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Abstract

We suppose that data of a generalized canonical correlation analysis are i.i.d. ob-

servations of a random vector Z which are taken sequentially. We de�ne a recursive

method of sequential estimation of the factors. This can be applied also when there

is a great amount of non random data vectors.
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1 Introduction

Consider the generalized canonical correlation analysis (gCCA) as de�ned by Carroll

(1968). Suppose that data are i.i.d. observations of a random vector Z which are

taken sequentially: at time n, Zn is observed. We de�ne a recursive method of se-

quential estimation of the general and canonical factors of gCCA by using a stochastic

approximation process derived from that of Krasulina (1970), whose convergence has

been studied by Bouamaine and Monnez (1998). This method can be used also when

there is a great amount of non random data vectors: at time n, a data vector is

randomly chosen.

Numerical results for this type of algorithm in the case of principal component

analysis are given by Bouamaine (1996). An implementation is in progress of an

algorithm corresponding to a multiple factorial analysis, which treats the same type

of data as gCCA, and also a number of simulations are being made.

We present gCCA in the second section, stochastic approximation of the parameter

of a linear regression function in the third and stochastic approximation of the factors

in the fourth. In the following, � denotes a linear correlation coe¢ cient, A0 the

transposed matrix of A, �min(A) the smallest eigenvalue of A, Rp� the dual space of

Rp. The abbreviation a:s: means almost surely.
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2 Generalized canonical correlation analysis of a random vector

Consider two random vectors Z1 and Z2 de�ned on the same probability space and

suppose that there is no a¢ ne relation between the components of Z = (Z1; Z2). The

canonical correlation analysis (CCA) consists in determining at step l 2 f1; :::; rg

for k = 1; 2 a linear combination of variance 1 of the centered components of Zk,

V kl = (�
k
l )
0(Zk �E

�
Zk
�
), uncorrelated with V kl�1; :::; V

k
1 , which maximizes �(V

1
l ; V

2
l ).

This analysis permits one to put into relation two sets of variables or to explain one

set of variables by the other.

A generalization of CCA to three or more sets of variables is gCCA. As it will be

seen, gCCA can be interpreted as a principal component analysis (PCA) of a random

vector Z = (Z1; :::; Zq) in Rp, Z1; :::; Zq being q random vectors which take in some

sense a similar part in the determination of the factors.

More precisely, suppose that the set of components of a random vector Z in Rp is

divided into q sets of real random variables
�
Zk1; :::; Zkmk

	
; k = 1; :::; q;

Pq
k=1mk = p.

Denote Zk the random vector in Rmk whose components are Zk1; :::; Zkmk . Suppose

that there is no a¢ ne relation between the components of Z.

Consider the following problem: for l = 1; :::; r, determine at step l a linear

combination of all the centered variables Zkj, Ul = (�l)
0 (Z � E [Z]); �l 2 Rp�, named

lth general component, which is of variance 1 and uncorrelated with the preceding

ones, and for k = 1; :::; q, a linear combination of variance 1 of the centered variables
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of the kth set, V kl = (�
k
l )
0(Zk�E

�
Zk
�
); �kl 2 Rmk�; named lth canonical component of

the kth set, which maximize
Pq

k=1 �
2(Ul; V

k
l ). �l is named the l

th general factor and

�kl the l
th canonical factor of the kth set.

Remark that when mk = 1 for k = 1; :::; p (q = p), this analysis is equivalent to

the normed principal component analysis of Z i.e. PCA of Z with the inner product

in Rp de�ned by the weight matrix0BBBBBBBBBBBBBB@

1
(�1)2

:

:

:

1
(�p)2

1CCCCCCCCCCCCCCA
;
�
�k
�2
= E

h�
Zk � E

�
Zk
��2i

:

In this PCA, the random variables Z1; :::; Zp play in some sense a similar part in the

de�nition of the squared distance in Rp between two data vectors Z(!1) and Z(!2):

d2(Z (!1) ; Z (!2)) =

pX
k=1

�
Zk (!1)� Zk (!2)

�k

�2
:

In the general case, denote Ck the covariance matrix of Zk, C that of Z and de�ne

the covariance matrices

Ckl = E
�
(Zk � E

�
Zk
�
)(Z l � E

�
Z l
�
)0
�

Ck: = E
�
(Zk � E

�
Zk
�
)(Z � E [Z])0

�
= (Ck1:::Ckq):
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Let M be the block diagonal matrix

M =

0BBBBBBBBBBBBBB@

(C1)�1

:

:

:

(Cq)�1

1CCCCCCCCCCCCCCA
:

Let �l = (�10l ; :::; �
q0
l )
0; �kl 2 Rmk� for k = 1; :::; q. Consider the matrix B = MC

which can be divided into q2 blocks, the block (k; l) being the (mk;ml) matrix

(Ck)�1Ckl.

Theorem 1 �l is a C-normed eigenvector of the matrix B = MC corresponding

to the lth greatest eigenvalue �l and for k = 1; :::; q; there exists �kl 2 R such that

�kl = �
k
l �
k
l .

Proof. Assume Ul to be determined. Then:
Pq

k=1 �
2(Ul; V

k
l ) max () �2(Ul; V

k
l )

max, k = 1; :::; q. Thus V kl is obtained by making the linear regression of Ul with

respect to Zk. Therefore there exists �kl 2 R such that

V kl = �kl�
kUl; �kUl = (Z

k � E
�
Zk
�
)0bkl ;

bkl = (Ck)�1E
�
(Zk � E

�
Zk
�
)Ul
�
= (Ck)�1Ck:�l:

qX
k=1

�2(Ul; V
k
l ) =

qX
k=1

E
�
Ul�

kUl
�
=

qX
k=1

(�l)
0(Ck:)0(Ck)�1Ck:�l = (�l)

0CMC�l:
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�l maximizes (�l)0CMC�l under the constraints �
0
lC�j = 0; j = 1; 2; :::; l � 1

and �0lC�l = 1: Then �l is eigenvector of MC corresponding to the eigenvalue �l and

�kl = �
k
l b
k
l = �

k
l (C

k)�1Ck:�l = �
k
l �l�

k
l :

Remark that �l is the lth factor of the principal component analysis of Z, the inner

product in Rp being de�ned by M . In this PCA, the random vectors Z1; :::; Zq play

in some sense a similar part in the de�nition of the squared distance in Rp between

two data vectors Z(!1) and Z (!2):

d2(Z (!1) ; Z (!2)) =

qX
k=1

(Zk (!1)� Zk (!2))0
�
Ck
��1

(Zk (!1)� Zk (!2)):

Remark too that this analysis in the case q = 2 is the usual canonical correlation

analysis. �l =

0BB@ �1l

�2l

1CCA is eigenvector of

0BB@ I (C1)�1C12

(C2)�1C21 I

1CCA; �kl is colinear
to the lth canonical factor in Zk for k = 1; 2.

3 Stochastic approximation of a linear regression function

3.1 Proposition

Let R be a random vector in Rr and suppose:

(H1) There is no a¢ ne relation between the components of R.

Let S be a random vector in Rs. Denote CovarR the covariance matrix of R and

Covar(R;S) = E [(R� E [R])(S � E [S])0]. Let A be a (r; s) matrix and D a (s; 1)

matrix. (CovarR)�1Covar(R;S) is the solution in A of the following linear regression
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problem: �nd (A;D) such that E
�
kS � A0R�Dk2

�
be minimal, k:k being the usual

euclidean norm.

Denote A1 the (r + 1; s) matrix such that A01 =
�
A0 D

�
and R1 the random

vector in Rr+1 such that R01 =
�
R0 1

�
. E [R1R

0
1] is positive de�nite by H1.

(CovarR)�1Covar(R;S) can be obtained as it follows.

Proposition 2 A = (Covar(R))�1Covar(R;S) and D = E [S] � A0E [R] form the

solution of the linear system E [R1R
0
1]A1 = E [R1S

0].

3.2 Stochastic approximation of A1

Consider an i.i.d sample ((Rn; Sn)) of (R;S). Denote for all n R1n the random vector

in Rr+1 such that R01n =
�
R0n 1

�
. Consider the stochastic approximation process

(A1n; n � 1) of A1 = (E [R1R01])�1E [R1S 0] in the set of (r + 1; s) matrices such that

A1;n+1 = A1n � an(R1nR01nA1n �R1nS 0n); an 2 R+�:

Denote A1n =
�
An
D0
n

�
, An and Dn being respectively a (r; s) and a (s; 1) random ma-

trix. (An; n � 1) is a stochastic approximation process ofA = (Covar(R))�1Covar(R;S).

We use in the proof of the convergence the Hilbert-Schmidt inner product h:; :i and

norm k:k in the set of (r+1; s)matrices: hA;Bi = Trace(A0B) =
Pr+1

i=1

Ps
j=1A(i; j)B(i; j).

Suppose:

(H2) (R;S) has 4th order moments.
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(H3) an > 0;
P1

1 an =1;
P1

1 a
2
n <1:

(H3�)
�
an =

a
n�
; a > 0; 2

3
< � < 1

�
or
�
an =

a
n
; a > 1

2�min(E[R1R01])

�
.

Theorem 3 Assume H1, H2, H3; then kA1n � A1k and kAn � Ak converge to 0 a:s:

and in L2; if H3 is replaced by H3�, then moreover
P1

1 an kA1n � A1k < 1 andP1
1 an kAn � Ak <1 a:s:

Proof. Denote Bn = R1nR
0
1n, Fn = R1nS

0
n, B = E [R1R

0
1], F = E [R1S

0]. As

A1 = B
�1F , we have:

A1;n+1 � A1 = A1n � A1 � anB(A1n � A1)� anUn ;

Un = (Bn �B)A1n + F � Fn:

kA1;n+1 � A1k2 = kA1n � A1k2 + a2n kB(A1n � A1)k
2 + a2n kUnk

2

�2an hA1n � A1; B(A1n � A1)i � 2an hA1n � A1; Uni

+2a2n hB(A1n � A1); Uni :

Denote Tn the �-�eld generated by (Rj; Sj); j < n and A11. As E(Un j Tn) = 0,

we have:

E
�
kA1;n+1 � A1k2 j Tn

�
� kA1n � A1k2

�
1 + a2n kBk

2�+ a2nE �kUnk2 j Tn�
�2an hA1n � A1; B(A1n � A1)i :

By H2, there exist c and d > 0 such that:

E(kUnk2 j Tn) = E
�
k(Bn �B)A1n + (F � Fn)k2 j Tn

�
� c kA1n � A1k2 + d:
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Denote M (j) the jth column of a matrix M and � the smallest eigenvalue of B.

Then:

hA1n � A1; B(A1n � A1)i =
sX
j=1

D
A
(j)
1n � A

(j)
1 ; B(A

(j)
1n � A

(j)
1 )
E

� �

sX
j=1




A(j)1n � A(j)1 


2 = � kA1n � A1k2 :
Therefore:

E
�
kA1;n+1 � A1k2 j Tn

�
� (1+kBk2 a2n+ca2n) kA1n � A1k

2+da2n�2�an kA1n � A1k
2 :

By H3, applying the Robbins-Siegmund lemma (1971) gives the a:s: convergence of

kA1n � A1k and of
P1

1 an kA1n � A1k
2. As

P1
1 an =1, we have kA1n � A1k �! 0

a:s: Taking the expectation ofE
�
kA1;n+1 � A1k2 j Tn

�
gives in the same wayE

�
kA1n � A1k2

�
�!

0.

Thus there exist N 2 N and f > 0 such that for n > N :

E
�
kA1;n+1 � A1k2

�
� (1� 2�an)E

�
kA1n � A1k2

�
+ fa2n:

Applying for instance lemmas 2 and 3 in Monnez (1992) gives for an = a
n�
with

0 < � < 1, or � = 1 and a > 1
2�
, lim 1

an
E
�
kA1n � A1k2

�
< 1. Hence there exists

g > 0 such that
1X
1

anE [kA1n � A1k] � g
1X
1

a
3
2
n <1

for � > 2
3
; it follows that

P1
1 an kA1n � A1k <1 a:s:
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4 Stochastic approximation of general factors

4.1 De�nition of the process

Let ((Z1n; :::; Z
q
n); n � 1) be an i.i.d. sample of the random vector Z = (Z1; :::; Zq) in

Rp. For k = 1; :::; q and n � 1, let

Zkn =
1

n

nX
i=1

Zki ; Mk
n =

1

n

nX
i=1

Zki Z
k
i
0 � Zkn

�
Zkn

�0
;

Mk
n is a consistent estimator of the covariance matrix C

k of Zk. For n � 1, de�ne the

block-diagonal (p; p) matrix

Mn =

0BBBBBBBBBBBBBB@

M1
n

:

:

:

M q
n

1CCCCCCCCCCCCCCA
;

Mn is a consistent estimator of M�1. Denote h:; :in the inner product de�ned by Mn

in the dual space Rp� of Rp and k:kn the associated norm.

In order to estimate Bij = (Ci)�1Cij for i = 1; :::; q and j 6= i, de�ne the stochastic

approximation processes (Bij1n) in the set of (mi+1;mj) matrices in the same way as

in paragraph 3.2, (F ijn ) in the set of (mj; 1) matrices and (Bijn ) in the set of (mi;mj)
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matrices:

Bij1;n+1 = Bij1n � an
�
Zi1n(Z

i
1n)

0Bij1n � Zi1n(Zjn)0
�
;

Zi1n =

0BB@ Zin

1

1CCA ; Bij1n =
0BB@ Bijn

(F ijn )
0

1CCA :
De�ne in the set of (p; p) matrices the stochastic approximation process (Bn) of

the matrix B =MC such that the block (i; j) of Bn is Bijn :

Bn =

0BBBBBBBBBBBBBB@

I B12n : : B1qn

: : : : :

: : : : :

: : : : :

Bq1n Bq2n : : I

1CCCCCCCCCCCCCCA
:

In order to estimate r general factors of GCCA, de�ne for l = 1; 2; :::; r, the

Krasulina-type stochastic approximation process (X l
n) of the general factor �l in Rp�

(Krasulina, 1970, Bouamaine and Monnez, 1998):

X l
n+1 = orthMn(Y

l
n+1)

Y ln+1 = X l
n + an

�
Bn � Fn(X l

n)I
�
X l
n

Fn(X
l
n) =



BnX

l
n; X

l
n

�
n�1

kX l
nk
2
n�1

;

X l
n+1 = orthMn(Y

l
n+1) means that (X

1
n+1; :::; X

l
n+1) is obtained by a Gram-Schmidt

orthogonalization with respect to Mn of (Y 1n+1; :::; Y
l
n+1).
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4.2 Principle of the study of convergence

The details of the proof of convergence of this type of process are given by Bouamaine

and Monnez (1998).

Denote ^ the exterior product of elements of Rp� and for j = 1; :::; p, j^Rp� the

exterior algebra of order j of Rp�: (e1; :::; ep) being a basis of Rp�, the set of Cjp exterior

products ei1^:::^eij with 1 � i1 < ::: < ij � p is a basis of j^Rp�.

De�ne the inner product in j^Rp� derived from that in Rp� de�ned by M�1; in

this de�nition Gj is the set of permutations of fk1; :::; kjg, s (�) is the number of

inversions in the permutation � and " (�) = (�1)s(�) :



ei1^:::^eij ; ek1^:::^ekj

�
=
X
�2Gj

" (�)


ei1 ; e�(k1)

�
M�1 :::



eij ; e�(kj)

�
M�1 :

Suppose that the r greatest eigenvalues of the endomorphism B =MC in Rp� are

di¤erent: �1 > ::: > �r. De�ne for j = 1; :::; r, the endomorphism j1B in j^Rp� by:

j1B(x1^::::::^xj) =
jX
h=1

x1^:::^Bxh^:::^xj; xl 2 Rp�; l = 1; :::; j:

If V 1; :::; V j are eigenvectors of B corresponding respectively to �1; :::; �j, V 1^:::^V j

is eigenvector of j1B corresponding to the greatest eigenvalue �1j =
Pj

l=1 �l. Denote

jS1 the eigensubspace corresponding to �1j and (jS1)? its orthogonal.

The proof of convergence is made in two steps. Denote jXn = X
1
n^:::^Xj

n. It is

proved �rst that for j = 1; :::; r,
jXn
kjXnk converges a:s: in a set

jE to V 1^:::^V j 2 jS1.
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It is proved then that, for l = 1; :::; r, Xl
n

kXl
nk converges a:s: in \

l
j=1

jE to V l. The

de�nition of the convergence set jE is as follows.

In the deterministic case Bn = B, Mn =M
�1, de�ne

hj(
jx) =

hj1B jx;j xi
hjx;j xi ;j x 2 j^Rp�;

and the process (jUn) in j^Rp� by

jUn+1 =
�
I + an

�
j1B � hj(jUn)I

��
jUn:

In this case jE is the set
n
jX1 =2 (jS1)?

o
; X1

1 ; :::; X
j
1 may not be orthogonal to the

subspace generated by the eigenvectors of B corresponding to its j greatest eigenval-

ues.

The process (jXn) = (X
1
n^:::^Xj

n) can be considered as resulting from a stochastic

perturbation of (jUn); denote

�nj = 1 + an(�1j � hj(jXn))

Qj = jX1 +
1X
n=1

jXn+1 � (I + an (j1B � hj(jXn)I))
jXnQn

i=1�ij

:

Then jE =
�
Qj =2 (jS1)?

	
. Remark that Qj = jX1 in the case of the process (jUn).

4.3 Convergence of the process

Suppose:

(H1�) There is no a¢ ne relation between the components of Z.
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(H2�) Z has 4th order moments.

(H3�)
�
an =

a
n�
; a > 0; 2

3
< � < 1

�
or

0BB@an = a
n
; a > 1

2mini �minE[Zi1Zi01 ]
; Zi1 =

0BB@ Zi

1

1CCA
1CCA.

Theorem 4 Assume H1�, H2�, H3�; then, for l = 1; :::; r, Ql converges a:s: Suppose

moreover that the r greatest eigenvalues of B are di¤erent; then, for l = 1; :::; r,

X l
n converges a:s: in \lj=1 jE to a random eigenvector of B corresponding to its lth

greatest eigenvalue.

Proof. The convergence of this type of process is proved in theorem 4 of Bouamaine

and Monnez (1998, p. 24) under the following assumptions:

(1)
P1

1 an kBn �Bk <1 a:s:

(2)Mn �!M�1;
P1

1 an kMn�1 �M�1k <1 a:s:

(3) an > 0;
P1

1 an =1;
P1

1 a
2
n <1:

It su¢ ces to verify (1) and (2).

By H1�, H2�, H3�and theorem 3,
P1

n=1 an kBijn �Bijk < 1 a:s: for every pair

(i; j); then (1) is veri�ed. For k = 1; :::; q :



Mk
n�1 � Ck



 �





 1

n� 1

n�1X
i=1

Zki Z
k
i
0 � E

�
ZkZk 0

�




+ 


Zkn � E �Zk�


�


Zkn


+ 

E �Zk�

�
Zkn �! E

�
Zk
�
a:s:;

1X
n=1

anE
h


Zkn � E �Zk�


i = 1X

n=1

anO

�
1p
n

�
<1:

Then:
P1

n=1 an


Mk

n�1 � Ck


 <1 for k = 1; :::; q,

P1
n=1 an kMn�1 �M�1k <1 a:s:

(2) is veri�ed.
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