φ aff + (∆ ′ 0 , ∆ 0 ) with a total order. Let (a l,β ) ∈ p l=0 C Φ aff + (∆ ′ l ,∆ l ) be a family of complex numbers such that a k 0 ,(α,m) + a k 1 ,(α,m) + • • • + a ks,(α,m) = 0 for each s ∈ {0, 1, . . . , r} and set

v l = β∈Φ aff + (∆ ′ l ,∆ l )
x β (a l,β ) for each l ∈ {0, 1, . . . , p}, A = By Corollary 25, the element AB[t ν ] describes a dense subset of Z(δ) when the parameters a l,β vary. To establish the proposition, it therefore suffices to show that AB[t ν ] belongs to Z(e α δ). What we will now show is more precise:

For any non-zero complex number h, the element Ax -α,-m-1 (h)B[t ν ] belongs to π(C(e α δ)).

We first observe that x α,m+1 (1/h) ∈ Stab + (∆ ′ j ), for ∆ ′ j ⊆ H α,m+1 . Using Lemma 29 (i), we find (v ′ j , v ′ j+1 , . . . , v ′ p ) ∈ Stab + (δ) j such that

x α,m+1 (1/h)B[t ν ] = v ′ j v ′ j+1 • • • v ′ p [t ν ].
Proof of Theorem 27. Obviously Z preserves the weight. Comparing Proposition 28 (ii) with Equation ( 13), we see that Z is compatible with the structure maps ϕ i . The axioms of a crystal imply then that Z is compatible with the structure maps ε i . Now let δ be an LS gallery of weight ν, as in (18), let i ∈ I, and assume that the LS gallery e α i δ is defined. Then the two MV cycles Z(δ) and Z(e α i δ) satisfy the four conditions of Proposition 12. Indeed the first and the third conditions follows immediately from the fact that Z(δ) ∈ Z (λ) ν and Z(e α i δ) ∈ Z (λ) ν+α ∨ i ; the second condition comes from Proposition 28 (ii) and from the second assertion of Lemma 6 (iii) in [START_REF] Gaussent | LS galleries, the path model, and MV cycles[END_REF]; the fourth condition comes from Proposition 30. Therefore Z(e α i δ) = ẽi Z(δ); in other words, Z intertwines the action of the root operators on Γ + LS (γ λ ) with the action of Braverman and Gaitsgory's crystal operators on Z (λ). This concludes the proof that Z is a morphism of crystals. Since Z is bijective and both crystals Γ + LS (γ λ ) and Z (λ) are normal, Z is an isomorphism.

  The affine Grassmannian G is a Kähler manifold and the action of K on G is hamiltonian. Let µ : G → k * be the moment map. Fix a dominant and regular coweight ξ ∈ Λ. Then R × + acts on G through the map R × + ֒→ C × ξ -→ T . The map µ, iξ from G to R strictly increases along any non-constant orbit for this R × + -action. Now take λ ∈ Λ and x ∈ S + λ ∩ S - λ . Then lim a→0 a ξ • x = lim a→∞ a ξ • x = [t λ ]. Thus µ, iξ cannot increases strictly along the orbit R × + • x. This implies that this orbit is constant; in other words, x = [t λ ].

  12) and translate their definition in more algebraic terms (Proposition 14). The central result of Section 4 is Theorem 16 (in Section 4.2). Given an element b ∈ B(-∞), this theorem describes the MV cycle Ξ(t 0 ⊗ b) that corresponds to t 0 ⊗ b ∈ B(-∞) almost as concretely as Example 8 describes MV cycles in the case of semisimple rank 1; indeed the MV cycle Ξ(t 0 ⊗ b) is given as the closure of an explicit subset Ỹi,c , where c is the string parameter in direction i of b. This description implies that MV cycles are rational varieties.

  ,c and Ξ(t 0 ⊗ b) are the one-point set [t 0 ] . Now let i ∈ I l and b ∈ B(-∞) i . Set c i (b) = (c 1 , . . . , c l ), j = (i 2 , . . . , i l ) and b ′ = f c 1 i 1 b. Then b ′ belongs to B(-∞) j and c j (b ′ ) is the sequence d = (c 2 , . . . , c l ). By induction, we may take for granted that Ξ(t 0 ⊗ b ′ ) = Ỹj,d .

  Now fix b ∈ B(-∞) and a reduced decomposition i of w 0 . Call c = (c 1 , . . . , cN ) the modified string parameter ci (b) of b in direction i and call n • = (n 1 , . . . , n N ) the Lusztig parameter b -1 i (b) of b w.r.t. i. The rational maps f = z -1 i • y i and g = y -1 i • z i are mutually inverse birational maps from K N to itself, and by Berenstein and Zelevinsky's theorem,

  and n + 1 = ⌈f F (α)⌉. We denote by Stab + (F ′ , F ) the subgroup of U + (K ) generated by the elements of the form x β (a) with β ∈ Φ aff + (F ′ , F ) and a ∈ C. Proposition 21 (i) The stabilizer Stab + (F ) of a face F of the Coxeter complex is generated by the elements x α (p), where α ∈ Φ + and p ∈ O satisfy val(p) f F (α).

X

  = π -1 S + ν ∩ Σ = δ∈Γ + (γ λ ,ν) C(δ) ∩ Σ . Now let δ ∈ Γ + (γ λ , ν). Proposition 24 says that the cell C(δ) is isomorphic to Stab + (δ), hence is an affine space of dimension dim δ. Thus the intersection C(δ) ∩ Σ, which is a non-empty open subset of C(δ), is irreducible of dimension dim δ dim γ λ -ht(λ -ν).It follows that the irreducible components of X are the closures in X of the subsets C(δ) ∩ Σ, for δ running over the set of LS galleries of weight ν.To conclude the proof, it remains to observe that π C(δ) ∩ Σ = π C(δ)

  The last case is (ζ, n) = (α, m). In this case, k 1 = k and b = c k 1 . The assumptions of the lemma imply that b + c = 0. Equation (3) says then thatx -α,-m (1/c)v k = x α,m (bc/(b + c))(1 + b/c) -α ∨ x -α,-m (1/(b + c)).

  2, we present several properties of orbits in the affine Grassmannian of G under the action of the groups G C[[t]] and U ± C((t)) . Section 3.3 recalls the notion of MV cycle, in the original version of Mirković and Vilonen and in the somewhat generalized version of Anderson. Finally Section 3.4 introduces maps from the affine Grassmannian of G to the affine Grassmannian of Levi subgroups of G.An easy but possibly new result in this section is Proposition 5 (iii). Joint with Mirković and Vilonen's work, it implies the expected Proposition 7, which provides the dimension estimates that Anderson needs for his generalization of MV cycles.
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and Ω ′ = q ∈ (K × ) N each q j has lower degree term b j t n j with (b 1 , . . . , b N ) ∈ Ω ′ .

In other words, to each p ∈ Ω corresponds a q ∈ Ω ′ such that y i (p) = z i (q), and conversely. This shows the equality [y i (p)] p ∈ Ω = [z i (q)] q ∈ Ω ′ . By Kamnitzer's theorem, the right-hand side is dense in A i (n • ) hence in Ξ(t 0 ⊗ b). We thus get another proof of our Theorem 16, which claims that Ξ(t 0 ⊗b) is the closure of the left-hand side.

Remark. We fix a reduced decomposition i of w 0 . Each MV cycle Z such that µ -(Z) = 0 is the closure of a set Ỹi,c for a certain c ∈ C i ; indeed there exists b ∈ B(-∞) such that Z = Ξ(t 0 ⊗ b), and one takes then c = c i (b). It follows that S - 0 is contained in the union c∈C i Ỹi,c . On the other side, each Ỹi,c is contained in S - 0 . One could then hope that S - 0 is the disjoint union of the Ỹi,c for c ∈ C i , because the analogous property S - 0 = n•∈N N A i (n • ) for the subsets considered by Kamnitzer holds (see Proposition 4.1 in [START_REF] Kamnitzer | Mirković-Vilonen cycles and polytopes[END_REF]). This is alas not the case in general, as the following counter-example shows. We take G = SL 4 with its usual pinning and enumerate the simple roots in the usual way (α 1 , α 2 , α 3 ). We choose the reduced decomposition i = (2, 1, 3, 2, 1, 3) and consider

If one tries to factorize an element in gG(O) ∩ U -(K ) as a product

using Berenstein, Fomin and Zelevinsky's method [START_REF] Berenstein | Parametrizations of canonical bases and totally positive matrices[END_REF], and if after that one adjusts c = (c 1 , . . . , c 6 ) so that (val(p 1 ), . . . , val(p 6 )) = (c 1 , . . . , c6 ), then one finds

These conditions on c must be satisfied in order that [g] belongs to Ỹi,c . However the equations that define the cone C i are

We conclude that [g] ∈ c∈C i Ỹi,c .

A description of the string cone C i

The following result complements Theorem 16.

Proposition 18 Let i = (i 1 , . . . , i N ) be a reduced decomposition of w 0 and let c = (c 1 , . . . , c N ) be an element in Z N . Let Z be the closure of Ỹi,c and let λ be the coweight c

Proof. We collect in a set J the indices j ∈ {0, . . . , p} such that Φ aff + (∆ ′ j , ∆ j ) contains an affine root of the form (α i , n) with n ∈ Z. For each j ∈ J, there is a unique integer, say n j , so that (α i , n j ) ∈ Φ aff + (∆ ′ j , ∆ j ). (Thus n j = f ∆ ′ j (α i ) in the notation of Section 5.1.) All these integers n j are larger or equal than m. We claim that

Consider indeed an integer n in the right-hand side above. Since the gallery δ must go from the wall H α i ,m to the point ν, it must cross the wall H α i ,n . More exactly, there is an index

), and thus that j ∈ J and n = n j .

We apply now the parabolic retraction r {i} to the expression given in Corollary 25. Equation [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF] allows us to remove all factors in the product that belong to the unipotent radical of P {i} (K ). We deduce that r {i} (π(C(δ))) is the image of the map [START_REF] Lusztig | Singularities, character formulas, and a q-analog of weight multiplicities[END_REF] and from the fact that [t ν ] is fixed by all subgroups x α i ,n (C) with n α i , ν . From there, one deduces easily Assertion (ii) using Lemma 10 and Example 8.

For a combinatorial gallery δ, written as in Equation ( 18), and an integer k ∈ {0, . . . , p+1}, we set

Lemma 29 Let δ be a combinatorial gallery, as in Equation ( 18), and let k ∈ {1, . . . , p + 1}.

(iii) Let (v k , . . . , v p ) ∈ Stab + (δ) k , let α be a simple root of the root system Φ, and let c ∈ C × . Call m the smallest integer such that the hyperplane H α,m contains a face ∆ ′ j , where 0 j p + 1, form the list (k 1 , k 2 , . . . , k r ) in increasing order of indices l ∈ {k, . . . , p} such that Φ aff + (∆ ′ l , ∆ l ) = {(α, m)}, and find the complex numbers c 1 , c 2 , . . . , c r such that

Proof. The proof of these three assertions proceeds by decreasing induction on k. For k = p + 1, all of them hold: indeed the element u in Assertion (i), the element p µ in Assertion (ii) and the element x -α,-m (c) in Assertion (iii) fix the point [t ν ]. Now assume that k p and that the result holds for k

. Assertions (i), (ii) and (iii) follow then immediately from the inductive assumption, after one has observed that the element u in Assertion (i) belongs by assumption to Stab + (∆ ′ k ) and that Stab 

with the further property that v j = v ′ j for all j > k verifying ∆ j-1 = ∆ j . Certainly then

By Proposition 21 (i), we may write u as a product of elements of the form x β,n (q) with q ∈ O and (β,

. This shows that Assertion (i) holds at k.

Consider now Assertion (ii). Let a ∈ C × be the constant term coefficient of p and set q = p ζ,µ -a ζ,µ /t. Then

) and using the inductive assumption and Assertion (i), we find

; in the case a = 1, we may even demand that v j = v ′ j for all j > k verifying ∆ j-1 = ∆ j . Then

, which shows that Assertion (ii) holds at k.

It remains to prove Assertion (iii). We distinguish several cases. Suppose first that ζ = α. By Lemma 22, the element

for each s ∈ {1, . . . , r}, for ∆ ks-1 = ∆ ks . Applying the inductive assumption, we find

which establishes that Assertion (iii) holds at k in this first case. The second case is when ζ = α but n = m. Then n > m, by the minimality of m. Let p be the square root in 1 + tO of 1 + t n-m b/c. Equation (3) implies that

We may moreover demand that v ′ ks = v ks = x α,m (a ks,(α,m) ) for each s ∈ {0, 1, . . . , r}, for ∆ ′ ks-1 = ∆ ′ ks . We set

and then

We finally set

We now observe that

These equalities, the definition of e α δ, Equation ( 16) and Proposition 21 (ii) imply that the sequence v 0 , . . . , v j-1 , x α,m+1 (h) t (m+1)α ∨ s α v ′ j t (m+1)α ∨ s α -1 , t (m+1)α ∨ s α v ′ j+1 t (m+1)α ∨ s α -1 , . . . , t (m+1)α ∨ s α v ′ k-1 t (m+1)α ∨ s α -1 , t α ∨ x α,m -a k,(α,m) t -α ∨ , t α ∨ v ′′ k+1 t -α ∨ , . . . , t α ∨ v ′′ p t -α ∨ belongs to Stab + (e α δ). Proposition 24, Equation ( 21) and the definition of the map π then says that A x α,m+1 (h) t (m+1)α ∨ s α C t (m+1)α ∨ s α -1 t α ∨ F [t ν ] belongs to π(C(e α δ)). An appropriate application of Lemma 29 (ii) shows that the element obtained by inserting extra factors (-h) -α ∨ and -a k,(α,m) -α ∨ in this expression, respectively after A and before t α ∨ , also belongs to π(C(e α δ)). Now Equation (4) allows to rewrite K = (-h) -α ∨ x α,m+1 (h) t (m+1)α ∨ s α and E = t (m+1)α ∨ s α -1 -a k,(α,m)

and we conclude that AKCEF [t ν ] = Ax -α,-m-1 (h)B[t ν ] belongs to π(C(e α δ)), as announced.