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Abstract

In this paper we use the real differential geometric definition of a metric (an uni-
modular oriented metric) tt∗-bundle of Cortés and the author [CS] to define a map
Φ from the space of metric (unimodular oriented metric) tt∗-bundles of rank r over a
complex manifold M to the space of pluriharmonic maps from M to GL(r)/O(p, q)
(respectively SL(r)/SO(p, q)), where (p, q) is the signature of the metric. In the
sequel the image of the map Φ is characterized. It follows, that in signature (r, 0)
the image of Φ is the whole space of pluriharmonic maps. This generalizes a result
of Dubrovin [D].
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1 Introduction

tt∗-geometry is a geometry, which has its origin in physics. Around 1990 physicist be-
gan to study topological-field-theories and their moduli-spaces, in particular N=2-super-
symmetric-field-theories. A special geometric structure called topological-anti-topolgical
fusion was found and studied (see for example [CV] and [D]). A definition of tt∗-geometry
on abstract vector bundles was formulated in [Her] and [Sch1]. The former tt∗-geometries
are included in this version by choosing TM c respectively T 1,0M as the bundle in the
abstract version. Mathematically this geometry can be considered as a generalization of
variations of Hodge-structures (VHS), as it was done in a paper of Hertling [Her]. From
his results follows, that a special Kähler-manifold gives a tt∗-bundle. A definition in terms
of real differential geometry was given in [CS] and used to give another proof of this re-
sult not using the methods of VHS. A further interesting class of solutions are harmonic
bundles first introduced by Simpson [Sim]. These solutions are considered in [Her] and
[Sch2, Sch4].
A result of Dubrovin [D] associates to every tt∗-geometry with positive definite metric
a pluriharmonic map to GL(r)/O(r) where r is the dimension of the base-manifold and
vice-versa to every such map a tt∗-geometry. This result was proven by the author in his
‘Diplomarbeit’ [Sch1] for the case of a tt∗-geometry on an abstract vector bundle and is
presented here in a more general context. The explicit form of this map in the special
Kähler case, which implies its pluriharmonicity, was given in [CS]. In this context indef-
inite metrics can occur. This is the motivativation to generalize the above result to the
case of tt∗-bundles carrying indefinite metrics. In [Sch4] we applied the above result to
harmonic bundles with hermitian metric of arbitrary signature and obtained a general-
ization of the correspondence between harmonic bundles over a compact Kähler manifold
X of complex dimension n and harmonic maps from X to GL(n, C)/U(n).
May we illustrate now the main results: In theorem 2 we show, that a metric tt∗-bundle
with a metric of signature (p, q) over a complex manifold (M, J) gives rise to a plurihar-
monic map f from M to GL(r)/O(p, q) being admissible in the following sense

Definition 1 Let (M, J) be a complex manifold and G/K a locally Riemannian sym-
metric space with associated Cartan-decomposition g = p⊕ k. A map f : (M, J) → G/K
is said to be admissible, if the linear extension of its differential maps T 1,0

x M (respectively
T 0,1

x M) to an Abelian subspace of pc for all x ∈ M.
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Conversely an admissible pluriharmonic map f from M to GL(r)/O(p, q) gives rise to
a metric tt∗-bundle as is shown in theorem 3. In other words we could say, that our
construction defines a map Φ from the space of metric tt∗-bundles of rank r over a complex
manifold (M, J) to the space of pluriharmonic maps from M to GL(r)/O(p, q). The image
of the map Φ is characterized to be the admissi ble pluriharmonic maps from M to
GL(r)/O(p, q). The case of a metric tt∗-bundle of rank r with metric of signature (r, 0)
follows from this theorem, since in this case the pluriharmonic are shown to be admissible
using a result of Sampson [Sam]. It remains the question, if these all these pluriharmonic
maps are admissi ble or if there are some counter-examples, which we do not know yet.
The descripted results are also proven for unimodular oriented metric tt∗-bundles. Here
the target space of the pluriharmonic maps is SL(r)/SO(p, q).
We hope this approach enables a broader readership to understand this result relating
physical/algebro-geometrical objects with well-known differential-geometric objects.
The author wants to thank his advisor V. Cortés for the motivated support of his work,
C. Hertling for the discussions and B. Dubrovin for the hints related to their papers.
Moreover, he wants to thank his parents having enabled all leading to this work and
M.-A. Lawn for herself.

2 tt*-bundles

For the convenience of the reader we recall the definition of a tt∗-bundle given in [CS]:

Definition 2 A tt*-bundle (E, D, S) over a complex manifold (M, J) is a real vector
bundle E → M endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ End E)
satisfying the tt*-equation

Rθ = 0 for all θ ∈ R , (2.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + cos(θ)SX + sin(θ)SJX for all X ∈ TM . (2.2)

A metric tt*-bundle (E, D, S, g) is a tt*-bundle (E, D, S) endowed with a possibly indefinite
D-parallel fiber metric g such that S is g-symmetric, i.e. for all p ∈ M

g(SXY, Z) = g(Y, SXZ) for all X, Y, Z ∈ TpM . (2.3)

An unimodular metric tt*-bundle (E, D, S, g) is a metric tt*-bundle (E, D, S, g) such that
tr SX = 0 for all X ∈ TM . An oriented unimodular metric tt*-bundle (E, D, S, g, or) is
an unimodular metric tt*-bundle endowed with an orientation or of the bundle E.

In the case of moduli spaces of topological quantum field theories [CV, D] and the
moduli spaces of singularities [Her], the complexified tt∗-bundle EC is identified with
T 1,0M and the metric g is positive definite. The case E = TM , and hence EC = T 1,0M +
T 0,1M includes special complex and special Kähler manifolds, as was proven in [CS] and
follows from [Her].
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Remark 1
1) If (E, D, S) is a tt*-bundle then (E, D, Sθ) is a tt*-bundle for all θ ∈ R, where

Sθ := Dθ −D = (cos θ)S + (sin θ)SJ . (2.4)

The same remark applies to metric tt*-bundles.
2) Notice that an oriented unimodular metric tt*-bundle (E, D, S, g, or) carries a canonical
metric volume element ν ∈ Γ(∧rE∗), r = rk E, determined by g and or, which is Dθ

parallel for all θ ∈ R.

The following proposition characterizes tt∗-bundles (E, D, S) in form of explicit equa-
tions for D and S. These equations are important in the later calculations

Proposition 1 Let E be a real vector bundle over a complex manifold (M, J) endowed
with a connection D and a section S ∈ Γ(T ∗M ⊗ End E).
Then (E, D, S) is a tt*-bundle if and only if D and S satisfy the following equations:

RD + S ∧ S = 0, S ∧ S is of type (1,1), dD S = 0 and dD SJ = 0. (2.5)

Proof: As the attentive reader may observe, it is easier to show this proposition after
complexifying TM. But since one idea of the paper was to formulate these results in real
differential geometry, we give a real version of the proof.
To prove the proposition, we have to compute the curvature of Dθ.
Let X, Y ∈ Γ(TM) arbitrary:

Rθ
X,Y = RD

X,Y + [DX , cos(θ)SY + sin(θ)SJY ] + [cos(θ)SX + sin(θ)SJX , DY ]

+ [cos(θ)SX + sin(θ)SJX , cos(θ)SY + sin(θ)SJY ]− cos(θ)S[X,Y ] − sin(θ)SJ [X,Y ]

= RD
X,Y + sin2(θ)[SJX , SJY ] + cos2(θ)[SX , SY ] + cos(θ) sin(θ)([SX , SJY ] + [SJX , SY ])

+ cos(θ)([DX , SY ] + [SX , DY ]− S[X,Y ]) + sin(θ)([SJX , DY ] + [DX , SJY ]− SJ [X,Y ]).

We now recall the Fourier-expansion of

cos2(θ) =
1

2
+

1

2
cos(2θ) and sin2(θ) =

1

2
− 1

2
cos(2θ)

to find

Rθ
X,Y = RD

X,Y +
1

2
([SX , SY ] + [SJX , SJY ]) + cos(θ)([DX , SY ] + [SX , DY ]− S[X,Y ])

+ sin(θ)([SJX , DY ] + [DX , SJY ]− SJ [X,Y ]) +
1

2
cos(2θ) ([SX , SY ]− [SJX , SJY ])

+
1

2
sin(2θ) ([SX , SJY ] + [SJX , SY ]) .

Taking Fourier-coefficients yields

0 = RD
X,Y +

1

2
([SX , SY ] + [SJX , SJY ]) ,

0 = [SX , SY ]− [SJX , SJY ], 0 = [SX , SJY ] + [SJX , SY ],

0 = [DX , SY ] + [SX , DY ]− S[X,Y ], 0 = [SJX , DY ] + [DX , SJY ]− SJ [X,Y ]

and equivalently

RD
X,Y + [SX , SY ] = 0, S ∧ S(X, Y ) = [SX , SY ] = [SJX , SJY ], dDS = 0 and dDSJ = 0.
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3 Pluriharmonic maps

In this section we recall the notion of pluriharmonic maps and explain some properties of
pluriharmonic maps to S(p, q) := GL(r)/O(p, q) where O(p, q) is the pseudo-orthogonal
group of signature (p, q) respectively S1(p, q) := SL(r)/SO(p, q), which are needed later
to prove the main theorem.
In order to uniform the formulation of the paper we introduce the following notions:

G0(r) = GL(r), G1(r) = SL(r), g0 = gl(r), g1 = sl(r),

K0(p, q) = O(p, q), K1(p, q) = SO(p, q), k0 = k1 = so(p, q),

S0(p, q) = S(p, q).

These objects are also written with an index i ∈ {0; 1}.

Definition 3 Let (M, J) be a complex manifold and (N, h) a pseudo-Riemannian man-
ifold with Levi-Civita connection ∇h, D a connection on M which satisfies

DJY X = JDY X (3.1)

for all vector fields which satisfy LXJ = 0 (i.e. for which X − iJX is holomorphic) and
∇ the connection on T ∗M ⊗ f ∗TN which is induced by D and ∇h.
A map f : M → N is pluriharmonic if and only if it satisfies the equation

∇′′∂f = 0 , (3.2)

where ∂f = df1,0 ∈ Γ(
∧1,0 T ∗M ⊗C (TN)C) is the (1, 0)-component of dcf and ∇′′ is the

(0, 1)-component of ∇ = ∇′ +∇′′.
Equivalently one regards α = ∇dφ ∈ Γ(T ∗M ⊗ T ∗M ⊗ φ∗TN).
Then φ is pluriharmonic if and only if

α(X, Y ) + α(JX, JY ) = 0

for all X, Y ∈ TM.

Remark 2

1. Note, that f is pluriharmonic iff f restricted to every holomorphic curve is har-
monic. In fact, this gives a definition of pluriharmonic maps, which is independent
of the choosen connections. For a short discussion of this the reader is referred to
[CS].

2. Any complex manifold (M, J) admits a torsion free complex connection D (Complex
means DJ = 0.) and consequently a connection satisfying (3.1). In the rest of the
paper, we want therefore suppose, that the connection on (M, J) is also torsion free.

Let Symi
p,q(Rr) be the symmetric r × r matrices in Gi(r) of signature (p, q). These

define pseudo-scalar-products of same signature by 〈·, ·〉A = 〈A·, ·〉Rr , where 〈·, ·〉Rr is
the Euclidean scalar-product. The natural action of an element g ∈ Gi(r) is given by
〈g−1·, g−1·〉A = 〈(g−1)tAg−1·, ·〉Rr . This gives us an action of Gi(r) A 7→ (g−1)tAg−1 on
Symi

p,q(Rr) which we use to identify Symi
p,q(Rr) with Si(p, q) in the following
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Proposition 2 Let Ψi be the canonical map Ψi : Si(p, q)→̃Symi
p,q(Rr) ⊂ Gi(r) where

Gi(r) carries the pseudo-Riemannian Ad-invariant trace-form. Then Ψi is a totally-
geodesic immersion and a map f from a complex manifold (M, J) to Si(p, q) is pluri-
harmonic, iff the map Ψi ◦ f : M → Gi(r) is pluriharmonic.

Proof: The proof is done by expressing the map Ψi in terms of the well-known Cartan-
immersion. For further information see for example [Hel], [CE], [GHL], [KN].

1) First we study the identification Si(p, q) →̃Symi
p,q(Rr).

By Sylvesters theorem Gi(r) operates on Symi
p,q(Rr) via

Gi(r)× Symi
p,q(Rr) → Symi

p,q(Rr), (g,B) 7→ g ·B := (g−1)tBg−1.

The stabilisator of the point Ip,q = diag(1p,−1q) is Ki(p, q) and the above ac-
tion is transitive by Sylvesters theorem. Therefore by the orbit-stabilizer theo-
rem (compare Gallot, Hulin, Lafontaine [GHL] 1.100) we obtain a diffeomorphism
Ψi : Si(p, q) →̃Symi

p,q(Rr), g Ki(p, q) 7→ g · Ip,q = (g−1)tIp,qg
−1.

2) We recall some results about symmetric spaces (see: [CE]). Let G be a Lie-group
and σ : G → G a group-homomorphism with σ2 = IdG. Let K denote the subgroup
K = Gσ = {g |σ(g) = g}. The Lie-algebra g of G decomposes in g = h ⊕ p with
dσIdG

(h) = h, dσIdG
(p) = −p. And we have the following information: The map

φ : G/K → G with φ : [gK] 7→ gσ(g−1) defines a totally geodesic immersion called
the Cartan-immersion.
We want to utilize this:
Therefore we define σ : Gi(r) → Gi(r), g 7→ (g−1)† where g† = Ip,qg

tIp,q is the
adjoint with respect to the pseudo-scalar product 〈·, ·〉Ip,q = 〈·, Ip,q·〉Rn .
σ is obviously a homomorphism and an involution with Gi(r)

σ = Ki(p, q). By a
direct calculation one gets dσIdG

= −h† and hence

h = {h ∈ gl(r) |h† = −h} = o(p, q) = so(p, q),

p = {h ∈ gl(r) |h† = h} =: symi(p, q).

Thus we end up with

φ : Si(p, q) → Gi(r), (3.3)

g 7→ gσ(g−1) = gg† = gIp,qg
tIp,q = RIp,q ◦Ψi ◦ Λ(g). (3.4)

Here Rh is the right multiplication by h and Λ is the map Λ : Gi → Gi, h 7→ (h−1)t.
Both maps are isometries of the invariant metric. Hence Ψi is a totally-geodesic
immersion.

3) Pluriharmonicity is independent of the connection satisfying (3.1) chosen on M .
Therefore we can take it torsion free (see remark 2). We calculate the tensor

∇df(X, Y ) = ∇N
X(df(Y ))− df(DXY ).

for holomorphic vector fields X, Y . The (1,1)-part of the second term vanishes for
holomorphic X, Y, since

DXY + DJXJY = DXY + JDJXY = DXY + J2DXY = 0.
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Hence we have only to regard the Levi-Civita-connections on Gi and Gi/Ki =
Si(p, q). Let X, Y ∈ Γ(TM) holomorphic and calculate:

∇Gi
X d(Ψi◦f)(Y ) = ∇Gi

X dΨi(df(Y )) = ∇Gi
X Ψi

∗(df(Y )) = Ψi
∗(∇

Gi/Ki

X df(Y ))+II(X, Y )

where II is the second fundamental-form which vanishes, as the immersion is totally
geodesic. This implies with the notation αGi = ∇Gid(Ψi ◦f) and αGi/Ki = ∇Gi/Kidf

αGi(X, Y ) + αGi(JX, JY ) = ∇Gi
X d(Ψi ◦ f)(Y ) +∇Gi

JXd(Ψi ◦ f)(JY )

= Ψi
∗

(
∇Gi/Ki

X df(Y ) +∇Gi/Ki

JX df(JY )
)

= Ψi
∗
(
αGi/Ki(X, Y ) + αGi/Ki(JX, JY )

)
.

Since Ψi is an immersion, the left side is zero iff the right is and the proof is finished.

Remark 3 (compare [CS])
Above we have identified Gi(r)/Ki(p, q) with Symi

p,q(Rr) via Ψi.
Let us choose o = eKi(p, q) as base point and suppose that Ψi is chosen to map o to I =
Ip,q. By construction Ψi is Gi(r)-equivariant. We identify the tangent-space TSSymi

p,q(Rr)

at S ∈ Symi
p,q(Rr) with the (ambient) vector space of symmetric matrices:

TSSymi
p,q(Rr) = Symi(Rr) := {A ∈ gi(r)|At = A} . (3.5)

For Ψi(S̃) = S, the tangent space TS̃Si(p, q) is canonically identified with the vector space
of S-symmetric matrices:

TS̃Si(p, q) = symi(S) := {A ∈ gi(r)|AS = SAt} . (3.6)

Note that symi(Ip,q) = symi(p, q).

Proposition 3 The differential of ϕi := (Ψi)−1 at S ∈ Symi
p,q(Rr) is given by

Symi(Rr) 3 X 7→ −1

2
S−1X ∈ S−1Symi(Rr) = symi(S) . (3.7)

Using this proposition we relate now the differentials

dfx : TxM → Symi(Rr) (3.8)

of a map f : M → Symi
p,q(Rr) at x ∈ M and

df̃x : TxM → symi(f(x)) (3.9)

a map f̃ = ϕ ◦ f : M → Si(p, q): df̃x = dϕ dfx = −1
2
f(x)−1dfx.

One can interpret the 1-form A = −2df̃ = f−1df with values in gi(r) as connection
form on the vector bundle E = M × Rr. We note, that the definition of A is the
pure gauge. This means, that A is gauge-equivalent to A′ = 0, as for A′ = 0 one has
A = f−1A′f + f−1df = f−1df . The curvature vanishes, since it is independent of gauge.
Thus we get:
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Proposition 4 Let f : M → Gi(r) be a C∞-mapping and A := f−1df : TM → gi(r).
Then the curvature of A vanishes, i.e. for X, Y ∈ Γ(TM)

Y (AX)−X(AY ) = A[X,Y ] − [AX , AY ]. (3.10)

In the next proposition we give the equations for pluriharmonic maps from a complex
manifold to Gi(r).

Proposition 5 Let (M, J) be a complex manifold, f : M → Gi(r) a C∞-map and A
defined as in proposition 4.
The pluriharmonicity of f is equivalent to the equation

Y (AX) +
1

2
[AY , AX ] + JY (AJX) +

1

2
[AJY , AJX ] = 0, (3.11)

for holomorphic X, Y ∈ Γ(TM).

Proof: Again pluriharmonicity of f does not depend on the connection satisfying (3.1)
on M . Hence the (1,1)-part of the second term of ∇df(X, Y ) vanishes for holomorphic
X, Y , as in the proof of proposition 2. Therefore we only have to regard the pulled back
Levi-Civita connection ∇ on Gi(r).
Let X, Y ∈ Γ(TM). To find these equations we write df(X) and df(Y ) that are sections
in f ∗ T Gi(r), as linear combination of left invariant vector fields f ∗Ẽij = Ẽij ◦ f , with
Ẽij(g) = gEij, ∀g ∈ Gi(r) and a basis Eij, i, j = 1 . . . r of gi(r).
In this notation we have

df(X) =
∑
i,j

aij Ẽij ◦ f =
∑
ij

aij fEij and df(Y ) =
∑
i,j

bij Ẽij ◦ f =
∑
ij

bij fEij,

with functions aij and bij on M and further

AX = f−1df(X) =
∑
ij

aij Eij and AY = f−1df(Y ) =
∑
ij

bij Eij.

With this information we compute

(f ∗∇)Y df(X) = (f ∗∇)Y

∑
i,j

aij Ẽij ◦ f

=
∑
ij

Y (aij) Ẽij ◦ f +
∑
ij

aij (f ∗∇)Y Ẽij ◦ f

=
∑
ij

Y (aij) Ẽij ◦ f +
∑
ij

aij ∇df(Y )Ẽij ◦ f

=
∑
ij

Y (aij) fEij +
∑
abij

aij bab (∇Ẽab
Ẽij) ◦ f︸ ︷︷ ︸

1
2
f [Eab,Eij ]

= f(Y (AX) +
1

2
[AY , AX ]).
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Therefore the pluriharmonicity is equivalent to the equation

Y (AX) +
1

2
[AY , AX ] + JY (AJX) +

1

2
[AJY , AJX ] = 0

for holomorphic X, Y.

Suppose that N is a locally Riemannian symmetric space with universal cover G/K
with non-compact semi-simple Lie group G, maximal compact subgroup K and associated
Cartan-decomposition g = h⊕ p. In each point one identifies the tangent space of N with
p. This is unique up to right action of K and left action of the fundamental group. All
relevant structures are preserved by these actions. Therefore, given a f : M → N , we can
regard dfx(T

1,0
x M), x ∈ M as a subspace of pc. For the ‘complexified’ sectional-curvature

of N holds using the Killing-form b

b(R(X, Y )Ȳ , X̄) = −b([X, Y ], [Ȳ , X̄]) ≤ 0. (3.12)

It is a well-known result of Sampson [Sam], that a harmonic map of a compact complex
manifold to a locally symmetric space of non-compact type is pluriharmonic and that its
differential sends T 1,0M to an Abelian subspace of pc. The second claim, that the image
of T 1,0M under the differential of a pluriharmonic map is Abelian is true on non-compact
manifolds, too. To illustrate this, we are going to prove, that pluriharmonicity implies
this property.

Theorem 1 (compare [Sam]) Let (M, J) be a complex manifold and N = G/K be a
locally Riemannian symmetric space as above.
Then the complex linear extended differential of a pluriharmonic map f : M → N maps
for all x ∈ M T 1,0

x M (respectively T 0,1
x M) to an Abelian subspace of pc.

On TM the differential of a pluriharmonic map f : M → N obeys the equation

[dfx(X), dfx(Y )] = [dfx(JX), dfx(JY )]

with X, Y ∈ TxM, x ∈ M.

Proof: The strategy is to show the vanishing of the curvature.
Let X, Y, Z, W ∈ Γ(T 1,0M) be holomorphic

RN(f∗X, f∗Y )f∗Z̄ = Rf∗∇N

(X, Y )f∗Z̄

= (f ∗∇N)X(f ∗∇N)Y f∗Z̄ − (f ∗∇N)Y (f ∗∇N
X)f∗Z̄ − (f ∗∇N)[X,Y ]f∗Z̄

We remark now, that the pluriharmonic equation for holomorphic vector fields depends
not on the connection chosen on the manifold M. Hence it reduces to the equation
(f ∗∇N)Xf∗Ȳ = 0, which implies RN(f∗X, f∗Y )f∗Z̄ = 0. From equation (3.12) we get
b([f∗X, f∗Y ], [f∗Z̄, f∗W̄ ]) = 0 and in the end [f∗X, f∗Y ] = 0 for all X, Y.
Let Z,W ∈ Γ(T 1,0M) be of the form Z = X−iJX and W = Y −iJY with X, Y ∈ Γ(TM)
and compute [f∗Z, f∗W ] = [f∗X, f∗Y ]−[f∗JX, f∗JY ]−i([f∗X, f∗JY ]+[f∗JX, f∗Y ]). Hence
we conclude [df(X), df(Y )] = [df(JX), df(JY )].
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Corollary 1 Let (M, J) be a complex manifold, f : M → Symi
r,0(Rr)

ι
↪→ Gi(r) a

pluriharmonic map induced by a pluriharmonic map to Gi(r)/Ki(r) and A defined as in
proposition 4. If f is a pluriharmonic map, then the operators A satisfy for all X, Y ∈
TxM, with x ∈ M, the equation [AX , AY ] = [AJX , AJY ].

Proof: First, we apply theorem 1 to A = −2df̃ : M → G1 = SL(r). This yields the
corollary for G1 = SL(r).
For S0(p, q) = S(p, q) we have the de Rham-decomposition S(p, q) = R× S1(p, q), where
R corresponds to the connected central subgroup R>0 = {λId|λ > 0} ⊂ G0 = GL(r).
Hence we have the decomposition of gl(r) = R ⊕ sl(r), where the R-factor is central.
Therefore we are in the situation to apply the result for G1.

Remark 4 Since the trace-form on SL(r) is a multiple of the Killing-form and on
GL(r) it corresponds to the metric on the decomposition S(p, q) = R × S1(p, q), we can
choose the trace-form as metric and obtain the same result as in theorem 1 and corollary 1.

4 tt∗-geometry and pluriharmonic maps

In this section we are going to state and prove the main results. Like in section 3 one
regards the mapping A = f−1df as a map A : TM → gi(r)
We now suppose, that the complex manifold (M, J) is simply connected. Using the
same considerations as in [Sch1] the main theorems, theorem 2 and theorem 3, can be
extended to non-simply connected manifolds by pulling back the metric tt∗-bundles to the
unviversal cover of M . The according pluriharmonic maps have to be replaced by twisted
pluriharmonic maps

Theorem 2 Let (M, J) be a simply-connected complex manifold. Let (E, D, S, g [, or] )
be a metric [an unimodular oriented metric] tt∗-bundle where E has rank r and M di-
mension n.
Then the representation of the metric g in a Dθ-flat frame of E f : M → Symi

p,q(Rr)

induces an admiseable pluriharmonic map f̃ : M
f→ Symi

p,q(Rr) →̃Si(p, q), where Si(p, q)
carries the metric induced by the biinvariant pseudo-Riemannian trace-form on gi(r).
Let s′ be another Dθ-flat frame. Then s′ = s · U for a constant matrix and the plurihar-
monic map associated to S ′ is f ′ = U tfU.

Remark 5 (see also [CS]) Before proving the theorem we make some remarks on the
condition on df̃ . Let x ∈ M and f̃(x) = uo. If df̃(T 1,0

x M) consist of commuting matrices,
then dL−1

u df̃(T 1,0
x M) is commutative, too. This follows from the fact, that

dLu : ToS
i(p, q) → TuoS

i(p, q) = Tf̃(x)S
i(p, q)

equals
Adu : symi(p, q) = symi(Ip,q) → symi(u · Ip,q) = symi(f̃),

which preserves the Lie-bracket.
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Proof: Using remark 1.1) it suffices to prove the case θ = π.
We first consider a metric tt∗-bundle (E, D, S, g).
Let s := (s1, . . . , sr) be a Dπ-flat frame of E (i.e. Ds = Ss), f the matrix g(sk, sl) and
further Ss the matrix-valued one-form representing S in the frame s. For X ∈ Γ(TM) we
get:

X(f) = Xg(s, s) = g(DXs, s) + g(s, DXs)

= g(SXs, s) + g(s, SXs)

= 2g(SXs, s) = 2f · Ss(X) = 2f · Ss
X .

Consequently AX = 2Ss
X . We now prove the pluriharmonicity using

dDS(X, Y ) = DX(SY )−DY (SX)− S[X,Y ] = 0, (4.1)

dDSJ(X, Y ) = DX(SJY )−DY (SJX)− SJ [X,Y ] = 0. (4.2)

The equation (4.2) implies

0 = dDSJ(JX, Y ) = DJX(SJY ) + DY (SX)︸ ︷︷ ︸
(4.1)
= DX(SY )−S[X,Y ]

−SJ [JX,Y ]

= DJX(SJY ) + DX(SY )− S[X,Y ] − SJ [JX,Y ].

In local holomorphic coordinate fields X, Y on M we get in the frame s

JX(Ss
JY ) + X(Ss

Y ) + [Ss
X , Ss

Y ] + [Ss
JX , Ss

JY ] = 0.

Now A = 2Ss gives equation (3.11) and proves the pluriharmonicity of f.
Using AX = 2Ss

X = −2df̃(X), we find the property of the differential, as S ∧ S is of type
(1,1) using the tt∗-equations, see proposition 1.
The last statement is obvious.
In the case of an oriented unimodular metric tt∗-bundle (E, D, S, g, or) we can take the
frame s to be oriented and of volume 1, with respect to the canonical Dθ-parallel- metric
volume ν. Therefore the map f takes values in Sym1

p,q(Rr) and the above arguments show
the rest.

Theorem 3 Let (M, J) be a simply-connected complex manifold and put E = M ×Rr.

Then a pluriharmonic map f̃ : M → Si(p, q) give rise to a pluriharmonic map f : M
f̃→

Si(p, q)→̃Symi
p,q(Rr)

ι
↪→ Gi(r).

If f̃ is admissible, then the map f induces a metric tt∗−bundle [an unimodular oriented
metric tt∗-bundle] (E, D = ∂ + S, S = −df̃ , g = 〈f ·, ·〉Rr [, or]) on M where ∂ is the
canonical flat connection on E and or is the canonical orientation on E.

Remark 6 We observe, that for Riemannian surfaces M = Σ the condition on the
differential holds, since T 1,0Σ is one-dimensional.
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Proof:
Let f̃ : M → Si(p, q) be a pluriharmonic map. Then by proposition 2 we know, that

f : M→̃Symi
p,q(R)

ι
↪→ Gi(r) is pluriharmonic.

Since E = M × Rr, we can regard sections of E as r-tuples of C∞(M, R)-functions.
In the spirit of section 3 we regard the one form A = −2df̃ = f−1df with values in gi(r) as
a connection on E. We remind, that the curvature of this connection vanishes (proposition
4).

a) First, we check the conditions on the metric:

Lemma 1 The connection D is compatible with the metric g and S is symmetric
with respect to g.

Proof: This is a direct computation with X ∈ Γ(TM) and v, w ∈ Γ(E) using the
relations (∗) S = 1

2
f−1df, (∗∗) dfx : TxM → Tf(x)Symi

p,q(Rr) = Symi(Rr) (compare

remark 3) and g = 〈f ·, ·〉Rr = 〈·, f ·〉Rr which follows from f : M → Symi
p,q(Rr) :

X(g(v, w)) = X(〈fv, w〉Rr) = 〈X(f)v, w〉Rr + 〈f(∂Xv), w〉Rr + 〈fv, ∂Xw〉Rr

(∗∗)
=

1

2
〈X(f)v, w〉Rr +

1

2
〈v, X(f)w〉Rr + 〈f(∂Xv), w〉Rr + 〈fv, ∂Xw〉Rr

=
1

2
〈f · f−1(X(f))v, w〉Rr +

1

2
〈v, f · f−1(X(f))w〉Rr

+〈f∂Xv, w〉Rr + 〈fv, ∂Xw〉Rr

(∗),(∗∗)
= g(X.v + SXv, w) + g(v, X.w + SXw) = g(DXv, w) + g(v, DXw).

For x ∈ M df̃x takes by remark 3 values in symi(f(x)). This shows that S = −df̃
is symmetric with respect to g = 〈f ·, ·〉Rr .

To finish the proof, we have to check the tt∗-equations. The second tt∗-equation

[SX , SY ] = [SJX , SJY ] (4.3)

for S follows from the assumption that the image of T 1,0M under dcf̃ is Abelian.
In fact, this is equivalent to [df̃(JX), df̃(JY )] = [df̃(X), df̃(Y )] ∀X, Y ∈ TM.

dDS(X, Y ) = [DX , SY ]− [DY , SX ]− S[X,Y ]

= ∂X(SY )− ∂Y (SX) + 2[SX , SY ]− S[X,Y ] = 0

is equivalent to the vanishing of the curvature of A = 2S interpreted as a connection
on E (see proposition 4).
Finally one has for holomorphic coordinate fields X, Y ∈ Γ(TM)

dDSJ(JX, Y ) = [DJX , SJY ] + [DY , SX ] = [∂JX + SJX , SJY ] + [∂Y + SY , SX ]

= ∂JX(SJY ) + ∂Y (SX) + [SJX , SJY ]− [SX , SY ]

(4.3)
=

1

2
(∂JX(AJY ) + ∂Y (AX))

(3.10)
=

1

2
(∂JX(AJY ) + ∂X(AY ) + [AX , AY ])

(4.3)
=

1

2

(
∂JX(AJY ) + ∂X(AY ) +

1

2
[AX , AY ] +

1

2
[AJX , AJY ]

)
(3.11)
= 0.
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This shows the vanishing of the tensor dDSJ .
It remains to show the curvature equation for D. We observe, that D + S = ∂ + A
and that A is flat, to find

0 = RD+S
X,Y = RD

X,Y + dDS(X, Y ) + [SX , SY ]
dDS=0

= RD
X,Y + [SX , SY ].

b) With the same proof as in part a) we get a metric tt∗-bundle. The orientation is
given by the orientation of E = M × Rr.
It remains to check the condition on the trace of S. This property is clear, since in
this case df̃x takes values in sym1(f(x)) for all x ∈ M .

We want to emphasize the last result in the positive definite case:

Theorem 4 Let (M, J) be a simply-connected complex manifold and put E = M ×Rr.
Then a pluriharmonic map f̃ : M → Si(r, 0) is admissible. Moreover, it induces a second

pluriharmonic map f : M
f̃→ Si(r, 0)→̃Symi

r,0(Rr)
ι

↪→ Gi(r) and a metric tt∗−bundle

(E, D = ∂ +S, S = −df̃ , g = 〈f ·, ·〉Rr [, or]) on M where ∂ is the canonical flat connection
on E and or is the canonical orientation of E.

Proof: In the case of signature (r, 0) corollary 1 implies that for all x ∈ M the image of
df̃x is Abelian and the differential of any pluriharmonic map f̃ : M → S(r, 0) is admissi-
able as required in theorem 3.

In the situation of theorem 3 the two constructions are inverse in the following sense:

Proposition 6

1. Let (E, D, S, g [, or]) be a metric [an unimodular oriented metric] tt∗-bundle on a
complex manifold (M, J) and let f̃ be the associated pluriharmonic map constructed
to a Dθ-flat frame s in theorem 2. Then f̃ is admissible and the metric [unimodular
oriented metric] tt∗-bundle (M×Rr, D̃ = ∂+ S̃, S̃, g̃, [or]) associated to f̃ in theorem
3 is the representation of (E, D, S, g [, or]) in the frame s.

2. Given a pluriharmonic map f̃ from a complex manifold (M, J) to Si(p, q), then
one obtains via theorem 3 a metric [an unimodular oriented metric] tt∗-bundle
(M ×Rr, D, S, g [, or]). The pluriharmonic map associated to this metric tt∗-bundle
is conjugated to the map f̃ by a constant matrix in Gi(r).

Proof: Using again remark 1.1) we can set θ = π.

1. The maps f, f̃ and the metric g̃ = 〈f ·, ·〉Rr express the metric g in the frame s. In the
computations of theorem 2 and with theorem 3 one finds 2S̃ = A = f−1df = 2Ss.
From 0 = Dπs = Ds − Ss we obtain that the connection D in the frame s is just
∂ + Ss = ∂ + A

2
= ∂ + S̃ = D̃.

2. To find the pluriharmonic map associated to (M × Rr, D, S, g [, or]) we have to
express the metric g in a Dπ-flat frame s. But Dπ = ∂ + A

2
− A

2
= ∂. Hence we can

take s as the standard-basis of Rr and we get f. Every other basis gives a conjugated
result.
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