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Abstract

A new algorithm has been developed to compute low Mach Numbers supercritical fluid flows. The algorithm is applied
using a finite volume method based on the SIMPLER algorithm. Its main advantages are to decrease significantly
the CPU time, and the possibility for supercritical fluid flow modelisation to use other discretisation methods (such
as spectral methods and/or finite differences) and other algorithms such as PISO or projection. It makes it possible
to solve 3D problems within reasonable CPU time even when considering complex equations of state. The algorithm
is given after first a brief description of the previously existing algorithm to solve for supercritical fluids. The side
and bottom heated near critical carbon dioxide filled cavity problems are respectively solved and compared to the
previously obtained results.

1. Introduction

In the last decade, numerous numerical works
have been devoted to the modeling of supercritical
fluids (SCF)[1,2,3,4,5,6,7], especially near their gas-
liquid critical point. In fact, such fluids exhibit quite
unusual properties, behaving as highly expandable
gases with liquid-like density. An important point
which has been pointed out is the apparition of
the so-called piston effect in a closed supercritical
fluid cell heated on a wall, where this piston ef-
fect acts like a fourth mode of transport of energy.
As a matter of fact, Onuki and al [1] pointed out
the thermodynamic importance of the adiabatic
heating while a more detailed hydrodynamic mech-
anism of thermalization was proposed by Zappoli
and al [2]. Close to the sample wall, heat diffusion
makes a thin hot boundary layer expand and com-
press adiabatically the rest of the fluid. A spatially
uniform heating of the bulk fluid occurs [1]with a
thermalization which should process at the velocity
of sound [2]. Simultaneously, some dedicated ex-
periments [8,9,10] have evidenced the existence of
minute (a few µm/s, see [10]) but really efficient

flows at the border of the expanding diffusive layer
and compressed bulk fluid, independently of the
closed geometries under consideration [10]. Such
an effect is accounted for into the transport equa-
tions through source terms, which are non-linearly
related between density, temperature and pressure,
and a real equation of state of supercritical fluid.

The various research who have been conducted
while treating critical fluids have been done at
very low mach numbers Ma (where Ma= flow ve-
locity/speed of sound). Depending on the Mach
number and on the transient or not character of the
flow, depending on the type of fluid, ideal or very
expandable as supercritical fluids are, the relative
strength of the coupling of mass, momentum, en-
ergy and equation of state can be very disparate
and one cannot use an universal efficient method for
all the range of Mach number. As a matter of facts
the dynamic coupling with pressure as introduced
in high velocity flows “propagates” by the equation
of state to the work of pressure forces in the energy
balance because of the strong pressure gradient. In
the case of very low velocity flows of ideal gazes
this term is vanishing and the energy balance is
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mainly governed by heat diffusion while the mo-
mentum balance is that of a non compressible fluid
in the Boussinesq approximation. However when
it came necessary to compute unsteady flows of
very expandable fluids like near critical fluids, new
problems arose. These fluids are characterized by
diverging isothermal expansion coefficient, isother-
mal compressibility, thermal conductivity and heat
capacity at constant pressure, their exponent being
such that the heat diffusion goes to zero when near-
ing the critical point of the phase diagram. Their
isentropic compressibility, linked to the velocity of
sound which goes to zero very slowly, remains com-
parable to that of ideal fluids. This is why the term
“hyper compressible fluids” as often encountered for
supercritical fluid can be misleading and it is better
to say “hyper expandable fluids”. This mean first
that the coupling between velocity and pressure is
still very weak in the momentum balance equation.
However due to the diverging isothermal expansion
coefficient, the equation of state is no longer a pas-
sive link between density, pressure and temperature
since it makes the density variations in heat diffu-
sion layer to be several order of magnitude larger
than the temperature ones. Accordingly, the term
of the energy balance which represents the work of
the pressure forces due to the deformation of a fluid
element during its motion becomes prominent, as it
is in high velocity ideal fluid flows. The consequence
of this fact was the numerical difficulties encoun-
tered during the first attempts to calculate heat
propagation by thermoacoustic coupling in super-
critical fluids. In supercritical fluids where we work
in a closed geometries, the heat input generates a
piston type effect in which the isentropic compres-
sion due to the slow motion generated by this piston
effect is modified by acoustic waves. These waves
propagate back and forth many times, because they
are reflected at the walls of the domain. In that
problem, we have one length scale, let say domain
size, and two times scales: the long time it takes the
slow diffusive flow to travel one length scale and the
short time it takes an acoustic waves to travel one
length scale. Therefore, the numerical approaches
have opted for two solutions to completely treat
heat transfer phenomena: the first one considers
the simulation in time of the order of acoustic time
and remains appropriate to account for initial heat-
ing period, while the second one accounts for time
higher than the piston effect time up to diffusive
time. In the first case, the full transport equations
are taken without any approximation, whereas in

the second case in order to have in the numerical
algorithm time steps which are not drastically small
(in the order of acoustic time), one has to resort to
the low mach number filtering approximation [3].
The low mach number filtering decouples the den-
sity from the dynamic pressure which is the pressure
part dependent both on space and time [11,12,13].
The other pressure part refers as a thermodynamic
pressure in the following text and it is a part de-
pendent only in time, except when its accounts for
a possible local contribution due to the hydrostatic
pressure which plays a significant role in supercrit-
ical fluids under gravity field, even for very small
heights of the cell [5]. As a consequence the numer-
ical algorithms chosen have been limited to finite
volume methods which require excessive amount
of CPU time due to the necessary iterative scheme
for coupling all equations, one has to keep in mind
that due to the singularities arising near the critical
point direct methods of resolution have failed [7].

In this paper we present an algorithm which de-
couples at each time step the energy equation and
the equation of state from the momentum and mass
conservation equations. This decoupling brings a
substantial reduction of the CPU time enabling a
more straightforward extension to 3D modeling. It
also permits to use other methods than finite vol-
umes, i.e. finite differences and spectral methods,
enables one to use besides SIMPLE and SIMPLER
algorithms[14], more direct algorithms such as PISO
[15] or a modified projection technique [16], and fi-
nally gives the possibility to extend simulation us-
ing any complex equation of state (EOS). The algo-
rithm is also applicable to several situations encoun-
tered in low mach numbers flows as for example in
subsonic combustion problems, or, more generally,
in flows with velocities much smaller than speed of
sound but having important density variation with
temperature.

The paper is organized as follows: Section 2 de-
scribes the previous algorithm used in the model-
ing of SCF under the low Mach number approxima-
tion and then describe the new algorithm. Section
3 shows numerical validation for two typical exam-
ples, before concluding in Section 4.

2. Numerical algorithm and Low mach

number filtering

In the present case, where we interest ourselves to
critical fluids, we have to point out first the major
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difficulties which arise when approaching the critical
point. Going to the limit close to the critical point,
the main physical properties are diverging, terms
such as the pressure work in the energy equation
are becoming as in compressible flows most leading
terms and are in fact the terms in the equations re-
sponsible for the “piston” effect with a uniform rise
of the temperature in the bulk for closed domains[1].
In addition, the most straightforward equation of
state which we can use to describe these real flu-
ids is the van der Waals equation of state which is
non linear and for which a direct resolution is not
possible close to the critical point due to the fact
that this equation degenerates close to the critical
point[7]. Therefore one has to use iterative method
to solve for the density, the thermodynamic pres-
sure and the temperature. The convergence for this
triplet (P − ρ − T ) becomes quite slow due to the
above and due to the fact also that in order to ob-
tain the pressure work term in the energy equation,
we have to obtain the divergence of the velocity field
through the solving of the momentum equation and
the equation of conservation of mass.

Most of the interesting physics contained in study-
ing the SCF are inherently transient, this brings us
to another aspect which is: even tough we are in an
hyper expandable fluid, the fluid velocities are much
smaller than the speed of sound for the cases we
would like to consider, i.e. small temperature pertur-
bations of such fluids. Therefore another difficulty
appears which this time puts the stringed on the size
of the time step, the fluids being considered as low
Mach number fluids[11,12,13]. We then encounter
the same difficulties as in low Mach number com-
bustion, where the acoustic pressure waves force the
algorithm for not becoming unstable to adopt small
time steps: these time steps have to satisfy the CFL
condition that requires a time step size smaller than
the grid size times the reciprocal of the largest wave
speed:

∆t 6
∆x

max(c + |v|)
(1)

where c is the speed of sound, v the flow velocity
and ∆x the grid size.

There are two main approaches for solving low
Mach number flows; the first one, is to use com-
pressible solvers (density based)[17]; and the second
one, is in extending incompressible solvers (pressure
based) towards this regime[18]. Both of these tech-
niques will anyway suffer from the pressure acous-
tic waves, in order to alleviate these restrictions on
time step two distinct techniques have been pro-

posed, preconditioning and asymptotic[17,19,20,21].
Preconditioning techniques have many drawbacks
for transient low Mach number flows and therefore
have not been considered in this work. In the asymp-
totic technique or perturbation approach[12], a fil-
tered form of the equations is employed to eliminate
system stiffness. We expand all the variables in Tay-
lor series in power terms of the Mach number, to do
that we assume that the low Mach number asymp-
totic analysis is a regular perturbation problem, i.e.
all flow variables can be expanded in power series
of Ma (flow velocity/speed of sound) as for example
the pressure which can be written as follow:

P (X, t, Ma) = P0(X, t) + Map1(X, t) (2)

+M2
ap2 (X, t) + O

(

M3
a

)

P0, p1 and p2 are called the zeroth- (or leading),
first- and second-order pressure respectively.

The asymptotic analysis of the momentum equa-
tion implies that

∇P0 = 0 (3)

∇p1 = 0 (4)

and it shows that for the purpose of solving the fil-
tered transport equations it is necessary only to re-
tain the second order term in the above expansion
(2) which yield to:

P (X, t, Ma) = P0(t) + M2
ap2(X, t) + O(M3

a ) (5)

Equations (3) and (4) express that the zeroth-and
first order pressure terms in the series expansion of
the total pressure are independent on space and only
dependent on time.

The other variables which are T the temperature,
ρ the density and V the vector velocity with compo-
nents Ui, are expanded in the same manner in terms
of Ma number:

V (X, t, Ma) = V 0(X, t) +MaV 1(X, t)

+M2
aV 2(X, t)

+O(M3
a )

(6)

T (X, t, Ma) = T0(X, t) +MaT1(X, t)

+M2
aT2(X, t)

+O(M3
a )

(7)

ρ(X, t, Ma) = ρ0(X, t) +Mρa1(X, t)

+M2
aρ2(X, t)

+O(M3
a )

(8)

3



Again the asymptotic analysis shows that only the
zeroth order terms have to be retained in equations
(6-8).

Using the above asymptotic expansions and re-
placing them in the transport equations of real flu-
ids with van der Waals equation of state, we obtain
the following dimensional equations (where g is the
gravity vector ):

i) Mass conservation equation:

∂ρ

∂t
+

∂ρUi

∂xi
= 0 (9)

ii) Momentum equation:

∂ρUi

∂t
+

∂ρUjUi

∂xj
= −

∂p2

∂xi

+
∂

[

µ
(

∂Ui

∂xj
+

∂Uj

∂xi

)]

∂xj

−
2

3
µ

∂
(

∂Ui

∂xj

)

∂xi
+ ρg

(10)

iii) Energy equation (written here in term of Cv

and a viscous dissipation term φ, see below):

∂ρCvT

∂t
+

∂ρUjCvT

∂xi
=

∂
[

λ (T )
(

∂T
∂xj

)]

∂xj

−(P0 + aρ2)
∂Ui

∂xi

+φ

(11)

iv) The van der Waals equation of state (with a
and b as fluid-dependent parameters):

P0 + aρ2 =
ρT

1 − bρ
(12)

The van der Waals equation leads to consider the
isochoric specific heat CV to be constant. Jointly
to the use of this above classical equation of state,
the singular behavior of the thermal conductivity λ
(estimated at constant critical density) is approxi-
mated under the mean-field theory as follows:

λ (T ) = λb (T ) + λMF τ−1/2 (13)

where the label MF recalls for the mean-field value
1

2
for the critical exponent of the power law in terms

of τ = T−Tc

Tc
[T (Tc) is the (critical) temperature]. λb

is a background estimated far away from the critical
point. The viscosity coefficient µ (estimated at con-
stant critical density) is approximated by its back-
ground contribution in the mean field approxima-
tion. Therefore, the viscous dissipation is written as:

φ = 2µ

[

(

∂Ui

∂xi

)2
]

+ µ

[

(

∂Ui

∂xj
+

∂Uj

∂xi

)2
]

−
2

3
µ

[

(

∂Ui

∂xi
+

∂Uj

∂xj

)2
]

More generally, we note that the van der Waals
equation for thermodynamic properties as mean
field approximations for transport properties does
not only give us a phenomenological singular behav-
ior for unusual properties such as compressibility,
heat capacity at constant pressure, etc. but also
needs to introduce analytical singular expression for
the transport properties as for example for the ther-
mal conductivity (13). However, we have considered
the isochoric specific heat at constant volume CV

to be constant, as well as the viscosity µ, because,
for both of these two properties, their values are
deduced from background contribution due to the
fact that their critical exponents of divergence are
very low and that they can be neglected for the
values of distances to the critical point we are con-
sidering in our numerical work (τ > 10−4). Even
tough the speed of sound is decreasing when com-
ing close to the critical point, it stays however finite
with values not lower than 50 ms−1, implying that
the Mach number stays of the order of 10−5. There-
fore under the approximation of low Mach number
where the filtering of acoustic waves means that
the time step in the numerical algorithm is bound
only by the flow velocity as opposed to the speed
of sound, the above supercritical fluid equations
have been modeled exclusively with finite volume
iterative methods[14]. The choice for such iterative
methods was quite natural due to the fact that the
main physical properties have strong temperature
variations, and that the divergence term in the en-
ergy equation was the main term in exhibiting the
so-called “piston” effect. In supercritical fluids, we
cannot avoid the iterative process coupling the ther-
modynamic pressure, the temperature and the den-
sity. This has implied that other numerical meth-
ods such as spectral methods[16], finite differences
and schemes such as PISO or projection methods
have been disregarded. In this paper, we will start
from the previously existing numerical algorithm
[3]described below to introduce a new algorithm
which takes fully in account the low Mach number
nature of the flow in closed cavities for supercritical
fluids, and through an Adams-Bashforth scheme
[16,24,25,26,27] enables us to avoid the iterative
process for the momentum and continuity equation
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leading to a substantial saving in CPU times.

2.1. Description of algorithm 1

We have first developed Cartesian and Polar
three dimensional codes where the discretisation
of equations (9-12) used a finite volume technique
[14]leading to a finite set of algebraic equations that
can be solved iteratively in a segregated manner.
The solver chosen to accomplish such task are the
BICGSTAB for temperature and velocities, and a
preconditioned conjugate gradient for pressure. To
couple momentum equation to continuity equation
several methods are available, but when turning to
finite volume, the most common methods used are
the SIMPLE family type and its derivatives (SIM-
PLEST, SIMPLEC, SIMPLER, PISO). The tem-
poral scheme for convective part has several choices
which are: hybrid scheme, power law scheme, Quick
family schemes. For the examples shown later in
this paper, they have been treated using the power
law scheme. The SCF equations are inherently tran-
sient and imply to choose an algorithm which will
optimize the resolution at each time step. The ideal
candidate should be a modified PISO algorithm (a
predictor – corrector algorithm close in essence to
the projection method of Chorin[21,16]) where one
does not need to iterate at each time step. Unfortu-
nately as said earlier, the strong coupling between
energy, density and thermodynamic pressure needs
an iterative scheme and PISO cannot cope with
the SCF system of equations for reasonable time
steps without an outer iterative loop. In our case,
the SIMPLE and SIMPLER algorithms have been
chosen to treat the equations and their algorithm is
rigorously the same as the original algorithms de-
scribed by Patankar[14], the only special treatment
being the solution of the density and the thermody-
namic pressure which is shown hereafter.

The van der Waals equation of state being non
linear, if written as F (ρ) = 0, it has vanishing first
derivative F ′(ρ) near the critical point. The latter
does not allow for a direct solution using methods
such as Newton-Raphson. So we have to resort to
a linearization of the equation of sate and solve the
density iteratively. This done through the following
linearization:

ρk+1 = f(ρk) (14)

With

F (ρ) =

(

P0 + aρ2
)

(1 − bρ)

T
(15)

or

F (ρ) =

(

P0 + aρ2
)

T + b (P0 + aρ2)
(16)

The convergence rate of such linearization can be
found in Accary & Raspo [7].

In order to close the system, we need an equa-
tion to derive the thermodynamic pressure P0. This
equation is obtained through the conservation of
mass as follow:

∫

Ω

ρdΩ =

∫

Ω

ρ0dΩ (17)

Ω being the fluid domain and ρ0 the initial density. It
has been found that internal iterations on equation
(15) or (16) inside the SIMPLER iteration improve
drastically the convergence stability and enables to
take bigger time steps than in the case without inner
iterations. When solving P0 from equation (17) and
using Eq. (16), P0 in the numerator is at iteration
k+1 and P0 in the denominator at iteration k.

We can summarize the different steps of the reso-
lution as follow for each time step:

(i) Solve the density field and the thermodynamic
pressure using a known temperature

(ii) Solve the momentum equations applying SIM-
PLER or SIMPLE algorithm

(iii) Solve conservation of mass
(iv) Construct the divergence term and the viscous

dissipation term going to the energy equation
through the velocity just calculated at step 3

(v) Solve the energy equation with the previously
computed thermodynamic pressure at step 1

(vi) Repeat to step 1 or achieve convergence on a
convergence criteria calculated for each depen-
dent variable

The slowness of the convergence of the triplet
(T, P0, ρ) impacts also on the momentum and
mass conservation equations. It is to speed up con-
sequently the convergence that we have adopted a
new algorithm which is described here after.

2.2. Description of the improved algorithm 2

We will solve first the temperature equation (11)
coupled with the van der Waals equation of state
(12) and the divergence of the velocity. In order to
obtain the divergence of the velocity, we will make
use of the following:
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∇.V =
(1 − bρ) dP0

dt −∇. (λ∇T ) − φ

− (P0 + aρ2) + 2aρ2 (1 − bρ)
(18)

The above relation is obtained by taking the ma-
terial derivative of the equation of state, and then
substituting the appropriate terms from the mass
and energy conservation equations, more details can
be found later in the text equations (21-25). Such a
formulation of the divergence has been used to solve
for low-frequency vibrations in a near critical fluid
and transform the term source in the energy equa-
tion without however changing the algorithm of res-
olution [22,23].

We can notice that all the terms in Eq. (18) can be
calculated using only P0, ρ, and T at the exception
of the viscous dissipation term Φ. In the low Mach
number approximation the viscous term is of second
order in terms of Mach number and can be neglected
in our case, but for sake of generality, we will leave
it in the equations. As described in the previous al-
gorithm 1, the thermodynamic pressure P0 can be
obtained through the conservation of mass Eq. (17),
the density through the van der Waals equation of
state Eq. (12). If we want to have an efficient algo-
rithm we have to decouple the momentum and mass
conservation equations from the state and energy
equation. In order to do that we will resort to an
Adams-Bashforth scheme to linearize the (ρV )

n+1

term in the - convective term and the dissipation
term in the energy equation as follow:

(ρV )
n+1

=
3

2
(ρV )

n
−

1

2
(ρV )

n−1
(19)

φn+1 =
3

2
φn −

1

2
φn−1 (20)

By linearizing only the (ρV )
n+1

instead of the full
convective term including temperature we do not
have to change the schemes previously used for the
convective part (hybrid, power law, quick, smart
etc...). The latter is specially useful for finite vol-
ume methods. Whereas in the spectral methods we
can use the Adams-Bashforth discretisation for the
full advective-convective term, the stability of such
a scheme is discussed in Ouazzani & al[24].

We have now decoupled at each time step the mo-
mentum and mass conservation equations from the
energy and state equations.

It means that through step 1 to 6 at each time
step the temperature can be solved independently of
velocities at time n+1 but rather by using velocities
at time n, n-1.

The new algorithm will be as follow for each time
step:

(i) Solve the density field and the thermodynamic
pressure using a known temperature

(ii) Construct the divergence term using equa-
tion (18) and the viscous dissipation term
described above.

(iii) Solve the energy equation with the previously
computed thermodynamic pressure at step 1,
and use equation (19) for velocities in the con-
vective term.

(iv) Repeat to step 1 until convergence is achieved
on temperature, thermodynamic pressure and
density

(v) if convergence is obtained go to step 6
(vi) Solve the Navier-Stokes equations applying

SIMPLER or SIMPLE algorithm (as shown
in figure 1)

The convergence speed of these equations be-
comes similar to the incompressible equivalent.

By doing in such a manner, we have a better accu-
racy in solving temperature, thermodynamic pres-
sure and density; the piston effect can be shown
without having to solve the momentum equation for
time of the order of piston time. This approach en-
ables us after optimization to solve more easily three
dimensional problems.

In a future paper, we will present a spectral
method resolution of SCF and an extension to 3D
cylindrical problems.

This treatment can be applied similarly with other
equations of state as follow:

Let’s assume that we have the following relation
for the EOS:

F (ρ, P, T ) = 0 (21)

We can then derive this equation and obtain:

dρ

dt

∂F

∂ρ
+

dT

dt

∂F

∂T
+

dP

dt

∂F

∂P
= 0 (22)

Then using the following two equations in equation
(22):

dT

dt
= −

T

ρ

(

∂P

∂T

)

ρ

∇.V +
1

ρ
∇. (λ∇T ) +

φ

ρ
(23)

dρ

dt
= −ρ∇.V (24)

We obtain an equation for the divergence of velocity:

∇.V =
ρdP

dt
∂F
∂P + ∂F

∂T (∇. (λ∇T ) + φ)

ρ
(

ρ∂F
∂ρ + T

ρ

(

∂P
∂T

)

ρ
∂F
∂T

) (25)
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Figure 1. Algorithm 2 organigram

It follows also if another EOS than van der Waals
is chosen that the other physical transport proper-
ties will have also to be redefined accordingly.

3. Numerical validation

For numerical validation purpose, we have chosen
two already existing cases which have been solved
extensively by many authors. These two test cases
are the adiabatic heated cavity from one side [3]and
the 2D Rayleigh-Benard problem in a squared
cavity[4,7,6].

3.1. The 2D adiabatic heated square cavity

We consider the problem of the interaction be-
tween gravitational convection and the piston effect
in a square cavity of 1cm of side dimension filled
with pure CO2 set at 1K above the critical temper-
ature. All its boundaries are thermally insulated ex-
cept the one located at x=0 where the temperature
is increased linearly of 10 mK over a period of 1s.
The results obtained with the two methods are very
close (less than 0.1%) and compare also to the ones
obtained by Zappoli & al [3].

The new algorithm has proved to be more effi-
cient in terms of CPU time and a factor of 4 has
been observed in the case of a mesh of 80 x 80. This
speed up is also due to the fact that the resolution of
the energy equation does not need to recompute at
each iteration the “an” coefficients appearing in the
finite volume discretisation of the differential equa-
tions. The iterative set coupling temperature, den-
sity and pressure can even be improved by a Newton-
Raphson type method. The optimization of this al-
gorithm will be presented in a future work with a
spectral code.

In Fig 2, we present temperature field obtained
at 4.5s. We will not discuss the physics related to
the test cases due to the fact that they have already
been discussed thoroughly in [3]. We can just point
out that we observe a hot spot at the left corner
of the cavity after the 1s heating period and then
it is convected for higher times which confirms the
previous results obtained in [3] and by our work with
algorithm 1 presented above.

Through the examination of the steps in the algo-
rithm, we can see that the piston effect is an adia-
batic effect related to a thermodynamic relation be-
tween the heat supplied to the system and the gener-
ation of a pressure work resulting in a fluid motion.
In the new algorithm, the effect is fully embodied
in the energy equation coupled with an appropriate
EOS and the conservation of mass at each time step.
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Figure 2. Isotemperature at time t=4.5s with algorithm 2.
Distance to the critical point 1K.

3.2. The 2D Rayleigh Benard problem in a square

cavity

In this second test case, we consider the Rayleigh-
Benard [4,7,6] problem which consists in heating
from bottom a square cavity filled with a super-
critical fluid. The fluid is maintained at a constant
temperature in the upper boundary of the cavity
whereas the side boundaries are adiabatic and im-
permeable.

The square cavity is a two dimensional cavity with
10mm sides filled with CO2 on the critical isochore,
initially at 1K above the critical temperature. A
mesh of 70 x 90 is considered with strong refinement
of the mesh at the four walls. The time step is kept
constant at 0.05.

The results in this case agree well with those ob-
tained by Amiroudine & al[4]. In figs 3 & 4, we show
the temperature contours for an increase of 10mK
of the bottom wall, for different times at 6.4s and
8.5s, respectively. We observe the thermal plumes
which appear at the hot and cold walls. The piston
effect generates a cold boundary layer at the top of
the cavity where gravitational instabilities develop
as well as at the heated bottom wall. In figure 5, we
can see the corresponding velocity field at time 8.5s.

In this present case, we have the same speed up
as for the side heated 2D cavity presented above
but furthermore we can increase the time step by a
factor of 10. which leads to a factor of 20 and more

of CPU time gain.
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Figure 3. Isotemperature at time t=6.4s with algorithm 2.
Distance to the critical point 1K. Same results as with al-
gorithm 1 with a timestep 10 times bigger.
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Figure 4. Isotemperature at time t=8.5s with algorithm 2.
Distance to the critical point 1K.
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Figure 5. Velocity Field at time t=6s with algorithm 2.
Distance to the critical point 1K.

4. Conclusion

In this paper, we have developed a new algorithm
to solve low Mach number flows. The algorithm
takes advantage of the low Mach number filtering
by computing the divergence of velocity from the
three combined equations (equation of state, mass
conservation and energy), by doing so and using an
Adams-Bashforth discretisation for the convective
terms as well as for the viscous dissipation term, one
can decouple at each time step the energy equation
from the momentum and mass conservation equa-
tions. This decoupling results in a better stability
of the full algorithm and allows for a substantial
saving of CPU time. Even if time step limitations
are introduced through the CFL condition, these
limitations do not lower the time step as compared
to the fully implicit case which is in fact limited in
the time step size by physical aspects.

The other benefits of such an algorithm are to
be able to use non iterative methods such as PISO,
as well as other discretisation techniques such as
pseudo spectral techniques, and it is easily applied
to low mach number flows in general (as encountered
in combustion problems). Existing code for ideal gas
law can be easily modified to tackle supercritical flu-
ids and 3D problems can be tackled in a reasonable
amount of CPU times.

One other main reason to introduce such an al-
gorithm for low Mach number critical fluids is to be

able to treat problem with real equations of state
other than van der Waals. These EOS are CPU time
consuming and were not often used whereas now, we
are introducing them in our 2D and 3D finite vol-
ume code.
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