
HAL Id: hal-00142980
https://hal.science/hal-00142980v1

Submitted on 30 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PERCEVAL: a Computer-Driven System for
Experimentation on Auditory and Visual Perception

Carine André, Alain Ghio, Christian Cavé, Bernard Teston

To cite this version:
Carine André, Alain Ghio, Christian Cavé, Bernard Teston. PERCEVAL: a Computer-Driven System
for Experimentation on Auditory and Visual Perception. International Congress of Phonetic Sciences
(ICPhS), 2003, Barcelona, Spain. pp.1421-1424. �hal-00142980�

https://hal.science/hal-00142980v1
https://hal.archives-ouvertes.fr

PERCEVAL: a Computer-Driven System for Experimentation
on Auditory and Visual Perception

Carine André, Alain Ghio, Christian Cavé, and Bernard Teston

Laboratoire Parole et Langage - UMR 6057 CNRS - Université de Provence - Aix-en-Provence, France

E-mail: carine.andre, alain.ghio, christian.cave, bernard.teston… @lpl.univ-aix.fr

ABSTRACT

Since perception tests are highly time-consuming, there is
a need to automate as many operations as possible, such as
stimulus generation, procedure control, perception testing,
and data analysis. The computer-driven system we are
presenting here meets these objectives. To achieve large
flexibility, the tests are controlled by scripts. The system’s
core software resembles that of a lexical-syntactic
analyzer, which reads and interprets script files sent to it.
The execution sequence (trial) is modified in accordance
with the commands and data received. This type of
operation provides a great deal of flexibility and supports
a wide variety of tests such as auditory-lexical decision
making, phoneme monitoring, gating, phonetic
categorization, word identification, voice quality, etc. To
achieve good performance, we were careful about timing
accuracy, which is the greatest problem in computerized
perception tests.

 1. INTRODUCTION

Perception tests are time-consuming, not only because
several speakers and listeners must be used to compensate
for individual variability, but also because measurements
must be repeated many times to allow for statistical
validation of the results. Hence, it is necessary to
computerize in auditory- and visual-perception
experiments.

Different systems are available: PsyScope [1], EXPE[2],
DMDX[3], Inquisit, etc. Generally, such software supports
a wide variety of psychological data-collection methods.
Some are easy to use, especially if they provide a graphic
interface for experimentation. However, such tools are
often designed for specific kinds of experiments derived
from experimental psychology, and they are not suitable
for other fields, particularly not for the phonetic sciences.
In addition, these programs often have to be used with
obsolete operating systems or special-purpose hardware
(response box/sound board), which are always sources of
trouble.

To develop the new version of our experimental package
called PERCEVAL (French acronym for PERCeption and
EVALuation), we set the following constraints:
1 . Ability to simultaneously present visual and audio

stimuli.
2. Response recorded through a standard keyboard or a

response button box.
3. Response time measured with a temporal resolution

of about 1 ms.

4. Maximum flexibility for designing perception tests.
5 . Easy-to-use software with a user-friendly feature

control panel.
6. Compatibility with the collective workstation [4], on

which the system tests up to eight subjects
simultaneously.

7. Up-to-date operating system.

 2. SYSTEM CONSIDERATIONS

The basic system has the following components:

• A standard PC-type computer running under
Windows 98/2000 OS. It is equipped with a SVGA
graphic screen and a multimedia sound board.
• A custom-made button box can be added to record
the subject’s responses. These boxes are built with the
printed circuit board (PCB) of a USB joystick or game
pad. PCBs are inserted in plastic cases with up to 8 push
buttons. These buttons are short stroke, sharp contact, fast
action microswitches specially suited to measuring
reaction times.
• For auditory stimulation, we generally use an audio
amplifier and Beyer BT100 electrodynamic earphones.
They were chosen for their durability, high sensitivity, and
response curves [4].

The system can be used on a portable PC computer.

 3. TIMING ACCURACY

Timing accuracy is important in perception tests. It can be
critical in priming experiments in psychology, for
example, where the delay between two views must be
precisely controlled. Response time is also important. It
can inform us about the difficulty of the task, and it may
be the only information when the effect is saturated [5].

3.1 Why is timing accuracy difficult to control on
computer-driven perception tests?

Controlling and measuring time on computer-driven
perception tests has been studied for a long time
[1,2,3,4,6,7]. Programs that run on a single-task operating
system (e.g. DOS) have the advantage of being able to
perfectly time of the computer-driven test. In fact, in such
an environment, the program runs sequentially without
"long interruptions" and most of the computer’s
computational power is dedicated to the test program. On
the other hand, with multitask operating systems (e.g.
Microsoft Windows), a program may be interrupted for a
long time because the computer shares its computational
power among all applications running at the same time. In
computer-driven perception tests, this phenomenon can be

catastrophic if, for example, the dedicated program is
inactive when the screen has to be refreshed or when the
subject is responding. This can cause timing inaccuracy.

3.2 Why is it necessary to develop packages on
multitask operating systems like Windows?

Programs developed for DOS generally require dedicated
hardware [2]. Most displays or playbacks are written
directly to a specific video or sound card to achieve the
performance required of experimental software. Moreover,
new video and sound cards are being released without
consideration of DOS support, and more generally, recent
PC computers no longer support DOS, which is quickly
disappearing. It is clear that for a new application to have
an acceptable life span, it has to be based on an up-to-date
environment like Windows [3].

3.3 Why are some solutions unable to obtain timing
accuracy?

One way to limit timing inaccuracy on multitask operating
systems is to give a high priority level to the dedicated
program, which means that it is executed frequently in the
computer task list. But even with this precaution, there is
no guarantee that it will not be interrupted for a critical
duration by another high-priority task (e.g. drivers
managing hardware). The use of "timers" may be a
solution for controlling timing accuracy. A timer is a way
to execute a function regularly. For example, it can be
used to detect whether the subject has responded (by
systematic scanning of a response device). But standard
timers running on Microsoft Windows have a resolution of
about 50 ms, which is very poor for precisely measuring
response time. Multimedia timers offer a better resolution
(about 1 ms) but this precision is not guaranteed.

3.4 Why does command latency vary?

Another problem is related to the latency of some
commands. The latency is the delay between the moment
when a command is launched (e.g. changing a view,
playing a sound) and the moment when the command is
actually executed. For example, on a Pentium III 1.2 GHz,
the C command PlaySound("stimulus.wav") to play back a
wave file has a latency of 100 ms. This means that if a
timer that measures response time is started just before the
PlaySound instruction, it will have an error of about 100
ms because the actual audio stimulus started 100 ms later
than planned. One solution could be to measure all the
critical latencies once and for all, and take them into
account in the results. But the problem is more
complicated. In fact, these latencies can change,
depending on a large set of factors, which means that this
solution is inadequate.

3.5 How can timing accuracy be obtained?

First of all, the computer in charge of the perception test
must be dedicated to this job only during the test [3]. The
operator must be sure to remove all tasks that can use up
processing time (e.g. anti-virus, network, CD-Rom). But
this is still not enough.

To obtain timing accuracy on the Perceval workstation, we
use a well-suited technology called DirectX. DirectX
provides a set of programming interfaces for designing
high-speed applications while obtaining the benefits of
direct access to the hardware. This software development
kit includes several components. DirectSound provides
low-latency mixing, hardware acceleration, and direct
access to the sound device. DirectDraw allows one to
directly manipulate display memory, hardware blitter, and
the flipping surface support. These two components
provide the capability of reducing the latency of playback
and display functions at a high ratio because they are close
to the hardware. Moreover, it is possible to prepare a set of
time-consuming tasks before the real stimulation. For
example, as a first step (preliminary), one can load a wave
file or an image file in memory and then, as a second step
(the real test), play back the sound and flip the screen
image very rapidly. For comparison (see section 3.4), on a
Pentium III 1.2 GHz, the DirectSound function “Play” has
a latency of 0.5 ms. The third component used is
DirectInput, which enables an application to gain access to
input devices, including the mouse, keyboard, and
joystick, even if the application is in the background. This
capability can be implemented by using buffered data,
which is a record of events that are stored until the
application retrieves them.

 4. MODULAR ARCHITECTURE

The Perceval package includes several specialized
applications: stimulus creation tools, experiment design
wizard, subject manager, test module, scoring module, etc.

Tests are controlled by scripts, a technique already used in
the S.O.A.P. system [7]. In fact, the system’s core software
resembles that of a lexical-syntactic analyzer, which reads
and interprets the script files sent to it. The execution
sequence (trial) is modified according to the commands
and data received. This type of operation provides a great
deal of flexibility and supports a wide variety of tests. A
script is a text file composed of different sections:
information, data, trial events, and settings (Figure 1).
These files can be edited manually by an advanced user
who knows the syntax. A novice can also follow the
instructions given by an application design wizard with a
menu-driven interface.

For each subject, a response file is generated containing
the necessary information for processing the data. These
files are written in table format to make it easy to export
them to spreadsheets (Figure 2) or statistical analysis
packages.

 5. EXPERIMENTAL DESIGN AND RESULTS

5.1 Script example adapted to minimal pairs (Figure 1)

This test consists in playing the sounds, displaying word
pairs, and recording the subject’s responses. The results
can be improved by including the features and contexts of
the consonants tested.
Usually, a script is divided into four major sections:

[INFORMATION]
AUTHOR=A. Ghio & C. André
DATE=14/01/2003
TITLE=Paires Minimales réduites
VERSION=3.0.2.0

[TRIAL_DATA]
TRIAL1=<1) main 2)bain> <bain.wav> <Choix2> <-nasal> <E~>
TRIAL2=<1)bain 2)main> <main.wav> <Choix2> <+nasal> <E~>
TRIAL3=<1)bal 2)val> <bal.wav> <Choix1> <+interrompu> <aa>
TRIAL4=<1)val 2)bal> <val.wav> <Choix1> <-interrompu> <aa>
… #1 #2 #3 #4 #5

[TRIAL_EVENTS]
X10=BEGIN
X20=DISPLAY_TEXT<#1>
X30=PLAY_SOUND<#2>
X40=GET_INPUT<DELAY 2000>
X50=END

[SETTINGS_GROUP1]
INSTRUCTION_FORMAT=<Pairemin.txt> *1
TRAINING_ORDER=<1 3 4 6> *2
TRIAL_ORDER=<RANDOM> *3
TEXT_FORMAT=<SIZE 30><BKCOLOR 0x0000FF><TXTCOLOR 0xFFFF00><POSITION HCenter|VCenter> *4
INPUT=<Choix1 CK_1 VK_NUMPAD1 BK_01><Choix2 CK_2 VK_NUMPAD2 BK_02> *5
CORRECT=<#3> *6
PAUSE=0 *7
RESPONSE_FORMAT=<$SUBJECT><$TRIAL><#1><#2><#3><$RESPONSE><$ERROR><#4><#5><$RTIME> *8

Figure 1. Script example

The [INFORMATION] section contains general
information: the name of the author, the creation date,
the version used, the title given.
The [TRIAL_DATA] section defines all data one needs
during the experiment for each trial executed. Each line
of data is divided into columns.
The [TRIAL_EVENTS] section defines the event
sequence for each trial played. The first order in this
section is always BEGIN and last is always END.
The command on line X20 displays the contents of the
first column (#1) of the trial data on the screen. In the
above example, if the trial played is TRIAL1, then
1)main 2)bain is displayed.
The command on line X30 plays the wave file located in
the second column (#2) of the trial data. In our example,
if the trial played is TRIAL1, the sound bain.wav is
played.
The command on line X40 starts the recording of the
response. In this example, two seconds are left for the
subject to respond.

The [SETTINGS_GROUP1] section defines the
experiment configuration (display, trial order, input,
pause, etc.). Several groups can be included in the same
script.

At the beginning of the experiment, instructions are
displayed on the screen. The instructions are contained
in a text file (*1).
A training phase can be executed. The order of the trials
to be run is defined in *2.
During the actual test phase, the order of the trials can be
fixed or randomized (*3).
The format (font, size, etc.) of the text displayed on
screen is set in *4.
The authorized keys for responding are listed in *5: a
standard keyboard or a button box can be used for the
test.
Depending on the type of test, the concept of
correct/incorrect response can be introduced (*6). In our

example, this information is in the third column (#3) of
the trial data.
The pause value (*7) defines the time between trials.
The results written in the response file are formatted in
*8. Figure 2 shows an example of a response file
obtained with the previous script (Figure 1).

Figure 2. Response file for minimal pairs (Excel file)

A: $SUBJECT specifies the subject code.
B: $TRIAL defines the trial number.
C: #1 is the contents of the first column of the trial data

for that trial. In this example, it is the text displayed.
D: #2 is the contents of the second column of the trial

data for that trial. In this example, it is the sound
played.

E: #3 is the contents of the third column of the trial data
for that trial. In this example, it is the correct
response.

F:$RESPONSE is the response given by the subject.
G:$ERROR specifies whether the subject’s response is

correct or incorrect (“ok” if it correct, “err” if not).

H: #4 is the contents of the fourth column of the trial
data for that trial. In this example, it is the consonant
feature.

I: #5 is the contents of the fifth column of the trial data
for that trial. In this example, it is the vocalic context
of the consonant.

J: $RTIME is the subject’s reaction time.

5.2 Example of a script for varying the volume of a
sound (Figure 3)

The subject must determine whether the sound heard
(aaa.wav) seems strong or weak (Fort/Faible). We vary
the volume of the sound using the VOLUME order. In the
example shown in Figure 3, if the trial executed is the
first one, the sound is played as it was recorded. If the
trial is the second one, the sound is played at 3 db less
than it was recorded.
[TRIAL_DATA]
TRIAL1=<0>
TRIAL2=<-3>
TRIAL3=<-6>

[TRIAL_EVENTS]
X10=BEGIN
X20=DISPLAY_TEXT <1)Fort 2)Faible>
X30=PLAY_SOUND <aaa.wav><VOLUME #1>
X40=GET_INPUT
X50=END

Figure 3. Variation of a sound’s volume

5.3 Example of a script using gating (Figure 4)

The subject listens to one of the two words (“bêle” or
“bête”) for a variable amount of time (gating). The
beginning (TIME_BEGIN) and the end (TIME_END) of
the sound listening time are defined. Here, the sound is
played between the beginning and ending times defined
by the third parameter in the trial data list.
[TRIAL_DATA]
TRIAL1=<bêle><bele.wav><200>
TRIAL2=<bêle><bele.wav><250>
TRIAL3=<bêle><bele.wav><275>
TRIAL4=<bête><bette.wav><200>
TRIAL5=<bête><bette.wav><250>

[TRIAL_EVENTS]
X10=BEGIN
X20=DISPLAY_TEXT<1) bêle 2) bête>
X30=PLAY_SOUND<#2><TIME_BEGIN 0><TIME_END #3>
X40=GET_INPUT<DELAY 2000>
X50=END

Figure 4. Use of gating

5.4 Example of a script using feedback (Figure 5)

The subject sees images with an associated word, and
must decide whether the word corresponds to the image.
A sound is emitted to tell the subject whether the answer
given was right or wrong (sound feedback).
[TRIAL_DATA]
TRIAL1=<catre><faute><catre.bmp>
TRIAL2=<glace><faute><glace.bmp>
TRIAL3=<horloche><faute><horloche.bmp>
TRIAL4=<sourus><faute><sourus.bmp>

[TRIAL_EVENTS]
X10=BEGIN
X20=DISPLAY_FILEBMP<#3>
X40=GET_INPUT<DELAY 3000>
X50=END

[SETTINGS_GROUP1]
…
SOUND_FEEDBACK=<POSITIVE clap.wav><NEGATIVE glass.wav>

Figure 5. Use of feedback

 6. CONCLUSION

The computer-driven speech assessment system we
developed is used to evaluate auditory-lexical decisions,
phoneme monitoring, gating, phonetic categorization,
word identification, voice quality, speech intelligibility,
and so on. It was designed to automate the various
operations involved in setting up experiments, presenting
stimuli, and recording subject responses on a single PC
computer. The experience acquired during the
development process will be applied to enhancing the
performance and reliability of our multiple-listener
workstation, which can test as many as eight subjects at
a time.
PERCEVAL is available on the website of the “Speech
and Language Laboratory” at the following address:
www.lpl.univ-aix.fr

REFERENCES

[1] J.D. Cohen, B. Mac Whinney, M. Flatt, J. Provost,
“PsySCope: a new graphic interactive environment
for designing psychology experiments”, Behavioral
Research Methods, Instruments and Computers,
25(2), pp 257-271, 1993.

[2] C. Pallier, E. Dupoux, X. Jeanin, “EXPE: an
Expandable Programming Language for On-line
Psychological Experiments”, Behavioral Research
Methods, Instruments and Computers, 29(3), pp
322-327, 1997.

[3] K. Forster, J. Forster, “DMDX: A Windows Display
Program with Millisecond Accuracy”, Behavioral
Research Methods, Instruments and Computers
(forthcoming), 2003.

[4] C. Cavé, B. Teston, A. Ghio, P. Di Cristo, “A
Computer-Driven System for Assessing Speech
Quality and Intelligibility” Acta Acustica, vol. 84, pp
157–161, 1998.

[5] E. Mora, C. Cavé, E. La Cruz, L. Pietrosemoli, S.
Clairet, “Some corpora in (Venezuelian) Spanish for
Rapid TTS Evaluation Using a Sentence Verification
Task”, Proc. ICPHS 2003 (forthcoming), 2003.

[6] W.J. MacInnes, T.L. Taylor, “Millisecond Timing on
PCs and Macs”, Behavioral Research Methods,
Instruments and Computers, 33(2), pp 174-178,
2001.

[7] P. Howard-Jones, SAM Partnership, “'SOAP' - A
Speech Output Assessment Package for Controlled
Multilingual Evaluation of Synthetic Speech”,
Proceedings of Eurospeech 91, vol. 1, pp 281-283,
1991.

