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Here we give some additional technical details con-
cerning the experiment for interested readers.

Raman laser beams: Figure 1 shows the approximate
geometry of the Raman laser beams which generate
the two colliding condensates. More precisely, an ap-
proximately vertical beam propagates in the direction
defined by e1 = cos θ ez + sin θ ey with θ ≈ 7◦, and
where e represents a unit vector. This beam is π-
polarized (parallel to the x-axis). A second, hori-
zontal beam propagates in the direction defined by
e2 = cosφ ex + sin φ ey with φ ≈ 5◦. The polariza-
tion is circular and corresponds nearly to σ−. Per-
fect σ− polarization with respect to the x axis is not
possible unless φ = 0. The laser beams are blue-
detuned by 400 MHz from the 23S1 − 23P0 transi-
tion (wavelength 1083 nm) and have a relative detun-
ing of about 700 kHz to match the Raman resonance
between the two Zeeman sublevels. The horizontal
beam is retro-reflected. The intensity of laser L1 is
100 mW/cm2 whereas the intensities of laser L2 and L′2
are 50 mW/cm2. The waist of these beams is 2.8 mm
so that the intensity over the condensate is approxi-
mately constant.

The Raman detuning, 700 kHz is not very large com-
pared to the Fourier limited width of the pulses. If in
addition, the polarization of one beam is not exactly
π or σ, a single beam (L1, L2 or L′2) can drive a Ra-
man transition with no momentum transfer. This is
the likely mechanism for the production of the conden-
sate III in Fig. 2. In subsequent experiments we have
observed that a better polarizer for L1 substantially
reduces the number of atoms in condensate III.

Detector resolution: In earlier work, we showed that
the single particle resolution was of order 300 µm cor-
responding to a velocity resolution of 0.1 vrec. The two
particle resolution is a factor of

√
2 larger.

Size of the condensate: In the Thomas Fermi limit
and for 3× 104 atoms the chemical potential is µ/h =
3.5 kHz. The Thomas-Fermi radii R are 90 µm and
3.5 µm in the axial and radial directions. Since the
number of atoms is not large, the Thomas Fermi ap-
proximation is questionable. To go beyond that ap-
proximation we calculate the BEC profiles numerically,
by solving the Gross-Pitaevskii equation. The deduced
profile only differs from the Thomas-Fermi one by the
appearance of wings in the profile along the radial axes.
This makes the velocity distribution of the condensates
slightly different. Our numerically estimated rms ve-

locities given in the main text are about 2h̄/mR.
In addition to governing the width of the correla-

tion functions, the quantity vrms should determine the
thickness of the scattering sphere. We observe an rms
width of 0.08 vrec averaged over the detected part of the
sphere, close to the value of vrms

yz (0.091 vrec). Along
the x direction the thickness of the sphere should be
smaller corresponding to vrms

x (0.0044 vrec), but the
presence of the unscattered condensates renders that
direction inaccessible. Thus the measured thickness of
the sphere corroborates our estimate of the size and
velocity distribution of the source.

Definition of g(2)(V): Our histogramming procedure
to find the correlation function for back to back pairs
corresponds to first calculating the averaged unnormal-
ized correlation function G(2):

G(2)(V) =
∫

d3V1 G(2)(V1,−V1 + V) (1)

For collinear pairs we compute

G(2)(V′) =
∫

d3V1 G(2)(V1,V1 + V′) (2)

These results are normalized as explained in the main
text to obtain g(2)(V) and g(2)(V′).

Comment on Fig. 3: The figure plots a projected and
averaged correlation function. This procedure tends to
reduce the peak heights. The plotted curve in each
panel is a Gaussian with a width determined by the
3D fit and a height determined by fitting the height of
the averaged and projected data.

In the second panel of Fig. 3 a (the y axis), the
points lie systematically above the line. This may be
due to the fact that because of our elimination of the
areas around the condensates, most of the data for the
y direction comes from points close to the y− z plane.
This means that the main contribution to the corre-
lation data along y comes from different points along
the radius of the sphere. Since the thickness of the
sphere is of similar shape and size as the correlation
function itself, the normalization has the same shape
as the correlation data rendering the normalization of
the wings of the curve very sensitive to noise. Thus the
correlation functions along x and z give a better view
of the quality of the data. The fit however makes use
of all the data points at once and suffers less from this
problem.


