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aLaboratoire de Statistique - CREST - INSEE

bMODALX - Université Paris X Nanterre
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Abstract

In [7], a novel methodology for bootstrapping general Harris Markov chains has
been developed, the (approximate) regenerative block-bootstrap. It is built on the
renewal properties of the chain (or of a Nummelin extension of the latter) and
has theoretical properties that surpass other existing methods within the Marko-
vian framework. This paper is devoted to discuss practical issues related to the
implementation of this specific resampling method and to present various simula-
tion studies for investigating its performance and comparing it to other bootstrap
resampling schemes, standing as natural candidates in the Markov setting.
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1 Introduction

Adapting the naive bootstrap method introduced by [19] in the i.i.d. setting, so
as to produce asymptotically valid procedures for dependent data, and time
series in particular, constitutes an intense field of research, still developing.
The principle underlying such generalizations generally consists in resampling
whole blocks of observations instead of single observed values in order to mimic
the data dependence (see [29] and the references therein). The moving-block
bootstrap (MBB) illustrates this idea, it lies in resampling (overlapping or
disjoint) data blocks of fixed length to capture the dependence structure of
the observations (refer to [14] and [36] for recent surveys). Although this ap-
proach may yield consistent procedures in many weakly dependent settings,
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it has several important drawbacks. First, stationarity of the observations is
usually required by the validity framework of the MBB approach. Further-
more, implementing the MBB method calls for a preliminary estimation of
the bias and of the asymptotic variance of the statistic of interest. This makes
its application difficult in practice (see [22]). And from a theoretical viewpoint,
the rate of convergence of the MBB distribution is slower than the one of the
i.i.d. bootstrap: at best it is of order OP(n

−3/4) under restrictive conditions
(stipulating that all moments are finite and that strong mixing coefficients
decrease exponentially fast). Eventually, the results obtained highly depend
on the choice of the block size. Except in very particular situations (see [22]),
no general method for determining the adequate block size has yet been de-
veloped. In [24], [15] and [37], data-driven methods for selecting the block size
are proposed, aiming at approximating the variance, rather than at estimating
directly the studentized distribution in a precise fashion (see [29]).

Various approaches for bootstrapping particular types of stationary Markov
chains have recently been proposed in the statistical literature. If a paramet-
ric Markovian model is a priori specified (an ARMA model for instance), the
problem simply reduces then to sampling randomly estimated centered resid-
uals (see [10]). Following this idea, [13] introduced a sieve bootstrap method
based on approximating the time series by some AR model with large lag-
order. This method presents both promising theoretical results and good prac-
tical performance at the same time, but is well suited to linear stationary time
series rather than to general Markov chains. Another approach to bootstrap-
ping Markov chains follows the proposal of [3] (see also [38]) in the finite case,
which uses a nonparametric estimate of the transition probability for repro-
ducing the markovian structure of the data series (see also the local Markov
bootstrap in [35] based on similar ideas).

Following the approach proposed by [18], it has been shown in [7], that a
specific resampling technique for bootstrapping some statistics of regenerative
Markov chains offers attracting advantages both regarding to asymptotic sec-
ond order properties and from a practical viewpoint. This method, the Regen-
erative Block Bootstrap (RBB), consists in resampling (a random number of)
data blocks corresponding to ’cycles’ of the observed path (i.e. data segment
between consecutive regeneration times) until the length of the reconstructed
trajectory is larger than the initial one. In the general (non-regenerative) set-
ting, [7] proved that this principle can still be successfully applied in numerous
situations, by adding a preliminary stage consisting in estimating the distribu-
tion of a regenerative extension of the chain. Due to the approximation step,
we call this method Approximate Regenerative Block Bootstrap (ARBB).

The purpose of the paper is to describe the mechanic of the (A)RBB method
from a practical angle and evaluate empirically its performance in comparison
with major competitors. It is organized as follows. In section 2, basics concern-
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ing the regenerative method in connection with the Markov chain theory and
the Nummelin splitting technique are briefly recalled. Section 3 is devoted to
the description of the (A)RBB algorithm. Practical issues related to its imple-
mentation are discussed as well. The performance of the (A)RBB methodology
is then investigated through several applications: simulation studies are carried
out in section 4, which show on some (regenerative and pseudo-regenerative)
examples of Markov chains, arising from operational research or standard time
series analysis, performs, when compared to natural bootstrap method com-
petitors. In section 5, some concluding remarks are collected, together with
several lines of further research.

2 Theoretical Background

In what follows X = (Xn)n∈N
denotes an aperiodic Harris Markov chain on

a countably generated state space (E, E), with transition probability Π, and
initial probability distribution ν (see [39] for an account of the Markov chain
theory). We also denote by Pν (respectively by Px for x in E) the probability
measure on the underlying space such that X0 ∼ ν (resp. X0 = x), by Eν [.] the
Pν-expectation (resp. by Ex[.] the Px-expectation) and by I{A} the indicator
function of the event A.

We now recall key notions, concerning the regenerative method and its applica-
tion to the analysis of the behavior of general Harris chains via the Nummelin
splitting technique (refer to [34], for further detail).

Regenerative Markov chains Here we assume that the chain X possesses
an accessible atom, i.e. a Harris set A such that for all (x, y) ∈ A2, Π(x, .) =
Π(y, .). Denote by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A,
by τA(j) = inf {n > τA(j − 1), Xn ∈ A} for j ≥ 2, the successive return times
to A, and by EA[.] the expectation conditioned on X0 ∈ A.

Regeneration blocks From the strong Markov property it is immediate that,
for any initial distribution ν, the sample paths of the chain may be divided
into i.i.d. blocks of random length corresponding to consecutive visits to the
atom A

B1 =
(
XτA(1)+1, ..., XτA(2)

)
, ..., Bj =

(
XτA(j)+1, ..., XτA(j+1)

)
, ... (1)

taking their values in the torus T = ∪∞
n=1E

n. The τA(j)’s are thus successive
random times at which the chain forgets its past, namely regeneration times.
In this regenerative setting, the stochastic stability properties of the chain
amount to properties concerning the speed of return time to the atom only.
For instance, X is positive recurrent iff EA[τA] < ∞ (see Kac’s theorem in
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[31]). In such a case the unique invariant probability distribution µ is the
Pitman’s occupation measure given by:

∀B ∈ E , µ(B) =
1

EA[τA]
EA[

τA∑

i=1

I{Xi ∈ B}]. (2)

In particular, parameters of interest for a positive Harris Markov chain may
be expressed in many cases in terms of regeneration cycles only (mainly those
related to the long term behaviour of the process, as indicated by (2)). Nu-
merous examples are given in [8]).

The regenerative method We point out that first order limit results such
as the Law of Large Numbers, the Central Limit Theorem or the Law of
Iterated Logarithm for an additive functional

∑
i f(Xi) of a regenerative Harris

positive chain X may be easily derived by applying the corresponding i.i.d.
results to functionals of the i.i.d. regeneration blocks (Bj)j>1 (see [31] for such
illustrations of the regenerative method introduced by [42]). However, when
the matter is to establish higher order limit results (see [9], [30] or [4] for
refinements of the CLT in the Markovian setting), the fact that the data

blocks B0 = (X1, ..., XτA(1)), B1, ..., Bln−1, B
(n)
ln

= (XτA(ln)+1, ..., Xn) defined
by the ln =

∑
16k6n I{Xk ∈ A} regeneration times over a trajectory of finite

length n are not independent (the sum of the block lengths is of course n) is
essential. The randomness of the number of blocks plays a crucial role in the
distribution of any statistic based on a finite sample. This observation lies at
the heart of the RBB procedure (see section 3, details are in [7]).

Regeneration-based statistics In the time series framework, inference is
generally based on a single trajectory X1, ..., Xn of the Harris chain X. There-
fore, in a nonstationary setting the distribution of the non-regenerative blocks,
B0 and B(n)

ln
, cannot be estimated from a single realization of the chain only

(due to their dramatical dependence upon the unknown initial distribution).
Furthermore, their contribution to the value of a functional T (X1, ..., Xn) of
interest is generally significant, leading to first order bias terms in particular
(see the discussion in [4]). Hence, statistics involving B0 and B(n)

ln
must be

avoided in practice, when estimating sampling distributions is essential (for
building confidence intervals for instance, see [8]).

As an illustration, when X is a positive recurrent chain with limiting probabil-
ity distribution µ, consider f : E → R a µ-integrable function. In the nonsta-
tionary case, when the matter is to recover the asymptotic mean µ(f) =

∫
fdµ

from data X1, ..., Xn (notice that µ(f) = EA[τA]−1EA[
∑

16i6τA
f(Xi)]), to-

gether with assessing the accuracy of the estimation, rather than the standard
sample mean µn(f) = n−1 ∑

16k6n f(Xk), it is preferable to use the truncated
mean computed using data collected between the first and last regeneration
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times, namely

µ̂n(f) =

∑τA(ln)
k=1+τA

f(Xk)

τA(ln) − τA

=

∑ln−1
j=1 f(Bj)

∑ln−1
j=1 L(Bj)

, (3)

where f(Bj) =
∑τA(j+1)

k=1+τA(j) f(Xk) and L(Bj) = τA(j + 1) − τA(j) for j > 1,
with the convention that µ̂n(f) = 0 when ln 6 2. Furthermore, under suitable
moment conditions (see the paragraph below) [4] have shown that the estima-
tor µ̂n(f) is asymptotically normal with asymptotic mean µ(f) and variance
1, when standardized by the following sequence, based on regeneration data
blocks as well (see [26])

σ̂2
n(f) =

∑ln−1
j=1 (f(Bj) − µ̂n(f)L(Bj))

2

∑ln−1
j=1 L(Bj)

. (4)

Precisely, they proved that σ̂2
n(f) is a strongly consistent and asymptotically

normal estimator of the limiting variance σ2
f = µ(A)EA[

∑
16i6τA

f(Xi)], with
a bias of order O(1/n) as n → ∞.

When implementing the MBB, the choice of the standardization, the bias it
induces and the definition of its Bootstrap counterpart are key points to obtain
the second order validity of the method. As shown in [7], the standardization
(4), which is specifically tailored for the regenerative setting, does not weaken
the performance of the RBB (see also section 3 below), while the standard-
ization of the MBB distribution in the strong mixing case is the main barrier
to achieve good performance (as shown by [22]). In most practical situations
(except for the very special case of m -dependence), positive moving-block
based estimates of the asymptotic variance with such good properties are not
available.

Technical assumptions The assumptions required by the validity framework
of the RBB method (see [7] for further details) are of the following type.

• Regularity conditions: there exists κ ≥ 1 such that
EA[τκ

A] < ∞ and Eν [τ
κ
A] < ∞.

• Block-moment conditions: there exists κ ≥ 1 such that
EA[(

∑τS

i=1 |f(Xi)|)
κ] < ∞ and Eν [(

∑τS

i=1 |f(Xi)|)
κ] < ∞.

Using well-known results (see Chapt. 11 in [31] and the references therein),
such assumptions may be checked in practice by establishing drift criteria of
Lyapounov’s type for the chain. When considering Edgeworth expansion or
second order results, the ”block-Cramer conditions” of the following type are
additionally required.
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• Block-Cramer condition:

lim sup
t→∞

| EA[exp(it
τA∑

i=1

f(Xi))] |< 1.

Such conditions are checked on various models in section 4.3 of [8] (see also
[26]), including the examples considered in section 4.

2.1 Regenerative extension

Now we recall the splitting technique introduced in [33]. This theoretical con-
struction aims at extending in some sense the probabilistic structure of a
general Harris chain, so as to artificially build a regeneration set. It is based
on the following notion. A set S ∈ E is small for X if there exist m ∈ N∗, a
probability measure Φ supported by S, and δ > 0 such that

∀x ∈ S, ∀A ∈ E , Πm(x, A) ≥ δΦ(A), (5)

where Πm denotes the m-th iterate of Π. Roughly speaking, the small sets are
the ones on which an iterate of the transition probability is uniformly bounded
below. When (5) holds, we shall say that X satisfies the minorization condition
M(m, S, δ, Φ). Small sets do exist for irreducible chains 1 , a fortiori for Harris
chains (any accessible set actually contains small sets, see [27]). Suppose that
X fulfills M = M(m, S, δ, Φ) for some accessible set S. Take m = 1, even if it
entails to replace X by the chain ((Xnm, ..., Xn(m+1)−1))n∈N. The regenerative
chain onto which the initial chain X is embedded is constructed by expanding
the sample space, so as to define a specific sequence (Yn)n∈N of independent
Bernoulli r.v.’s with parameter δ. This joint distribution Pν,M is obtained by
randomizing the transition Π each time the chain X hits S (this happens a.s.
since X is Harris). If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then draw Xn+1

according to Φ,
• if Yn = 0, (which happens with probability 1−δ), then draw Xn+1 according

to (1 − δ)−1(Π(Xn, .) − δΦ(.)).

For obtaining an insight into this construction, observe simply that, if condi-
tion (5) holds with m = 1, when Xn ∈ S, one may write the distribution of
Xn+1 conditioned on Xn as the following mixture

Π(Xn, .) = (1 − δ){(1 − δ)−1(Π(Xn, .) − δΦ(.))} + δΦ(.), (6)

1 Recall that a Markov chain X with state space (E, E) and transition Π is irre-
ducible if there exists a positive measure that dominates

∑
n≥1 Πn(x.) for all x ∈ E.
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which second component is independent from Xn. The bivariate Markov chain
XM = ((Xn, Yn))n∈N

constructed this way is called the split chain. The key
point lies in the fact that S ×{1} is then an atom for the split chain XM, the
latter inheriting all the communication and stochastic stability properties from
X. In particular the blocks constructed from the consecutive times when XM

visits S × {1} are independent (if X satisfies M = M(m, S, δ, Φ) for m > 1,
the resulting blocks are 1-dependent only, a form of dependence that can
also be easily handled). Using this construction, one may enlarge the range
of applications of the regenerative method so as to extend all of the results
established for atomic chains to general Harris chains. We omit the subscript
M in what follows and abusively denote by Pν the extensions of the underlying
probability we consider.

2.2 On approximating the regenerative extension

Here we assume further that the conditional distributions {Π(x, dy)}x∈E and
the initial distribution ν are dominated by a σ-finite measure λ of reference,
so that ν(dy) = f(y)λ(dy) and Π(x, dy) = p(x, y)λ(dy) for all x ∈ E. For
simplicity’s sake, we suppose that condition M is fulfilled with m = 1. This
entails that Φ is absolutely continuous with respect to λ too, and that

p(x, y) ≥ δφ(y), λ(dy)a.s. (7)

for any x ∈ S, with Φ(dy) = φ(y)dy.

If we were able to generate practically binary random variables Y1, ..., Yn, so
that XM (n) = ((X1, Y1), ..., (Xn, Yn)) be a realization of the split chain XM

described above, then we could divide the sample path X(n) = (X1, ..., Xn) into
regeneration blocks, as in §2.1. Therefore, knowledge of Π is required to draw
Y1, ..., Yn this way. As a matter of fact, the distribution L(n)(p, S, δ, φ, x(n+1))
of Y (n) = (Y1, ..., Yn) conditioned on X(n+1) = (x1, ..., xn+1) is the tensor
product of Bernoulli distributions given by: ∀β(n) = (β1, ..., βn) ∈ {0, 1}n ,
∀x(n+1) = (x1, ..., xn+1) ∈ En+1,

Pν(Y
(n) = β(n) | X(n+1) = x(n+1)) =

n∏

i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1)(8)

with for 1 6 i 6 n: if xi /∈ S,

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1) = Berδ (βi) , (9)

and if xi ∈ S,
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Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δφ(xi+1)/p(xi, xi+1),

Pν(Yi = 0 | Xi = xi, Xi+1 = xi+1) = 1 − δφ(xi+1)/p(xi, xi+1). (10)

In short, given X(n+1), the Yi’s are Bernoulli r.v.’s with parameter δ, unless X
has hit the small set S at time i: in this case Yi is drawn from the Bernoulli
distribution with parameter δφ(Xi+1)/p(Xi, Xi+1). Our proposition for con-
structing data blocks relies in approximating this construction by computing
first an estimate pn(x, y) of the transition density p(x, y) from data X1, ...,
Xn+1, and then drawing a random vector (Ŷ1, ..., Ŷn) from the distribution
L(n)(pn, S, δ, φ, X(n+1)), obtained by simply plugging pn in (10) and (10) (the
estimate pn(x, y) may be picked such that pn(x, y) ≥ δφ(y), λ(dy) a.s., and
pn(Xi, Xi+1) > 0, 1 6 i 6 n).

From a practical viewpoint, it actually suffices to draw the Ŷi’s only at times i
when the chain hits the small set S, Ŷi indicating then whether the trajectory
should be divided at time point i or not (see Fig. 1 for instance). This way, on
gets the approximate regeneration blocks B̂1, ..., B̂l̂n−1

with l̂n =
∑

16k6n I{Xk ∈
S, Yk = 1}. Of course, knowledge of parameters (S, δ, φ) of condition (7) is
required for this construction. In § 3.2, we shall discuss a practical method for
selecting those parameters.

The question of accuracy of this approximation has been addressed in [7].
Precisely, they established a bound for the deviation between the distribution
of ((Xi, Yi))16i6n and the one of the ((Xi, Ŷi))16i6n in the sense of the Mallows
distance, which essentially depends on the rate of the uniform convergence of
pn(x, y) to p(x, y) over S × S.

3 The (A)RBB methodology

Now that necessary background material has been reviewed, we turn to de-
scribe the following block-resampling method and discuss practical issues en-
countered for implementing the latter.

3.1 The (A)RBB algorithm

Suppose that the finite sample path has been divided into true or approxi-
mate regeneration blocks B1, ...,Bln−1. The (approximate) regenerative block-
bootstrap algorithm for estimating the sample distribution of some statis-
tic Tn = T (B1, ...,Bln−1) estimating some parameter θ with standardization
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σn = σ(B1, ...,Bln−1), namely

H(x) = P(σ−1
n (Tn − θ) 6 x), (11)

is performed in three steps as follows.

(1) Draw sequentially bootstrap data blocks B∗
1, ..., B

∗
k independently from

the empirical distribution Fn = (ln − 1)−1 ∑ln−1
j=1 δBj

of the blocks B1, ...,

Bln−1, conditioned on X(n) until the length of the bootstrap data series
l∗(k) =

∑k
j=1 l(B∗

j ) is larger than n. Let l∗n = inf{k > 1, l∗(k) > n}.
(2) From the bootstrap data blocks generated at step 1, reconstruct a pseudo-

trajectory by binding the blocks together, getting the reconstructed (A)RBB
sample path

X∗(n) = (B∗
1, ...,B

∗
l∗n−1). (12)

Then compute the (A)RBB statistic and the (A)RBB standardization

T ∗
n = T (X∗(n))andσ∗(n)

n = σ(X∗(n)). (13)

(3) The (A)RBB distribution is then given by

H(A)RBB(x) = P
∗(σ∗−1

n (T ∗
n − Tn) 6 x | X(n+1)), (14)

denoting by P∗(. | X(n+1)) the conditional probability given X(n+1).

A Monte-Carlo approximation to HARBB(x) may be straightforwardly com-
puted by repeating independently N times the procedure above. Based on
Edgeworth expansions proved in [4], one may show that in the regenerative
positive recurrent case, the RBB method inherits the accuracy of the stan-
dard i.i.d. bootstrap (see [23]) up to OPν

(n−1) for additive functionals of type
n−1 ∑

16k6n f(Xk) under weak conditions (see Theorem 3.3 in [7] for further
details). In [8] asymptotic validity of the RBB has also been established for
more general functionals, including U or V statistics based on regeneration
blocks. In the general Harris recurrent case, the ARBB method for bootstrap-
ping Markov chains simply relies in applying the RBB procedure to the data
((X1, Ŷ1), ..., (Xn, Ŷn)) as if they were exactly drawn from the atomic chain
XM. However, as shown in [7], even if it requires to use a consistent estimate
of the ”nuisance parameter” p and the corresponding approximate blocks it
induces, this bootstrap method still remains asymptotically valid.

In [4] (see Prop. 3.1) it is shown that in the nonstationary case (i.e. when
the initial law ν differs from µ), the first data block B0 induces a significant
bias, of order O(n−1), which cannot be estimated from a single realization
X(n) of the chain starting from ν. Practitioners are thus recommended not to
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use estimators based on the whole trajectory. This fact is known as the burn-
in (time) problem in the bayesian literature on MCMC algorithms, related
to the time from which the 1-dimensional marginal of a (simulated) chain
is close enough to the limit distribution µ. When the statistic is built using
regeneration blocks only, the first (non-regenerative) block has no impact on
the second order properties of the ARBB estimate . However, from a practical
viewpoint, it may happen that the size of the first block is large compared to
the size n of the whole trajectory (for instance in the case where the expected
return time to the (pseudo-)atom when starting with ν is large), the effective
sample size for constructing the data blocks and the corresponding statistic is
then dramatically reduced. In such a case, for mimicking the distribution of the
original statistic, it is preferable, heuristically speaking, to draw sequentially
the bootstrap blocks B∗

1, ..., B
∗
k independently from the empirical distribution

Fn, until l(B0) +
∑k

j=1 l(B∗
j ) is larger than n, taking practically into account

the size l(B0) this way (although it does not play any role in the asymptotic
behavior, since l(B0)/n = OPν

(n−1) as n → ∞).

3.2 Tuning parameters

In the general (non-regenerative) case, the procedure above may be very sen-
sitive to the choice of the minorization condition parameters (S, δ, Φ). It is
essential to pick the latter in a data-driven fashion, so that enough blocks may
be obtained for computing meaningful statistics, their accuracy increasing as
the mean number of pseudo-regenerative blocks, that is

Nn(S) = Eν [
n∑

i=1

I{Xi ∈ S, Yi = 1} |X(n+1)], (15)

for a given realization of the trajectory. Therefore, this is somehow determined
by the size of the small set chosen. More precisely, it depends on how often
the chain visits the latter in a finite length path) and how sharp is the lower
bound in the minorization condition. The trade-off is as follows: as the size of
the small set S used for the data blocks construction increases, the number
of points of the trajectory that are candidates for determining a ’cut’ in the
trajectory naturally increases, but, since the uniform lower bound for p(x, y)
over S2 then decreases, the probability of drawing Yi = 1 also decreases (see
expression (10)). Thus one may heuristically expect better numerical results
for the ARBB, when one implements it by choosing S so as to maximize the
expected number of data blocks given the trajectory, namely Nn(S) − 1.

In the case when the chain takes real values and in lack of any prior infor-
mation about its structure, a possible data-driven method for selecting the
tuning parameters could be as follows. Let S be a collection of borelian sets

10



S (typically compact intervals) and let US(dy) = φS(y).λ(dy) denote the uni-
form distribution on S, where φS(y) = I{y ∈ S}/λ(S) and λ is the Lebesgue
measure on R. For any S ∈ S, we clearly have p(x, y) ≥ δ(S)φS(y) for all x,
y in S, with δ(S) = λ(S). inf(x,y)∈S2 p(x, y). When δ(S) > 0, the theoretical
criterion (15), that one would ideally seek to maximize over S, can be written
as follows

Nn(S) = inf
(x,y)∈S2

p(x, y) ×
n∑

i=1

I{(Xi, Xi+1) ∈ S2}

p(Xi, Xi+1)
. (16)

Observing that Nn(S)/n converges Pν-a.s. to λ(S)µ(S) as n → ∞, an alter-
native criterion to maximize, independent from the data and asymptotically
equivalent to Nn(S), is given by

Nn(S) = n inf
(x,y)∈S2

p(x, y) λ(S)µ(S), (17)

One gets an empirical counterpart of these quantities by replacing the un-
known transition density p(x, y) by an estimate pn(x, y) in expression (16)
or (17), and µ(S) by the empirical estimator µ̂n(S) = n−1 ∑

16i6n I{Xi ∈ S}.
Actually from a bootstrap viewpoint, the conditional criterion (16) is more
pertinent because the rate of convergence of the ARBB distribution is directly
related to the effective number of observed regeneration times conditionally
to the trajectory. Note furthermore that many nonparametric estimators of
the transition density of Harris recurrent chains have been proposed in the
literature, among which the standard Nadaraya-Watson estimator

pn(x, y) =

∑n
i=1 K(h−1(x − Xi))K(h−1(y − Xi+1))∑n

i=1 K(h−1(x − Xi))
, (18)

computed from a Parzen-Rosenblatt kernel K(x) and a bandwidth h > 0.
In the positive recurrent case, their estimation rates have been established
under various smoothness assumptions on the density of the joint distribution
µ(dx)Π(x, dy) and the one of µ(dx) (see [2] or [17] and the references therein
for instance).

Once pn(x, y) is computed, calculate its minimum over sets S of the class S
and maximize then the practical empirical criterion over S:

S∗ = arg max
S∈S

N̂n(S) (19)

with

N̂n(S) = inf
(x,y)∈S2

pn(x, y) ×
n∑

i=1

I{(Xi, Xi+1) ∈ S2}

pn(Xi, Xi+1)
. (20)
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On many examples of real valued chains (see section 4 below), it is possible
to check at hand that any compact interval Vx0(ε) = [x0 − ε, x0 + ε] for a
suitably chosen x0 ∈ R and ε > 0 small enough, is small, choosing φ as the
density φVx0 (ε) of the uniform distribution on Vx0(ε). For practical purpose,
one may perform the optimization over ε > 0, while x0 is kept fixed (see [7],
[8]). But both x0 and ε may be considered as tuning parameters: searching for
(x0, ε) over a pre-selected grid G = {(x0(k), ε(l)), 1 6 k 6 K, 1 6 l 6 L} such
that inf(x,y)∈Vx0 (ε)2 pn(x, y) > 0 for any (x0, ε) ∈ G could lead to the following
numerically feasible selection rule. For all (x0, ε) ∈ G, compute the estimated
expected number of approximate pseudo-regenerations:

N̂n(x0, ε) =
δn(x0, ε)

2ε

n∑

i=1

I{(Xi, Xi+1) ∈ Vx0(ε)
2}

pn(Xi, Xi+1)
, (21)

with δn(x0, ε) = 2ε. inf(x,y)∈Vx0 (ε)2 pn(x, y). Then, pick (x∗
0, ε

∗) ∈ G maximiz-

ing N̂n(x0, ε) over G, corresponding to the set S∗ = [x∗
0 − ε∗, x∗

0 + ε∗] and the
minorization constant δ∗n = δn(x∗

0, ε
∗). It remains next to construct the approx-

imate pseudo-blocks using S∗, δ∗n and pn as described in § 2.3. We point out
that other approaches may be considered for determining practically small
sets and establishing accurate minorization conditions, which conditions do
not necessarily involve uniform distributions besides. Refer for instance to
[40] for Markov diffusion processes.

We end this paragraph by making the following remarks about the practical
implementation of the ARBB method. We first emphasize that estimation in
specific null recurrent cases (including AR(p) models with unit roots for in-
stance) has been dealt with in [28], which established in particular consistency
results for the Nadaraya-Watson estimator (18). And it is noteworthy that
the procedures described above, the approximate Nummelin construction and
the ARBB algorithm, are actually still asymptotically valid in this framework,
when applied to adequate functions f . However, in the null recurrent case, the
choice of the standardization may be cumbersome. Investigating the asymp-
totic properties of the ARBB at the first order, which corresponds to choosing
σn = l1/2

n and σ∗
n = l∗1/2

n , may be done using the same approach as in [7] (the
study of second order properties is currently in progress). As indicated by the
results in [28], accurate estimation of the underlying transition density in the
null recurrent case is naturally possible only when a very large data sample
is at disposal. In β-null recurrent cases (i.e. when the distribution of the re-
turn time to the small set has power tail), [16] also established deterministic
approximations of ln (respectively, of l∗n). To give an insight into the problems
encountered in this case, we considered the case of an AR(1) model with a unit
root among our simulation studies (see § 4.2): the number ln of regenerations
over a trajectory of length n for the split chain being of order n1/2, only large
sample sizes n enable us then to get enough (pseudo-) regeneration cycles for
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computing significant statistics with our methodology.

Secondly, a natural question arising from the practical considerations discussed
above is to determine whether the use of the preliminary estimate pn and of
µ̂n eventually for selecting S and building the pseudo-blocks affect the second
order properties of the resulting ARBB distribution. This seems to be a very
difficult problem, since by construction the pseudo-regeneration times and the
data blocks B̂j they induce, all depend on the whole trajectory now, owing
to the transition probability estimation step. A possible construction to avoid
this theoretical problem consists in using a double splitting trick in a semipara-
metric sense (see [41]). This amounts first to construct the transition density
estimator using the first mn observations say (with mn → ∞, mn/n → 0 as
n → ∞), then to drop the next qn observations (typically qn << mn, qn → ∞
as n → ∞) for allowing the split chain to regenerate with overwhelming proba-
bility, and finally to build the pseudo-blocks B̂j from the n−mn−qn remaining
observations. It is easy to understand (but technical to prove) that these blocks
are then, asymptotically i.i.d conditionally to the first mn observations. One
may then prove the second order validity of the procedure in both the stu-
dentized and unstudentized cases. As shown in [6], this splitting trick entails
some loss in the rate of the ARBB distribution, but the latter remains anyway
faster than the best rate the MBB may achieve. However, one may argue, as
in the semiparametric case, that such a modification of the initial procedure
is essentially motivated by our limitations in the analysis of asymptotic prop-
erties of the estimators. From our own practical experience, this construction
generally deteriorates the finite sample performance of the initial algorithm
and estimating p(x, y) from the whole trajectory leads to better numerical
results.

4 Simulation studies

We now give two examples, with a view to illustrate the scope of applica-
tions of our methodology. The first example presents a regenerative Markov
chain described and studied at greater length in [25] (see also [11] and [12])
for modeling storage systems, regenerative chains being widely used in oper-
ations research. We point out that our method also applies to the framework
of MCMC (Monte-Carlo Markov Chain) in order to control estimates based
on regenerative MCMC trajectories (see [32]). In consideration of the recent
emphasis on nonlinear models in the time series literature, our second example
shows to what extent the ARBB method may apply to a general nonlinear AR
model. Further, we point out that the principles exposed in this paper are by
no means restricted to the markovian setting, but may apply to any process
for which a regenerative extension can be constructed and simulated from the
data available (see Chapt. 10 in [44]).
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4.1 Example 1 : content-dependent storage systems

We consider a general model for storage, evolving through a sequence of input
times (Tn)n∈N

(with T0 = 0 by convention), at which the storage system is
replenished. Let Sn be the amount of input into the storage system at the
nth input time Tn and Ct be the amount of contents of the storage system at
time t. When possible, there is withdrawal from the storage system between
these input times at the constant rate r and the amount of stored contents
that drops in a time period [T, T + ∆T ] since the latter input time is equal
to CT − CT+∆T = r∆T , and when the amount of contents reaches zero, it
continues to take the value zero until it is replenished at the next input time.
If Xn denotes the amount of contents immediately before the input time Tn

(i.e. Xn = CTn
− Sn), we have for all n ∈ N,

Xn+1 = (Xn + Sn − r∆Tn+1)+ , (22)

with (x)+ = sup (x, 0) , X0 = 0 by convention and ∆Tn = Tn − Tn−1 for all
n ≥ 1. Let K(x, ds) be a transition probability on R+. Assume that, condi-
tionally to X1, ..., Xn, the amounts of input S1, ..., Sn are independent from
each other and independent from the inter-arrival times ∆T1, ..., ∆Tn and
that the distribution of Si is given by K(Xi, .), for 0 6 i 6 n. Under the fur-
ther assumption that (∆Tn)n>1 is an i.i.d. sequence with common distribution
G, independent from X = (Xn)n∈N, the storage process X is a Markov chain
with transition probability Π given by Π(Xn, {0}) = Γ(Xn, [Xn, ∞[),
Π(Xn, ]x, ∞[) = Γ(Xn, ]−∞, Xn − x[) for all x > 0, where the tran-
sition probability Γ is given by the convolution product Γ(x, ]−∞, y[) =∫ ∞
t=0

∫ ∞
z=0 G(dt)K(x, dz)I{rt − z < y}.

One may check that the chain Π is δ0-irreducible as soon as K(x, .) has infinite
tail for all x > 0. In this case, {0} is an accessible atom for X and it can be
shown that it is positive recurrent if and only if there exists b > 0 and a test
function V : R+ → [0, ∞] such that V (0) < ∞ and for all x > 0 :

∫
Π(x, dy)V (y) − V (x) 6 −1 + bI{x = 0}. (23)

The times at which the storage process X reaches the value 0 are thus regener-
ation times, and allow to define regeneration blocks dividing the sample path,
as shown in Figure 1. Figure 2 below shows a reconstructed RBB data series,
generated by a sequential sampling of the regeneration blocks (as described in
§ 3.1), on which RBB statistics may be based.
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Fig. 1. Dividing the trajectory of the storage process into data blocks corresponding
to the regeneration times.
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Fig. 2. Reconstruction of a storage process data series using the RBB resampling
procedure.
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Fig. 3. Distribution estimates.

4.1.1 Simulation results

We simulated two trajectories of respective length n = 100 and n = 200
drawn from this Markov chain with r = 1, K(x, dy) = Exp3(dy) and G(dy) =
Exp1(dy), denoting by Expλ(dy) the exponential distribution with mean 1/λ >
0, which is a standard M/M/1 model (see [1] for instance). In Fig. 3 below, a
Monte-Carlo estimate of the true distribution of the sample mean standard-
ized by its estimated standard error (as defined in (4)) computed with 10000
simulated trajectories is compared to the RBB distribution (in both cases,
Monte-Carlo approximations of RBB estimates are computed from B = 2000
repetitions of the RBB procedure) and to the gaussian approximation. Note
also that in the ideal case where one a priori knows the exact form of the
markovian data generating process, one may naturally construct a bootstrap
distribution in a parametric fashion by estimating first the parameters of the
M/M/1 model, and then simulating bootstrap trajectories based on these es-
timates. Such an ideal procedure naturally performs very well in practice. In
our simulation study, the resulting distribution estimate was actually so close
to the true distribution that one could not distinguish one from the other
in the plot. Of course, in most applications practitioners have generally no
knowledge of the exact form of the underlying Markov model, since this is
often one of the major goals of statistical inference.

With the aim of constructing accurate confidence intervals, Table 1 compares
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the quantile of order γ of the true distribution, the one of the gaussian ap-
proximation (both estimated with 10000 simulated trajectories) and the mean
of the quantile of order γ of the RBB distribution over 100 repetitions of the
RBB procedure in the tail regions.

The left tail is clearly very well estimated, whereas the right tail gives a better
approximation than the asymptotic distribution. The gain in term of coverage
accuracy is quite enormous in comparison to the asymptotic distribution. For
instance at the level 95%, for n = 200, the asymptotic distribution yields a
bilateral coverage interval of level 71% only, whereas the RBB distribution
yields a level of 92% in our simulation.

n= 100 200 ∞

γ% TD RBB TD RBB ASY

1 -7.733 -7.044 -5.492 -5.588 -2.326

2 -6.179 -5.734 -4.607 -4.695 -2.054

3 -5.302 -5.014 -4.170 -4.165 -1.881

4 -4.816 -4.473 -3.708 -3.757 -1.751

5 -4.374 -4.134 -3.430 -3.477 -1.645

6 -4.086 -3.853 -3.153 -3.243 -1.555

7 -3.795 -3.607 -2.966 -3.045 -1.476

8 -3.576 -3.374 -2.771 -2.866 -1.405

9 -3.370 -3.157 -2.606 -2.709 -1.341

10 -3.184 -2.950 -2.472 -2.560 -1.282

n= 100 200 ∞

γ% TD RBB TD RBB ASY

90 1.041 1.032 1.029 1.047 1.282

91 1.078 1.085 1.083 1.095 1.341

92 1.125 1.145 1.122 1.150 1.405

93 1.168 1.207 1.177 1.209 1.476

94 1.220 1.276 1.236 1.277 1.555

95 1.287 1.360 1.299 1.356 1.645

96 1.366 1.453 1.380 1.442 1.751

97 1.433 1.568 1.479 1.549 1.881

98 1.540 1.722 1.646 1.685 2.054

99 1.762 1.970 1.839 1.916 2.326

Table 1 : Comparison of the tails of the true distribution (TD), RBB and
gaussian distributions.

4.2 Example 2 : General autoregressive models

Consider now the general heteroscedastic autoregressive model

Xn+1 = m(Xn) + σ(Xn)εn+1, n ∈ N, (24)

where m : R → R and σ : R → R
∗
+ are measurable functions, (εn)n∈N is a

i.i.d. sequence of r.v.’s drawn from g(x)dx such that, for all n ∈ N, εn+1 is
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independent from the Xk’s, k 6 n with E[εn+1] = 0 and var(εn+1) = 1. See
[20] for some proposals for bootstrapping such models. The transition density
of the chain is given by p(x, y) = g((y − m(x))/σ(x)), (x, y) ∈ R2. Assume
further that g, m and σ are continuous functions and there exists x0 ∈ R such
that p(x0, x0) > 0. Then, the transition density is uniformly bounded from
below over some neighborhood Vx0(ε)

2 = [x0 − ε, x0 + ε]2 of (x0, x0) in R2 :
there exists δ = δ(ε) ∈]0, 1[ such that,

inf
(x,y)∈V 2

x0

p(x, y) > δ(2ε)−1. (25)

Any compact interval Vx0(ε) is thus a small set for the chain X, which satisfies
the minorization condition M(1, Vx0(ε), δ,UVx0 (ε)), where UVx0 (ε) denotes the
uniform distribution on Vx0(ε). Hence, in the case when one knows x0, ε and
δ such that (5) holds (this simply amounts to know a uniform lower bound
estimate for the probability to return to Vx0(ε) in one step), one may effectively
apply the ARBB methodology to X. In the following, we use the practical
criterion N̂n(x0, ε) with x0 = 0. The choice x0 = 0 is simply motivated by
observing that our temporal simulated data fluctuate around 0. Actually, to
our own practical experience, optimizing over x0 does not really improve the
performance of the procedure in this case.

In what follows, we shall compare the performance of the ARBB to the one
of some reference competitors for bootstrapping time series. In all our simu-
lations the Markov bootstrap (consisting in generating a Markov chains with
an estimated transition probability) has performed always worse than all the
other methods (due to the difficulty of estimating accurately the transition
probability on the whole real line). We do not present the results for this
method to alleviate the graphics and tables.

The sieve bootstrap is specifically tailored for linear time series (see [13], [14]).
The main idea consists in fitting an AR(p) model (eventually with p unknown
depending on ) first and then applying a residual based resampling method.
The fact that it fully exploits the underlying linear structure explains why
it performs very well in this framework. When simulating linear time series,
we use it as a benchmark for evaluating the pertinence of the ARBB distri-
bution. Recall also that this method requires a preliminary estimation of the
order q of the sieve : for this purpose we choose an AIC criterion of the type

AIC(q) = nlog(M̂SE) + 2q in the sequel. In the linear AR(q) model below,
this information criterion enables us to pick the right order of the model. And
the resulting sieve bootstrap behaves like a parametric bootstrap method in
these cases (see [10]), leading to very good numerical results, as soon as the
roots of the AR(q) model are far from the unit circle. In contradistinction,
we actually experienced problems in our simulations, when dealing with an
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AR(1) model with a root close to 1: in such cases, it may happen with high
probability that one gets an estimate of the root larger than one, yielding to
explosive bootstrap trajectories.

We also compared the ARBB method to the usual MBB. The difficulty for
applying the latter method essentially relies in the choice of the block size
for estimating the variance and in the choice of the block size for the resam-
pling procedure. As there is actually no reason for these two sizes to be equal,
they should be picked separately and the estimator of the variance should
be correctly unbiased (see [22]). To our knowledge, the problem of simulta-
neously calibrating these two quantities has not been treated yet and leads
to extremely volatile results. For comparing directly the MBB distribution to
the true studentized distribution (11), we have chosen here to standardize all
the distributions by the estimator (4), so as to avoid a deteriorating prelimi-
nary variance estimation step. The MBB distribution is also correctly centered
(at the bootstrap mean). The block size for the MBB is chosen according to
the method of [24]. It consists in estimating first the MSE of the MBB dis-
tribution corresponding to blocks of size l with a subsampling technique for
various size values l and then picking the size corresponding to a minimum
MSE estimate. This unfortunately requires to select a subsampling size and
a plausible pilot size, which are in their turn also difficult to calibrate (see
the discussion in Section 7.3 of [29]): here we have chosen n1/4 as pilot size
and bn = n10/21 as subsampling size (which is close to n1/2 in our simula-
tions and satisfies the conditions needed for the MBB to be asymptotically
valid). When standardized this way, the MBB has performed quite well in
most simulations, except notably when data exhibit significant nonlinear fea-
tures and/or nonstationarity. The reason of this misbehavior arises from the
fact that, for some drawing of the fixed size blocks, the jumps between the
blocks were so important, that the reconstructed series could not be splitted
according to our randomized procedure leading to an invalid estimator of the
variance. In these case (too few regenerations), we have eliminated the corre-
sponding MBB simulation. Thus the MBB considered here can be considered
as a MBB with a Markovian control ensuring that the MBB reconstructed
series has some regeneration properties. Such procedure clearly improved the
resulting estimated distributions.

4.2.1 Simulation results

Here are empirical evidences for three specific autoregressive models.

The AR(1) model :

Xi+1 = αXi + εi+1, i ∈ N, (26)
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with i.i.d. ǫi ∼ N (0, 1), α = 0.8, X0 = 0 and for a trajectory of length n = 200.

The AR(1) model with ARCH(1) residuals called AR-ARCH model :

Xi+1 = αXi + (1 + βX2
i )1/2εi+1, i ∈ N, (27)

with i.i.d. εi ∼ N (0, 1), α = 0.6, β = 0.35, X0 = 0 and for a trajectory of
length n = 200.

The so called ExpAR(1) model

Xi+1 = (α1 + α2e
−|Xi|

2

)Xi+1 + εi+1, i ∈ N, (28)

with i.i.d. εi ∼ N (0, 1), α1 = 0.6, α2 = 0.1, X0 = 0 and for a trajectory of
length n = 200. Such a chain is recurrent positive under the sole assumption
that |α1| < 1, see [43]. This highly nonlinear model behaves like a threshold
model: when the chain takes large values, this is almost an AR(1) model with
coefficient α1, whereas for small values, it behaves as an AR(1) model with a
larger autoregressive coefficient α1 + α2.

Here the true distribution of the sample mean is estimated with 10000 sim-
ulations. And for a given trajectory, the ARBB distribution is approximated
with B = 1000 resamplings of the pseudo-blocks. In a previous simulation
work, we experienced that the ARBB distribution obtained may strongly fluc-
tuate, depending on the randomization steps (see §2.3). For a given trajectory,
this problem may be avoided by repeating the ARBB procedure several times
(50 times in our simulations) and averaging the resulting ARBB distribution
estimates. According to our experiments, only a small number of repetitions
(leading to different ways of dividing the same trajectory) suffices for smooth-
ing the ARBB distribution.

For the ARBB, the sieve and the MBB methods, the whole procedure has been
repeated 1000 times. Table 2 below gives the median of the quantiles at several
orders γ of the bootstrap distributions over the 1000 replications for each of
the three AR models, compared to the true and asymptotic corresponding
quantiles.
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n=200 AR(1) AR-ARCH(1) EXP-AR(1)

γ% TD ARBB Sieve MBB TD ARBB Sieve MBB TD ARBB Sieve MBB ASY

1 -3.51 -3.61 -3.41 -3.42 -3.03 -3.23 -5.26 -3.16 -4.48 -5.23 -5.59 -9.61 -2.33

2..5 -2.84 -2.78 -2.81 -2.72 -2.41 -2.61 -3.52 -2.52 -3.35 -3.87 -4.76 -6.44 -1.96

5 -2.23 -2.13 -2.11 -2.10 -1.97 -2.14 -2.85 -2.06 -2.58 -2.79 -3.74 -5.00 -1.65

10 -1.62 -1.57 -1.65 -1.55 -1.52 -1.59 -2.25 -1.53 -1.83 -1.98 -2.93 -3.51 -1.28

n=200 AR(1) AR-ARCH(1) EXP-AR(1)

γ% TD ARBB Sieve MBB TD ARBB Sieve MBB TD ARBB Sieve MBB ASY

90 1.62 1.52 1.61 1.61 1.52 1.33 2.26 1.58 1.80 1.89 2.74 2.26 1.28

95 2.21 2.08 2.19 2.14 2.01 1.74 3.04 2.07 2.58 2.68 3.89 3.07 1.65

97.5 2,79 2.71 2.73 2.69 2.37 2.03 3.93 2.44 3.24 3.47 4.79 4.02 1.96

99 3.46 3.73 3.86 3.48 3.11 2.62 5.97 3.22 4.37 5.36 5.92 6.25 2.33

Table 2: Comparison of the tails of the true, ARBB and gaussian
distributions for the three models

The small set is selected by maximizing over ε > 0 the empirical criterion
N̂n(0, ε) described above. The main steps of the procedure are summarized in
the graph panels shown below.

The first figure in Graph panel 1 shows the Nadaraya-Watson (NW) estimator
(18), the second one represents N̂n(0, ε) as ε grows (as well as the smoother
empirical criterion (17), see the dotted line). It clearly allows to identify an
optimal value for the size of the small set. In the case of the AR model for
instance, this selection rule leads to pick in mean ε̂ = 0.83 and δ̂ = 0.123. Our
empirical criterion tends to overestimate very slightly the size of the ”optimal”
small set (a phenomenon that we have noticed on several occasions in our sim-
ulations). The level sets of the NW estimator, the data points (Xi, Xi+1) and
the estimated small set are represented in the next graphic. This also shows
that the small set chosen may be not that ”small” if the transition density is
flat around (x0, x0) = (0, 0) (in some cases it may be thus preferable to choose
x0 6= 0 so as to be in this situation). In the second line of the panel, the figure
on the left hand side represents a sample path of the chain and indicates the
pseudo-regenerative blocks obtained by applying the randomization rule with
Ber(1− δ̂(2ε)−1/ pn(Xi, Xi+1)) at times i when (Xi, Xi+1) ∈ V0(ε)

2. The next
figure shows how binded blocks form a typical ARBB trajectory. It is notewor-
thy that such a trajectory presents less artificial ”jumps” than a trajectory
reconstructed from a classical MBB procedure: by construction, blocks are
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joined end to end at values belonging to the small set. For comparison pur-
pose, the figure on the right hand side displays a typical realization of a MBB
trajectory. Finally, on the last line of the panel, the true distribution (green),
the ARBB distribution (black), the sieve bootstrap distribution (gray), the
MBB distribution (red dotted line) and the asymptotic gaussian distribution
(blue dotted line) are compared.

And the last figure shows the QQ-plots α ∈ [0, 1] 7→ Gn(H−1(α)), where H is
the true distribution and Gn denotes one of the approximations: this enables
us to discriminate between the various approximations in a sharper fashion,
especially in the tail regions.

These results clearly indicate that both the sieve and MBB methods perform very
well for linear time series. In this case, the ARBB distribution tends to have
larger tails. However, when considering nonlinear models, the advantage of
the ARBB method over its rivals plainly come into sight: for moderate sample
sizes n, the sieve bootstrap tends to choose a too large value q̂n for the lag
order of the approximate sieve AR(q̂n). This problem is less serious for larger
sample sizes, as shown in Graph panel 4 (with n = 500). In these situations,
the MBB may behave very poorly especially when the non-linearity and the
non-stationarity is important: we conjecture that it could be possibly improved
by investigating further how to tune optimally the block size, especially for
standardized distributions.

Pictures in Graph panels 3 and 4 speak volumes: for both nonlinear models,
the true distribution is accurately approximated by the ARBB distribution.
Note nevertheless the difference in the size of the ”optimal small set” and in
the number of pseudo-regenerations between these models. We point out that,
though remarkable when compared to the gaussian approximation, the gain
in accuracy obtained by applying the ARBB methodology to the EXP-AR
model is higher than the one obtained for the AR-ARCH type model. As may
be confirmed by other simulations, the ARBB method provides less accurate
results for a given (moderate) sample size, as one gets closer to a unit root
model (i.e. as α tends to 1): one may get an insight into this phenomenon by
simply noticing that the rate of the number of regenerations (respectively, of
the number of visits to the small set) then drastically decreases.

5 Concluding remarks

We finally summarize our empirical findings. We first point out that, in the
linear case when roots are much less than 1 in amplitude, the sieve boot-
strap clearly surpasses its competitors. But it is noteworthy that both the
ARBB and the MBB also provides very good numerical results in this case.

22



Besides, all these methods seem to break down from a practical viewpoint for
an AR(1) model with an autoregressive coefficient α tending to 1 and with
a fixed (moderate) sample size: in such a case, too few pseudo-regeneration
blocks may be constructed for the ARBB methodology to be practically per-
formant (although it is asymptotically valid). In this respect, the graph of the
estimated number of pseudo-regenerations (see Graph panels 1-4) provides a
crucial help for diagnosing the success or the failure of the ARBB method.
It is also remarkable that the sieve bootstrap can lead to very bad results in
this case, due to the fact that the estimated AR model may have a root larger
than 1 (generating then explosive sieve bootstrap trajectories). This strongly
advocates the use of preliminary tests or constrained estimation procedures
(ensuring that the resulting reconstructed series is asymptotically stationary).

And as may be reported from our simulation results, the advantage of the
ARBB over the sieve bootstrap, the MBB and the asymptotic distributions,
clearly appears when dealing with nonlinear models even if in some case the
MBB can still give some good approximation (see the AR-ARCH(1) case,
Graph-panel 2). Even if the lag is chosen very large (in mean 85 for the AR-
ARCH(1) model and 21 for the EXP-AR model), the linear sieve method is
unable to capture the non-linearities and performs very badly for moderate
sample sizes. The MBB also performs poorly in some nonlinear setting for
moderate sample sizes, whereas the ARBB provides very accurate approxima-
tions of the tail distributions in these examples. It should be mentionned that
using a moving-block estimator of the variance leads to even worse results.
In any case, it is recommended to use all the available methods and to com-
pare the results. The ARBB being much more robust it can be used to check
whether the other methods are trustable for the data at hand.

As pointed out by a referee, we restricted our study to the case of Markov
models of order 1 (see our framework in section 2). However, by vectorizing,
any 1-dimensional Markov model of order p classically boils down to a p di-
mensional Markov model of order 1. Our theoretical work thus applies in this
context. However, statistical problems related to the curse of dimensionality
may appear, when considering models of large orders (arising in the choice of
the small set or the transition density estimation step), Hence, numerical ex-
periments should be carried out for such models, in order to determine whether
theoretical results are still supported by empirical evidence. This is beyond
the scope of the present paper, but will certainly be the subject of further
investigation. Besides, another challenging line of research could consist in
determining whether the ARBB performs well when applied to long memory
Markov chains. As a matter of fact, this problem is of different nature. Recall
that a Markov model of order 1 may naturally have a long memory: if X is
a positive recurrent chain with limiting distribution µ and possesses an atom
A, the long memory property for the sequence {f(Xn)}n∈N is equivalent to
the condition EA[(

∑
i≤τA

{f(Xi) − µ(f)})2] = ∞. No theoretical result for the
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(A)RBB asymptotic validity in this framework has yet been established, even
if one may reasonably expect that it is the case for β-null recurrent chains
(which exhibit long range dependence when β < 1, see [28]).
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Fig. 4. Graph panel 1: AR(1) model with α = 0.8, n = 200.
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Fig. 5. Graph panel 2: AR(1)-ARCH(1) model with α = 0.6 and β = 0.35, n = 200.
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Fig. 6. Graph panel 3: EXP-AR(1) model with α1 = 0.8 and α2 = 0.5, n = 200.
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Fig. 7. Graph panel 3: EXP-AR(1) model with α1 = 0.8 and α2 = 0.5, n = 500.
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