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Introduction

In the early mid-1980s, we developed a computer system called the Bol Processor (i.e.
“BP”) to help us examine improvisatory methods used by North Indian tabla drummers
(Kippen & Bel 1992).  Designed for the portable Apple  IIc, the rule-based BP1 was
able to analyse musical input (in the form of tabla bols, or onomatopoeic syllables) as well
as generate new improvisations that musicians could assess.  Details of the philosophy
behind BP1 and its modus operandi can be found in (Kippen & Bel 1992, Bel & Kippen
1992).

The Bol Processor attracted interest from scholars and musicians alike.  It was felt that the
formal model embedded in it could be expanded to encompass more general musical
structures, and in this form could be of some benefit as a tool for music composition.  We
therefore decided to implement an alternative version (BP2) of the Bol Processor on the
Apple  Macintosh .

Initial work on BP2, therefore, was geared towards generalizing concepts inherited from
the representational model in BP1.  We replaced the concept of bol, broadly denoting a
“musical gesture”, with that of sound-object.  The idea of sound-object structures lended
itself to several developments: polyphony, with polymetric structures retaining the
notational concepts of Indian rhythm, and an altogether flexible and accurate mapping of
symbolic time (durations as idealized in musical scores) to physical time.

The question of time is crucial in computer-generated music, but its conceptualisation has
so far been very poor in most commercial and research music software.  In many cases,
physical dates and durations are either explicitly entered by musicians or calculated with
the aid of rudimentary rules yielding artificial musical output.  Nothing is less appealing to
ears accustomed to the melodic intricacy of Indian music, than straight-line or exponential
portamenti generated on simple DSP programs.  Similarly, the idea that “humanized”
music may be produced with a rigid tempo compensated by randomizing durations and
on-setting dates does not hold.
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BP2 may be seen as an outcome of a “migration of concepts” between Indian and western
music / musicological “worlds”, clearly from East to West.  The research is now in a new
phase because of a starting collaboration with Indian teams.

Some characteristic features of BP2

The following is an outline of the main innovative features of Bol Processor BP2.
Developments of the formal language model — procedures for generating strings of
symbols mapped to musical events — have been described in (Bel & Kippen 1992) and
need not be recalled here.  Other features will be summarized on the basis of the following
block diagram:

Item(s)

Display

Interpreter

Grammar(s) Sound object 
prototypes

Editor MIDI input

Keyboard and/or graphic 
input.

MIDI musical 
instrument(s)

Sound 
processor(s)

MIDI output

Inference 
engine

Other BP2, sequencer, etc.…

A block diagram of Bol Processor BP2

Three fields are used for storing grammars, items generated by the inference engine
and sound-object prototypes.  These prototypes may be created with the help of a
MIDI-interfaced musical instrument (or simply by typing in MIDI codes).  Items are
represented as structures (strings and sets) of symbols.  Each symbol is mapped to a
single sound-object prototype.  The interpreter generates MIDI codes given the symbolic
structure of an item and properties of sound-object prototypes.

Interpretation is in two stages.  Musical items (which may be polyphonic) are represented
as strings of symbols in a syntactic form that we call a polymetric expression. First, a
mapping is calculated between the sound-objects contained in a polymetric structure and a
set of symbolic dates.  Symbolic time, here, is an arbitrary ordered set that permits the
ordering of sound-objects.  This process is called the interpretation of polymetric
expressions, as missing information regarding the ordering of sound-objects (along
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symbolic time) is inferred.  Then BP2 proceeds to the time-setting of the sound-object
structure represented as a complete polymetric expression.  Start/clip dates of all sound-
objects are calculated, yielding the dates of their MIDI messages.  Sound-object properties
are taken into account during time-setting only.

The block diagram indicates that an external control can be exerted on the inference
engine, grammars and the interpretation module.  Specific MIDI messages may be used to
change rule weights, the time base and nature of time (striated/smooth).  These messages
may also be used for synchronizing events during their performance and even assigning
computation time limits.  Such features are currently used in improvisational rule-based
composition.

Several BP2's may be linked together and to other software devices such as MIDI
sequencers.  Messages on the different MIDI channels may be used for communicating
between machines or for controlling several sound processors.  It must be kept in mind
that a “sound-object” is not necessarily a sound-generating process.  Depending on the
implementation it may contain any kind of control/synchronization messages as well.

Polymetric structures

A major development of BP2's representational model has been polymetric expressions,
here meaning incomplete string descriptions of concurrent processes (Bel 1992).  A
polymetric expression can be fully determined (expanded) by an algorithm inferring a
strict ordering of events (sound-objects, see infra) along symbolic time: should a, b, c, d,
e be superimposed on another sequence of three sound-objects f, g, h, the algorithm
would suggest the following ordering:

    {a b c d e, f g h}              a _ _ b _ _ c _ _ d _ _ e _ _
                                    f _ _ _ _ g _ _ _ _ h _ _ _ _

Incomplete representation              Complete representation
 (polymetric expression)               (computed by algorithm)
                                       Symbol '_' prolongates the
                                       preceding sound-object.

The complete representation shown above is a phase diagram, i.e. a kind of musical
score in which simultaneous events are grouped in the same column.  The corresponding
polymetric expression in a unidimensional string format would be:

{a _ _ b _ _ c _ _ d _ _ e _ _ , f _ _ _ _ g _ _ _ _ h _ _ _ _ }

The same algorithm is able to process multilayered polymetric expressions.

Sound-objects

Informally, a sound-object is a sequence of elementary processes that produce or modify
sounds.  For instance, in the current version of BP2, a sound-object may represent any
sequence of MIDI events.  In later versions, other kinds of sound-objects will be defined
as segments of digitized sound files, procedures (e.g. granular synthesis) generating
MIDI code, or procedures in the Csound format (Vercoe 1994) producing or modifying
sound files.  To make things clear, a simple note would be a sound-object containing
either a NoteOn/NoteOff pair, or the specification of a sampled sound and start/clip dates
indicating where the note may be found in that sampled sound.
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Sound-objects may be assigned properties used in determining their actual durations and
locations on physical time.  They may be performed in striated time (with regular or
irregular beats) or in smooth time (with no beat).  Durations depend on the “local tempo”
and on metrical properties stipulating the acceptable range of object contraction/dilation.

A naive interpretation of sequences of sound-objects would be to arrange their time
intervals in a strictly sequential way.  Stroppa (1990) suggested a more abstract approach,
starting from the assumption that any sound-object may possess one or several time points
playing a particular role, e.g. a climax.  These points are called time pivots.  We retained
a simplified version of this idea, assigning each object one single pivot.

Let us for instance consider a polymetric structure {S1,S2,S3} derived as

{a _ b c d _ e , a _ f _ g h _ , j i _ a _ i _ }

yielding the phase diagram:

a _ b c d _ e

a _ f _ g h _

j i _ a _ i _

The definition of each object contains the relative location of its pivot and metrical
properties allowing the calculation of its time-scale ratio.

The following is a graphic representation of a possible instance of this polymetric
structure:

Physical time

S1

S2

S3

a

b c

d

e

f

g

ha

j ai i

A structure of sound-objects

—  4  —



The structure of time is for instance an irregular pulsation represented with vertical lines
(time streaks).  The time-span interval of each sound-object is shown as a rectangle with
arbitrary vertical width and vertical position.  These positions have been chosen to
separate objects on the graphic: it is clear for example that “c”, “f”, “g” and “a” have
overlapping time-span intervals between the third and fourth streaks.  Lengths of
rectangles represent the physical durations of sound-objects.

Vertical arrows indicate time pivots.  As shown with object “e”, the pivot is not
necessarily a time point within the time-span interval of the sound-object.

This graphic represents the default positioning of objects with their pivots located exactly
on time streaks.  Although it is reasonable that instances of “c”, “f” and “a” are
overlapping between the third and fourth streaks since they belong to distinct sequences
which are performed simultaneously, it may not be acceptable that “f” overlaps “g” in a
single sequence S2; the same with “d” and “e” in sequence S1.  For similar reasons, it
may not be acceptable that the time-span intervals of “j” and “i” are disjoint in sequence S3
while no silence is shown in the symbolic representation.

How could one deal with a constraint such as <<the end of sound-object “f” may not
overlap another sound-object in the same sequence>> ?  If object “g” is relocatable
then it may be delayed (shifted to the right) until the constraint is satisfied.  We call this a
local drift of the object.  However, the end of “g” will now overlap the beginning of “h”.
Assume that this also is not acceptable and “h” is not relocatable.  One should therefore
look for another solution, for example truncate the beginning of “h”.  If this and other
solutions are not acceptable then one may try to shift “f” to the left or to truncate its end.
In the first case it might be necessary to shift or truncate “a” as well.

So far we mentioned a constraint propagation within one single sequence.  In the time-
setting algorithm the three sequences are considered in order S1, S2, S3.  Suppose that
the default positioning of objects in S1 satisfies all constraints and no solution has been
found to avoid the overlapping of “f” and “g” in S2.  Another option is to envisage a
global drift to the right of all objects following “f” in S2.  The global drift is notated ∆ on
the following picture.  All time streaks following the third one are delayed (see dotted
vertical lines).
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A structure using global drift

This last solution is similar to the the organum in conventional music notation.

The process of locating — i.e. “instantiating” — sound-objects, as briefly illustrated in
this example, is the task of an efficient time-setting algorithm imbedded in BP2.  (Bel
1992).

Time accuracy and flexibility

It is important for a musician working with a computer to be given the ability of
manipulating precise durations.  In sequencing software this accuracy is generally limited
by time quantization and errors cumulated while adding durations.  To maintain the
highest accuracy (within the one millisecond limit of Macintosh's time manager)
throughout a piece of music, the option taken in BP2 has been to represent durations as
integer ratios.  For instance, we had to create a sequence of intricate polyrhythmic beat
patterns matching exactly he opening section of “La Création du Monde” by Darius
Milhaud (EMI CDC-7 47845 2), on which we wanted to synchronize the recitation of
Victor Hugo's poem “Les Djinns”.  The global specification was that the time-base
should generate 1000 beats in exactly 1578 seconds.  The poem is made of verses with
variable meters: 2/2/2/2/3/3/3/3/4/4/4/4 …up to 10/10/10/10 —except 9/9/9/9— and then
decreasing.  We decided that every verse should keep the same duration within 16 beats.
The result was a polyrhythmic piece with one instrument showing beats at a fixed speed
and another one playing “ticks” at variable speeds.  (Bel 1993a:16)

In the above example it may be argued that absolute accuracy yields extremely complex
phase diagrams, due to the fact that the lowest common multiple of 6, 7, 8 and 10 is an
extremely large number.  However, the dates of events belonging to two consecutive
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columns do not differ significantly.  Therefore, while keeping a specified accuracy (e.g.
100 milliseconds) it is possible to merge columns and reduce the size of the diagram
accordingly.  Understandably merging should not occur once the phase diagram has been
built, because building it entirely would take a prohibitive amount of memory.  We found
out that it was possible to build smaller diagrams by simplifying the polymetric expression
on the basis of the expected accuracy (quantization) and the current metronomic speed.  It
should be well understood that this kind of quantization does not decrease the accuracy of
long time intervals (e.g. duration of the example piece always remained 1578 seconds)
whereas ordinary quantization found in sequencing programs would provoke a cumulated
error due to the rounding of basic time units.  (Bel 1994)

Flexibility of time intervals is another important feature which, in commercial software, is
often limited to the “humanize” option (inserting random “errors” within certain limits) or
the “swing” option (entering durations on a MIDI keyboard).  BP2 offers the possibility
of specifying time patterns (ratios applicable to consecutive time intervals) either
numerically or from MIDI keyboard input.  Each pattern may be assigned specific label to
be manipulated at the symbolic level by the editor or a grammar.  Suppose for instance
that the following note sequence is to be played unevenly:

do5 re5 mi5 fa5 - la5 si5 do6_ mi6

(in which “-” is a silence and “_” is the prolongation of do6).  We first decide to divide the
piece in two sections, the duration of the first part (do5 re5 mi5 fa5 -) being two thirds of
the second part (la5 si5 do6_ mi6).  The corresponding pattern may be notated:

t1 = 1/1    t2 = 3/2

Let the initial part (do5 re5 mi5 fa5) of the first section be further divided into two
subsections with pattern

t1 = 1/1   t3 = 4/3

while the following note sequence (- la5 si5 do6_ mi6) is controlled by pattern:

  t4 = 1/2   t3 = 4/3   t1 = 1/1

The resulting timing of sound-objects is shown below:

Time pattern with irregular beats

Note that, for the sake of generality, time intervals are not arranged in a tree hierarchy, but
as a join-semilattice: t4, for instance, overlaps the two main sections, so that its duration is
a combination of the scalings imposed by t1 and t2.
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Polymetric representation in BP2 makes it very easy to represent complex time structures.
Labels t1, t2, etc., are treated as time-objects (similar to sound-objects except that they do
not produce sounds).  A polymetric expression representing the sequence of notes with its
time patterns is

{10,t1 t2,{t1 t3 t4, do5 re5 mi5 fa5 - la5}{t3 t1, si5 do6 _ mi6}}

in which “10” specifies that the symbolic duration of the entire expression is 10 beats.
These beats are forced to become irregular because of time patterns, as indicated by
vertical lines numbered 1 to 11 on the above picture.

Present developments

Since February 1994, work on BP2 has been reconsidered in the context of a
collaboration between CENTRE FOR HUMAN SCIENCES, the CENTRE FOR

DEVELOPMENT OF ADVANCED COMPUTING (C-DAC, Pune), and other researchers
working at the NATIONAL CENTRE FOR THE PERFORMING ARTS (NCPA, Bombay) and
POONA UNIVERSITY.

C-DAC has been engaged on the Gandharva project aiming at creating a platform for the
composition of melodic music based on Indian ragas (Upadhye 1993).  The core of the
system is a machine-learning device able to construct an automaton from musical input
data (note sequences).  The infered automaton is able to generate sequences of notes in the
same style or raga.  An interesting finding is that the predictive power of the learning
algorithm could be enhanced by imbedding domain-dependent knowledge based on the
principle of consonance (of melodic intervals).  Similarly, Prof. H.V. Sahasrabuddhe, in
Poona University, devised a learning system using a Markov model.  Musical output was
improved by “performance rules” able to reconstruct the characteristic note treatments
(alankara), and the global structure of bandishes (compositions) and rhythmic
improvisations.  These projects are complementary with Bol Processor completed with its
learning device QAVAID (Kippen & Bel 1989), and it was decided that Gandharva and
Bol Processor would be merged for the sake of producing research, music composition
and educational software.  At the NCPA, a new version of Bel's Melodic Movement
Analyzer (MMA) is under development with a particular focus on identifying raga
characteristic shapes (Rao 1994), automatic transcription and the resynthesizing of
melodic music.  This project also relates to the automatic learning of melodic sequences,
in that the MMA will produce detailed melodic data (note names and note connections) to
be fed into learning devices, while infered automata may later become able to determine
the parameters for the shapes of synthesized melodic lines.

While there is no concept of pitch in the present version of BP2, the idea of sound-object
will be refined so that it may also represent note treatment (melodic connections).  This
will also make it possible to introduce abstract definitions of scales and arbitrary tunings.

At a later stage, representational models and composition methods will be transferred to a
multimedia software in complement to encyclopaedic knowledge about Indian music.  In
fact, a learning device is very attractive in a multimedia system because it allows users to
manipulate and transform the data stored.  Thus, while “frozen” musical performances
may be stored in the system, it will also be possible to use them as sample sets and let the
machine produce music therefrom.  Users will also be given the possibility to experiment
with mixing data from different sources (performers, ragas, styles) much in the same way
strange hybrid pictures are composed by the MORPH program.  Experiments with
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MORPH indicate that distorting and hybridizing pictures is an excellent way of intuitively
grasping their characteristic features.

The cultural and scientific challenge

Indian software engineering is one of the fastest growing industries in the world, with
exports reaching $350 million in 1993 —a growth of 55% since 1992— and software
teams obtaining the highest ratings on international standards (Yourdon 1994:6).  While it
is expected that computer generated music will slowly enter in Indian life, there are doubts
as to whether technological achievements per se are bound to induce similar achievements
in modern music.  To quote Laske (1993:2),

If workers in the interpretive study of art do not decide what aspects of their subject matter are
fundamental to their efforts, engineers will.  This means, one-dimensional, purely explanatory
thinking will prevail, to the detriment of understanding aesthetic subject matter.

With the advent of new sound and music processing techniques, the young generation of
Indian musicians is expecting to find new environments for composing classical as well as
innovative music.  However, the software tools that are readily available to professional
musicians are based on western musical concepts and extensions thereof.

When faced with these limitations, Indian musicians may either resolve to do plain MIDI
sequencing or use digital multitrack editing techniques for vocal and instrumental sounds.
In either case the product is not at the level of their own skills as performing musicians:
MIDI environment will generally not cope with the melodic and rhythmic intricacies they
are familiar with, and studio arrangements do not retain the improvisational and interactive
aspects of composition in Indian music.  Therefore, there is a gap between the
expectations of Indian artists and the response of technology:

Computer generated music will slowly enter in Indian life as computers entered a couple of years
ago.  Because if we do not do it, the Americans or the Japanese will do it.  In fact they are doing it.
The sad part is that the Indian mind which is often impressed by foreign labels is not adaptative to
new changes and experiments.  I am afraid that tomorrow we will have to depend upon these
foreigners to make instruments like Tanpura, Sitar, etc.  Are we going to wait for them to certify
that Indian music is most easy to generate on computers?

Upadhye, 1993:21,56.

Conclusion

The western approach to modern composition is often described as rule-based and highly
conceptual, while the Indian approach is supposed to be model-based and empirical.
However, this simplistic dichotomy leads to ethnocentric biases, notably the assumption
that creativity is a salient feature of Euro-American culture while non-western cultures are
perceived as stagnant and “traditional”, thereby meaning unable to innovate.  The
background prejudice is that western countries should keep a leading role in modern art
production while others should content themselves with preserving their cultural heritage.
Indeed, it is not easy to create conditions for a new art form to emerge in the context of a
traditional society even though there is an increasing social demand for it.

The work of cultural anthropologists during the past decades has shown that
compositional knowledge (as defined in western art music) may also be acknowledged
among musicians who are not given the status of composers in their own culture
(Blacking 1989).  (Conversely, it would be important to discover the “ethnicity” of
western contemporary art forms.)  For instance, the variety and complexity of tabla
qa‘ida improvisation by great masters is an indication that compositional knowledge is
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not necessarily a design process involving graphic media nor methods amenable to
introspection or verbal description.  Therefore, the challenge of contemporary art forms in
non-western cultures is to set up interactive environments in which artists may be able to
use and expand their creative potential without being confronted with procedures
exclusively elaborated in a foreign culture.

In its attempt to link musical practice with theory (the handling of musical objects and
compositional processes), computational musicology is probably the unavoidable
“interface” between musicians and software designers.  The remaining question is how
this interaction may be encouraged in the present Indian social-cultural context.
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