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Abstract

We introduce the notion of a para-tt∗-bundle, the generalization of a tt∗-bundle
(compare [CS] and [Sch2]) in para-complex geometry. The main result is the def-
inition of a map Φ from the space of metric para-tt∗-bundles of rank r over a
para-complex manifold M to the space of para-pluriharmonic maps from M to
GL(r)/O(p, q) where (p, q) is the signature of the metric and the description of the
image of this map Φ. Then we recall and prove some results known in special complex
and special Kähler geometry in the setting of para-complex geometry, which we use
in the sequel to give a simple characterization of the tangent bundle of a special para-
complex and special para-Kähler manifold as a particular type of tt∗-bundles. For
the case of a special para-Kähler manifold it is shown that the para-pluriharmonic
map coincides with the dual Gauß map, which is a para-holomorphic map into the
symmetric space Sp(R2n)/Uπ(Cn) ⊂ SL(2n)/SO(n, n) ⊂ GL(2n)/O(n, n).
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1 Introduction

The complex version of the geometries introduced in this paper, the tt∗-geometries, origi-
nated in the physics of topological-field-theories (For further information see for example
[CV].). As we have shown in [CS] using differential geometric arguments or as follows
from the results of Hertling [H] using variations of Hodge-structures, special complex and
special Kähler manifolds are a special class of solutions, which play a crucial role as ad-
missible target spaces in certain super-symmetric field theories (for more about these see
[ACD] and [F]). In [Sch2] we have proven the existence of a map Φ from the space of
metric tt∗-bundles of rank r over the complex manifold (M,J) to the space of (twisted)
pluriharmonic maps from the complex manifold (M,J) to the pseudo-Riemannian sym-
metric space GL(r,R)/O(p, q) where (p,q) is the signature of the metric and characterized
the image of this map. In the positive definite case the map Φ is essentially bijective.
For metric tt∗-bundles with positive definite metric on a real form of the holomorphic

1



tangent bundle T 1,0M of the manifold (M,J) this result is due to Dubrovin [D]. In the
case of a tt∗-bundle coming from a special Kähler manifold this map is essentially the dual
Gauß map, as we have shown in [CS]. Further we characterized the tt∗-bundles, which
come from special Kähler manifolds.
Recently, special para-complex and special para-Kähler geometry was introduced in [CMMS].
It arises as one of the special geometries of Euclidean super-symmetry. The appearance
of the para-complex versions of special geometries motivated us to introduce the notion of
para-tt∗-bundles. The natural questions, if special para-complex and special para-Kähler
geometries are special solutions of tt∗-geometry and if there exists a map to the space
of para-pluriharmonic maps from M to GL(r,R)/O(p, q), SL(r,R)/SO(p, q) respectively,
i.e. pluriharmonic maps translated in the para-complex category, arise and are answered
positively in this work. In addition, we analyze the para-pluriharmonic map in the con-
text of special geometry and show, that it is closely related to the dual Gauß map.
The author wants to thank his advisor V. Cortés for the motivated support of his work
and M. Krahe for telling him about para-complex geometry. Moreover, he wants to thank
his parents having enabled all leading to this work and M.-A. Lawn to be.

2 Para-complex geometry

In this section we recall some definitions of special para-complex geometry given in
[CMMS] and prove some results which are analogous to these proven for special Kähler
manifolds in [ACD]. We give here just a sketch of the results needed in this paper. The
interested reader could find further informations in [CMMS].

2.1 Para-complex manifolds

Definition 1 A para-complex structure on a (real) finite dimensional vector space V
is a nontrivial involution τ ∈ End(V ), i.e. τ 2 = IdV and τ 6= IdV , such that the two
eigenspaces V ± := ker(Id ∓ τ) of τ have the same dimension. A para-complex vector
space (V, τ) is a vector space endowed with a para-complex structure τ. A para-complex
subspace of the para-complex vector space V is a subspace W of the real vector-space V,
such that the restriction of τ to W is a para-complex structure.

Definition 2 An almost para-complex structure on a smooth manifold M is an en-
domorphism field τ ∈ Γ(End(TM)), p 7→ τp, such that τp is a para-complex-structure
for all p ∈ M . An almost para-complex structure is called integrable if the eigendistri-
butions T±M are both integrable. An integrable almost para-complex structure is called
para-complex structure. A manifold with a para-complex structure is called para-complex
manifold.

We remark, that the integrability of an almost para-complex structure τ is shown in
[CMMS] to be equivivalent to the vanishing of the Nijenhuis tensor of τ defined by

Nτ (X, Y ) := [X, Y ] + [τX, τY ] − τ [X, τY ] − τ [τX, Y ], where X, Y ∈ Γ(TM).
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Definition 3 A smooth map f : (M, τ) → (N, τ ′) from a para-complex manifold (M, τ)
to a para-complex manifold (N, τ ′) is called para-holomorphic if df ◦ τ = τ ′ ◦ df and
anti-para-holomorphic if df ◦ τ = −τ ′ ◦ df.

To go further we introduce the algebra C of para-complex numbers. This is the real
algebra generated by 1 and the symbol e subject to the relation e2 = 1. If one regards e as
a unit vector in an one-dimensional R-vector space with negative definite scalar product,
then C is the Clifford algebra Cl0,1 = R ⊕ R (Compare Cl1,0 = C.). As for complex
numbers we define the para-complex conjugation

·̄ : C → C, x + ey 7→ x− ey for x, y ∈ R, (2.1)

which is a C−anti-linear involution, i.e. ez = −ez̄.
Real and imaginary parts are defined as

x = Re z := (z + z̄)/2 and y = Im z := e(z − z̄)/2. (2.2)

One has zz̄ = x2 − y2.
Every para-complex vector space V is isomorphic to a trivial free C-module Ck for some
k. Obviously para-complex sub-spaces W ⊂ V correspond to free sub-modules of W.
The decomposition of TM over a para-complex manifold M in T+M and T−M induces
a bigrading on exterior forms

ΛkT ∗M = ⊕k=p+qΛ
p+,q−T ∗M. (2.3)

We regard further the para-complexification TMC = TM ⊗R C of the tangent bundle
TM of an almost para-complex manifold (M, τ) and extend τ : TM → TM C−linearly
to τ : TMC → TMC . Then for all p ∈ M the free C-module TpM

C decomposes as
C-module into the direct sum of two free C-modules

TpM
C = T 1,0

p M ⊕ T 0,1
p M (2.4)

where

T 1,0
p M := {X + eτX|X ∈ TpM} and T 0,1

p M := {X − eτX|X ∈ TpM}.

The subbundles T 1,0
p M and T 0,1

p M can be characterized as the ±e-eigenbundles of the
map τ : TMC → TMC , i.e. τ = e on T 1,0M and τ = −e on T 0,1M.
In the same manner we decompose T ∗MC = Λ1,0T ∗M⊕Λ0,1T ∗M into the ±e-eigenbundles
of the dual para-complex structure τ ∗ : T ∗MC → T ∗MC . This decomposition induces a
bi-grading on the C−valued exterior forms

ΛkT ∗MC =
⊕

p+q=k

Λp,q T ∗M
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and finally on the C−valued differential forms on M

Ωk
C(M) =

⊕

p+q=k

Ωp,q(M).

In the complex case it is well-known, that every complex manifold admits a complex
torsion-free connection (see for example [KN]). We now generalize this theorem to the
para-complex case:

Theorem 1 Every almost para-complex manifold (M, τ) admits an almost para-complex
affine connection with torsion

Nτ = −4T,

where Nτ is the Nijenhuis-tensor of the almost para-complex structure τ.

Proof: Let ∇ be a torsion-free connection on M. We define Q ∈ Γ((T ∗M)2 ⊗ TM) as

4Q(X, Y ) := [(∇τY τ)X + τ((∇Y τ)X) + 2τ((∇Xτ)Y )]

and further
∇̃XY = ∇XY +Q(X, Y ).

Now we compute

(∇̃Xτ)Y = ∇̃XτY − τ∇̃XY = ∇XτY +Q(X, τY ) − τ∇XY − τQ(X, Y )

= (∇Xτ)Y + (Q(X, τY ) − τQ(X, Y ))︸ ︷︷ ︸
=:A(X,Y )

.

Hence we have to show A(X, Y ) = −(∇Xτ)Y. It is

4Q(X, τY ) = (∇Y τ)X + τ((∇τY τ)X) + 2τ((∇Xτ) τY ),

4τQ(X, Y ) = τ(∇τY τ)X + ((∇Y τ)X) + 2((∇Xτ)Y ).

With τ 2 = id we get τ [(∇Xτ) τY ] = −τ [τ(∇Xτ)Y ] = −(∇Xτ)Y and finally

4A = 4(Q(X, τY ) − τQ(X, Y )) = −4(∇Xτ)Y.

It remains to compute the torsion of ∇̃ :

T ∇̃
X,Y = T∇

X,Y +Q(X, Y ) −Q(Y,X) = Q(X, Y ) −Q(Y,X).

With the definition of Q we find

4T ∇̃
X,Y = (∇τY τ)X + τ((∇Y τ)X) + 2τ((∇Xτ)Y )

− ((∇τXτ)Y + τ((∇Xτ)Y ) + 2τ((∇Y τ)X))

= (∇τY τ)X − (∇τXτ)Y + τ((∇Xτ)Y ) − τ((∇Y τ)X) = (∇τY τX) − (∇τXτY )

− τ(∇τYX −∇τXY ) + τ [∇X(τY ) − τ∇XY ] − τ [∇Y (τX) − τ∇YX]

= [τY, τX] + [Y,X] + τ [∇X(τY ) −∇τYX] + τ [∇τXY −∇Y τX]

= [τY, τX] + [Y,X] − τ [τY,X] − τ [Y, τX] = Nτ (Y,X) = −Nτ (X, Y ).

Corollary 1 Every para-complex manifold (M, τ) admits a para-complex torsion-free
affine connection.
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2.2 Para-Kähler manifolds

In this subsection we recall some definitions and results from [CMMS].

Definition 4 Let (V, τ) be a para-complex vector space. A para-Hermitian scalar product
g on V is a pseudo-Euclidean scalar product for which τ is an anti-isometry, i.e.

τ ∗g = g(τ ·, τ ·) = −g(·, ·).

A para-Hermitian vector space is a para-complex vector space endowed with a para-Hermitian
scalar product. The pair (τ, g) is called para-Hermitian structure on the vector space V .

Definition 5 An almost para-Hermitian manifold (M, τ, g) is an almost para-complex
manifold (M, τ) endowed with a pseudo-Riemannian metric g such that τ ∗g = −g. If τ is
integrable, we call (M, τ, g) para-Hermitian manifold. The two-form ω := g(τ ·, ·) is called
the fundamental two-form of the almost para-Hermitian manifold (M, τ, g).

Definition 6 A para-Kähler manifold (M, τ, g) is a para-Hermitian manifold such that
τ is parallel with respect to the Levi-Civita-connection D of g, i.e. Dτ = 0.

Remark 1 The fundamental two-form satisfies τ ∗ω = −ω and hence is of type (1, 1)
(considered as C−valued two-form).
Since Dτ = 0 implies Nτ = 0 and dω = 0, any para-Kählerian manifold is a para-
Hermitian manifold with closed fundamental two-form. On a para-Kähler-manifold ω is
called para-Kähler-form. In fact, para-Kähler-manifolds are characterized in [CMMS] to
be para-Hermitian manifolds with closed fundamental two-form.

2.3 Affine special para-complex and special para-Kähler mani-

folds

Definition 7 An affine special para-complex manifold (M, τ,∇) is a para-complex mani-
fold (M, τ) endowed with a torsion-free flat connection such that ∇τ is a symmetric (1, 2)-
tensor field, i.e. (∇Xτ)Y = (∇Y τ)X for all X, Y ∈ TM.
An affine special para-Kähler manifold (M, τ, g,∇) is a special para-complex manifold
(M, τ,∇), such that (M, τ, g) is a para-Kähler manifold and ∇ is symplectic, i.e. ∇ω = 0.

Since projective special and projective special para-Kähler manifolds do not occur in this
text, we omit the adjective affine. The definition of a special para-Kähler manifold can
be found in [CMMS].
In the following part of this subsection we are going to generalize some results to para-
complex geometry, which are known from the affine special and the affine special Kähler
case (see [ACD]).

Remark 2 Given a linear connection ∇ on the tangent bundle of a manifold M and an
invertible endomorphism field A ∈ Γ(End(TM)) we define the connection

∇(A)X = A∇(A−1X).
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Given a linear flat connection on the real tangent bundle of a para-complex manifold
(M, τ), we define a one-parameter-family of connections by

∇θ = ∇(eθτ ) = ∇(cosh(θ) Id+sinh(θ) τ) for θ ∈ R. (2.5)

This family of connections is flat, since:

∇X = 0 ⇔ ∇θ(eθτX) = 0,

where X is a local vector field on M .

Lemma 1 Let ∇ be a flat connection with torsion T on a para-complex manifold (M, τ).
Then it is

∇θ = ∇ + Aθ, where Aθ = eθτ∇(e−θτ ) = − sinh(θ) eθτ∇τ
and the torsion T θ of the connection ∇θ is given by

T θ = T + alt(Aθ) = T − sinh(θ) eθτ d∇τ. (2.6)

Proposition 1 Let ∇ be a flat torsion-free connection on a para-complex manifold
(M, τ). Then the triple (M, τ,∇) defines a special para-complex manifold if and only if
one of the following conditions holds:

a) d∇τ = 0.

b) The flat connection ∇θ is torsion-free for some θ 6= 0.

b)’ The flat connection ∇θ is torsion-free for all θ 6= 0.

c) There exists 0 6= θ ∈ R such that [eθτX, eθτY ] = 0 for all ∇-parallel local vector
fields X and Y on M .

c)’ [eθτX, eθτY ] = 0 for all θ 6= 0 and for all ∇-parallel local vector fields X and Y on
M .

d) There exists 0 6= θ ∈ R such that d(η ◦ e−θτ ) = 0 for all ∇-parallel local 1-forms on
M.

d)’ d(η ◦ e−θτ ) = 0 for all θ 6= 0 and for all ∇-parallel local 1-forms on M .

Proof: The property a) defines special para-complex manifolds.
As ∇ is torsion-free, the torsion of ∇θ is by equation (2.6):

T θ = − sinh(θ) eθτ d∇τ.

Since sinh(θ) 6= 0 for θ 6= 0, we get the equivalence of a) and b) respectively b)’.
Let X and Y be ∇-parallel local vector fields. Then eθτX and eθτY are ∇θ-parallel, by
the definition of ∇θ. Therefore

T θ(eθτX, eθτY ) = [eθτX, eθτY ].
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This gives b) ⇔ c) and b)′ ⇔ c)′.
For a ∇-parallel 1-form η and X, Y as before we compute:

d(η ◦ e−θτ )(eθτX, eθτY )

= eθτXη(Y ) − eθτY η(X) − η(e−θτ [eθτX, eθτY ])

= −η(e−θτ [eθτX, eθτY ]),

as the functions η(X) and η(Y ) are constant. This proves c) ⇔ d) and c)′ ⇔ d)′.

Proposition 2 If (M, τ,∇) is a special para-complex manifold, then (M, τ,∇θ) is a
special para-complex manifold for any θ.
If (M, τ, g,∇) is a special para-Kähler manifold, then (M, τ, g,∇θ) is a special para-Kähler
manifold for any θ.

Proof: From above we know, that ∇θ is flat and torsion-free.
In order to prove this proposition we compute ∇θτ and ∇θω.
Let X, Y, Z ∈ Γ(TM)

(∇θ
Xτ)Y = ∇θ

X(τY ) − τ∇θ
XY = eθτ∇X(e−θττY ) − τeθτ∇X(e−θτY )

= eθτ∇X(τe−θτY ) − eθττ∇X(e−θτY ) = eθτ (∇Xτ)e
−θτY

(∗)
= e2θτ (∇Xτ)Y.

In (*) we have used τ(∇τ) = −(∇τ)τ, which follows from τ 2 = Id.
This shows d∇

θ

τ = e2θτd∇τ = 0.
Further we find utilizing ω(·, eθτ ·) = ω(e−θτ ·, ·), which is a consequence of τ ∗ω = −ω

∇θ
Zω(X, Y ) = Z.ω(X, Y ) − ω(∇θ

ZX, Y ) − ω(X,∇θ
ZY )

= Z.ω(X, Y ) − ω(eθτ∇Ze
−θτX, Y ) − ω(X, eθτ∇Ze

−θτY )

= Z.ω(X, Y ) − ω(∇Ze
−θτX, e−θτY ) − ω(e−θτX,∇Ze

−θτY )

= Z.ω(X, Y ) − Z.ω(e−θτX, e−θτY ) = 0.

Given a para-complex manifold with a flat connection ∇, we define the conjugate
connection via

∇c
XY = ∇(τ)

X Y = ∇XY + τ(∇Xτ)Y = τ∇X(τY ) for X, Y ∈ Γ(TM).

Proposition 3 Let (M, τ) be a para-complex manifold with a torsion-free flat connection
∇. Then the following statements are equivalent:

a) (M, τ,∇) is a special para-complex manifold.

b) The conjugate flat connection ∇c is torsion-free.
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Proof: The torsion of ∇c is

T∇c

= T∇ + alt(τ(∇τ)) = τd∇τ.

Therefore ∇c is torsion-free if and only if d∇τ = 0.

Proposition 4 Let (M, τ,∇) be a special para-complex manifold. Then D := 1
2
(∇+∇c)

defines a torsion-free connection such that Dτ = 0.

Proof: As it is a convex-combination of torsion-free connections, D is a torsion-free
connection. For any X ∈ Γ(TM) we compute:

DXτ = ∇Xτ +
1

2
[τ∇Xτ, τ ] = ∇Xτ −∇Xτ = 0.

Proposition 5 Let (M, τ, g,∇) be a special para-Kähler manifold and ∇g the Levi-
Civita connection of g. Then the following hold:

(i) ∇g = 1
2
(∇ + ∇c) = D.

(ii) The conjugate connection ∇c is g−dual, i.e.:

X.g(Y, Z) = g(∇c
XY, Z) + g(Y,∇XZ)

equivalently
X.g(Y, Z) = g(∇XY, Z) + g(Y,∇c

XZ)

for all vector fields X, Y, Z ∈ Γ(TM).

(iii) The tensor ∇g is completely symmetric.

Proof: (i) follows immediately from (ii) and proposition 4.
(ii) follows from a direct calculation which only uses the fact that ω is ∇-parallel and
τ -anti-invariant: With X, Y, Z ∈ Γ(TM) one finds

X.g(Y, Z) = X.ω(τY, Z) = ω(∇XτY, Z) + ω(τY,∇XZ)

= −ω(τ∇XτY, τZ) + g(Y,∇XZ)

= ω(τZ, τ∇XτY ) + g(Y,∇XZ)

= g(Z, τ∇X(τY )) + g(Y,∇XZ)

= g(∇c
XY, Z) + g(Y,∇XZ).

Finally (iii) follows from (ii) with the same argument as in [ACD].

Proposition 6 Let (M, τ, g,∇) be a special para-Kähler manifold and D the Levi-Civita
connection of g. Define the endomorphism field S as

S := ∇−D = ∇− 1

2
(∇ + ∇c) =

1

2
(∇−∇c) = −1

2
τ(∇τ).
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Then S is

(i) symmetric, i.e.: SXY = SYX; ∀X, Y ∈ Γ(TM),

(ii) ω-skew-symmetric, i.e.: ω(S·, ·) = −ω(·, S·),

(iii) g−symmetric, i.e.: g(S·, ·) = g(·, S·)

(iv) and anticommutes with τ , i.e.:

{SX , τ} = SXτ + τSX = 0 for all X ∈ Γ(TM). (2.7)

Proof: Let X, Y, Z ∈ Γ(TM).
(i) For a special para-complex manifold ∇ and ∇c are torsion-free (by definition and
proposition 3), so ∇−∇c = −τ(∇τ) = 2S is symmetric.
(ii) In fact Dg = 0 (proposition 5) and Dτ = 0 (proposition 4) imply Dω = 0. In addition
∇ω = 0 yields

ω(SXY, Z)+ω(Y, SXZ) = ω((∇−D)XY, Z)+ω(Y, (∇−D)XZ) = (∇−D)Xω(Y, Z) = 0.

(iii) Using X.g(Y, Z) − g(∇XY, Z) = g(Y,∇c
XZ) we prove the g−symmetry of S

2g(SXY, Z) = g((∇−∇c)XY, Z) = g(∇XY, Z) − g(∇c
XY, Z)

= X.g(Y, Z) − g(Y,∇c
XZ) −X.g(Y, Z) + g(Y,∇XZ)

= g(Y, (∇−∇c)XZ) = 2g(Y, SXZ).

(iv) Now we need only the ω-skew-symmetry of S, the g−symmetry of S and ω = g(τ ·, ·) =
−g(·, τ ·) to get with X, Y, Z ∈ Γ(TM)

g(SXτY, Z) = g(τY, SXZ) = ω(Y, SXZ) = −ω(SXY, Z) = −g(τSXY, Z)

and consequently {SX , τ} = 0.

3 Para-tt*-bundles

In this section we introduce the definition of a para-complex version of tt∗-bundles which
will be referred to as para-tt∗-bundles.

Definition 8 A para-tt*-bundle (ptt∗-bundle) (E,D, S) over a para-complex manifold
(M, τ) is a real vector bundle E → M endowed with a connection D and a section S of
T ∗M ⊗ EndE satisfying the ptt∗-equation

Rθ = 0 for all θ ∈ R , (3.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + cosh(θ)SX + sinh(θ)SτX for all X ∈ TM . (3.2)
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A metric ptt∗-bundle (E,D, S, g) is a ptt∗-bundle (E,D, S) endowed with a possibly indef-
inite D-parallel fiber metric g, such that S is g-symmetric, i.e. for all p ∈M

g(SXY, Z) = g(Y, SXZ) for all X, Y, Z ∈ TpM . (3.3)

A unimodular metric para-tt*-bundle (E,D, S, g) is a metric ptt*-bundle (E,D, S, g), such
that trSX = 0 for allX ∈ TM . An oriented unimodular metric para-tt*-bundle (E,D, S, g, or)
is a unimodular metric ptt*-bundle endowed with an orientation or of the bundle E.

Remark 3

1) If (E,D, S) is a ptt∗-bundle then (E,D, Sθ) is a ptt∗-bundle for all θ ∈ R, where

Sθ := Dθ −D = cosh(θ)S + sinh(θ)Sτ . (3.4)

The same remark applies to metric ptt∗-bundles.
2) Notice that an oriented unimodular metric ptt∗-bundle (E,D, S, g, or) carries a canon-
ical metric volume element ν ∈ Γ(∧rE∗), r = rkE, determined by g and or, which is
Dθ-parallel for all θ ∈ R.

Proposition 7 Let E be a real vector bundle over a para-complex manifold (M, τ)
endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ EndE).
Then (E,D, S) is a ptt∗-bundle if and only if D and S satisfy the following equations:

RD + S ∧ S = 0, S ∧ S is of type (1,1), dD S = 0 and dD Sτ = 0. (3.5)

We remark, that in the case (1,1) and (1+,1-) the two gradings defined in section 2.1
coincide.

Proof: To prove the proposition, we have to compute the curvature of Dθ.
Let X, Y ∈ Γ(TM) arbitrary:

Rθ
X,Y = RD

X,Y + [DX , cosh(θ)SY + sinh(θ)SτY ] + [cosh(θ)SX + sinh(θ)SτX , DY ]

+ [cosh(θ)SX + sinh(θ)SτX , cosh(θ)SY + sinh(θ)SτY ]

− cosh(θ)S[X,Y ] − sinh(θ)Sτ [X,Y ]

= RD
X,Y + sinh2(θ)[SτX , SτY ] + cosh2(θ)[SX , SY ]

+ cosh(θ) sinh(θ)([SX , SτY ] + [SτX , SY ])

+ cosh(θ)([DX , SY ] + [SX , DY ] − S[X,Y ])

+ sinh(θ)([SτX , DY ] + [DX , SτY ] − Sτ [X,Y ]).

The theorems of addition

sinh(a) cosh(a) =
1

2
sinh(2a), cosh(a)2 =

1

2
(1+cosh(2a)) and sinh(a)2 =

1

2
(cosh(2a)−1)

yield

Rθ
X,Y = RD

X,Y +
1

2
([SX , SY ] − [SτX , SτY ])

+ sinh
(
θ)([SτX , DY ] + [DX , SτY ] − Sτ [X,Y ]

)

+ cosh
(
θ)([DX , SY ] + [SX , DY ] − S[X,Y ]

)

+
1

2
sinh(2θ) ([SX , SτY ] + [SτX , SY ]) +

1

2
cosh(2θ) ([SτX , SτY ] + [SX , SY ]) .
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Separation in 1, sinh(nθ), cosh(nθ) with n = 1, 2 implies

0 = RD
X,Y +

1

2
([SX , SY ] − [SτX , SτY ]) ,

0 = [SτX , DY ] + [DX , SτY ] − Sτ [X,Y ],

0 = [DX , SY ] + [SX , DY ] − S[X,Y ] and

0 = [SX , SY ] + [SτX , SτY ] = [SτX , SY ] + [SX , SτY ]

and equivalently

S ∧ S(X, Y ) = [SX , SY ] = −[SτX , SτY ], i.e. is of type (1,1),

RD + S ∧ S = 0,

dDS(X, Y ) = DX(SY ) −DY (SX) − S[X,Y ] = 0 and

dDSτ (X, Y ) = DX(SτY ) −DY (SτX) − Sτ [X,Y ] = 0.

4 Special para-complex and special para-Kähler ma-

nifolds as solutions of ptt∗-geometry

In this section we are interested in ptt∗-bundles on the tangent-bundle TM of a para-
complex manifold (M, τ). In this context it is natural to regard ptt∗-bundles, for that the
connection ∇θ is torsion-free.

Definition 9 A ptt∗-bundle (TM,D, S) over a para-complex manifold (M, τ) is called
special if Dθ is torsion-free and special, i.e. Dθτ is symmetric for all θ.

Proposition 8 A ptt∗-bundle (TM,D, S) is special if and only if D is torsion-free and
Dτ, S and Sτ are symmetric.

Proof: The torsion T θ of Dθ equals

T θ(X, Y ) = T (X, Y ) + cosh(θ)(SXY − SYX) + sinh(θ)(SτXY − SτYX) (4.1)

where T is the torsion-tensor of D. This implies, that T θ = 0 for all θ if and only if T = 0
and S and Sτ are symmetric. The equation

(Dθ
Xτ)Y = (DXτ)Y + cosh(θ)[SX , τ ]Y + sinh(θ)[SτX , τ ]Y (4.2)

{SX ,τ}=0
= (DXτ)Y − 2 cosh(θ) τ SXY − 2 sinh(θ) τ SτXY

shows that Dθτ is symmetric if Dτ , S and Sτ are symmetric. Conversely, if T θ = 0 and
Dθτ is symmetric, then the first part of the proof yields, that S and Sτ are symmetric
and T = 0. Equation (4.2) implies finally the symmetry of Dτ.
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Theorem 2

(i) Let (M, τ,∇) be a special para-complex manifold. Put S := − 1
2
τ∇τ and D := ∇−S.

Then (TM,D, S) is a special ptt∗-bundle with the following additional properties:

a) SXτ = −τSX for all X ∈ TM and

b) Dτ = 0.

This defines a map Φ from special para-complex manifolds to special ptt∗-bundles.

(ii) Let (TM,D, S) be a special ptt∗-bundle over a para-complex manifold (M, τ). Then
(M, τ,∇ := D + S) is a special para-complex manifold. This defines a map Ψ
from special ptt∗-bundles to special para-complex manifolds such that Ψ ◦Φ = Id. If
(TM,D, S) is a special ptt∗-bundle satisfying the conditions a) and b) of (i), then
Φ(Ψ(TM,D, S)) = (TM,D, S).

(iii) Let (M, τ, g,∇) be a special para-Kähler manifold with S and D as in (i). Then
(TM,D, S, g) defines a special metric ptt∗-bundle satisfying a) and b) of (i). This
defines a map, also called Φ, from special para-Kähler manifolds to special metric
ptt∗-bundles.

(iv) Let (TM,D, S, g) be a special metric ptt∗-bundle over a para-Hermitian manifold
(M, τ, g) satisfying the conditions a) and b) in (i). Then (M, τ, g,∇ := D + S) is
a special para-Kähler manifold. In particular, we have a map Ψ from special metric
ptt∗-bundles over para-Hermitian manifolds (M, τ, g) satisfying the conditions a) and
b) in (i) to special para-Kähler manifolds. Moreover Ψ is a bijection and Ψ−1 = Φ.

(v) Let (TM,D, S, g) be a metric ptt∗-bundle over a para-Hermitian manifold (M, τ, g)
satisfying the conditions a) and b) in (i) and such that D is torsion-free. Then it is
special if and only if (M, τ, g,∇ := D + S) is a special para-Kähler manifold.

Proof:
(i) Let (M, τ,∇) be a special para-complex manifold with S and D defined as above. Then
∇θ = eθτ ◦∇ ◦ e−θτ defines a family of torsion-free flat connections. Using ∇ = D+ S we
obtain

∇θ
X = DX + e2θτSX ,

due to the following computation (using Dτ = 0 due to proposition 4 and {SX , τ} = 0
for all X ∈ TM, see proposition 6)

∇θ
XY = eθτ (DX + SX)(e−θτY ) = eθτDX(cosh(θ)Y − sinh(θ)τY ) + eθτSX(e−θτY )

{τ,SX}=0
= eθτ (cosh(θ)DXY − sinh(θ)((DXτ)Y + τDXY ) + e2θτSXY

= DXY + e2θτSXY.

Now we show that ∇θ = D−2θ, where Dθ was defined in (3.2):

∇θ
X −DX = e2θτSX = cosh(2θ)SX + sinh(2θ)τSX

(∗)
= cosh(2θ)SX − sinh(2θ)SτX = D−2θ

X −DX , X ∈ TM.
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In (∗) we have used that τSX = −SτX , which follows from the symmetry of S and
{S, τ} = 0 by

τSXY = τSYX = −SY τX = −SτXY, X, Y ∈ TpM.

This shows, that (TM,D, S) is a special ptt∗-bundle. The additional properties hold, as
(M, τ,∇) is a special para-complex manifold (compare proposition 4 and 6).
(ii) In order to prove the second statement, let (TM,D, S) be a special ptt∗-bundle, i.e.
Dθ is flat, torsion-free and special. In particular, ∇ = D + S = D0 is flat, torsion-free
and special. Hence (M, τ,∇) is a special para-complex manifold. Obviously we have
Ψ ◦ Φ = Id.
Conversely, let (TM,D, S) be a special ptt∗-bundle satifying Dτ = 0 and SXτ = −τSX

for all X ∈ TpM. Then we obtain D and S from ∇ = D+S by the formulas S = − 1
2
τ∇τ

and D = ∇− S. In fact, let (TM,D′, S ′) be another special ptt∗-bundle over (M, τ) with
D′τ = 0, S ′

Xτ = −τS ′
X for all X ∈ TpM and ∇ = D + S = D′ + S ′ then

0 = D′
Xτ = ∇Xτ − [S ′

X , τ ] = ∇Xτ + 2τS ′
X (4.3)

for all X ∈ TpM. This shows S ′
X = −1

2
τ∇τ = SX and D′ = ∇− S ′ = ∇− S = D.

(iii) Let (M, τ, g,∇) be a special para-Kähler manifold with D and S defined as in (i).
Then (TM,D, S) is a special ptt∗-bundle satisfying a) and b), due to (i). Proposition 5
implies, that Dg = 0 and proposition 6 implies, that S is g-symmetric and hence that
(TM,D, S, g) is a special metric ptt∗-bundle.
(iv) Let (TM,D, S, g) be a special metric ptt∗-bundle over a para-Hermitian manifold
(M, τ, g) satisfying a) and b) in (i). By (ii), we know already, that (M, τ,∇ := D + S)
is a special para-complex manifold. Therefore it remains to prove ∇ω = 0. We have
Dg = 0 and Dτ = 0 (property b) in (i)) and consequently Dω = 0. As Dω = 0, ∇ω = 0
is equivalent to the ω-skew-symmetry of S and finally to the g-symmetry of S, since
{τ, SX} = 0. But by the definition of a metric ptt∗-bundle S is g−symmetric. Therefore
(M, τ,∇, g) is a special para-Kähler manifold. The rest of part (iv) follows from part (ii).
(v) We have only to show the direction which follows not from (iv). Let (TM,D, S, g)
be a metric ptt∗-bundle over a para-Hermitian manifold (M, τ, g), such that (M, τ, g,∇ =
D + S) = Ψ(TM,D, S, g) is a special para-Kähler manifold. If D is torsion-free, then
it is the Levi-Civita connection of g, and therefore D = ∇ + 1

2
τ∇τ , see proposition 5.

This shows, that Φ(M, τ, g,∇) = (TM,D, S, g) and that (TM,D, S, g) is a special metric
ptt∗-bundle.

Corollary 2 A metric ptt∗-bundle (TM,D, S, g) over a para-Hermitian manifold (M, τ, g)
which satisfies a) and b) in theorem 2 is oriented and unimodular.

Proof: By theorem 2, (M, τ, g,∇ = D + S) is a special para-Kähler manifold. Hence we
can orient it by ω∧. . .∧ω, where ω is its para-Kähler-form. Its para-Kähler-form is parallel
with respect to the connections D and ∇ and therefore invariant under SX = ∇X −DX .
This shows trSX = 0.
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5 Para-pluriharmonic maps

In this section we introduce the notion of para-pluriharmonic maps as an analogue to
pluriharmonic maps and deduce some properties of para-pluriharmonic maps, especially
to S(p, q) = GL(r)/O(p, q) 1 and S1(p, q) = SL(r)/SO(p, q) which are needed later and
which we have not found in the literature.

Definition 10 Let (M, τ) be a para-complex manifold and (N, h) be a pseudo-Riemannian
manifold with Levi-Civita connection ∇h, D a connection on M which satisfies

DτYX = τDYX (5.1)

for all vector fields which satisfy LXτ = 0 (i.e. for which X + eτX is para-holomorphic)
and ∇ the connection on T ∗M ⊗ f ∗TN which is induced by D and ∇h.
A map f : M → N is para-pluriharmonic if and only if it satisfies the equation

∇′′∂f = 0 , (5.2)

where ∂f = df 1,0 ∈ Γ(
∧1,0 T ∗M ⊗C (TN)C) is the (1, 0)-component of dCf and ∇′′ is the

(0, 1)-component of ∇ = ∇′ + ∇′′.
Equivalently one regards α = ∇dφ ∈ Γ(T ∗M ⊗ T ∗M ⊗ φ∗TN).
Then φ is para-pluriharmonic if and only if

α(X, Y ) − α(τX, τY ) = 0

for all X, Y ∈ TM. This can also be expressed as

α1+,1− = 0.

We recall, that in the case (1,1) and (1+,1-) the two gradings defined in section 2.1
coincide.
On every para-complex manifold exists a para-complex torsion-free connection, as we have
shown in corollary 1. The following proposition ensures now the existence of a connection
satisfying equation (5.1).

Proposition 9

(i) Every para-complex torsion-free connection D on a para-complex manifold (M, τ)
satisfies equation (5.1).

(ii) On every para-complex manifold there exists a connection satisfying equation (5.1).

Proof: (i) The conditions TD = 0 and Dτ = 0 yield

DτYX − τDYX = [τY,X] +DX(τY ) − τDYX = [τY,X] − τ [Y,X] = −(LXτ)Y. (5.3)

1Where O(p, q) and SO(p, q) are the pseudo-orthogonal groups of signature (p, q).
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The right-hand side vanishes if LXτ = 0.
(ii) The existence of a para-complex torsion-free connection D on (M, τ) follows from
corollary 1. Part (i) implies now the statement (ii).

This result motivates the

Convention: In the following text the connection D on M is taken to be torsion-free
and para-complex.

Definition 11 A para-complex curve is a para-complex manifold of para-complex dimen-
sion one. A para-complex curve in a para-complex manifold M is a para-complex curve
which is a para-complex sub-manifold of M .

With this notation we have

Proposition 10 A map f : (M, τ) → (N, h) from a para-complex manifold (M, τ) to
a pseudo-Riemannian manifold (N, h) is para-pluriharmonic if and only if the restriction
of f to any para-complex curve C in M is harmonic.

Proof: Let C ⊂M be a para-complex curve in (M, τ). On C a Hermitian metric g in the
para-conformal class of τ is chosen. As g is hermitian it is of type (1+, 1−). Hence the
trace of ∇df|C with respect to g is zero if and only if ∇′′∂f|C = 0, as ∇df is symmetric.
Since this holds for all curves C in M the proposition is proven.

Let Symp,q(R
r) be the space of symmetric r × r matrices of signature (p, q). These

define pseudo-scalar-products of same signature by < ·, · >A=< A·, · >Rr , where < ·, · >Rr

is the Euclidean scalar-product. The action of an element g ∈ GL(r) is induced by the
action of GL(r) on the pseudo-scalar-products of signature (p, q), i.e. by g. < ·, · >A=
< g−1·, g−1· >A=< (g−1)tAg−1·, · >Rr . This gives an action of GL(r) A 7→ (g−1)tAg−1 on
Symp,q(R

r) which we use to identify Symp,q(R
r) with S(p, q) in the following proposition.

In the same manner, we can identify S1(p, q) = SL(r)/SO(p, q) with the space of sym-
metric r × r matrices of signature (p, q) and determinant (−1)q.

Proposition 11

a) Let Ψ be the above identification Ψ : S(p, q)→̃Symp,q(R
r) ⊂ GL(r) where GL(r)

carries the pseudo-Riemannian metric, given by the (Ad-invariant) trace-form, i.e.
(A,B) 7→ tr (AB). Then Ψ is a totally-geodesic immersion and a map f̃ from
a para-complex manifold (M, τ) to S(p, q) is para-pluriharmonic, iff the map f =
Ψ ◦ f̃ : M → S(p, q)→̃Symp,q(R

r) ⊂ GL(r) is para-pluriharmonic.

b) Let Ψ0 be the above identification Ψ0 : S1(p, q)→̃Sym1
p,q(R

r) ⊂ SL(r) where SL(r)
carries the pseudo-Riemannian metric, given by the (Ad-invariant) trace-form, i.e.
(A,B) 7→ tr (AB). Then Ψ0 is a totally-geodesic immersion and a map f̃ from a
para-complex manifold (M, τ) to S1(p, q) is para-pluriharmonic, iff the map f =
Ψ0 ◦ f̃ : M → S1(p, q)→̃Sym1

p,q(R
r) ⊂ SL(r) is para-pluriharmonic.
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Proof: The proof of the first part was done in [Sch2] by expressing the map Ψ in terms
of the well-known Cartan-immersion.
It remains to prove f̃ para-pluriharmonic if and only if Ψ ◦ f̃ is para-pluriharmonic.
Let X, Y be para-holomorphic vector-fields and D the connection on M . We calculate
∇df(X, Y ) = ∇X(df(Y ))− df(DXY ). Taking the (1, 1)-part of this expression we find for
the second term:

df(DXY −DτXτY ) = df(DXY − τ 2DXY ) = 0.

Therefore the para-pluriharmonicity is independent of the connection chosen on M . Hence
we have only to regard the Levi-Civita-connections on G = GL(r), SL(r) respectively
G/K = GL(r)/O(p, q), SL(r)/SO(p, q). Let X, Y ∈ Γ(TM) be para-holomorphic and
calculate:

∇G
Xd(Ψ ◦ f)(Y ) = ∇G

XdΨ(df(Y )) = ∇G
XΨ∗(df(Y )) = Ψ∗(∇G/K

X df(Y )) + II(X, Y )

where II is the second fundamental-form which vanishes, as the immersion is totally
geodesic. This implies

αG(X, Y ) − αG(τX, τY ) = ∇G
Xd(Ψ ◦ f)(Y ) −∇G

τXd(Ψ ◦ f)(τY )

= Ψ∗(∇G/K
X df(Y ) −∇G/K

τX df(τY ))

= Ψ∗(α
G/K(X, Y ) − αG/K(τX, τY )).

Since Ψ is an immersion, the proof is finished.

Remark 4 (see also [CS], [Sch2])
We want to have a closer look on the identification of GL(r)/O(p, q) with Symp,q(R

r) via
Ψ.
To do this we choose o = eO(p, q) as base point and suppose that Ψ is chosen to map o to
I = Ip,q. By construction Ψ is GL(r)-equivariant. Further we identify the tangent-space
TSSymp,q(R

r) at S ∈ Symp,q(R
r) with the (ambient) vector space of symmetric matrices:

TSSymp,q(R
r) = Sym(Rr) := {A ∈ Mat(r,R)|At = A} . (5.4)

For Ψ(S̃) = S, the tangent space TS̃S(p, q) is canonically identified with the vector space
of S-symmetric matrices:

TS̃S(p, q) = sym(S) := {A ∈ gl(r)|AtS = SA} . (5.5)

Note that sym(Ip,q) = sym(p, q).

Proposition 12 The differential of ϕ := Ψ−1 at S ∈ Symp,q(R
r) is given by

Sym(Rr) 3 X 7→ −1

2
S−1X ∈ S−1Sym(Rr) = sym(S) . (5.6)
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Using this proposition we relate now the differentials

dfx : TxM → Sym(Rr) (5.7)

of a map f : M → Symp,q(R
r) at x ∈M and

df̃x : TxM → sym(f(x)) (5.8)

of the map f̃ = ϕ ◦ f : M → S(p, q): df̃x = dϕ dfx = −1
2
f(x)−1dfx. Analogous we have

identified SL(r)/SO(p, q) with Sym1
p,q(R

r) via Ψ0. Let us choose o = eSO(p, q) as base
point and suppose that Ψ0 is chosen to map the base point o to I = Ip,q. By construction
Ψ0 is SL(r)-equivariant. We identify the tangent space TSSym1

p,q(R
r) at S ∈ Sym1

p,q(R
r)

with the (ambient) vector space of symmetric trace-free matrices:

TSSym1
p,q(R

r) = Sym0(R
r) := {A ∈ Mat(r,R)|At = A, trA = 0} . (5.9)

For Ψ0(S̃) = S, the tangent space TS̃S
1(p, q) is canonically identified with the vector space

of S-symmetric matrices in sl(r):

TS̃S
1(p, q) = sym0(S) := {A ∈ sl(r)|AtS = SA.} . (5.10)

Proposition 13 The differential of ϕ0 := (Ψ0)−1 at S ∈ Sym1
p,q(R

r) is given by

Sym0(R
r) 3 X 7→ −1

2
S−1X ∈ S−1Sym0(R

r) = sym0(S) . (5.11)

We relate as above the differentials

dfx : TxM → Sym0(R
r) (5.12)

of a map f : M → Sym1
p,q(R

r) at x ∈M and

df̃x : TxM → sym0(f(x)) (5.13)

of the map f̃ = ϕ ◦ f : M → S1(p, q): df̃x = dϕ dfx = −1
2
f(x)−1dfx.

For a map f : M → GL(r) respectively SL(r) we want to interpret the one-form
A = f−1df with values in gl(r) repectively sl(r) as a connection form on the vector
bundle E = M×Rr. We note, that the definition of A is the pure gauge and consequently
its curvature vanishes. Thus we get:

Proposition 14

1. Let f : M → GL(r) be a C∞-mapping and A := f−1df : TM → gl(r). Then the
curvature of A vanishes, i.e. for X, Y ∈ Γ(TM)

Y (AX) −X(AY ) = A[X,Y ] + [AX , AY ]. (5.14)
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2. Let f : M → SL(r) be a C∞-mapping and A := f−1df : TM → sl(r). Then the
curvature of A vanishes, i.e. for X, Y ∈ Γ(TM)

Y (AX) −X(AY ) = A[X,Y ] + [AX , AY ]. (5.15)

In the next proposition we give the para-pluriharmonic equations for maps from a
para-complex manifold to GL(r) respectively SL(r):

Proposition 15 Let (M, τ) be a para-complex manifold f : M → GL(r) or SL(r) a
C∞-map and A defined as in proposition 14.
The para-pluriharmonicity of f is equivalent to the equation

Y (AX) +
1

2
[AY , AX ] − τY (AτX) − 1

2
[AτY , AτX ] = 0, (5.16)

for all para-holomorphic vector fields X, Y ∈ Γ(TM).

Proof: Again the para-pluriharmonicity of f does not depend on the connection on M.
Therefore we only have to regard the pulled back Levi-Civita connection ∇ on G =
GL(r) respectively G = SL(r). Let X, Y ∈ Γ(TM) be para-holomorphic. To find these
equations we write df(X) and df(Y ) that are sections in f ∗ T G, as linear combination
of left invariant vector fields Ẽij along f , with Ẽij(g) = gEij, ∀g ∈ G and a basis
Eij, i, j = 1 . . . r of g = gl(r) or sl(r).
In this notation we have

df(X) =
∑

i,j

aij Ẽij ◦ f =
∑

ij

aij fEij and df(Y ) =
∑

i,j

bij Ẽij ◦ f =
∑

ij

bij fEij,

with functions aij and bij on M and further

AX = f−1df(X) =
∑

ij

aij Eij and AY = f−1df(Y ) =
∑

ij

bij Eij.

With this information we compute

(f ∗∇)Y df(X) = (f ∗∇)Y

∑

i,j

aij Ẽij ◦ f

=
∑

ij

Y (aij) Ẽij ◦ f +
∑

ij

aij (f ∗∇)Y Ẽij ◦ f

=
∑

ij

Y (aij) Ẽij ◦ f +
∑

ij

aij ∇df(Y )Ẽij ◦ f

=
∑

ij

Y (aij) fEij +
∑

abij

aij bab (∇Ẽab
Ẽij) ◦ f︸ ︷︷ ︸

1
2
f [Eab,Eij ]

= f(Y (AX) +
1

2
[AY , AX ]).

Therefore the para-pluriharmonicity is equivalent to the equation

Y (AX) +
1

2
[AY , AX ] − τY (AτX) − 1

2
[AτY , AτX ] = 0.
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6 Para-tt∗-geometry and para-pluriharmonic maps

In this section we are going to state and prove the main result, i.e. the correspondence
between ptt∗-bundles and para-pluriharmonic maps. Like in section 5 one regards the
mapping A = f−1df as a map A : TM → gl(r) or sl(r).

6.1 The simply-connected case

Theorem 3 Let (M, τ) be a simply-connected para-complex manifold.

a) Let (E,D, S, g) be a metric ptt∗-bundle where E has rank r and M dimension n.
The representation of the metric g in a Dθ-flat frame of E f : M → Symp,q(R

r)

induces a para-pluriharmonic map f̃ : M
f→ Symp,q(R

r) →̃S(p, q), where S(p, q)
carries the pseudo-Riemannian metric induced by the (biinvariant) trace-form on
GL(r). Moreover, for all x ∈ M the image of T 1,0M under the para-complex linear
extension of dL−1

u df̃x : TxM → ToS(p, q) = sym(p, q) consists of commuting matri-
ces, where u ∈ GL(r) is any element such that f(x) = u·o and Lu : S(p, q) → S(p, q)
is the isometry induced by the left-multiplication with u ∈ GL(r).
Let s′ be another Dθ-flat frame. Then s′ = s · U for a constant matrix U and the
para-pluriharmonic map associated to S ′ is f ′ = U tfU.

b) Let (E,D, S, g, or) be an oriented unimodular metric ptt∗-bundle where E has rank
r and M dimension n. The representation of the metric g in a Dθ-flat frame of E f :

M → Sym1
p,q(R

r) induces a para-pluriharmonic map f̃ : M
f→ Sym1

p,q(R
r) →̃S1(p, q),

where S1(p, q) carries the pseudo-Riemannian metric induced by the (biinvariant)
trace-form on SL(r). Moreover, for all x ∈ M the image of T 1,0M under the para-
complex linear extension of dL−1

u df̃x : TxM → ToS
1(p, q) = sym0(p, q) consists

of commuting matrices, where u ∈ SL(r) is any element such that f(x) = u · o
and Lu : S1(p, q) → S1(p, q) is the isometry induced by the left-multiplication with
u ∈ SL(r).
Let s′ be another Dθ-flat frame. Then s′ = s · U for a constant matrix U and the
para-pluriharmonic map associated to S ′ is f ′ = U tfU.

Remark 5 (see also [CS]) Before proving the theorem we make some remarks on the
condition on df̃ . Let x ∈M and f̃(x) = uo. If df̃(T 1,0

x M) consist of commuting matrices,
then dL−1

u df̃(T 1,0
x M) is commutative, too. This follows from the fact, that

dLu : ToS(p, q) → TuoS(p, q) = Tf̃(x)S(p, q)

equals
Adu : sym(p, q) = sym(Ip,q) → sym(u · Ip,q) = sym(f̃),

which preserves the Lie-bracket. An analogous remark holds for the second part of the
theorem. In the sequel, we will say shortly, that the image of df̃x is Abelian.

Proof: Using remark 3.1) it suffices to prove the case θ = 0.
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a) Let s := (s1, . . . , sr) be a D0-flat frame of E (i.e. Ds = −Ss), f the matrix
g(sk, sl) and further Ss the matrix-valued one-form representing S in the frame s.
For X ∈ Γ(TM) we get:

X(f) = Xg(s, s) = g(DXs, s) + g(s,DXs)

= −(g(SXs, s) + g(s, SXs))

= −2g(SXs, s) = −2f · Ss(X) = −2f · Ss
X .

Consequently AX = −2Ss
X . We now prove the para-pluriharmonicity using

dDS(X, Y ) = DX(SY ) −DY (SX) − S[X,Y ] = 0, (6.1)

dDSτ (X, Y ) = DX(SτY ) −DY (SτX) − Sτ [X,Y ] = 0. (6.2)

The equation (6.2) implies

0 = dDSτ (τX, Y ) = DτX(SτY ) − DY (SX)︸ ︷︷ ︸
(6.1)
= DX(SY )−S[X,Y ]

−Sτ [τX,Y ]

= DτX(SτY ) −DX(SY ) + S[X,Y ] − Sτ [τX,Y ].

In local para-holomorphic coordinate fields X, Y on M we get in the frame s

τX(Ss
τY ) −X(Ss

Y ) + [Ss
X , S

s
Y ] − [Ss

τX , S
s
τY ] = 0.

Now A = −2Ss gives equation (5.16) and hence proves the para-pluriharmonicity
of f.
Using AX = −2Ss

X = −2df̃(X), we find the property of the differential, as S ∧ S is
of type (1,1) by the tt∗-equations, see proposition 7.
The last statement is obvious.

b) In this case we can take the frame s to be oriented and of volume 1, with respect to
the canonical Dθ-parallel-metric volume ν. Therefore f takes values in Sym1

p,q(R
r)

and part a) shows the rest.

Theorem 4 Let (M, τ) be a simply-connected para-complex manifold and put E =
M × R

r.

a) Then a para-pluriharmonic map f̃ : M → S(p, q) gives rise to a para-pluriharmonic

map f : M
f̃→ S(p, q)→̃Symp,q(R

r) ⊂ GL(r).
If for all x ∈ M dcf̃x takes T 1,0M to an Abelian sub-algebra in sym(f(x)) ⊗ C
(see theorem 3), then the map f induces a metric ptt∗−bundle (E,D = ∂ − S, S =
df̃ , g =< f ·, · >Rr) on M where ∂ is the canonical flat connection on E.
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b) Then a para-pluriharmonic map f̃ : M → S1(p, q) gives rise to a para-pluriharmonic

map f : M
f̃→ S1(p, q)→̃Sym1

p,q(R
r) ⊂ SL(r).

If for all x ∈M dcf̃x takes T 1,0M to an Abelian sub-algebra in sym0(f(x))⊗C, then
the map f induces an oriented unimodular metric ptt∗−bundle (E,D = ∂ − S, S =
df̃ , g =< f ·, · >Rr , or) on M where ∂ is the canonical flat connection and or the
canonical orientation on E.

Remark 6 We observe, that for para-complex curves M = Σ the condition on the
differential holds, since T 1,0Σ is one-dimensional over C.

Proof:
Let f̃ : M → S(p, q) be a para-pluriharmonic map. Then by proposition 11 we know,
that f : M→̃Symp,q(R) ⊂ GL(r) is para-pluriharmonic.
Since E = M × Rr, we can regard sections of E as r-tuples of C∞(M,R)-functions.
In the spirit of section 5 we regard the one form A = −2df̃ = f−1df with values in gl(r)
respectively sl(r) as a connection on E. We remind, that the curvature of this connection
vanishes (proposition 14).

a) First, we check the conditions on the metric:

Lemma 2 The connection D is compatible with the metric g and S is symmetric
with respect to g.

Proof: This is a direct computation with X ∈ Γ(TM) and v, w ∈ Γ(E) using
the relations (∗) S = − 1

2
f−1df, (∗∗) dfx : TxM → Tf(x)Symp,q(R

r) = Sym(Rr)
(compare remark 4) and g = 〈f ·, ·〉

Rr = 〈·, f ·〉
Rr which follows from f : M →

Symp,q(R
r) :

X(g(v, w)) = X(〈fv, w〉
Rr) = 〈X(f)v, w〉

Rr + 〈f(∂Xv), w〉Rr + 〈fv, ∂Xw〉Rr

(∗∗)
=

1

2
〈X(f)v, w〉

Rr +
1

2
〈v,X(f)w〉

Rr + 〈f(∂Xv), w〉Rr + 〈fv, ∂Xw〉Rr

=
1

2

〈
f · f−1(X(f))v, w

〉
Rr +

1

2

〈
v, f · f−1(X(f))w

〉
Rr

+ 〈f∂Xv, w〉Rr + 〈fv, ∂Xw〉Rr

(∗),(∗∗)
= g(X.v − SXv, w) + g(v,X.w − SXw) = g(DXv, w) + g(v,DXw).

For x ∈ M df̃x takes by remark 4 values in sym(f(x)). This shows that S = df̃ is
symmetric with respect to g = 〈f ·, ·〉

Rr .

To finish the proof, we have to check the ptt∗-equations. The second ptt∗-equation

[SX , SY ] = −[SτX , SτY ] (6.3)

for S follows from the assumption that the image of T 1,0M under dcf̃ is Abelian.
In fact, this is equivalent to [df̃(τX), df̃(τY )] = −[df̃(X), df̃(Y )], ∀X, Y ∈ TM.
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dDS(X, Y ) = [DX , SY ] − [DY , SX ] − S[X,Y ]

= ∂X(SY ) − ∂Y (SX) − 2[SX , SY ] − S[X,Y ] = 0

is equivalent to the vanishing of the curvature of A = −2S interpreted as a connec-
tion on E (see proposition 14).
Finally one has for para-holomorphic coordinate fields X, Y ∈ Γ(TM)

dDSτ (τX, Y ) = [DτX , SτY ] − [DY , SX ] = [∂τX − SτX , SτY ] − [∂Y − SY , SX ]

= ∂τX(SτY ) − ∂Y (SX) − [SτX , SτY ] − [SX , SY ]

(6.3)
=

1

2
(∂Y (AX) − ∂τX(AτY ))

(5.14)
=

1

2
(∂X(AY ) + [AX , AY ] − ∂τX(AτY ))

(6.3)
=

1

2

(
∂X(AY ) +

1

2
[AX , AY ] − ∂τX(AτY ) − 1

2
[AτX , AτY ]

)
(5.16)
= 0.

This shows the vanishing of the tensor dDSτ .
It remains to show the curvature equation for D. We observe, that D + S = ∂ and
is consequently flat, to find

0 = RD+S
X,Y = RD

X,Y + dDS(X, Y ) + [SX , SY ]
dDS=0

= RD
X,Y + [SX , SY ].

b) With the same proof as in part a) we get a metric ptt∗-bundle with orientation.
It remains to check the condition on the trace of S. This property is clear, since in
this case df̃x takes values in sym0(f(x)) for all x ∈M .

In the situation of theorem 4 the two constructions are inverse in the following sense:

Proposition 16

1. Let (E,D, S, g) be a metric ptt∗-bundle over a para-complex manifold (M, τ) and
let f̃ be the associated para-pluriharmonic map constructed to a Dθ-flat frame s in
theorem 3. Then the image of df̃ is Abelian and the metric ptt∗-bundle (M×Rr, D̃ =
∂ − S̃, S̃ = df̃ , g̃) associated to f̃ in theorem 4 is the representation of (E,D, S, g)
in the frame s.

2. Given a para-pluriharmonic map f̃ from a para-complex manifold (M, τ) to S(p, q)
such that the image of df̃ is Abelian, one obtains via theorem 4 a metric ptt∗-bundle
(M × Rr, D, S, g).
The para-pluriharmonic map associated to this metric ptt∗-bundle is conjugated to
the map f̃ by a constant matrix in GL(r).

3. Let (E,D, S, g, or) be an oriented unimodular metric ptt∗-bundle over a para-complex
manifold (M, τ). Let f̃ be the associated para-pluriharmonic map constructed to a
Dθ-flat frame s of canonical volume one in theorem 3. Then the image of df̃ is
Abelian and the oriented unimodular metric ptt∗-bundle (M × Rr, D̃ = ∂ − S̃, S̃ =
df̃ , g̃, or′) associated to f̃ of theorem 4 is its representation in the frame s.
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4. Given a para-pluriharmonic map f̃ from a para-complex manifold (M, τ) to S1(p, q)
such that the image of df̃ is Abelian, one obtains via theorem 4 an oriented unimod-
ular metric ptt∗-bundle (M × Rr, D, S, g, or).
The para-pluriharmonic map associated to this oriented unimodular metric ptt∗-
bundle is conjugated to the map f̃ by a constant matrix in SL(r).

Proof: Using again remark 3.1) we can set θ = 0.

1. The maps f, f̃ and the metric g̃ =< f ·, · >Rr express the metric g in the frame s. In
the computations of theorem 3 and with theorem 4 one finds 2S̃ = −A = −f−1df =
2Ss. From 0 = D0s = Ds + Ss we obtain that the connection D in the frame s is
just ∂ − Ss = ∂ + A

2
= ∂ − S̃ = D̃.

2. To find the para-pluriharmonic map associated to (M × Rr, D, S, g) we have to
express the metric g in a D0-flat frame s. But D0 = D+S = ∂− S+S = ∂. Hence
we can take s as the standard-basis of Rr and we get f. Every other basis gives a
conjugated result.

3. As part 1.

4. As part 2.

6.2 The general case

In this subsection we are going to transfer the results in the simply-connected case to
manifolds with non-trivial fundamental group.

Definition 12 Let p : M̃ →M the universal cover of a para-complex manifold (M, τ)
with the pulled back para-complex structure.
Let (E,D, S) be a ptt∗-bundle, then we define the pulled back ptt∗-bundle of (E,D, S) to
be given by (p∗E, p∗D, p∗S).
Let (E,D, S, g) be a metric ptt∗-bundle, then we define the pulled back metric ptt∗-bundle
of (E,D, S, g) to be given by (p∗E, p∗D, p∗S, p∗g).
Finally, let (E,D, S, g, or) be an oriented unimodular metric ptt∗-bundle, then we de-
fine the pulled back oriented unimodular metric ptt∗-bundle of (E,D, S, g, or) to be given
by (p∗E, p∗D, p∗S, p∗g, p∗or).

Remark 7 The pulled back ptt∗-bundles, metric ptt∗-bundles, oriented and unimodu-
lar metric ptt∗-bundles are ptt∗-bundles, metric ptt∗-bundles, oriented and oriented uni-
modular metric ptt∗-bundles respectively, as one easily checks. This motivates the above
definition.
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Theorem 5 Let (M, τ) be a para-complex manifold.

a) Let (E,D, S, g) be a metric ptt∗-bundle where E has rank r and M dimension n and
(p∗E, p∗D, p∗S, p∗g) the corresponding pulled-back metric ptt∗-bundle on the univer-
sal cover M̃ of M .
Denote f ∗ : M̃ → S(p, q) the para-pluriharmonic map obtained from theorem 3 in
the p∗Dθ-flat frame p∗s, where s is a Dθ-flat frame and f : M → S(p, q) the map ob-
tained from the representation of g in the frame s. Then f ∗ is a π1(M)-equivariant
map (Here equivariant means by the left-action on M and via the holonomy on
S(p, q).) and the lift p∗f of f. In other words f is a twisted para-pluriharmonic
map.

b) Let (E,D, S, g, or) be an oriented unimodular metric ptt∗-bundle where E has rank r
and M dimension n and (p∗E, p∗D, p∗S, p∗g, p∗or) the corresponding pulled back
metric ptt∗-bundle on the universal cover M̃ of M .
Denote f ∗ : M̃ → S1(p, q) the para-pluriharmonic map obtained from theorem 3 in
the p∗Dθ-flat frame p∗s, where s is a Dθ-flat frame and f : M → S1(p, q) the map
obtained from the representation of g in the frame s. Then f ∗ is a π1(M)-equivariant
map (Here equivariant means by the left-action on M and via the holonomy on
S1(p, q).) and f ∗ is the lift p∗f of f. In other words f is a twisted para-pluriharmonic
map.

Proof: The equivariance follows, since we have pulled back all structures. If s is Dθ-flat,
p∗s is p∗Dθ-flat, too.
The map f ∗ at x̃ ∈ M̃ with p(x̃) = x is given by

f ∗(x̃) = p∗g(p∗s, p∗s)(x) = gp(x̃)(s ◦ p(x̃), s ◦ p(x̃)) = f(x) = f ◦ p(x̃) = p∗f(x).

Theorem 6 Let (M, τ) be a para-complex manifold, p : M̃ →M its universal covering
with the pulled back para-complex structure, also called τ . Set E = M̃ × R

r.

a) Let f̃ ∗ : M̃ → S(p, q) be a para-pluriharmonic map, which is equivariant with respect
to a representation ρ : π1(M) → GL(r) and f ∗ : M̃ → Symp,q(R

r) the corresponding
map, such that for all x ∈M the image of df̃ ∗

x is Abelian in sym(f ∗(x)) ⊗ C.
Then f̃ ∗ induces by theorem 4 a metric ptt∗−bundle (E,D = ∂ − S, S = df̃ ∗, g =
< f ∗·, · >Rr) on M̃ where ∂ is the canonical flat connection on E. This metric
ptt∗-bundle induces a metric ptt∗-bundle (F,D = ∂ − T, T, h) on M, such that
(E,D = ∂ − S, S = df̃ ∗, g =< f ∗·, · >Rr) is its pull back.

b) Let f̃ ∗ : M̃ → S1(p, q) be a para-pluriharmonic map, which is equivariant with
respect to a representation ρ : π1(M) → SL(r) and f ∗ : M̃ → Sym1

p,q(R
r) the

corresponding map, such that for all x ∈ M the image of df̃ ∗
x is Abelian in

sym0(f
∗(x)) ⊗ C.

Then f̃ ∗ induces by theorem 4 an oriented unimodular metric ptt∗−bundle (E,D =
∂ − S, S = df̃ ∗, g =< f ∗·, · >Rr , or) on M̃ where ∂ is the canonical flat connection
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on E. This oriented unimodular metric ptt∗-bundle induces an oriented unimodular
metric ptt∗-bundle (F,D = ∂ − T, T, h, or′) on M, such that (E,D = ∂ − S, S =
df̃ ∗, g =< f ∗·, · >Rr , or) is its pull back.

Proof:

a) We want to regard the action of π1(M) on E, given by

(γ,m, v) ∈ π1(M) × E 7→ (γ.m, ρ(γ)v) =: γ.(m, v) ∈ E (6.4)

which induces the action

(γ,m,A) ∈ π1(M) × End(E) 7→ (γ.m, ρ(γ)Aρ(γ)−1) =: γ.(m,A) ∈ End(E) (6.5)

of π1(M) on End(E). The quotient of E by the action of π1(E) gives a vector-bundle
F →M over M.
The equivariance of the map f̃ ∗ : M̃ → S(p, q) means for m ∈ M̃ :

f̃ ∗(γ.m) = ρ(γ)f̃ ∗(m)ρ(γ)−1, (6.6)

which implies for X ∈ TmM̃, m ∈ M̃

df̃ ∗
γ.m(dγX) = ρ(γ)df̃ ∗

m(X)ρ(γ)−1. (6.7)

Equation (6.6) is the equivariance of g and equation (6.7) the equivariance of S.
Hence they descend to a metric h on F and an endomorphism field T on F, which
is h-symmetric. Since ∂ is π1(M)-invariant, it defines connection on F and since S
is equivariant D = ∂−T defines connection on F which preserves h. With the same
argument the family Dθ = D+cosh(θ)T +sinh(θ)Tτ defines a family of connections
on F which is flat. Hence (F,D = ∂ − T, T, h) is a ptt∗-bundle on F over M.

b) One gets the data (F,D = ∂ − T, T, h) as in part a). The orientation is given by
the orientation of E = M̃ × Rr, since ρ take values in SL(r).

7 The para-pluriharmonic map in the special para-

Kähler case

7.1 The extrinsic description of special para-Kähler manifolds

In this section we are going to recall the extrinsic description of special para-Kähler man-
ifolds given in [CMMS].
First we have to introduce a canonical non-degenerated exact C-valued two-form Ω of type
(2,0) on the cotangent bundle N = T ∗M of an arbitrary para-complex manifold (M, τ),
which is para-holomorphic, i.e. it is a para-holomorphic section of the para-holomorphic
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vector-bundle Λ2,0T ∗N. Its explicit form is given by the following consideration: We take
local para-holomorphic coordinates (z1, . . . , zn) on an open subset U ⊂ Mn. Any point
of T ∗

pM
∼= Hom(T ∗

pM,R) ∼= HomC(T ∗
pM,C), p ∈ U, where HomC(T ∗

pM,C) are the ho-
momorphisms from the para-complex vector space (T ∗

pM, τp) to C, can be expressed as∑
widz

i
|p. The coordinates zi and wi can be regarded as local para-holomorphic coordi-

nates of the bundle T ∗M|U . The coordinates wi induce linear para-holomorphic coordinates
on each fiber T ∗

pM for p ∈ U. In these coordinates the two form Ω is given by

Ω =
∑

dzi ∧ dwi = −d
(∑

widz
i
)
.

We observe, that
∑
widz

i does not depend on the choice of coordinates and hence Ω does
not depend on the choice of coordinates, too. The form Ω will be called the symplectic
form of T ∗M.
In the following, we denote by V the para-holomorphic vector-space T ∗Cn = C2n, endowed
with its standard para-complex structure τV , its symplectic form Ω and the para-complex
conjugation ·̄ : V → V, v 7→ v̄ with fixed point set T ∗Rn ∼= R2n. On this space we take
a system of para-holomorphic linear coordinates (zi, wi) which are real-valued on T ∗Rn.
The algebraic data (Ω, τ) defines a para-Hermitian scalar product on V via

gV (v, w) = Re γ(v, w) = Re(eΩ(v, w̄)), ∀v, w ∈ V with γ(v, w) = eΩ(v, w̄)

and (V, τV , gV ) is a flat para-Kähler manifold, whose para-Kähler form is given by

ωV (v, w) := gV (τV v, w) = Im(eΩ(v, w̄)), ∀v, w ∈ V.

Let (M, τ) be a para-complex manifold. We call a para-holomorphic immersion φ : M →
V para-Kählerian if g = φ∗gV is non-degenerate and Lagrangian if φ∗Ω = 0. Any para-
Kählerian immersion φ : M → V induces on M the structure of a para-Kähler manifold
(M, τ, g) with para-Kähler form ω(·, ·) = g(τ ·, ·) = φ∗ωV . For a para-Kählerian Lagrangian
immersion the para-Kähler form ω = g(τ ·, ·) of M is given by

ω = 2
∑

dx̃i ∧ dỹi,

where x̃i = Re(φ∗zi) and ỹi = Re(φ∗wi). Additionally, a para-Kählerian Lagrangian im-
mersion φ : M → V induces a canonical flat torsion-free connection ∇ on M which is
characterized by the condition, that ∇(Reφ∗df) = 0 for all complex affine functions f on
V.
With these informations we now can give the extrinsic description of para-Kähler mani-
folds:

Theorem 7 [CMMS] Let φ : M → V be a para-Kählerian immersion with induced
geometric data (τ, g,∇). Then (M, τ, g,∇) is a special para-Kähler manifold. Conversely,
any simply-connected special para-Kähler manifold (M, τ, g,∇) admits a para-Kählerian
Lagrangian immersion inducing the special geometric data (τ, g,∇) on M. The para-
Kählerian Lagrangian immersion φ is unique up to an affine linear transformation of
V whose linear part belongs to the group Aut(V,Ω, ·̄) = AutR(V, τV ,Ω, ·̄) = Sp(R2n).
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7.2 The Gauß maps of a special para-Kähler manifold

Now we are going to introduce the Gauß maps of a special para-Kähler manifold, which
are the para-complex analogue of the Gauß maps introduced in [CS].
Let (M, τ, g,∇) be a special para-Kähler manifold of para-complex dimension n. Conse-
quently the metric g has signature (n, n). Let (M̃, τ, g,∇) be the universal cover of M
with the pull-back special para-Kähler structure, which we denote again by (τ, g,∇). Ac-
cording to theorem 7, there exists a (para-holomorphic) Kählerian Lagrangian immersion
Φ : M̃ → V = C2n = T ∗Cn, which is unique up to an affine transformation of V with
linear part in Aut(V,Ω, ·̄) = Sp(R2n). We consider the dual Gauß map of φ

L : M̃ → Grn
0 (C2n), p 7→ L(p) := Tφ(p)M̃ := dφpTpM̃ ⊂ V

into the Grassmannian Grn
0 (C2n) of para-complex Lagrangian subspaces W ⊂ V of sig-

nature (n, n), i.e. gV = Re γ restricted to W has signature (n, n). The map L : M̃ →
Grn

0 (C2n) is in fact the dual of the Gauß map

L⊥ : M̃ → Grn
0 (C2n), p 7→ L(p)⊥ = L̄(p) ∼= L(p)∗.

With L(p)⊥ we mean the γ-orthogonal complement of L(p) and the isomorphism L(p)⊥ ∼=
L(p)∗ is induced by the symplectic form Ω on V = L(p) ⊕ L̄(p). The structure of a para-
complex manifold on Grn

0 (C2n) is introduced in the next section.

Proposition 17

(i) The dual Gauß map L : M̃ → Grn
0 (C2n) is para-holomorphic.

(ii) The Gauß map L⊥ : M̃ → Grn
0 (C2n) is anti-para-holomorphic.

Proof: The para-holomorphicity follows from that of φ and part (ii) follows from L⊥ =
L̄ : p 7→ L̄(p).

The Gauß maps L and L⊥ induce Gauß maps

L : M → Γ \ Grn
0 (C2n),

L⊥ : M → Γ \ Grn
0 (C2n)

in the quotient of the Grassmannian by the holonomy group Γ ⊂ Hol(∇) ⊂ Sp(R2n) of
the flat symplectic connection ∇. This yields the

Corollary 3

(i) The dual Gauß map LM : M → Γ \ Grn
0 (C2n) is para-holomorphic.

(ii) The Gauß map L⊥
M : M → Γ \ Grn

0 (C2n) is anti-para-holomorphic.
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7.3 Coordinates on the para-complex Lagrangian Grassmannian

In this section we shall introduce a local model of the Grassmannian Grn
0 (C2n) of para-

complex Lagrangian subspaces W ⊂ V of signature (n, n), i.e. such that gV = Re γ
restricted to W has signature (n, n).
This model is a para-complex pseudo-Riemannian analog to the Siegel upper half-space

Sym+(Cn) := {A ∈ Mat(n,C)|At = A and ImA is positive definite} . (7.1)

The real symplectic group Sp(R2n) acts transitively on Grn
0 (C2n) and we have the following

identification: Grn
0 (C2n) ∼= Sp(R2n)/Uπ(Cn), where Uπ(Cn) is the stabilizer of

Wo = spanC{
∂

∂z1
+ e

∂

∂w1

, . . . ,
∂

∂zn
+ e

∂

∂wn

} (7.2)

and Uπ(Cn) is defined as the group

Uπ(Cn) = Aut(Cn, τCn, gCn) = {L ∈ GL(R2n) | s. t. L∗g = g and [L, τCn ] = 0}. (7.3)

Given a point W ∈ Grn
0 (C2n) we claim, that V = T ∗Cn decomposes into the direct

sum
V = W ⊕ W̄ . (7.4)

Let γW = γ|W , ω
W = (ωV )|W and gW = (gV )|W . Then the non-degeneracity of γW , gW

and ωW are equivalent. One sees from the definition of γW that it is non-degenerated if
and only if W ∩ W̄ = {0}. Further it is dimR(W ) = dimR(W̄ ) = dimR(V )

2
, where the last

equation follows since W is Lagrangian. This proves the claim.
One computes easily γ(v̄, w̄) = −γ(w, v), ∀v, w ∈ W. Hence gW̄ has signature (n, n),
since gW has signature (n, n). Since γ = eΩ(·, ·̄) and W is Lagrangian, it follows that the
decomposition (7.4) is γ-orthogonal. Using the isomorphism induced by the symplectic
form Ω on V = W ⊕ W̄ yields an isomorphism of W⊥ = W̄ ∼= W ∗ where ·⊥ is the
orthogonal complement taken with respect to γ.

We now construct para-holomorphic coordinates for the para-complex manifold Grn
0 (C2n)

in a Zariski open neighbourhood of a point W0 of the Grassmannian represented by a La-
grangian subspace W0 ⊂ V of signature (n, n). Using the transitive action of the group
Sp(R2n) on Grn

0 (C2n) we may assume W0 = Wo, see (7.2). Let U0 ⊂ Grn
0 (C2n) be the

open subset consisting of W ∈ Grn
0 (C2n) such that the projection

π(z) : V = T ∗Cn = Cn ⊕ (Cn)∗ → Cn (7.5)

onto the first summand (z-space) induces an isomorphism

π(z)|W : W→̃Cn. (7.6)

Observe, that U0 ⊂ Grn
0 (C2n) is an open neighbourhood of the base pointWo. For elements

W ∈ U0 we can express wi as a function of z = (z1, . . . , zn). In fact,

wi =
∑

Cijz
j (7.7)

where

Cij ∈ Symn,n(Cn) = {A ∈ Mat(n, C)|At = A and Im(A) has signature (n, n)}. (7.8)
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Proposition 18 The map

C : U0 → Symn,n(C
n), W 7→ C(W ) := (Cij) (7.9)

is a local para-holomorphic chart for the Grassmannian Grn
0 (C2n).

We now describe the dual Gauß map L in local para-holomorphic coordinates of po ∈ M̃
and L(p0) ∈ Grn

0 (C2n). Utilizing a transformation of Sp(R2n), if necessary, we can assume
L(p0) ∈ U0. We put U := L−1(U0). The set U ⊂ M̃ is an open neighbourhood of p0.

Let φ : M̃ → T ∗Cn be the para-Kählerian Lagrangian immersion. It defines a system
of local (special) para-holomorphic coordinates

ϕ := π(z) ◦ φ|U : U →̃U ′ ⊂ Cn, p 7→ (z1(φ(p)), . . . , zn(φ(p)) (7.10)

and we have the following commutative diagram

U
L−→ U0

ϕ ↓ ↓ C
U ′ LU−→ Symn,n(C

n) ,

(7.11)

where the vertical arrows are para-holomorphic diffeomorphisms and LU at z = (z1, . . . , zn)
is given by

LU (z) = (Fij(z)) :=

(
∂2F (z)

∂zi∂zj

)
. (7.12)

Here F (z) is a para-holomorphic function on U ′ ⊂ Cn, called prepotential (see [CMMS]),
which is up to a constant determined by the equations

wj((φ(p)) =
∂F

∂zj

∣∣∣∣
z(φ(p))

. (7.13)

Summarizing, we obtain the proposition

Proposition 19 The dual Gauß map L has the following coordinate expression

LU = C ◦ L ◦ ϕ−1 = (Fij) , (7.14)

where ϕ : U → Cn is the (special) para-holomorphic chart of M̃ associated to the para-
Kählerian Lagrangian immersion φ, see (7.10), and C : U0 → Symn,n(Cn) is the para-
holomorphic chart of Grn

0 (C2n) constructed in (7.9).

7.4 The special para-Kähler metric in an affine frame

In this section we show that the para-pluriharmonic map associated to a para-Kähler
manifold coincides with the dual Gauß map.
As above, let (M, τ, g,∇) be a special para-Kähler manifold of dimension n = dimCM and
(M̃, τ, g,∇) be its universal covering. Like in section 6 we now consider the metric g in a
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∇-parallel frame. Such a frame is provided by the para-Kählerian Lagrangian immersion
φ : M̃ → V. In fact, an arbitrary point p ∈ M̃ has a neighborhood in which the functions
x̃i := Re zi◦φ and ỹi := Rewi◦φ, i = 1, . . . , n form a system of local ∇-affine coordinates.
We recall that the ∇-parallel Kähler form is given by ω = 2

∑
dx̃i ∧ dỹi. Therefore the

globally defined one-forms
√

2dx̃i and
√

2dỹi constitute a ∇-parallel unimodular frame

(ea)a=1,...,2n := (
√

2dx̃1, . . . ,
√

2dx̃n,
√

2dỹ1, . . . ,
√

2dỹn) (7.15)

of T ∗M̃ with respect to the metric volume form ν = (−1)n+1ωn/n! = 2ndx̃1 ∧ . . . ∧ dỹn.
The dual frame ea of TM̃ is also ∇-parallel and unimodular. The metric g defines a
smooth map

G : M̃ → Sym1
n,n(R

2n) = {A ∈ Mat(2n,R)|At = A, det(A) = (−1)n of signature (n, n)}

by
p 7→ G(p) = (gab(p)) := (gp(ea, eb)). (7.16)

We call G = gab(p) the fundamental matrix of φ. As before, we have the identification

Sym1
n,n(R

2n) = SL(2n,R)/SO(n, n)

of Sym1
n,n(R

2n) with a pseudo-Riemannian symmetric space.
The group SO(n, n) ⊂ SL(2n,R) is the stabilizer of the symmetric matrix

En
0 = diag(− �

n,
�

n). (7.17)

The fundamental matrix induces a map

GM : M → Γ \ Sym1
n,n(R

2n)

into the quotient of Sym1
n,n(R2n) by the action of the holonomy group Γ = Hol(∇) ⊂

Sp(R2n) ⊂ SL(2n,R). The target Γ \ Sym1
n,n(R

2n) is a pseudo-Riemannian locally sym-
metric space, provided that Γ acts properly discontinuously.

Theorem 8 The fundamental matrix G : M̃ → Sym1
n,n(R

2n) = SL(2n,R)/SO(n, n)
takes values in the totally geodesic sub-manifold

i : Grn
0 (C2n) = Sp(R2n)/Uπ(Cn) ↪→ SL(2n,R)/SO(n, n)

and coincides with the dual Gauß map L : M̃ → Grn
0 (C2n) : G = i ◦ L.

Proof: The proof follows from a geometric interpretation of the inclusion i. To any La-
grangian subspace W ∈ Grn

0 (C2n) we associate the scalar product gW := Re γ|W of signa-
ture (n, n) on W ⊂ V. The projection onto the real points

Re : V = T ∗Cn 7→ T ∗
R

n = R
2n, v 7→ Re v =

1

2
(v + v̄) (7.18)

induces an isomorphism of real vector spaces W→̃R
2n with inverse ψ = ψW .

We claim that
i(W ) = ψ∗

Wg =: (gW
ab ) =: GW . (7.19)
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To check the claim, we have to show the Sp(R2n)-equivariance of

Grn
0 (C2n) 3 W 7→ GW ∈ Sym1

n,n(R
2n)

and that it maps the base point Wo, see equation (7.2), to En
0 (equation (7.17)).

By the definition of γ we find for the basis

e±j :=
∂

∂zj
± e

∂

∂wj
(7.20)

of V that the only non-vanishing components of γ are γ(e±j , e
±
j ) = ∓2. This shows that

gWo is represented by the matrix 2En
0 with respect to the real basis

(e+1 , . . . , e
+
n , e e

+
1 , . . . , e e

+
n ). (7.21)

In order to calculate GWo = (gWo

ab ) = (g(ψea, ψeb)), we need to pass from the real basis
(7.21) to the real basis (ψea) of Wo.
Recall that the real structure is the para-complex conjugation with respect to the coor-
dinates (zi, wi). This implies that

ψ−1(e+j ) =
∂

∂xj
=

√
2ej, ψ−1(e e+j ) =

∂

∂yj
=

√
2en+j, j = 1, . . . , n, (7.22)

ψ−1(e−j ) =
∂

∂xj
=

√
2ej, ψ−1(e e−j ) = − ∂

∂yj
= −

√
2en+j, j = 1, . . . , n. (7.23)

This shows that GWo = En
0 .

It remains to show the equivariance of W 7→ GW = ψ∗g. Using the definition of the
map ψ = ψW : R

2n → W , one easily checks that, under the action of Λ ∈ Sp(R2n), ψ
transforms as

ψΛW = Λ ◦ ΨW ◦ Λ−1
|R2n . (7.24)

This implies the transformation law for GW :

GΛW = ψ∗
ΛW g

ΛW = (Λ−1)∗ψ∗
W Λ∗gΛW = (Λ−1)∗ψ∗

Wg
W = (Λ−1)∗GW = Λ ·GW . (7.25)

The above claim (7.19) and the fact

gL(p) = gp and GL(p) = G(p) (7.26)

for all p ∈ M̃ imply
i(L(p)) = GL(p) = G(p). (7.27)

Corollary 4 The fundamental matrix G : M̃ → Sym1
n,n(R2n) is para-pluriharmonic.

Proof: In fact, G = i◦L is the composition of a para-holomorphic map L : M̃ → Grn
0 (C2n)

with the totally geodesic inclusion Grn
0(C

2n) ⊂ Sym1
n,n(R

2n). The composition of a para-
holomorphic map with a totally geodesic one is para-pluriharmonic.
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[Sch2] L. Schäfer, tt*-geometry and pluriharmonic maps, to appear.

32


