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We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive,
time resolved, single atom detector. In analogy to quantum optics, the process can also be thought
of as spontaneous, degenerate four wave mixing of de Broglie waves. We find a clear correlation
between atoms with opposite momenta, demonstrating pair production in the scattering process.
We also observe a Hanbury Brown and Twiss correlation for collinear momenta, which permits an
independent measurement of the size of the pair production source and thus the size of the spatial
mode. The back to back pairs occupy very nearly two oppositely directed spatial modes, a promising
feature for future quantum optics experiments.

PACS numbers: 34.50.-s, 03.75.Nt

Recent years have seen the emergence of “quantum
atom optics”, that is the extension of the many analo-
gies between atom optics and traditional optics to the
quantum optical domain in which phenomena like vac-
uum fluctuations and entanglement play a central role.
In optics the advent of correlated photon pairs [1] has
provided a fruitful avenue of investigation, with exam-
ples including single photon sources and entangled states
[2]. Partly inspired by this work, there have been many
proposals concerning atom pairs, especially the produc-
tion and observation of entanglement [3, 4, 5, 6, 7].
Many authors have also theoretically investigated other
aspects of the pair production mechanism in both atomic
collisions and in the breakup of diatomic molecules
[7, 8, 9, 10, 11, 12, 13].

As emphasized in Ref. [4], pair production can be stud-
ied in two limits. If many atoms are created in a sin-
gle mode, stimulated emission of atoms is important,
and one can speak of two mode squeezing in analogy
with Ref. [14]. The opposite limit, in which the occupa-
tion number of the modes is much less than unity, cor-
responds to the spontaneous production of atom pairs,
entangled either in spin or momentum in analogy with
Ref. [15, 16]. Experiments on stimulated atomic four
wave mixing [17, 18, 19] and on parametric amplifica-
tion in an optical lattice [20, 21] are in the first limit,
and pairs of “daughter BEC’s” with opposite velocities
have been clearly observed. Experiments in the regime of
individual atom pairs include the many experiments in-
vestigating the scattered halo in collisions of cold atoms
either in the s-wave regime [22, 23, 24] or for higher par-
tial waves [25, 26]. None of these experiments however,
has demonstrated correlated pairs. The only evidence
of atom pair production with cold atoms has been re-
ported in absorption images of atoms from the breakup
of molecules near a Feshbach resonance [27].

Here, we report on the observation of individual atom
pairs with opposite velocities produced in the collision

FIG. 1: (Color online) (a) View of the magnetically trapped
condensate (in the mx = 1 state) and the three laser beams
which create two cigar shaped counterpropagating free con-
densates (in the mx = 0 state) by σ−/π Raman transfers
induced by L1−L2 and L1−L′

2 respectively (see inset). L1 is
π−polarized (along x) while L2 and L′

2 are σ−-polarized. (b)
Representation in velocity space of the expected atomic den-
sity after the collision. The scattered atoms are on a sphere
and the remaining condensates, pancake-shaped after expan-
sion, lie on the edge of the sphere along the x axis.

of two condensates. A time and position resolved, sin-
gle atom detector [28] permits us to reconstruct the 3
dimensional distribution of the scattered atoms: a spher-
ical shell in velocity space. We also reconstruct the two-
particle correlation function in 3D and find a strong cor-
relation between atoms emitted back to back. This pro-
cess can be interpreted as a spontaneous four wave mix-
ing process constrained by a phase matching condition
as in the non linear optical analog which produces twin
photons [2]. It can also be seen as the result of pairwise
elastic collisions between atoms, constrained by momen-
tum conservation. We measure the width of the velocity
correlation function for a back to back atom pair and
show that it can be roughly understood from the uncer-
tainty limited momentum spread of the colliding BECs.

This interpretation is confirmed by the observation of
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the velocity correlation function for two atoms scattered
in the same direction. This latter effect, predicted in
Refs. [7, 10, 13], is another manifestation of the Hanbury
Brown-Twiss effect (HBT). As in high energy collisions
[29], the effect allows us to measure the size of the colli-
sion volume.

The fact that the width of the HBT peak is close to
that of the back to back correlation confirms that for a
given atom on the collision sphere, its partner is scattered
into a single mode of the matter wave field. This observa-
tion is crucial for future experiments in which one would
like to bring pairs back together in order to confirm their
entanglement in the spirit of Ref. [16] or observe other
quantum effects [30].

We produce condensates of 104
− 105 atoms in the

mx = 1 sublevel of the 23S1 state of metastable helium
(He*). The condensates are stored in a cylindrically sym-
metric magnetic trap with axial and radial trapping fre-
quencies of 47 Hz and 1150 Hz respectively. The bias
field is 0.25 G in the x direction (see Fig. 1), and defines
the quantization axis. The uncertainty limited velocity
spread of the colliding atoms is thus anisotropic and we
calculate it numerically using the Gross-Pitaevskii equa-
tion [31]. For a condensate with 3 × 104 atoms, we find
rms axial and radial velocity spreads of vrms

x
= 0.0044 vrec

and vrms
yz

= 0.091 vrec, where vrec = 9.2 cm/s is the sin-
gle photon recoil velocity, ~k/m where k is the photon
wavevector and m is the atomic mass. The spread in
these values due to the spread in condensate number is
about ±20 %.

To generate two colliding Bose-Einstein condensates,
we use two stimulated Raman transitions with different
momentum transfers, produced by phase coherent laser
beams L1, L2 and L′

2, as shown in Fig. 1 [31]. These
transitions have two purposes: first they transfer atoms
to the magnetic field insensitive state mx = 0 so that
they freely fall to the detector and second, they sepa-
rate the condensate into two components with velocities
vrec(e1 ± e2), where e1 and e2 are the unit vectors along
the propagation axes of the laser beams L1 and L2 re-
spectively. The beams are pulsed on for a duration of
∼ 500 ns and couple about 60 % of the atoms to the
mx = 0 state. We do not switch off the magnetic trap,
therefore atoms remaining in mx = 1 stay trapped. The
two colliding condensates travel with a relative velocity
of 2vrec, at least 8 times larger than the speed of sound
in the initial condensate. This ensures that elementary
excitations of the condensate correspond to free particles.
Since they are no longer trapped, the two colliding con-
densates expand radially, reducing the collision rate. A
numerical model [8], assuming an expansion identical to
that of a single condensate with the same total number of
atoms, shows a roughly exponential decrease in the pair
production rate with a time constant of ∼ 150 µs.

After the collision, atoms fall onto a 8 cm microchan-
nel plate detector placed 46.5 cm below the trap center.

This detector measures the arrival time of the atoms and
their positions in the x−y plane [28, 32]. Figure 2 shows
successive 2.4 ms time slices showing the atom positions
as they cross the detector plane. The time of flight for
the center of mass to reach the detector is 320 ms. Since
this time of flight is large compared to the collision du-
ration, and the observed patterns are large compared to
the collision volume, the observed 3D atom positions ac-
curately reflect the velocity distribution after collision.
In the following, we will only refer to the velocities of the
detected atoms.

FIG. 2: (Color online) (a-i) Images of the collision of two
condensates. Each frame represents a 2.4 ms time slice of the
atomic cloud as it passes the plane of the detector (x − y).
150 shots have been averaged to obtain these images. The two
colliding condensates I, II and the collision sphere are clearly
visible. Other features visible in the images are discussed in
the text. The axes are marked in units of the recoil velocity.

In Fig. 2, one clearly sees a spherical shell of radius
of vrec, represented by circles of varying diameter. In
the mid plane of the sphere one can see the unscattered,
pancake-shaped condensates I, II which locally saturate
the detector. Other features are also visible in Fig. 2. In
frames (a, b) one sees a condensate, III, which underwent
no momentum transfer, possibly due to the imperfect po-
larization of the Raman beams which can produce an off
resonant, single beam Raman transition [31]. A fourth
condensate, IV, probably resulting from four-wave mix-
ing [17] of condensate III and the main unscattered con-
densates I, II is visible in frames (h,i). Frames (b,c) show
a collision sphere due to the collision of I with atoms re-
maining trapped in mx = 1 and with condensate III.
The two spots within the sphere in frames (d-f) are not
understood.
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To avoid effects of local saturation of the detector in
our analysis, we exclude regions around the 4 conden-
sates, representing about 40 % of the sphere. On the
remaining area of the sphere we detect between 30 and
300 atoms on each shot, with an average of about 100
per shot. Assuming a detection efficiency of 10 % [32],
this means that ∼ 5 % of the atoms are scattered from
the two condensates. This number is consistent with the
expected s−wave cross section [33] and the estimated
evolution of the density during the collision.

We examine the pair correlation function for atoms in
back to back directions by constructing, within the set
of all the scattered atoms in one shot, a three dimen-
sional histogram containing all the pairs with a velocity
sum V = V1 + V2 close to zero. We then sum the his-
tograms over 1100 shots. Another histogram containing
all the pairs of the sum of all shots gives the accidental
coincidence rate for uncorrelated atoms and is used as a
normalization. We thus recover the normalized second
order correlation function, averaged over the sphere [31],
g(2)(V) of the distribution of relative velocities of atom
pairs on the sphere. Figure 3(a) shows the behavior of
g(2)(V) around V = 0 projected along the three space
axes. The peak indicates that, given the detection of an
atom on the sphere, there is an enhanced probability of
detecting a second one on the opposite side. Cartesian
coordinates are best suited to plotting the data because
of the competing spherical symmetry of the scattering
process and the cylindrical symmetry of the source.

To analyze these results further, we perform a three-
dimensional Gaussian fit to the normalized histogram :

g(2)(Vx, Vy , Vz) = 1 + η e
−

Vx
2

2σx
2 −

(Vy+Vz)2

2σyz
2 . (1)

The fit gives ηBB = 0.19± 0.02, σBB
x

= 0.017± 0.002 vrec

and σBB
yz

= 0.081 ± 0.004 vrec. The observed width in
the x direction is limited by the rms pair resolution of
the detector, 0.14 vrec [31, 36]. In the y and z directions,
the observed width is close to the uncertainty limited ve-
locity scale vrms

yz
discussed above. It is therefore reason-

able to conclude that the anisotropy in the correlation
function is closely related to the anisotropy of the mo-
mentum distribution in the source. Detailed modelling
accounting accurately for this width is in progress, but
for purposes of this letter, we will simply compare the
width with that of the correlation function for collinear
atoms as described below.

The procedure to construct the correlation function for
nearly collinear velocities (the HBT effect) is the same as
that for the back to back correlation function. Defining
the relative velocity V

′ = V1 − V2 we show in Fig. 3b
the correlation function g(2)(V′) around V

′ = 0. Using
the fitting function, Eq. 1, we find: ηCL = 0.10 ± 0.02,
σCL

x
= 0.016 ± 0.003 vrec and σCL

yz
= 0.069 ± 0.008 vrec.

As in the back to back case, the width in the x direction

FIG. 3: Back to back (panel a) and collinear (panel b) cor-

relation peaks. (a) Projection of g(2)(V = V1 + V2) along
the different axes of the experiment and around V = 0 .
The projection consists in averaging the correlation in the
two other directions over a surface equal to the products of
the corresponding correlation lengths. This averaging makes
the height smaller than the 3D fitted value ηBB = 0.19±0.02.
The peak is the signature for correlated atoms with oppo-
site velocities. (b) Projection of g(2)(V′ = V1 − V2) along
the different axes of the experiment. This peak is due to the
Hanbury Brown and Twiss bunching effect. All velocities are
expressed in units of the recoil velocity.

is limited by the resolution while in the y − z plane it
is close to vrms

yz
. If we think of the HBT effect as giving

a measure of the size of the pair production source, the
width of the collinear correlation function defines the size
of a mode of the scattered matter wave field. The fact
that the back to back and collinear widths are so close,
at least in the directions we can resolve, is further, strong
evidence that, at least in the directions we resolve, the
pairs we produce are in oppositely directed modes.

We now turn to the height of the peaks η. In the
collinear case we expect the value of ηCL to be unity for
a detector resolution much smaller than the peak width.
Since in the x direction the width is clearly limited by
the resolution, a crude estimate for ηCL is the ratio of the
ideal width to the observed one: ηCL

≈ vrms
x

/σx = 0.3.
The discrepancy with the fitted value may have to do
with our crude estimate of the effective source size along
x and therefore of vrms

x
.

In the back to back case, the height of the peak is not
limited to unity. A simple model of the peak height com-
pares the number of true pairs to random coincidences in
a volume ∆V defined by the widths observed in Fig. 3:

1 + ηBB =
true + random

random
= 1 +

V

N∆V
(2)

Here N is the number of atoms scattered on a single shot
(but not necessarily detected) and V is the volume of the
scattering shell. A rough estimate of ∆V/V is 1/1400.
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As mentioned above, we detect on average 100 atoms on
the analyzed 60 % of the sphere. Assuming again a quan-
tum efficiency of 10 %, a rough estimate of the average
number N is 1700 so that we find ηBB

≈ 0.8 which gives
the correct order of magnitude. We emphasize that ∆V
is limited by the detector resolution in the x direction
and is therefore about 10 times larger than the volume
corresponding to a single mode. Thus as stated in the
introduction, the number of scattered atoms per mode is
small compared to unity, and we are in the separated en-
tangled pair production regime. We can verify the 1/N
dependence of Eq. (2) by binning the data according to
the number of scattered atoms per shot. Dividing the
1100 shots into 3 bins of different atom numbers we do
observe the expected trend as shown in Fig. 4.

FIG. 4: Projections of g(2)(V) along the x axis and around
V = 0. Bin of mean number of detected atoms of (a) 50, (b)
125 and (c) 190.

A detailed model of the pair production process must
include a more careful description of the collision geome-
try of colliding and expanding condensates as well the
effect of the condensates’ mean field on the scattered
atoms, something which is neglected in the above dis-
cussion. A rough estimate of the mean field effect is
found by adding the chemical potential to the kinetic en-
ergy of a scattered atom. This gives an additional veloc-
ity broadening of order 0.03 vrec, not entirely negligible
compared to the observed widths. Several workers are
developing such models. The correlation functions we
observe lend themselves to an investigation of Cauchy-
Schwartz inequalities [2]. A cross correlation (back to
back) greater than an autocorrelation (collinear) violates
a Cauchy-Schwartz inequality for classical fields. Sub-
Poissonian number differences between opposite direc-
tions should also be present [7]. A future publication
will discuss these aspects of the experiment.
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