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Abstract

In this paper we study para-tt∗-bundles (TM,D, S) on the tangent bundle of an
almost para-complex manifold (M, τ). We characterise those para-tt∗-bundles with
∇ = D + S induced by the one-parameter family of connections given by ∇θ =
exp(θτ) ◦ ∇ ◦ exp(−θτ) and prove a uniqueness result for solutions with a para-
complex connection D. Flat nearly para-Kähler manifolds and special para-complex
manifolds are shown to be such solutions. We analyse which of these solutions
admit metric or symplectic para-tt∗-bundles. Moreover, we give a generalisation
of the notion of a para-pluriharmonic map to maps from almost para-complex
manifolds (M, τ) into pseudo-Riemannian manifolds and associate to the above
metric and symplectic para-tt∗-bundles generalised para-pluriharmonic maps into
Sp(R2n)/Uπ(Cn), respectively into SO0(n, n)/Uπ(Cn), where Uπ(Cn) is the para-
complex analogue of the unitary group.
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1 Introduction

The subject of this work are para-tt∗-bundles (TM, D, S) on the tangent bundle an almost
para-complex manifold (M, τ) as base. We generalise the results of the complex geometric
setting which can be found in [S3]. In previous work we always supposed a para-complex
base manifold. Motivated by the study of the complex case we admit non-integrable
para-complex structures, since Levi-Civita flat nearly para-Kähler manifolds arise in this
way as solutions of para-tt∗-bundles. Nearly para-Kähler manifolds as analogue of nearly
Kähler manifolds were introduced in a recent paper of Ivanov and Zamkovoy [IZ]. A
further class of solutions is given by special para-Kähler manifolds which were studied in
[S2]. These geometries arise as one of the special geometries of Euclidean supersymmetry
in [CMMS]. This means that para-tt∗-bundles can be seen as a common generalisation of
these two geometries and give a kind of duality between them.
Now we discuss the structure of the paper. First we introduce the notion of (metric,
symplectic) para-tt∗-bundles and describe these in terms of explicit geometric data. Part
of this data is a family of flat connections Dθ on a vector bundle E with θ ∈ R which
is defined with help of a second connection D and a field S ∈ Γ(T ∗M ⊗ End(E)). Given
an almost para-complex manifold endowed with a flat connection ∇ we can consider a
natural family of flat connections defined by

∇θ = exp(θτ) ◦ ∇ ◦ exp(−θτ) for θ ∈ R.

We analyse para-tt∗-bundles, such that Dθ = ∇αθ for some α ∈ R. This choice is motivated
by the study of solutions coming from special para-Kähler geometry.
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If we restrict to para-tt∗-bundles carrying connections D which are para-complex, i.e.
which satisfy Dτ = 0, then these para-tt∗-bundles can be recovered uniquely from the pair
(∇, τ). Moreover, we give compatibility conditions on the pair (∇, τ). These conditions
hold for special para-complex and nearly para-Kähler manifolds. We discuss two classes
of solutions: The first corresponds to special para-complex manifolds with torsion and
the second to almost para-complex manifolds endowed with a flat connection ∇ such
that (∇, τ) satisfies the nearly para-Kähler condition (with torsion). Further we study
whether these para-tt∗-bundles provide metric or symplectic para-tt∗-bundles. Examples
of solutions of the first type are given by special para-Kähler manifolds and solutions of
the second type arise on Levi-Civita flat nearly para-Kähler manifolds. In addition we
show that neither the special para-Kähler condition is compatible with symplectic para-
tt∗-bundles nor the nearly para-Kähler condition is compatible with solutions of metric
para-tt∗-bundles.
There exists a relation between para-pluriharmonic maps and para-tt∗-geometry which
was studied in [S2]. In this work we generalise the notion of a para-pluriharmonic map
to maps from almost para-complex manifolds into pseudo-Riemannian manifolds. Then
we introduce S̃1-pluriharmonic maps which generalise S1-pluriharmonic maps (cf. [S3]) to
para-complex geometry. This is a generalisation of the notion of associated families (see
for example [ET]). We relate these S̃1-pluriharmonic maps to the generalisation of para-
pluriharmonic maps and prove a result, which relates generalised para-pluriharmonic maps
to harmonic maps. With these preparations we are able to associate para-pluriharmonic
maps into Sp(R2n)/Uπ(Cn), respectively into SO0(n, n)/Uπ(Cn), to the above metric and
symplectic para-tt∗-bundles. Here Uπ(Cn) is the para-complex analogue of the unitary
group.
The author is gratefull to his advisor V. Cortés for the support of his work and to M.-A.
Lawn-Paillusseau for related discussions.

2 Para-complex differential geometry

In this section we recall facts of para-complex differential geometry, which are needed in
the later work. For more information we refer to [CMMS, IZ].

Definition 1 A para-complex structure on a real finite dimensional vector space V is
a non-trivial involution τ ∈ End(V ) such that the two eigenspaces V ± := ker(Id∓ τ) to
the eigenvalues ±1 of τ have the same dimension. We call the pair (V, τ) a para-complex
vector-space.
An almost para-complex structure on a smooth manifold M is an endomorphism field
τ ∈ Γ(End(TM)) such that, for all p ∈ M , τp is a para-complex structure on TpM . It
is called integrable if the distributions T±M = ker(Id ∓ τ) are integrable. An integrable
almost para-complex structure on M is called a para-complex structure on M and a manifold
M endowed with a para-complex structure is called a para-complex manifold.

The integrability of a para-complex structure is obstructed (cf. [CMMS]) by the vanishing
of a tensor, also called Nijenhuis tensor, which is defined as

Nτ (X,Y ) := [X,Y ] + [τX, τY ]− τ [X, τY ]− τ [τX, Y ].

2



The decomposition of the tangent bundle of an (almost) para-complex manifold M
into the eigenspaces T±M extends to a bi-grading on the exterior algebra:

ΛkT ∗M =
⊕

k=p+q

Λp+,q−T ∗M (2.1)

and induces an obvious bi-grading on exterior forms with values in a vector bundle E.

The para-complex numbers are the real algebra, which is generated by 1 and by the para-
complex unit e with e2 = 1. We denote the para-complex numbers by the symbol C.
For all z = x + ey ∈ C with x, y ∈ R we define the para-complex conjugation ·̄ : C →
C, x + ey 7→ x− ey and the real and imaginary parts of z by

<(z) :=
z + z̄

2
= x, =(z) :=

e(z − z̄)

2
= y.

The free C-module Cn is a para-complex vector space where its para-complex structure is
the multiplication with e and the para-complex conjugation of C extends to ·̄ : Cn → Cn,
v 7→ v̄.
Note the identity zz̄ = x2 − y2. Therefore the algebra C is sometimes called the hyper-
complex numbers. The circle S1 = {z = x + iy ∈ C |x2 + y2 = 1} is replaced by the four
hyperbolas {z = x + ey ∈ C |x2 − y2 = ±1}. S̃1 is defined to be the hyperbola given by
the one parameter group {z(θ) = cosh(θ) + e sinh(θ) | θ ∈ R}.
The para-complex dimension of a para-complex manifold M is the integer n = dimCM :=
1
2
dimRM .

Now we consider the para-complexification TMC = TM ⊗R C of the tangent bundle
TM of an almost para-complex manifold (M, τ) and extend τ : TM → TM C-linearly
to τ : TMC → TMC . Then for all p ∈ M the free C-module TpM

C decomposes as
C-module into the direct sum of two free C-modules

TpM
C = T 1,0

p M ⊕ T 0,1
p M, (2.2)

where T 1,0
p M := {X + eτX|X ∈ TpM} and T 0,1

p M := {X − eτX|X ∈ TpM}. The
subbundles T 1,0

p M and T 0,1
p M can be characterised as the ±e-eigenbundles of the map

τ : TMC → TMC , i.e. τ = e on T 1,0M and τ = −e on T 0,1M.
In the same manner we decompose T ∗MC = Λ1,0T ∗M⊕Λ0,1T ∗M into the ±e-eigenbundles
of the dual para-complex structure τ ∗ : T ∗MC → T ∗MC . This decomposition induces a
bi-grading on the C-valued exterior forms

ΛkT ∗MC =
⊕

k=p+q

Λp,q T ∗M

and finally on the C-valued differential forms on M

Ωk
C(M) =

⊕
k=p+q

Ωp,q(M).

We remark, that for the case (1, 1) and (1+, 1−) the two gradings induced by τ coincide
in following sense: Λ1,1 T ∗M = (Λ1+,1− T ∗M)⊗ C.
We need to introduce some additional notions.
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Definition 2 Let (V, τ) be a para-complex vector space. A para-hermitian scalar product
g on V is a pseudo-Euclidean scalar product for which τ is an anti-isometry, i.e.

τ ∗g = g(τ ·, τ ·) = −g(·, ·).

A para-hermitian vector space (V, τ, g) is a para-complex vector space (V, τ) endowed with
a para-hermitian scalar product g. The pair (τ, g) is called para-hermitian structure on the
vector space V .

Definition 3 Let (V, τ, g) be a para-hermitian vector space. The para-unitary group of
V is the automorphism group

Uπ(V ) := Aut(V, τ, g) = {L ∈ GL(V ) | [L, τ ] = 0 and L∗g = g}.

Definition 4 An almost para-hermitian manifold (M, τ, g) is an almost para-complex
manifold (M, τ) endowed with a pseudo-Riemannian metric g such that τ ∗g = −g. If τ
is integrable, we call (M, τ, g) a para-hermitian manifold. The two-form ω := g(τ ·, ·) is
called the fundamental two-form of the almost para-hermitian manifold (M, τ, g).

3 Para-tt∗-bundles

We generalise the notion of a para-tt∗-bundle which was introduced in [S2], by admitting a
base manifold (M, τ) with a non-integrable para-complex structure τ. In this way nearly
para-Kähler manifolds appear as solutions of para-tt∗-geometry on the tangent bundle
TM. Further we introduce symplectic para–tt∗-bundles.

Definition 5 A para-tt∗-bundle or ptt∗-bundle (E, D, S) over an almost para-complex
manifold (M, τ) is a real vector bundle E → M endowed with a connection D and a
section S ∈ Γ(T ∗M ⊗ End E) which satisfy the ptt∗-equation

Rθ = 0 for all θ ∈ R , (3.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + cosh(θ)SX + sinh(θ)SτX for all X ∈ TM . (3.2)

A metric ptt∗-bundle (E, D, S, g) is a ptt∗-bundle (E, D, S) endowed with a possibly indef-
inite D-parallel fiber metric g such that for all p ∈ M

g(SXY, Z) = g(Y, SXZ) for all X, Y, Z ∈ TpM . (3.3)

A symplectic ptt∗-bundle (E, D, S, ω) is a ptt∗-bundle (E, D, S) endowed with the structure
of a symplectic vector bundle1 (E, ω), such that ω is D-parallel and S is ω-symmetric, i.e.
for all p ∈ M

ω(SXY, Z) = ω(Y, SXZ) for all X, Y, Z ∈ TpM . (3.4)

1see D. Mc Duff and D. Salamon [McDS]
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Remark 1
If (E, D, S) is a ptt∗-bundle then (E, D, Sθ) is a ptt∗-bundle for all θ ∈ R, where

Sθ := Dθ −D = cosh(θ)S + sinh(θ)Sτ . (3.5)

The same remark applies to metric ptt∗-bundles and symplectic ptt∗-bundles.

Like for ptt∗-bundles (E, D, S) over a para-complex manifold we find explicit equations
for D and S.

Proposition 1 Let E be a real vector bundle over an almost para-complex manifold
(M, τ) endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ End E).
Then (E, D, S) is a ptt∗-bundle if and only if D and S satisfy the following equations:

RD + S ∧ S = 0, (3.6)

S ∧ S is of type (1,1), (3.7)

[DX , SY ]− [DY , SX ]− S[X,Y ] = 0, ∀X,Y ∈ Γ(TM), (3.8)

[DX , SτY ]− [DY , SτX ]− Sτ [X,Y ] = 0, ∀X,Y ∈ Γ(TM). (3.9)

Fixing a torsion-free connection on (M, τ) the last two equations are equivalent to

dD S = 0 and dD Sτ = 0. (3.10)

Proof: (compare [S2]) As for ptt∗-bundles over para-complex manifolds (M, τ) one calcu-
lates using the theorems of addition 2 cosh(θ) sinh(θ) = sinh(2θ), 2 cosh2(θ) = 1+cosh(2θ)
and 2 sinh2(θ) = cosh(2θ)−1, the (finite) decomposition of Rθ in 1, cosh(nθ) and sinh(nθ),
for n = 1, 2. The ptt∗-equation Rθ = 0 is equivalent to the vanishing of all components.
This yields the claimed equations.

4 Solutions on the tangent bundle of an almost para-

complex manifold

In this section we consider para-complex manifolds (M, τ) endowed with a flat connection
∇. It is natural to regard the one-parameter family of connections ∇θ, which is defined
by

∇θ
XY = exp(θτ)∇X(exp(−θτ)Y ) for X, Y ∈ Γ(TM), (4.1)

where exp(θτ) = cosh(θ)Id + sinh(θ)τ. The connection ∇ is flat if and only if ∇θ is flat.

Definition 6 Two one-parameter families of connections ∇θ and Dθ, with θ ∈ R, on
some vector bundle E are called (linear) equivalent with factor α ∈ R if they satisfy the
equation ∇θ = Dαθ.

In the sequel we study ptt∗-bundles (TM, D, S) such that the connection Dθ defined in
equation (3.2) is linear equivalent to the connection ∇θ defined in equation (4.1). This
ansatz is motivated by our previous study of ptt∗-bundles coming from special para-
complex and special para-Kähler manifolds (see [S2]).
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Proposition 2 Given an almost para-complex manifold (M, τ) with a flat connection
∇. Then a decomposition of ∇ = D + S in a connection D and a section S in T ∗M ⊗
End (TM) defines a ptt∗-bundle (TM, D, S), such that the family of connections Dθ is
linear equivalent to the family of connections ∇θ with factor α = ±2 if and only if S and
D satisfy

SτX = ±τSXY

and
−(DXτ)Y = τSXY + SXτY =: {SX , τ}Y

for all X, Y ∈ Γ(TM).

Proof: One has to compute ∇θ for X, Y ∈ Γ(TM) :

∇θ
XY = exp(θτ)(DX + SX)(cosh(θ)Id− sinh(θ)τ)Y )

= DXY − exp(θτ) sinh(θ)(DXτ)Y

+ (cosh(θ)Id + sinh(θ)τ)SX(cosh(θ)Id− sinh(θ)τ)Y

= DXY − (cosh(θ) sinh(θ) + sinh2(θ)τ)(DXτ)Y + cosh2(θ)SXY

− sinh2(θ)τSXτY − cosh(θ) sinh(θ)[SX , τ ]Y.

This yields with the theorems of addition, i.e.

2 sinh(θ) cosh(θ) = sinh(2θ), 2 cosh2(θ) = 1+cosh(2θ) and 2 sinh2(θ) = cosh(2θ)−1,

the identity

∇θ
XY = DXY − 1

2
sinh(2θ)(DXτ)Y − 1

2
(cosh(2θ)− 1)τ(DXτ)Y

+
1

2
(1 + cosh(2θ))SXY − 1

2
(cosh(2θ)− 1)τSXτY − 1

2
sinh(2θ)[SX , τ ]Y

= DXY +
1

2
[SX + τSXτ + τDXτ ] Y

+
1

2
sinh(2θ) [[τ, SX ]−DXτ ] Y

+
1

2
cosh(2θ) [SX − τSXτ − τDXτ ] Y

!
= DXY + cosh(ϑ)TXY + sinh(ϑ)TτXY with ϑ = ±2θ,

where we have to determine T ∈ Γ(T ∗M ⊗ End (TM)).
Comparing coefficients of 1, cosh(2θ), sinh(2θ) gives

−τ(DXτ)Y = SXY + τSXτY , or equivalentely (4.2)

−(DXτ)Y = τSXY + SXτY = {SX , τ}Y,

TXY =
1

2
(SXY − τSXτY − τ(DXτ)Y )

(4.2)
= SXY, (4.3)

TτXY = ±1

2
([τ, SX ]Y − (DXτ)Y )

(4.2)
= ±1

2
(τSXY − SXτY + τSXY + SXτY ) = ±τSXY. (4.4)
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The constraint on S follows from the last two equations, i.e.

SτX = ±τSXY

and the one on D and S from the first equation.

We further specialise to para-complex connections D, i.e. connections D satisfying the
identity Dτ = 0. The existence of such connections was provided by Theorem 1 of [S2].

Corollary 1 Let (M, τ) be an almost para-complex manifold endowed with a flat con-
nection ∇ and let ∇ = D+S be a given decomposition in a connection D and a section S
in T ∗M ⊗ End (TM), such that τ is D-parallel. Then (TM, D, S) defines a ptt∗-bundle,
such that the family of connections Dθ is linear equivalent to the family of connections
∇θ with factor α = ±2 if and only if S satisfies

SτX = ±τSX and {SX , τ} = 0.

Proof: The second condition in proposition 2 yields using Dτ = 0 the equation {SX , τ} =

0. The first constraint of proposition 2 remains SτX = ±τSX
{SX ,τ}=0

= ∓SXτ .

To establish a uniqueness result we need the next lemma.

Lemma 1 Let (M, τ) be an almost para-complex manifold. Let a connection ∇ on M
be given. Then the connection D and the section S of T ∗M ⊗ End (TM) defined by

SXY = −1

2
τ(∇Xτ)Y and DXY = ∇XY − SXY for X, Y ∈ Γ(TM), (4.5)

satisfy Dτ = 0 and {SX , τ} = 0.
Otherwise, suppose that ∇ decomposes as ∇ = D + S, where D is a connection on M
and S is a section in T ∗M ⊗ End (TM), such that τ is D-parallel, i.e. Dτ = 0 and S
anti-commutes with τ , i.e. {SX , τ} = 0 for all X ∈ Γ(TM). Then D and S are uniquely
given by equation (4.5).

Proof: We check ∇ = D+S and SXτY = −1
2
τ(∇Xτ)τY = 1

2
τ 2(∇Xτ)Y = −τSXY, where

the second equality follows from deriving τ 2 = Id. In addition it is

(DXτ)Y = (∇Xτ)Y − [SX , τ ]
{SX ,τ}=0

= (∇Xτ)Y + 2τSX = 0.

It rests to show the uniqueness: One starts with D′ and S ′ having same properties and
computes

0 = (D′
Xτ)Y = (∇Xτ)Y − [S ′

X , τ ]Y = (∇Xτ)Y + 2τS ′
XY.

This further implies

S ′
XY = −1

2
τ(∇Xτ)Y = SXY and D′

XY = ∇XY − S ′
XY = ∇XY − SXY = DXY.

Corollary 1 and lemma 1 imply the following uniqueness result:
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Theorem 1 Let (M, τ) be an almost para-complex manifold endowed with a flat con-
nection ∇. If a decomposition of ∇ = D+S in a connection D and a section S in T ∗M⊗
End (TM), such that τ is D-parallel, i.e. Dτ = 0, defines a ptt∗-bundle (TM, D, S), such
that the family of connections Dθ is linear equivalent to the the family of connections ∇θ

with factor α = ±2, then D and S are uniquely determined by the equations S = −1
2
τ(∇τ)

and D = ∇− S.
Moreover, (TM, D, S) as above defines a ptt∗-bundle, such that the family of connections
Dθ is linear equivalent to the family of connections ∇θ with factor α = ±2, if and only if
τ satisfies (∇τXτ) = ±τ(∇Xτ) and D and S are given by equation (4.5).

Some classes of examples which satisfy the condition SτX = ±τSX are given in the
following propositions.

Proposition 3 Let an almost para-complex manifold (M, τ) endowed with a connection
∇ be given and let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
τ(∇τ). (4.6)

If the pair (∇, τ) satisfies one of the following conditions

(i) (∇, τ) is special, i.e. (∇Xτ)Y = (∇Y τ)X for all X, Y ∈ Γ(TM),

(ii) (∇, τ) satisfies the nearly para-Kähler condition, i.e. (∇Xτ)Y = −(∇Y τ)X for all
X, Y ∈ Γ(TM),

then it holds SτXY = −τSXY.

Proof: We prove (i) and (ii) in the same calculation:

(∇τXτ)Y = ±(∇Y τ)τX = ∓τ(∇Y τ)X = −τ(∇Xτ)Y.

This implies SτXY = −1
2
τ(∇τXτ)Y = 1

2
τ 2(∇Xτ)Y = −τSXY.

Proposition 4 Let a para-complex manifold (M, τ) endowed with a connection ∇ be
given and let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
τ(∇τ). (4.7)

If ∇ is (anti-)adapted, i.e. ∇τX = ±τ∇XY for all para-holomorphic vector-fields X,Y,
then it holds SτXY = ±τSXY.

Proof: Since the connection ∇ is (anti-)adapted, we obtain for all para-holomorphic
vector-fields X, Y :

(∇τXτ)Y = ±τ(∇Xτ)Y.
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The following computation finishes the proof

SτXY = −1

2
τ(∇τXτ)Y = ∓1

2
τ 2(∇Xτ)Y = ±τSXY.

Remark 2 One observes that in proposition 3 the condition (i) is the symmetry of SXY
and condition (ii) is its anti-symmetry. We recall that if the connection ∇ is torsion-free,
flat and special then (M, τ,∇) is a special para-complex manifold, see [CMMS, S2]. Ptt∗-
bundles coming from special para-complex manifolds and special para-Kähler manifolds
were studied in [S2].
Moreover we remark, that the second condition arises in nearly para-Kählerian geometry
(compare [IZ]) and therefore is quite natural. These geometries as solutions of ptt∗-
geometry are discussed later in this work.
Finally, the notion of adapted connections appeared in the study of decompositions on
(para-holomorphic) para-complex vector bundles, compare [LS].

5 Solutions on almost para-hermitian manifolds

In this section we study the question under which assumptions almost para-complex
manifolds (M, τ) endowed with a flat connection ∇ such that (∇, τ) is special or satisfies
the nearly para-Kähler condition define symplectic or metric ptt∗-bundles.

First we recall a lemma from tensor-algebra:

Lemma 2 Let V be a vector-space and α ∈ T 3(V ∗) an element in the third tensorial
power of V ∗, the dual space of V . Suppose that α(X, Y, Z) is symmetric (resp. anti-
symmetric) in X, Y and Y, Z and α(X, Y, Z) is anti-symmetric (resp. symmetric) in
X, Z then α = 0.

Proof: It is α(X, Y, Z) = εα(Y,X, Z) = εα(X, Z, Y ) with ε ∈ {±1} which implies
α(X, Y, Z) = εα(Y,X, Z) = ε2α(Y, Z,X) = ε3α(Z, Y,X). But further it holds α(X, Y, Z) =
−εα(Z, Y,X) and consequently −α(Z, Y,X) = ε2α(Z, Y,X) = α(Z, Y,X). This shows
α = 0.

Proposition 5 Let (M, τ) be an almost para-complex manifold endowed with a flat
connection ∇, such that (∇, τ) is special. Define S, a section in T ∗M ⊗ End (TM), by

S := −1

2
τ(∇τ), (5.1)

then (TM, D = ∇ − S, S) defines a ptt∗-bundle. If in addition (TM, D, S, ω) is a sym-
plectic ptt∗-bundle, then it is trivial, i.e. S = 0.

9



Proof: Due to theorem 1 and proposition 3 (TM, D, S) is a ptt∗-bundle.
Suppose, that (TM, D, S, ω) is a symplectic ptt∗-bundle. In order to prove the second
part of the proposition, we define the tensor

α(X,Y, Z) := ω(SXY, Z) = g(τSXY, Z).

α(X, Y, Z) is symmetric in X, Y, since (∇, τ) is special, i.e. ∇τ is symmetric in X,Y.
Moreover, it holds

α(X,Y, Z) = ω(SXY, Z) = −ω(Z, SXY )

= −ω(Z, SY X) = −ω(SY Z,X) = −ω(SZY,X) = −α(Z, Y,X).

This is the anti-symmetry of α(X, Y, Z) in X, Z. Finally we compute

α(X, Y, Z) = ω(SXY, Z) = ω(Y, SXZ)

= ω(Y, SZX) = −ω(SZX, Y ) = −α(Z,X, Y ) = −α(X, Z, Y ),

i.e. the anti-symmetry of α(X,Y, Z) in Y, Z.
Hence α vanishes and consequently S is zero.

Proposition 6 Let an almost para-complex manifold (M, τ) endowed with a flat con-
nection ∇, such that (∇, τ) satisfies the nearly para-Kähler condition be given. Define S,
a section S in T ∗M ⊗ End (TM), by

S := −1

2
τ(∇τ), (5.2)

then (TM, D = ∇− S, S) defines a ptt∗-bundle. Suppose, that (TM, D, S, g) is a metric
ptt∗-bundle, then it is trivial, i.e. S = 0.

Proof: Due to theorem 1 and proposition 3 (TM, D, S) is a ptt∗-bundle.
Suppose, that it is a metric ptt∗-bundle. The proof is obtained by analysing the symmetries
of the tensor

α(X, Y, Z) := g(SXY, Z).

α(X, Y, Z) is anti-symmetric in X, Y, since by the nearly para-Kähler condition ∇τ is
anti-symmetric in X, Y. In addition it holds

α(X, Y, Z) = g(SXY, Z) = g(Z, SXY )

= −g(Z, SY X) = −g(SY Z,X) = g(SZY,X) = α(Z, Y,X),

which is the symmetry of α(X, Y, Z) in X, Z. Finally one has

α(X, Y, Z) = g(SXY, Z) = g(Y, SXZ)

= −g(Y, SZX) = −g(SZX, Y ) = −α(Z,X, Y ) = α(X, Z, Y ),

i.e. the symmetry of α(X, Y, Z) in Y, Z.
Hence α vanishes by the above lemma and so does S.

The following theorem gives solutions of symplectic para-tt∗-bundles on the tangent bun-
dle, which are more general then the later discussed nearly para-Kähler manifolds in the
sense, that we admit the connection ∇ to have torsion, but more special in the sense, that
our connection ∇ has to be flat.
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Theorem 2 Let (M, τ, g) be an almost para-hermitian manifold endowed with a flat
metric connection ∇, such that the pair (∇, τ) satisfies the nearly para-Kähler condition.
Define S, a section in T ∗M ⊗ End (TM), by

S := −1

2
τ(∇τ), (5.3)

then (TM, D = ∇− S, S, ω = g(τ ·, ·)) defines a symplectic ptt∗-bundle.
The torsion T∇ of the connection ∇ and TD of the connection D are related by

T∇ − TD = 2S

and it holds Dτ = 0.

Proof: Due to theorem 1 and proposition 3 (TM, D, S) is a ptt∗-bundle.
It remains to check Dω = 0 and that S is ω-symmetric.
We observe, that, as g is para-hermitian and ∇g = 0, ∇Xτ is skew-symmetric with respect
to g. This yields by the following calculation, that S is skew-symmetric with respect to g:

−2g(SXY, Z) = g(τ(∇Xτ)Y, Z) = −g((∇Xτ)Y, τZ)

= g(Y, (∇Xτ)τZ) = −g(Z, τ(∇Xτ)Y ) = 2g(Y, SXZ).

The definition of ω = g(τ ·, ·) and {SX , τ} = 0 yield the ω-symmetry of SX .
Further it holds D = ∇+ 1

2
τ∇τ, which implies

Dτ = ∇τ +
1

2
[τ∇τ, τ ] = 0.

This shows Dω = 0 if and only if Dg = 0. But ∇g = 0 and S is skew-symmetric with
respect to g, so g is parallel for D = ∇− S.
This shows that (TM, D = ∇− S, S, ω) is a symplectic ptt∗-bundle.
From ∇ = D + S we obtain for the torsions

T∇(X, Y ) = TD(X, Y ) + SXY − SY X = TD(X, Y ) + 2SXY.

We recall the definition of special para-complex and special para-Kähler manifolds (see
[CMMS, S2]):

Definition 7 A special para-Kähler manifold consists of the data (M, τ, g,∇) where
(M, τ, g) is a para-Kähler manifold with ∇-parallel para-Kähler form and (M, τ,∇) is a
special para-complex manifold, i.e. (M, τ) is a para-complex manifold endowed with a flat
and torsion-free connection ∇ such that (∇, τ) is special.

The next theorem gives solutions of metric para-tt∗-bundles on the tangent bundle, which
are more general then special para-Kähler manifolds in the sense, that we admit connec-
tions ∇ with torsion.

11



Theorem 3 Let an almost para-hermitian manifold (M, τ, g) endowed with a flat con-
nection ∇ be given. Suppose that (∇, τ) is special and the two-form ω = g(τ ·, ·) is ∇-
parallel. Define S, a section in T ∗M ⊗ End (TM), by

S := −1

2
τ(∇τ), (5.4)

then (TM, D = ∇ − S, S, g) defines a metric ptt∗-bundle. Moreover, the connections D
and ∇ have the same torsion and we have Dτ = 0.
If in addition ∇ is torsion-free, then D is the Levi-Civita connection of g, (M, τ, g) is a
para-Kähler manifold and (M, τ, g,∇) is a special para-Kähler manifold.

Proof: Due to theorem 1 and proposition 3 (TM, D, S) defines a ptt∗-bundle.
It remains to prove Dg = 0 and that S is g-symmetric.
First we remark that ω(τX, Y ) = −ω(X, τY ) as g is para-hermitian. This implies by
∇ω = 0 the ω-skew-symmetry of ∇Xτ, which yields that SX = −1

2
τ(∇Xτ) is ω-skew-

symmetric, since τ(∇Xτ) = −(∇Xτ)τ. Finally {SX , τ} = 0 shows the g-symmetry of SX .
Moreover, we compute

Dτ = ∇τ +
1

2
[τ∇τ, τ ] = 0

and consequently Dg = 0 is equivalent to Dω = 0.
From ∇ω = 0 and the ω-skew-symmetry of S it follows Dω = (∇− S)ω = 0.
From the symmetry of ∇τ, i.e. (∇Xτ)Y = (∇Y τ)X for all X, Y ∈ TM we obtain
SXY = SY X. This shows, that the torsions of the connections ∇ and D coincide.
Suppose now that ∇ is torsion-free. This implies, that D = ∇−S is torsion-free and con-
sequently the Levi-Civita-connection of g. Further the equation ∇ω = 0 implies dω = 0,
since ∇ is torsion-free. As Dτ = 0 and D is torsion-free, τ is integrable. Hence (M, τ, g)
is para-Kähler. In addition (M, τ,∇) is special para-complex by the conditions on ∇ and
τ. Summarising (M, τ, g,∇) is a special para-Kähler manifold.

In [S2] we treated special para-Kähler solutions of ptt∗-geometry in more details.

Now we are going to apply the above results to nearly para-Kähler manifolds. In
order to do this we recall the notion of a nearly para-Kähler manifold which was recently
introduced by Ivanov and Zamkovoy [IZ].

Definition 8 An almost para-hermitian manifold (M, τ, g) is called nearly para-Kähler
manifold, if its Levi-Civita connection ∇ = ∇g satisfies the equation

(∇Xτ)Y = −(∇Y τ)X, ∀X, Y ∈ Γ(TM). (5.5)

A nearly para-Kähler manifold is called strict, if ∇τ 6= 0.

We recall that the tensor ∇τ defines two tensors A and B

A(X,Y, Z) := g((∇Xτ)Y, Z) and B(X,Y, Z) := g((∇Xτ)Y, τZ) with X, Y, Z ∈ TM,
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which are both (real) three-forms of type (3, 0) + (0, 3).
A connection of particular importance in nearly para-Kähler geometry is the connection
∇̄ defined by

∇̄XY := ∇XY − 1

2
(∇Xτ)τY, for all X,Y ∈ Γ(TM). (5.6)

We remark, that ∇̄ is the unique connection with totally skew-symmetric torsion satisfying
∇̄g = 0 and ∇̄τ = 0 (compare [IZ]).
The torsion of the connection ∇̄ is given by

T ∇̄(X, Y ) = −(∇Xτ)τY, for all X, Y ∈ Γ(TM) (5.7)

and it vanishes if and only if (M, τ, g) is a para-Kähler manifold.

Corollary 2 Let (M, τ, g) be a nearly para-Kähler manifold, such that its Levi-Civita
connection ∇ is flat and let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
τ(∇τ), (5.8)

then (TM, ∇̄, S) defines a ptt∗-bundle. Suppose, that (TM, ∇̄, S, g) is a metric ptt∗-
bundle, then it is trivial, i.e. S = 0 and consequently (M, τ, g) is para-Kähler.

Proof: If one puts D = ∇̄ we are in the situation of proposition 6.

Remark 3 In common work with V. Cortés [CS2] we gave a constructive classification
of flat nearly pseudo-Kähler manifolds. The application of the methods of [CS2] to nearly
para-Kähler manifolds is work in progress [CS3].

Theorem 4 Let (M, τ, g) be a nearly para-Kähler manifold, such that its Levi-Civita
connection ∇ is flat. Let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
τ(∇τ), (5.9)

then (TM, ∇̄, S, ω := g(τ ·, ·)) is a symplectic ptt∗-bundle. Further it holds

B(X, Y, Z) = 2g(SXY, Z) and ∇̄τ = 0. (5.10)

Proof: By setting D = ∇̄ we are in the situation of theorem 2. In addition it holds

2g(SXY, Z) = −g(τ(∇Xτ)Y, Z) = g((∇Xτ)Y, τZ) = B(X, Y, Z).
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6 Para-pluriharmonic maps from almost para-com-

plex manifolds into pseudo-Riemannian manifolds

In this section we generalise the notion of a para-pluriharmonic map to maps from
almost para-complex manifolds to pseudo-Riemannian manifolds and we introduce the
para-complex analogue of an associated family (compare [ET] for the complex setting).
Afterwards we show that maps admitting the para-complex analogue of an associated
family give rise to a para-pluriharmonic map and we give conditions under which a para-
pluriharmonic map is harmonic.
Let (M, τ) be an almost para-complex manifold of real dimension 2n. In complex geome-
try it is well-known (compare [KN]) that on every almost complex manifold (M, J) there
exists a connection with torsion T = 1

4
NJ where NJ is the Nijenhuis tensor of the complex

struture J . This result was generalised to para-complex geometry in Theorem 1 of [S2],
which states that on an almost para-complex manifold (M, τ) there exists a para-complex
connection with torsion T = −1

4
Nτ where Nτ is the Nijenhuis tensor of the para-complex

struture τ.

Definition 9 Let (M, τ) be an almost para-complex manifold. A connection D on the
tangent bundle of M is called nice if it is para-complex and its torsion T satisfies T = λNτ

with a smooth function λ on M.

We introduce the notion of a para-pluriharmonic map from an almost para-complex man-
ifold:

Definition 10 Let (M, τ,D) be an almost para-complex manifold endowed with a nice
connection D on TM and N be a smooth manifold endowed with a connection ∇N . Denote
by ∇ the connection on T ∗M ⊗ f ∗TN which is induced by D and ∇N .
A smooth map f : M → N is called para-pluriharmonic if and only if it satisfies the
equation

(∇df)1,1 = 0. (6.1)

Remark 4 First we remark, that for a para-complex manifold (M, τ) and a pseudo-
Riemannian target manifold (N, h) with its Levi-Civita connection ∇h the para-plurihar-
monic equation (6.1) does not depend on the connection D if D is chosen in an appropriate
class (compare [S2]). In fact nice connections on para-complex manifolds belong to this
class. A famous case are para-Kähler manifolds (M, τ, g), where D is taken to be the
Levi-Civita connection.

To deal with associated families of para-pluriharmonic maps we need to recall an inte-
grability condition satisfied by the differential of a smooth map. Denote by N a smooth
manifold with a connection ∇N on its tangent bundle having torsion tensor TN . Let a
second smooth manifold M and a smooth map f : M → N be given. The differential
F := df : TM → f ∗TN = E of the map f induces a vector bundle homomorphism
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between the tangent bundle TM of M and the pull-back of TN via f. The bundle homo-
morphism TE : Λ2E → E induced by the torsion TN of N satisfies the identity

∇E
V F (W )−∇E

W F (V )− F ([V, W ]) = TE(F (V ), F (W )), (6.2)

where ∇E = f ∗∇N denotes the pull-back connection, i.e. the connection which is induced
on E by ∇N and where V, W ∈ Γ(TM).
In the rest of this section we denote by D a nice connection on the almost para-complex
manifold (M, τ). Under this assumption we restate the condition (6.2):

TE(F (V ), F (W )) = ∇E
V F (W )−∇E

W F (V )− F ([V, W ]) (6.3)

= ∇E
V F (W )−∇E

W F (V )

− F (DV W ) + F (DW V ) + F (T (V, W ))

= ∇E
V F (W )−∇E

W F (V )

− F (DV W ) + F (DW V ) + λF (Nτ (V, W ))

= (∇V F )W − (∇W F )V + λF (Nτ (V, W )),

where ∇ is the connection induced on T ∗M ⊗ E by D and ∇E.
Later in this work we consider the case where N is a pseudo-Riemannian symmetric space
with its Levi-Civita connection ∇N .
Let α ∈ R and define Rα : TM → TM as

Rα(X) = cosh(α)X + sinh(α)τX.

This is a parallel endomorphism field on the tangent bundle TM of M. The eigenvalues
of which are seen to be eeα on T 1,0M and e−eα on T 0,1M .
An associated family for f is a family of maps fα : M → N with α ∈ R and f0 = f, such
that

Φα ◦ dfα = df ◦ Rα, ∀α ∈ R, (6.4)

for some bundle isomorphism Φα : f ∗αTN → f ∗TN, α ∈ R, which is parallel with respect
to ∇N , i.e. Φα satisfies

Φα ◦ (f ∗α∇N) = (f ∗∇N) ◦ Φα.

One can check, that each map fα of an associated family itself admits an associated family.

Theorem 5 Let (M, τ) be an almost para-complex manifold endowed with a nice con-
nection D, N be a smooth manifold endowed with a torsion-free connection ∇N and
f : (M, D, τ) → (N,∇N) be a smooth map admitting an associated family fα, then f
is para-pluriharmonic. More precisely, each map of the associated family fα is para-
pluriharmonic.

Proof: Since Φα is parallel with respect to ∇N , ∇N is torsion-free and D is nice, we are
able to apply equation (6.3) to the family dfα = Fα = Φ−1

α ◦ df ◦ Rα and find

(∇V Fα)W − (∇W Fα)V + λFα(Nτ (V, W )) = 0.

As Rα is D-parallel we obtain

(∇XFα) = Φ−1
α ◦ (∇XF ) ◦ Rα.
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If Z = X − eτX and W = Y + eτY have different type it holds Nτ (Z,W ) = 0, where we
extended the Nijenhuis tensor para-complex linearly. This yields

(∇V Fα)W = (∇W Fα)V, ∀α ∈ R

and further we get

(∇ZFα)W = eeα Φ−1
α (∇ZF )W,

(∇W Fα)Z = e−eα Φ−1
α (∇W F )Z = e−eα Φ−1

α (∇ZF )W,

for all α ∈ R. Since this should coincide, it follows (∇df)(1,1) = 0, i.e. f : (M, D, τ) →
(N,∇N) is para-pluriharmonic. The rest follows, since each map of the associated family
fα admits an associated family gβ = f(α+β).

This is the motivation of the following definition:

Definition 11 Let (M, τ) be an almost para-complex manifold endowed with a nice
connection D, N be a smooth manifold endowed with a torsion-free connection ∇N . A
smooth map f : (M, D, τ) → (N,∇N) is said to be S̃1-pluriharmonic if and only if it
admits an associated family.

Given a para-hermitian metric g on M then in general a nice connection D is not
the Levi-Civita connection ∇g of g. Therefore the para-pluriharmonic equation (6.1) does
not imply the harmonicity of f. If in addition the tensor D − ∇g is trace-free the para-
pluriharmonic equation implies the harmonic equation. This is true in the case of a special
para-Kähler manifold (M, τ, g,∇) and for a nearly para-Kähler manifold, where D = ∇
and ∇−∇g is skew-symmetric.

Proposition 7 Let (M, τ, g) be an almost para-hermitian manifold endowed with a nice
connection D, N be a pseudo-Riemannian manifold with its Levi-Civita connection ∇N .
Suppose, that the tensor S = ∇g − D is trace-free. Then a para-pluriharmonic map
f : M → N is harmonic.

Proof: We calculate the expression

tr g(∇df) =
∑

i

g(ei, ei)
[
∇E

ei
df(ei)− df(Dei

ei)
]

=
∑

i

g(ei, ei)
[
∇E

ei
df(ei)− df((∇g − S)ei

ei)
]

=
∑

i

g(ei, ei)
[
∇E

ei
df(ei)− df(∇g

ei
ei)

]
= tr g(∇̃gdf)

where ∇̃g is the connection induced on T ∗M ⊗ E by ∇g and ∇E and ei is an orthogonal
basis for g on TM. Since g is para-hermitian, we obtain from the para-pluriharmonic
equation

tr g(∇df) = tr g(∇df (1,1)) = 0.
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7 Related para-pluriharmonic and harmonic maps

7.1 The classifying map of a flat nearly para-Kähler manifold

In this section we consider simply connected almost para-hermitian manifolds (M, τ, g)
endowed with a flat metric connection ∇ such that (∇, τ) satisfies the nearly para-Kähler
condition.
In particular, simply connected flat nearly para-Kähler manifolds (M2n, τ, g), i.e. nearly
para-Kähler manifolds (M, τ, g) with flat Levi-Civita connection ∇g are of this type.
Since (M, g,∇) is simply connected and flat, we may identify by fixing a ∇-parallel frame
s0 its tangent bundle TM with (M ×V, 〈·, ·〉), where V = Cn = (R2n, j0) is endowed with
the standard scalar product 〈·, ·〉 of signature (n, n) on V = R2n.
The compatible para-complex structure τ defines via this identification a map

τ : M → P(V, 〈·, ·〉),

where P(V, 〈·, ·〉) is the set of para-complex structures on V which are compatible with
〈·, ·〉 and the orientation.

One can consider P(V, 〈·, ·〉) as a subset in the vector space so(n, n) = so(V ) ⊂ Mat(R2n)
characterised by the equation

f(j) = 12n, (7.1)

where f : Mat(R2n) → Mat(R2n) is given by f : A 7→ A2. The differential of this map is
dfA(H) = {A, H} for A, H ∈ Mat(R2n). We remark, that elements satisfying the equation
(7.1) define automatically para-complex structures, since they are trace-free and hence
their eigenspaces to the eigenvalues ±1 have the same dimension. The differential df has
constant rank in points j satisfying the equation (7.1), since one sees

ker dfj = {A ∈ so(V ) | {j, A} = 0},
im dfj

∼= {A ∈ so(V ) | [j, A] = 0} ∼= uπ(Cn).

Applying the regular value theorem P(V, 〈·, ·〉) is shown to be a submanifold of so(V ). Its
tangent space at j ∈ P(V, 〈·, ·〉) is

Tj P(V, 〈·, ·〉) = ker dfj = {A ∈ so(V ) | {j, A} = 0}. (7.2)

Moreover, P(V, 〈·, ·〉) can be identified with the pseudo-Riemannian symmetric space
SO0(n, n)/Uπ(Cn), where SO0(n, n) is the identity component of the special pseudo-
orthogonal group SO(n, n) and Uπ(Cn) is the para-unitary group, by the map

Φ : SO0(n, n)/Uπ(Cn) → P(V, 〈·, ·〉),
gK 7→ g j0 g−1,

which maps the canonical base point o = eK to j0.
An element j ∈ P(V, 〈·, ·〉) defines a symmetric decomposition of so(V ) by

p(j) = {A ∈ so(V ) | {j, A} = 0},
k(j) = {A ∈ so(V ) | [j, A] = 0} ∼= uπ(Cn).
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In particular we note k(j0) = uπ(Cn). Moreover, one observes Tj P(V, 〈·, ·〉) = p(j).
Let j̃ ∈ SO0(n, n)/Uπ(Cn) and j = Φ(j̃), then Tj̃SO0(n, n)/Uπ(Cn) is canonically identi-
fied with p(j). We determine now the differential of the above identification:

Proposition 8 Let Ψ = Φ−1 : P(V, 〈·, ·〉) → SO0(n, n)/Uπ(Cn). Then it holds at
j ∈ P(V, 〈·, ·〉)

dΨ : Tj P(V, 〈·, ·〉) 3 X 7→ −1

2
j−1X ∈ p(j). (7.3)

The next theorem constructs the desired para-pluriharmonic map.

Theorem 6 Let (M, τ, g) be a simply connected almost para-hermitian manifold en-
dowed with a flat metric connection ∇ such that (∇, τ) satisfies the nearly para-Kähler
condition, then (TM, D = ∇ − S, S = −1

2
τ(∇τ), ω = g(τ ·, ·)) defines a symplectic ptt∗-

bundle and the matrix of τ in a Dθ-flat frame sθ = (sθ
i ) defines an S̃1-pluriharmonic map

τ̃ θ : M → P(V, 〈·, ·〉) → SO0(n, n)/Uπ(Cn).
In particular, given a nice connection D on M the map

τ̃ θ : (M, τ,D) → SO0(n, n)/Uπ(Cn)

is para-pluriharmonic.

Proof: One observes Dθg = 0, as one has ∇g = 0 and Sθ
X := cosh(θ)SX +sinh(θ)SτX takes

values in so(V ). This means we can choose for each θ the Dθ-flat frame sθ orthonormal,
such that sθ=0 = s0. Using Dτ = 0 (compare theorem 1 and lemma 1) we obtain

Xg(τsθ
i , s

θ
j) = g(Dθ

X(τsθ
i ), s

θ
j) = g((Dθ

Xτ)sθ
i , s

θ
j) = g([Sθ

X , τ ]sθ
i , s

θ
j) = −2g(τSθ

Xsθ
i , s

θ
j).

Let Ssθ
and τ sθ

be the representation of S and τ in the frame sθ, then we have

(τ sθ

)−1X(τ sθ

) = −2Ssθ

or
dτ̃ θ = (sθ)−1 ◦ Sθ ◦ sθ.

Here the frame sθ is seen as a map sθ : M × V → TM. For X ∈ Γ(TM) we obtain

dτ̃ θ(X) = (sθ)−1 ◦ Sθ
X ◦ (sθ) = (sθ)−1 ◦ SRθX ◦ (sθ)

= ((sθ)−1s0) ◦ dτ̃(RθX) ◦ ((s0)−1sθ)

= Ad−1
αθ
◦ dτ̃(RθX) = Φ−1

θ ◦ dτ̃(RθX),

where αθ = (sθ)−1s0 is the frame change from s0 to sθ and Φθ = Adαθ
. Φθ is par-

allel with respect to the Levi-Civita connection on SO0(n, n)/Uπ(Cn) and hence τ̃ θ is
S̃1-pluriharmonic. Given a nice connection D on M theorem 5 shows that τ̃ θ is para-
pluriharmonic.

The next corollary emphasises the nearly para-Kähler setting:
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Corollary 3 Let (M, τ, g) be a simply connected flat nearly para-Kähler manifold and
(TM,∇ = ∇g − S, S = −1

2
τ(∇τ), ω(·, ·) = g(τ ·, ·)) the associated symplectic ptt∗-bundle,

then the matrix of τ in a Dθ-flat frame sθ = (sθ
i ) defines an S̃1-pluriharmonic map τ̃ θ :

M → P(V, 〈·, ·〉) → SO0(n, n)/Uπ(Cn).

For nearly para-Kähler manifolds one can get more precise information about the map
τ̃ θ:

Theorem 7 Let (M, τ, g) be a simply connected flat nearly para-Kähler manifold and
(TM,∇ = ∇g − S, S = −1

2
τ(∇τ), ω(·, ·) = g(τ ·, ·)) the associated symplectic ptt∗-bundle.

Then the connection ∇ is nice and the matrix of τ in a Dθ-flat frame sθ = (sθ
i ) defines

a para-pluriharmonic map τ̃ θ : (M, τ, ∇̄) → P(V, 〈·, ·〉) → SO0(n, n)/Uπ(Cn). Moreover,
the map τ̃ θ is harmonic.

Proof: We have to prove, that ∇ is nice. Therefore we rewrite the Nijenhuis tensor

Nτ (X, Y ) = (∇τXτ)Y − (∇τY τ)X − τ(∇Xτ)Y + τ(∇Y τ)X

= −4τ(∇Xτ)Y,

where the second equality follows from the nearly para-Kähler condition and by

(∇τXτ)Y = −(∇Y τ)τX = τ(∇Y τ)X = −τ(∇Xτ)Y.

On the other hand the torsion of ∇ was given in equation (5.7) by

T∇(X, Y ) = τ(∇Xτ)Y

and consequently ∇ is nice.
Due to corollary 3 the map τ̃ θ is S̃1-pluriharmonic. Since ∇ is nice, theorem 5 implies
that τ̃ θ is para-pluriharmonic. From the skew-symmetry of S and proposition 7 we obtain
that τ̃ θ is harmonic.

7.2 The dual Gauß map of a special para-Kähler manifold with
torsion

In this subsection we consider a simply connected almost para-hermitian manifold (M, τ, g)
with a flat connection ∇, such that (∇, τ) is special and the two-form ω = g(τ ·, ·) is ∇-
parallel.
Using the flat connection ∇ we identify by fixing a ∇-parallel symplectic frame s0 the
tangent bundle (TM, ω) with (M ×V, ω0) where V = R2n and ω0 is its standard symplec-
tic form.
The compatible para-complex structure τ is seen as a map

τ : M → P(V, ω0),

where P(V, ω0) is the set of para-complex structures on V which are compatible with ω0.
Now we discuss the differential geometry of P(V, ω0), where ω0 is the standard symplectic
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form on V = Cn = (R2n, j0).
First, we consider P(V, ω0) as a subset of the vector space sp(R2n) ⊂ Mat(R2n) charac-
terised by the set of equations

f(j) = 12n, (7.4)

where f : Mat(R2n) → Mat(R2n) is given as in the last section. Again, df has constant
rank in points j satisfying the equation (7.4), since one sees

ker dfj = {A ∈ sp(R2n) | {j, A} = 0},
im dfj

∼= {A ∈ sp(R2n) | [j, A] = 0} ∼= uπ(Cr).

Applying the regular value theorem we obtain that P(V, ω0) is a submanifold of sp(R2n).
Its tangent space at j ∈ P(V, ω0) is

Tj P(V, ω0) = ker dfj = {A ∈ sp(R2n) | {j, A} = 0}. (7.5)

In addition the manifold P(V, ω0) can be identified with the pseudo-Riemannian symmetric
space Sp(R2n)/Uπ(Cn) by the map

Φ : Sp(R2n)/Uπ(Cn) → P(V, ω0),

gK 7→ g j0 g−1,

which maps the canonical base point o = eK to j0.
Any j ∈ P(V, ω0) defines a symmetric decomposition of sp(R2n) by

p(j) = {A ∈ sp(R2n) | {j, A} = 0},
k(j) = {A ∈ sp(R2n) | [j, A] = 0} ∼= uπ(Cr).

In particular it is k(j0) = uπ(Cr). Moreover, one observes Tj P(V, ω0) = p(j).
Let j̃ ∈ Sp(R2n)/Uπ(Cn) and j = Φ(j̃), then Tj̃Sp(R2n)/Uπ(Cn) is canonically identified
with p(j) and for the differential of the identification we have:

Proposition 9 Let Ψ = Φ−1 : P(V, ω0) → Sp(R2n)/Uπ(Cn). Then it holds at j ∈
P(V, ω0)

dΨ : Tj P(V, ω0) 3 X 7→ −1

2
j−1X ∈ p(j). (7.6)

Recall, that under the above assumptions (TM, D = ∇ − S, S = −1
2
τ(∇τ), g) defines a

metric ptt∗-bundle. Analogue to the last section we obtain:

Theorem 8 Let (M, τ, g) be a simply connected almost para-hermitian manifold en-
dowed with a flat connection ∇, such that (∇, τ) is special and the two-form ω = g(τ ·, ·)
is ∇-parallel and let (TM, D = ∇ − S, S = −1

2
τ(∇τ), g) be the associated metric ptt∗-

bundle. Then the matrix of τ in a Dθ-flat frame sθ = (sθ
i ) defines an S̃1-pluriharmonic

map τ̃ θ : M → P(V, ω0) → Sp(R2n)/Uπ(Cn).
In particular, given a nice connection D on (M, τ) then the map τ̃ θ : (M, τ,D) →
Sp(R2n)/Uπ(Cn) is para-pluriharmonic.
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Proof: Since we have D0ω = ∇ω = (D + S)ω = 0 and Sθ
X := cosh(θ)SX + sinh(θ)SτX

is skew-symmetric with respect to ω, we obtain Dω = 0 and Dθω = 0. Hence one can
choose for each θ the Dθ-parallel frame sθ as a symplectic frame, such that sθ=0 = s0.
This yields using Dτ = 0 (cf. theorem 1 and lemma 1)

X.ω(τsθ
i , s

θ
j) = ω(Dθ

X(τsθ
i ), s

θ
j) = ω((Dθ

Xτ)sθ
i , s

θ
j) = ω([Sθ

X , τ ]sθ
i , s

θ
j) = −2ω(τSθ

Xsθ
i , s

θ
j).

Denote by Ssθ
, τ sθ

the representation of S and τ in the frame sθ, then we get

(τ sθ

)−1X(τ sθ

) = −2Ssθ

or
dτ̃ θ = (sθ)−1 ◦ Sθ ◦ sθ,

where the frame sθ is seen as a map sθ : M × V → TM. This shows for X ∈ Γ(TM)

dτ̃ θ(X) = (sθ)−1 ◦ Sθ
X ◦ (sθ) = (sθ)−1 ◦ SRθX ◦ (sθ)

= ((sθ)−1s0) ◦ dτ̃(RθX) ◦ ((s0)−1sθ)

= Ad−1
αθ
◦ dτ̃(RθX) = Φ−1

θ ◦ dτ̃(RθX),

where αθ = (sθ)−1s0 denotes the frame change from s0 to sθ and Φθ = Adαθ
which is

parallel with respect to the Levi-Civita connection on Sp(R2n)/Uπ(Cn). In other words
we have found an associated family. Given a nice connection D on (M, τ) theorem 5
shows that τ̃ θ is para-pluriharmonic.

In the case where the above ptt∗-bundle comes from a special para-Kähler manifold we
have the theorem:

Theorem 9 Let (M, τ, g,∇) be a simply connected special para-Kähler manifold and
(TM, D = ∇ − S, S = −1

2
τ∇τ, g) be the associated metric ptt∗-bundle, then the matrix

of τ in a Dθ-flat frame sθ = (sθ
i ) defines a para-pluriharmonic map τ̃ θ : (M, τ,D) →

Sp(R2n)/Uπ(Cn). Further τ̃ θ is harmonic.

Proof: Using theorem 8 the map τ̃ θ is S̃1-pluriharmonic. In the special para-Kähler case
we know that D is the Levi-Civita connection and hence it is torsion-free. The para-
complex structure τ is integrable and hence it holds Nτ = 0. This means, that D is nice
and theorem 5 shows that τ̃ θ is para-pluriharmonic. Since S is trace-free we get from
proposition 7 that τ̃ θ is harmonic.
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