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Abstract

Muscle-based models of the human face produce high quality animation

but rely on recorded muscle activity signals or synthetic muscle signals that

are often derived by trial and error. In this paper we present a dynamic in-

version of a muscle-based model (Lucero and Munhall, 1999) that permits

the animation to be created from kinematic recordings of facial movements.

Using a nonlinear optimizer (Powell’s algorithm) the inversion produces a

muscle activity set for 7 muscles in the lower face that minimize the root

mean square error between kinematic data recorded with OPTOTRAK and

the corresponding nodes of the modeled facial mesh. This inverted muscle ac-

tivity is then used to animate the facial model. In three tests of the inversion,

strong correlations were observed for kinematics produced from synthetic mus-

cle activity, for OPTOTRAK kinematics recorded from a talker for whom the

facial model is morphologically adapted and finally for another talker with the

model morphology adapted to a different individual. The correspondence be-

tween the animation kinematics and the 3D OPTOTRAK data are very good

and the animation is of high quality. Because the kinematic to electromyo-

graphy (EMG) inversion is ill-posed there is no relation between the actual

EMG and the inverted EMG. The overall redundancy of the motor system

means that many different EMG patterns can produce the same kinematic

output.

PACS number: 43.70.Bk, 43.70.Jt, 43.71.Ma
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INTRODUCTION

In recent years, there has been considerable commercial interest in face modeling for

producing realistic animation in the motion picture and computer games industries, as well

as for teleconferencing and multimedia educational purposes (see Parke and Waters (1996)

for a review). At the same time there has also been interest in facial animation as a research

tool. In the study of speech motor control, models that take into account the geometrical,

physiological and biomechanical characteristics of the face and vocal tract permit tests of

the form and complexity of neural control signals (Laboissière, Ostry and Feldman, 1996).

In speech perception research, facial animation has been used for audiovisual stimulus gen-

eration (e.g., Cohen and Massaro (1990), Cohen and Massaro (1993)). In this application,

animation provides visual stimulus control that cannot be achieved with human actors.

Available animation techniques cover a broad spectrum including key-framing, perfor-

mance animation, physically-based animation and parameterized geometrical models (Parke

and Waters, 1996). Each approach involves a trade-off between computational cost and real-

ism. For example, simple key-framing involves interpolation between key-poses or postures

and this requires far less computation than a muscle-based, physical model that includes

representations of the tissue biomechanics and muscle physiology. However, the physical

models may offer greater dynamic realism, because the biomechanics of skin tissue is simu-

lated. Hence, subtle deformations and motions of the facial surface may be more accurately

reproduced.

We have been pursuing a muscle approach (e.g., Lucero and Munhall (1999)) following

the work of Waters and Terzopoulos (Terzopoulos and Waters, 1990; Waters and Terzopou-

los, 1991). The model is composed of three components which are incorporated in a 3D

rendering of an individual talker’s morphology. 1. A jaw which is modeled as a single de-

gree of freedom hinge joint. The jaw is kinematically controlled from recorded data as in

performance animation. 2. A muscle module that represents a subset of the facial muscu-

lature including their geometry and physiology. The muscles are modeled using a standard
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Hill-type formulation that contains force generation due to the contractile element (a force

depending on muscle length variation and velocity) and a static dependence of force on

muscle length (Zajac, 1989; Winters, 1990). 3. A skin component that represents multiple

layers of soft tissue with a deformable multi-layered mesh.

The model is controlled through activations of the modeled muscles which generate

forces deforming the attached modeled tissue. In a test of this physical modeling, Lucero

and Munhall (1999) drove the animation with recorded intramuscular electromyographic

(EMG) signals. The animation produced by these EMG signals was highly realistic and

corresponded well with 3D kinematic data recorded from the talker at the same time as

EMG data acquisition (Lucero and Munhall, 1999).

While these results are promising, the use of the model for stimulus generation in au-

diovisual perception experiments is limited by its reliance on EMG signals. Recording high

quality facial EMG signals requires invasive intramuscular techniques and complicated ex-

perimental procedures. Acquiring good signals from all of the many muscles of the face

would be difficult if not impossible. Further, intramuscular EMG recordings such as the

ones used in Lucero and Munhall (1999) are far from perfect measures of the full muscle

activation and force generation. Such problems as recording noise in the signals, movement

artifact, interdigitation of the muscles fibers potentially leading to recordings from multiple

muscles at any single recording site (Blair and Smith, 1986), and nonlinearities between

EMG and force generation can potentially corrupt the measured muscle activation patterns.

Thus, in the long run it seems impractical to depend on recorded EMG signals as the basis

for animation control.

Two alternative control schemes can be considered for our muscle-based face model.

First, a higher order command-level “language” could be developed that maps actions at

a task level onto the muscle level (Saltzman, 1979). There are a number of complexities

involved with accomplishing this and few formal attempts have been made to do this for

speech motor control. Saltzman and Munhall (1989) proposed a task-level scheme for the

control of constrictions in a midsagittal vocal tract, however, this was a purely kinematic
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model with no mass or physiology modeled for the articulators. Ostry and his colleagues,

on the other hand, have implemented a version of the equilibrium point model for the

jaw (Laboissière et al., 1996) and the tongue-jaw complex (Sanguineti, Laboissière and

Ostry, 1998). In these models, commands at the level of the degrees of freedom of the

articulator produce activation patterns across a set of modeled muscles that result in the

desired kinematic patterns. To produce fluent speech both approaches would require the

development of an additional level that encodes the sequential dynamics of articulation.

Implementing such a scheme for a 3D facial model with dozens of muscles, however, would

be a daunting task. A second alternative is to drive the model kinematically by inverting the

motion of a talkers face and computing the EMG signal and forces required by the model

to produce this motion. It is this inversion approach that is the focus of this paper.

In human speech motor control, there is redundancy in both the articulatory and the

neuromuscular systems, which means that there are many potential motor solutions for a

given intention. This redundancy gives rise to a range of ill-posed problems for which it is

difficult to arrive at unique solutions. Inversions (kinematic, dynamic, etc) fall into this class

of ill-posed problems and there is little agreement on how or whether the nervous system

performs these inversions.

For example, Flash (1990) has suggested that a form of equilibrium control obviates

the need for the nervous system to invert the planned trajectory. On the other hand,

there are a number of proposals in the robotics and motor control literature for constraining

inversions and thus making them computationally tractable (e.g., use of an objective function

or performance index such as smoothness, use of a hierarchical control strategy, etc. See

Kawato (1996) and Jordan and Rosenbaum (1989) for reviews).

In animation work, several kinematic-to-muscle inversions have been tested. For exam-

ple, a static inversion was implemented in Terzopoulos and Waters (1993) to estimate muscle

activity from single video frames. Energy minimizing splines (snakes; Kass, Witkin and Ter-

zopoulos (1987)) were used to track features of the face, then muscle activity corresponding

to the facial contours tracked by the snakes was found. Although the method produced
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interesting results, the snake technique was essentially a static mapping between facial con-

figurations in a single frame and a muscle activation equilibrium that could produce that

configuration. Further it relied on facial contour detection which is noisy and may not op-

timally parameterize the face (see discussion). Morishima, Ishikaw and Terzopoulos (1998)

used a neural network approach to compute the correspondence between static expressions

(speech and emotion) measured by optical flow or optically tracked markers attached to the

face. As in Terzopoulos and Waters (1993) the inverted EMG was used to drive a physical

model.

The approaches taken by both Morishima et al. (1998) and Terzopoulos and Waters

(1993) share common challenges. The head motion and 3D kinematics of the face are only

approximately corrected for. This can lead to aberrant face movements stemming from

head motion accounted for face movements and from inaccurate input used in the inversion.

Further, both approaches do not take advantage of the inherent dynamics of facial motion.

A more comprehensive approach to mapping muscle activity to kinematics has been carried

out by researchers at ATR Laboratories (Kyoto, Japan; e.g., Yehia, Rubin and Vatikiotis-

Bateson (1998), Kuratate, Munhall, Rubin, Vatikiotis-Bateson and Yehia (1999)).

As part of a general research program to study the relation between various correlates of

speech production (acoustic, EMG, facial kinematics, head motion), the linear and nonlinear

mappings between pairs of variables have been studied (Kuratate et al., 1999). The esti-

mation of 3D facial motion components from EMG was good for both linear and nonlinear

approaches, although the stability of the nonlinear approach over time was an issue. In ad-

dition, the animation model driven by these mappings was purely statistical and contained

no physiological constraints.

Our approach shares the physical modeling of Terzopoulos and Waters (1993) and Mor-

ishima et al. (1998) and uses precise 3D tracking of the face and head as in work by the

ATR group. In comparison to Morishima et al. (1998), our approach uses a classical non-

linear optimizer that does not need a training phase. In addition, our approach is truly a

dynamic inversion and is thus constrained by motions and forces generated in the model
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over time. Our aim in the present research is to create realistic animation based on 3D kine-

matic recordings. The use of muscle-based animation is preferred for its realism, however

this choice necessitates EMG signals as input. The current inversion permits the creation

of naturalistic animation sequences from a non invasive kinematic recording procedure.

We present in this article a dynamic inversion based on a classical nonlinear optimizer

called Powell’s algorithm (Press, Teukolsky, Vetterling and Flannery, 1992, section 10.5).

The optimizer looks for a set of modeled muscle activities minimizing the Euclidean distance

between 3D positions of markers attached to a talker’s face and the corresponding nodes

of the face model. Three experiments were carried out to evaluate the inversion. The goal

of the first experiment was to test the model with controlled synthetic data. The modeled

muscles were activated by a saw-tooth EMG signal, then the resulting face movements were

used to estimate a new set of muscle activities by means of the inversion. Standard Pearson

correlations between inverted and synthetic muscle activity were analyzed. The inverted

muscle activity was thereafter used to synthesize a second set of face movements, and the

two animations were compared by means of correlation analyses. The purpose of the second

experiment was to test the inversion on real speech production. EMG and facial kinematic

data from Lucero and Munhall (1999) were used. OPTOTRAK markers on a talker’s face

and EMG data were simultaneously collected while the talker produced an English sentence;

the OPTOTRAK is an electronic movement tracking device, its stated 3D resolution at 2.5

m distance is 0.01 mm (Vatikiotis-Bateson, Munhall and Ostry, 1993). The motion measured

by this tracking system was used in the inversion (estimate inverted muscle activity), and

standard Pearson correlations between the recorded EMG and inverted muscle activity were

computed. An animation was produced from the inverted muscle activity, and the motions

of the OPTOTRAK markers and the corresponding nodes of the face model were compared

by means of correlation analyses. A third experiment was carried out to test if the face

model could be driven by a different talker’s face motion without any face morphology

model adaptation other than a global head-size scaling. The kinematics of OPTOTRAK

markers attached to a new talker’s face were tracked over time during syllable production.
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An inversion was carried out from the OPTOTRAK marker motions, and animation was

produced from the inverted muscle activity. The correlations between the motions of the

OPTOTRAK markers and the corresponding nodes of the face model were analyzed. Finally,

the root mean square (RMS) distance between the OPTOTRAK markers and corresponding

nodes of the model was compared to the standard deviation of node positions around their

mean position.

I. METHOD

A. The model

As noted above, the facial tissue is modeled as a multilayered mesh with isotropic mechan-

ical characteristics. The nodes in the mesh are point masses, and each segment connecting

a pair of nodes is a damped spring. The nodes are arranged in three layers representing

the structure of facial tissues. The top layer corresponds to the epidermis, the middle layer

represents the fascia, and the bottom layer models the skull surface. The elements between

the top and middle layers represent the dermal-fatty tissues, and the elements between the

middle and bottom layer represent the muscle tissues. The skull nodes are fixed in the

three-dimensional space. A piecewise linear, biphasic approximation is used for the dermal-

fatty spring force elongation, and a linear approximation is used for all other spring force

elongation. A nonlinear approximation is used for spring force compression to provide an

infinite growth of the force as a spring length tends to zero. Fig. 1a shows the mesh adapted

to a talker’s morphology and indicates the lines of action of the muscles. Fig 1b shows the

superimposed texture map for the talker.

The generation of muscle force was computed by using rectified and integrated EMG as

a measure of activity. A graded force development of the muscle force M was simulated by

a second-order low-pass filtering of this EMG signal, according to the equation:

τ 2M̈ + 2τṀ + M = M̄ (1)
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where τ = 15 ms and M̄ is the integrated EMG (Laboissière et al., 1996). We will use

filtered EMG to refer to the filtered, rectified and integrated EMG in the rest of the article.

The equation of motion of each node i of the model had the general expression (Ter-

zopoulos and Waters, 1990; Lee, Terzopoulos and Waters, 1995; Lucero and Munhall, 1999):

m
d2xi

dt2
+ r

∑

j

(

dxi

dt
−

dxj

dt

)

+
∑

j

gij +
∑

e

qe
i + si + hi = Fi (2)

where xi was the current position of node i, m was the node mass equal to 0.00023 kg for

all nodes, the second term was the total damping force acting on the node i (xj represented

the nodes connected to node i and r was a constant equal to 0.050 kg/s), gij was the spring

force applied by node j on node i, the fourth term modeled the skin incompressibility (qe
i

represented the triangular prism elements containing node i), the fifth term si was the skull

reaction to the force applied by the fascia nodes, the sixth term hi was a nodal restoration

force applied to the fascia nodes connected to the skull, Fi was the total muscle force applied

to node i.

B. Physiological measurements and model commands

The common characteristics of the three experiments are described here while the unique

aspects of the experiments will be outlined in separate sections.

The face model had been adapted to a single subject’s morphology for Lucero and

Munhall (1999) using data from a Cyberware laser scanner (Lee, Terzopoulos and Waters,

1993; Lee et al., 1995). This morphology was used in our three experiments in order to ease

comparison between results and in order to use the physiological data collected for Lucero

and Munhall (1999).

In order to use EMG data collected for (Lucero and Munhall, 1999), and in order to

compare the results of our three experiment, the face model was also controlled in the present

work in the same manner as in Lucero and Munhall (1999). The model was symmetrically

controlled by eight pairs of muscles, one muscle of each pair on each side of the face. They
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were the levator labii superior, levator anguli oris, zygomatic major, depressor anguli oris,

depressor labii inferior, mentalis, orbicularis oris superior, and orbicularis oris inferior. The

pair levator anguli oris/zygomatic major could not be reliably distinguished for the EMG

measurements, hence these muscles were driven in the model by the same activation. This

left seven degrees of freedom in the control space. The black circles of Fig. 2 show the

approximate positions of the seven EMG electrode insertion points.

The sampling rate of the OPTOTRAK data used in Experiments 2 and 3 was 60 Hz.

The facial movement data in both experiments were corrected for motion of the head by

transforming the data to a coordinate system in which the origin is the incisor cusp and

the horizontal and protrusion axes lie along the bite surface (Ramsay, Munhall, Gracco and

Ostry, 1996). The number of markers and their positions on the talkers’ faces were not the

same for all experiments, and they will be described in the following individual methods.

C. Inversion technique

The principle of the inversion is to continuously update the muscle activity to produce a

face movement following a given face trajectory. To follow the face trajectory, the inversion

minimizes the Euclidean distance between OPTOTRAK markers and the corresponding

nodes of the model. Given the mass positions and velocities and given the muscle activity

that brought the face model into a state corresponding to a frame, the inversion finds a new

muscle activity for which the solution of the differential equation (2) brings the masses in one

1/60th of second to the position corresponding to the next frame. All calculations are based

on the physics of the model including the node masses, velocities and muscle forces. As a

consequence, modeled skin inertia partly determines how muscle activity has to be modified

to bring the face model from one position to the next one. This is fundamentally different

from inversion techniques matching each OPTOTRAK position to a facial expression at

equilibrium. Our inversion is a truly dynamic inversion matching the dynamics of the face

model to a kinematic pattern.
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As in all nonlinear iterative algorithms, the inversion needs a starting set of values for

the muscle activity for each frame, then updates the set until convergence is achieved. The

muscle activity estimated for a frame was used as the seed of the next one. The resting

position (no muscle activity) was always used as the seed of the first frame. When the

inversion had been carried out for all frames, the inverted muscle activity was used to

generate an animation.

A conventional nonlinear optimizer minimizing a cost function was selected to implement

the inversion. The cost function E was the sum of the squares of the Euclidean distances

between the OPTOTRAK markers and the corresponding face model nodes:

E =
N
∑

i=1

|mi − ni|
2 (3)

where mi and ni are the 3D positions of the ith OPTOTRAK marker and face model

node, respectively, N is the number of nodes used in the inversion, and | |2 is the vectorial

magnitude square operator, i.e., the sum of the squares of each coordinate of the vector.

The optimizer minimizing the cost function was Powell’s algorithm (Press et al., 1992,

section 10.5). The algorithm searched a set of seven special orthogonal directions in the

seven-dimensional control parameter space driving 16 muscles. The constraint in selection

of those directions was that a minimization along each of them would not influence the

minimizations carried out along the six other directions. As a consequence, once the set had

been found a simple one-dimensional minimization algorithm could be used sequentially

along each direction.

The inversion could produce different muscle activity patterns, depending on the initial

conditions. Constraints may be added to the inversion to limit the number of solutions.

In all analyses, the inversion was carried out without constraints, then with the constraint

that the inverted filtered EMG values had to be positive. The new positive constraint cost

function E ′ was redefined in the second case by:

E ′ =















∑N
i=1

|mi − ni|
2 if all filtered EMG > 0

106(1 + |
∑

EMG0 |) if at least one filtered EMG < 0
(4)
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where mi and ni are the 3D positions of the ith OPTOTRAK marker and face model node,

respectively, N is the number of nodes used in the inversion, and EMG0 is the set of negative

muscle activity levels. The constraint that all filtered EMG had to be greater than zero will

be called the positive constraint in the rest of this article.

For all inversions,
√

E/N and
√

E ′/N were calculated over time to estimate for each

frame the RMS of the distances between the OPTOTRAK markers and their corresponding

nodes.

To compare the 3D time series of the OPTOTRAK markers and of the face model nodes,

we generalized a few 1-D statistical features to three dimensions. The mean position of a

3D node trajectory v composed of n samples (xi, yi, zi) was its centroid, i.e., a point µv for

which each coordinate was the arithmetic mean of the corresponding coordinate values of

all samples of the time series:

µv =

(

1

n

n
∑

i=1

xi,
1

n

n
∑

i=1

yi,
1

n

n
∑

i=1

zi

)

(5)

The standard deviation σv of a 3D node trajectory v was estimated by:

σv =

√

√

√

√

1

n − 1

n
∑

i=1

|vi − µv|2 (6)

where | |2 is the vectorial square magnitude operator. The 3D correlation ρvw between two

node trajectories v and w composed of n samples vi and n samples wi was:

ρvw =
1

n

∑n
i=1

vi.wi − µv.µw

σvσw

(7)

where v1.v2 is the dot product between vectors v1 and v2. Like a 1-D correlation, ρvw always

belongs to interval [−1, 1].

II. EXPERIMENT 1

Two spaces are involved in our inversion: the kinematic space and the muscle activity

space. The purpose of the first experiment was to analyze how consistently we could go and

come back from one space to the other. We therefore worked with synthetic data.
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A. Method

The sixteen selected muscles were synchronously activated by a wave of triangles com-

posed of the sequence (0, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6, 5/6, 4/6, 3/6, 2/6, 1/6) repeated 3

times to create a 36-sample time series made of 3 identical triangular shapes. Then the same

eleven nodes used in Lucero and Munhall (1999) were tracked over time. Their approximate

positions are shown by the eleven crosses of Fig. 2. The 3D time series of those eleven

nodes were used to carry out the dynamic inversion. Then, standard Pearson correlations

between the original and inverted muscle activity were calculated to compare the original

and inverted EMG patterns.

Next, the inverted muscle activity was used to calculate a new animation. 3D stan-

dard Pearson correlations between the eleven nodes tracked during the first and the second

animation were computed by means of Eq. (7) to compare the two kinematics.

Finally, we also calculated 3D standard correlations between the two animations for eight

nodes which were not used in the inversion. Their approximate positions are shown by the

white triangles in Fig. 2. The correlation indicate how accurately a face movement can be

reproduced using controlled simulated signals.

B. Results and discussion

Table I presents standard Pearson correlations between synthetic and inverted muscle

activity. The first line of the table shows that the two types of muscle activity were poorly

correlated. Only three standard Pearson correlations out of seven were significantly different

from zero. This means that we cannot loop with forward calculations and inversion and

find the same muscle activity. The second line of the same table shows that adding the

positive constraint did not change fundamentally the results. A one-way analysis of variance

of the correlations using the constraint as the factor was not significant at the 0.05 level

[F (1, 12) = 0.012; p = 0.913], i.e., no significant difference in average correlation was found
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whether the positive constraint was used or not.

Table II shows 3D correlations [Eq. (7)] between animation mesh node movements result-

ing from synthetic muscle activations and node movements resulting from inverted muscle

activations. The top half of the table shows correlations for the eleven nodes used in the

inversion, the bottom half of the table contains the results for eight nodes unused in the

inversion. The correlations were always greater than 0.7 in all but one case out of 38, greater

than 0.8 in 33 cases out of 38, and greater than 0.9 in 16 cases out of 38. This shows a very

good match between the two animations.

To analyze if the movements of the nodes used in the inversion were better reconstructed

than the movements of the other nodes, and to test whether using the positive constraint

in the inversion led to different results, a two-way analysis of variance was carried out. The

two factors were “node used or unused in the inversion” and “positive constraint used or

not in the inversion”. The two factors and their interaction were not significant [F (1, 34) =

2.57, p = 0.118 for the node factor; F (1, 34) = 1.13, p = 0.296 for the constraint factor; and

F (1, 34) = 0.053, p = 0.820 for the interaction]. This demonstrates that the movements of

parts of the face that were not used in the inversion were as well reconstructed as those used

in the inversion.

The eleven nodes used for the inversion belonged to the right-hand side of the face model.

The eight nodes used to test the face reconstruction belonged to the other side. Despite

symmetric control of the face muscles, the animations were slightly asymmetric because the

talker’s face and the adapted mesh were asymmetric. The kinematics of the left half of the

face were, nevertheless, as well reproduced as the kinematics of the right half of the face

even though the left half was not used in the inversion. This is an important result since

it suggests that the physiological constraints of the model are accurately mimicking facial

tissue dynamics.

Table III summarizes the distribution of the RMS distance between the OPTOTRAK

markers and the corresponding nodes for the stimuli used in the three experiments. The data

give an indication of the average error made by the method reconstructing a node position.
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For each node time series, the table presents its minimum, its first quartile, its median, its

third quartile and its maximum. The 3D standard deviation of each node trajectory was

computed by means of Eq. (6). The last column of Table III contains the double of the

RMS of the standard deviations of the nodes used in the inversion for each stimulus, i.e., the

nodes used to compute the other columns of the table. This is an estimate of the average

movement amplitude of the nodes. This can be compared the average error made by the

method reconstructing a node movement.

The top part of Table III shows that the RMS distance between the OPTOTRAK markers

and the corresponding nodes of the face model was small for the synthetic stimuli. The RMS

distance was generally close to 0.3 mm and never reached 0.5 or 0.7 mm during the whole

simulation when no constraints were used or when the positive constraint was added to the

inversion, respectively. As can be seen, the reconstruction error was always smaller than the

average movement amplitude of the nodes for the synthetic data.

To summarize the results so far, carrying out an inversion without constraints will not

lead to the original set of muscle activities because many possible muscle activity patterns

can lead to the same kinematics. Adding the positive constraint does not lead to the original

EMG data set either. Conversely, a face movement generated by the model can easily be

reproduced by means of our “inversion-resynthesis” method when data for only a small set

of nodes are available (e.g., a set of eleven nodes covering only half of the face). The next

question is “Would it be possible to replicate face movements produced by a real talker?”.

III. EXPERIMENT 2

The second step in our series of experiments was to test the method using recorded data.

We had two goals in mind with this experiment. Firstly, we wanted to know if recorded EMG

data could be estimated from facial kinematics using the dynamic inversion. Secondly, we

wanted to know how accurately the OPTOTRAK marker kinematics could be reproduced

after an inversion-synthesis operation.
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A. Method

EMG and OPTOTRAK data collected for Lucero and Munhall (1999) were used in this

test. A native American English talker produced the sentence “Where are you going?”.

Muscle activity from the left part of the talker’s face and 3D positions of eleven OPTO-

TRAK markers attached on the right side of talker’s face were recorded simultaneously along

with the speech signal. The black spots and the black crosses of Fig. 2 show the approxi-

mate positions of the seven EMG electrode insertion points and of the eleven OPTOTRAK

markers, respectively.

The OPTOTRAK data were used to carry out a dynamic inversion, and the standard

Pearson correlations between the inverted muscle activity and the EMG data were calcu-

lated. Next, the inverted muscle activity was used to synthesize a new animation, and

the 3D standard Pearson correlations between the OPTOTRAK marker positions and the

corresponding nodes of the face model were calculated by means of Eq. (7).

B. Results and discussion

Table IV shows correlations between EMG measurements and muscle activity inverted

from OPTOTRAK data. None of these correlations were significantly different from zero

at 0.05 level according to a two-tail standard Pearson sample correlation test, even though

the degrees of freedom were relatively large (133). This confirms that the inversion with or

without the positive constraint could not be used to determine which muscle activity pattern

lay behind the face movements.

Table V presents 3D correlations [Eq. (7)] between the eleven OPTOTRAK markers and

the corresponding node movements of the face model. As in the first experiment, the 3D

correlations were high, except for node 2 and 8 (upper lip) when the positive constraint was

used in the inversion. A one-way (positive or no constraints in the inversion) analysis of

variance of the 3D correlations showed that the difference was not significant at the 0.05
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level [F (1, 20) = 1.62; p = 0.217].

Synthetic facial movements such as those in the first experiment might be more accurately

reproduced than natural movements of a human talker. Possible recording errors in the

real kinematics, movement limitations in the model or differences in the power spectra in

the model and face could all contribute to lower correlations between the resynthesized

recorded movements and the actual kinematics. In the synthetic facial movements, the

motions are obviously realizable by the model, but real articulation may not be to the same

extent. To examine this issue, we compared the 3D correlations of Table II and V for the

nodes numbered from 1 to 11. Those nodes were the same in both experiments. A two-

way (“synthetic versus OPTOTRAK data” and “positive constraint versus no constraints”

analysis of variance of the correlations did not reveal any significant difference at the 0.05

level [F (1, 40) = 3.99, p = 0.053 for “synthetic versus OPTOTRAK data”; F (1, 40) =

2.20, p = 0.146 for “constraint presence”; and F (1, 40) = 0.886, p = 0.352 for the interaction].

This suggests that replicating a natural face movement with the face model using real

OPTOTRAK measurements may be as precise as replicating a face movement originally

produced by the face model.

To summarize, the results showed that the OPTOTRAK kinematics could be recovered

by the inversion-synthesis procedure with very good accuracy. EMG measurements, however,

could not be recovered from OPTOTRAK measurements by means of the inversion.

IV. EXPERIMENT 3

For practical reasons (e.g., not all laboratories have access to a laser range finder such as

Cyberware) and theoretical concerns (the study of facial motion independent of morphology),

we wanted to invert the facial motion of one talker and animate the morphology of another

talker. To be practical, the adaptation of the talker’s morphology to the face model had to

be simple and achievable with a 2D image. In this test, we simply aligned key features of

the face and model, and linearly scaled the model to the x, y and z dimensions of the talker.
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To be theoretically interesting, the animation must preserve the talker’s 3D kinematics on

the new facial morphology. This is tested with correlation analysis and estimation error

analysis.

A. Method

A native Canadian English talker produced the monosyllables /bæb/, /bεb/, /dæd/ and

/dεd/. He was asked to begin each utterance from the same closed mouth initial position.

The 3D positions of 22 OPTOTRAK markers were recorded during his speech production

(Fig. 3a).

To determine to which node of the face model each OPTOTRAK marker corresponded, a

picture of the surface layer of the mesh and a picture of the talker were overlaid in Photoshop

(Adobe, San Jose, CA). The width and height of the mesh picture were manually adjusted

to obtain a good match between the talker’s face and mesh (Fig. 3b). The closest node to

the center of each OPTOTRAK marker was then selected for use in the inversion. The dots

superimposed on the mesh of Fig. 3c show the selected nodes.

For each stimulus, the face model was roughly adapted to the dimensions of the talker’s

head at the stimulus beginning. The difference in position (dox, doy, doz) between two OP-

TOTRAK markers was computed for the first frame of the stimulus, i.e., in the resting

position of the talker. The same two OPTOTRAK markers were used for all adaptations

(see the ’∗’ signs in Fig. 3c showing the corresponding model nodes). They were manually

selected only on the basis of having a large distance between them for each dimension. The

difference (dnx, dny, dnz) between the two corresponding model nodes was calculated for the

model in its resting position. For each dimension, the OPTOTRAK data was rescaled by

the ratio between node and marker distance, e.g., dnx/dox. Each dimension was thereby

linearly rescaled by a different factor. Finally, the coordinate system of each OPTOTRAK

marker was shifted to match its position with the corresponding model node’s for the resting

position.
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Four OPTOTRAK markers (squares in Fig. 3c) were omitted from the inversion to

serve as test data. The inversion was thereby carried out using the 3D time series of 18

OPTOTRAK markers. Subsequently, an animation was produced from the inverted muscle

activity. The 3D standard Pearson correlations between OPTOTRAK marker measurements

and face model movements were calculated by means of Eq. (7).

B. Results

The inversion process always diverged when no constraints were added. Several negative

muscle activities were selected by the algorithm, then the method increased the absolute

values of the negative levels of activity (they became more negative over time) until the cost

function increased to an unacceptable level. As a consequence, only the results produced by

the inversion using the positive constraint will be presented.

Table VI shows the 3D correlations between the 22 OPTOTRAK markers and the corre-

sponding node trajectories. All reconstructed node movements were highly correlated to the

OPTOTRAK marker movements, with the exception of node 5 (the upper lip center). Note

that the four nodes that were not used in the inversion (nodes 4, 6, 14 and 20) were also

well correlated to their corresponding OPTOTRAK markers. The lower correlation for node

20 is likely related to its small movement amplitude. The average movement amplitude of

that node was 1.204 mm which was small in comparison to the average movement amplitude

estimated across the whole face (see last column of Table III). Hence, the impact of node

20 on the animation was low.

To assess if the kinematics of the 18 nodes used in the inversion was more strongly related

to the OPTOTRAK markers than the four reserved nodes, a two-way analysis of variance

of the correlations was carried out. The two factors were “node used versus unused in the

inversion” and “stimulus” ([bæb], [bεb], [dæd] or [dεd]). The null hypothesis was rejected

at the 0.05 level in all cases [F (1, 80) = 1.89, p = 0.173 for “used versus unused”; F (3, 30) =

0.140, p = 0.936 for the stimulus and F (3, 80) = 0.006, p = 0.999 for the interaction]. Thus,
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the reconstructed node movements were equally correlated for the four stimuli and the nodes

unused in the inversion were as well correlated to the OPTOTRAK marker movements as

the other nodes. This confirms the important results of the first experiment suggesting that

the whole facial surface can be synthesized from a sampling of position data.

In addition to the correlation analysis, the spatial error was estimated. As can be seen

in the lower part of Table III, the RMS distance between a node and the corresponding

OPTOTRAK markers was usually smaller than 1 mm and always stayed below 3.2 mm.

This indicates that the modeled movements were close to the real ones.

In this experiment, the morphology of the face model was not adapted to the talker’s,

unlike the previous experiments. In other words, one modeled face was driven by movements

of another face. A one-way analysis of variance comparing the 22 correlations of the previous

experiment (Table V) to the 88 correlations of the present experiment (Table VI) did not

reveal any significant difference at the 0.05 level [F (1, 108) = 0.923; p = 0.339]. Table III

also show that the RMS distance between the OPTOTRAK markers and the corresponding

nodes were not worse for the unadapted model than the adapted one.

V. GENERAL DISCUSSION

In a series of tests, a dynamic inversion of facial kinematics has been successfully demon-

strated. Using 3D marker data as input, the inversion minimized the error between the

model behavior and the recorded kinematics by varying activity in the modeled muscles of

a physically-based model of the face. Successful inversion-synthesis was demonstrated for

synthetic model data, for EMG and kinematic data using a morphologically adapted anima-

tion model and finally using kinematic data collected for a different subject than the facial

model was morphologically adapted to. These accurate animations were achieved without

reproducing the original EMG patterns. There was no correlation between the inverted and

recorded EMG.

This inversion is important for use in perceptual research for a number of reasons. As
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demonstrated here, naturalistic animations can be produced by the approach and the facial

kinematics in the animations are well characterized since they derive from actual kinematic

data. As we have suggested before [e.g., Munhall and Tohkura (1998)], one of the current

weaknesses in audiovisual speech research is that the visual stimuli are often poorly controlled

and not well described. Since the animations in the present approach are produced from

kinematic data, a variety of experimental manipulations are feasible. Head motion and face

motion are separated as part of the standard data processing and can be independently

controlled in the animation (cf. Kuratate et al. (1999)). In addition, scalar manipulation of

the kinematic amplitudes or time scales require only trivial manipulations of the kinematics

prior to inversion. Finally, the ability to use the motions of one individual to drive the facial

features of another individual permits a range of studies of identity and speech processing

(cf. Nygaard and Pisoni (1998)).

When considered as a model of speech production, the inversion serves as a reminder of

the computational complexity of motor control. Many muscle activity patterns can produce

similar face movements, and the recorded EMG could not be estimated by means of our

inversion procedure in its present state. This is not a surprising finding since, as noted

above, the kinematic inversion is a mathematically ill-formed problem. To date, we have

not explored the kinds of constraints that might make the problem tractable. Reducing the

degrees of freedom (e.g., muscle synergy) and applying various cost functions (e.g., minimum

jerk) are common suggestions in the motor control literature and these possibilities warrant

further exploration in the context of this model.

One of the striking findings from the inversion was that the kinematics of markers that

did not contribute to the inversion solution were reproduced as accurately as the marker

data that served as input to the inversion. This suggests that the animation is spatially and

temporally correct across a broad surface of the face even when those regions of the face

were not directly sampled in the inversion process. This behavior of the model is essential

for its use in audiovisual perception research. A number of studies have indicated that

when more of the face is shown, intelligibility increases (e.g., Le Goff, Guiard-Marigny and
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Benôıt (1997)). Further, statistical studies of the relationship between facial kinematics and

acoustics (Vatikiotis-Bateson, Munhall, Kasahara, Garcia and Yehia, 1996) have shown that

even small motions on the periphery of the face contribute independent information about

the acoustics.

In spite of its success, there are a number of issues about the inversion that will need to

be the focus of ongoing research. The inversion constraint that was implemented (positive

constraint) had little effect on the overall movement fit nor any effect on the correspondence

of the inverted EMG to the synthetic or recorded EMG. However, as shown in Experiment 3,

this constraint can be important in enabling the algorithm to reach a minimum. While the

positive constraint is physiologically plausible, and perhaps more stable, there was evidence

that the animation in some small regions of the face might be aided by negative EMG

and the lengthening of the muscles that accompanies this signal. In the current lip muscle

configuration, protrusion of the most central upper lip node seems to have been reproduced

better in the presence of negative EMG (see Tables II and V). At present, it is not clear

whether modifications to the lip muscle geometry or the use of some other cost function in

the inversion is the best solution to this effect. The movements of this particular portion of

the lip are small so there was minimal influence on the overall animation.

The adaptation of the animation for use with a new talker (Exp. 3) and the matching of

OPTOTRAK markers to nodes in the mesh in all of the experiments were simplistic albeit

effective. The influence of error in this phase of the inversion is at present unknown and

will require 3D imaging of the talkers with and without the OPTOTRAK markers attached.

Also, it is unknown how a talker’s and a face model’s morphology can differ before the

inversion diverges. We need recording of more subjects to address this issue. In addition, it

is unknown at this point, what the optimal number and placement of OPTOTRAK markers

is. Resolving this problem will require a better understanding of the degrees of freedom

of the face during speech production. Studies of the principal components of static lip

shape (Linker, 1982) and the principal components of lip kinematics (Ramsay et al., 1996)

show a small number of modes of variation during speech. In Linker’s data, the English
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vowels can be distinguished with a single measure, horizontal opening, while the Cantonese

vowels required 2 factors and Finnish, Swedish and French vowels 3 factors. Ramsay et al.

(1996) calculated the principal components of lip motion in English for the 3-D motion of

markers positioned around the oral aperture. In this data, the motion of any single position

marker on the lip was strongly one-dimensional. When point-light facial displays are used to

study audiovisual speech, the number and placement of lights is also an issue. (Rosenblum,

Johnson and Saldaña, 1996) have manipulated the number and location of lights and shown

enhancement of speech perception in noise with more lights. However, the necessary and

sufficient number of markers needed to optimize point-light perception and the inversion is

not known.

In spite of these unknowns, the success of the animation produced by the dynamic

inversion is testament to the advantages of physically-based animation. The underlying

differential equations of the model provide a unitary description of the shape and motion

of the human face and its gestures (Terzopoulos and Fleischer, 1988). The animation that

is generated by the numerical solution of these equations is realistic across the full facial

surface. The ability to drive the model with kinematic data that the current inversion

provides makes this an attractive approach for stimulus generation.
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TABLES

TABLE I. Correlations between synthetic and inverted muscle activity. The column labels

“DAO” to “OOS” stand for Depressor Anguli Oris, Depressor Labii inferior, Levator Anguli

Oris/zygomatic major, Levator Labii superior, Mentalis, Orbicularis Oris Inferior and Orbicu-

laris Oris Superior. The row labels “No const.” and “EMG>0” mean that no constraints or the

positive one were used in the inversion, respectively. The correlations printed in bold were signif-

icantly different from 0 at 0.05 level according to a two-tail standard Pearson sample correlation

test with 34 degrees of freedom.

DAO DL LAO LL M OOI OOS

No const. 0.28 0.43 -0.02 0.14 0.38 0.65 0.14

EMG>0 0.34 0.46 -0.18 0.34 0.41 0.54 0.19
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TABLE II. 3D correlations [Eq. (7)] between node movements resulting from synthetic and

inverted modeled muscle activity. The approximate positions of the nodes on the face can be

seen in Fig 2. The row labels “No const.” and “EMG>0” stand for “No constraints used in the

inversion” and “positive constraint used in the inversion”.

Nodes used in the inversion

Node # 1 2 3 4 5 6 7 8 9 10 11

No const. 0.92 0.90 0.95 0.87 0.88 0.92 0.93 0.84 0.91 0.82 0.90

EMG>0 0.92 0.87 0.95 0.88 0.89 0.93 0.92 0.61 0.90 0.75 0.89

Nodes unused in the inversion

Node # 12 13 14 15 16 17 18 19

No const. 0.84 0.73 0.85 0.87 0.81 0.91 0.93 0.87

EMG>0 0.87 0.82 0.83 0.85 0.76 0.90 0.90 0.74
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TABLE III. Summary of the distribution functions of the RMS Euclidean distances between the

OPTOTRAK markers and the corresponding node positions for all stimuli used in the experiments.

The last column of the table also contains an estimate of average movement amplitude of the nodes.

This was estimated by the double of the RMS of the 3D standard deviation [Eq. (6)] of the node

trajectories. This must be compared to the “Median” column of the table. The results are given

in mm. The top part of the Table is related to the synthetic stimuli of the first experiment, the

middle part to the natural sentence “Where are you going?” of the second experiment, and the

bottom part to the four monosyllables used in the third experiment. The columns label “Min.”

to “Mov.” stand for “Minimum”, “First Quartile”, “Median”, “Third Quartile”, “Maximum” and

“Movement mean”. The row labels “No const.” and “EMG>0” mean that no constraints or the

positive one were used in the inversion, respectively.

Min. 1st Qu. Median 3rd Qu. Max. Mov.

Synthetic data

No const. 0.079 0.213 0.293 0.347 0.490 2.024

EMG>0 0.131 0.262 0.339 0.456 0.663 2.024

Measurements with face adaptation

No const. 0.034 0.753 1.126 1.714 2.289 5.748

EMG>0 0.035 0.903 1.867 2.643 4.020 5.748

Measurements without face adaptation

[bæb] 0.008 0.569 0.922 1.712 3.176 6.580

[bεb] 0.008 0.462 0.747 1.409 2.466 4.876

[dæd] 0.008 0.523 0.933 1.734 2.658 6.060

[dεd] 0.008 0.453 0.772 1.601 2.664 5.784
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TABLE IV. Correlations between EMG measurements and muscle activity estimated from OP-

TOTRAK data. The column labels “DAO” to “OOS” stand for Depressor Anguli Oris, Depressor

Labii inferior, Levator Anguli Oris/zygomatic major, Levator Labii superior, Mentalis, Orbicularis

Oris Inferior and Orbicularis Oris Superior. The insertion points of the electrode used to measure

the EMG data can be seen on Fig. 2. The row labels “No const.” and “EMG>0” mean that no

constraints or the positive one were used in the inversion, respectively.

DAO DL LAO LL M OOI OOS

No const. -0.06 -0.16 -0.06 0.11 -0.01 -0.04 -0.04

EMG>0 0.08 -0.11 -0.03 0.08 -0.07 0.04 0.03
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TABLE V. 3D correlations [Eq. (7)] between eleven OPTOTRAK marker trajectories and the

corresponding node movements of the face model resulting from inverted EMG for the sentence

“Where are you going?”. The approximate positions of the nodes can be seen on Fig. 2

.

1 2 3 4 5 6 7 8 9 10 11

No const. 0.93 0.72 0.96 0.95 0.95 0.95 0.91 0.78 0.67 0.61 0.78

EMG>0 0.89 -0.13 0.92 0.87 0.92 0.86 0.80 0.50 0.61 0.78 0.80
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TABLE VI. 3D correlations between OPTOTRAK markers and corresponding node move-

ments for syllables [bæb], [bεb], [dæd] and [dεd]. The approximate positions of the nodes can be

seen on Fig. 3c. The columns corresponding to the node numbered 4, 6, 14 and 20 are printed in

bold because those nodes were not used in the dynamic inversion.

Node # 1 2 3 4 5 6 7 8 9 10 11

[bæb] 0.70 0.94 0.93 0.78 0.41 0.89 0.87 0.94 0.90 0.90 0.89

[bεb] 0.66 0.93 0.92 0.75 0.35 0.88 0.87 0.89 0.86 0.86 0.87

[dæd] 0.66 0.96 0.97 0.81 -0.07 0.82 0.77 0.95 0.92 0.93 0.93

[dεd] 0.62 0.96 0.96 0.77 0.02 0.85 0.76 0.94 0.93 0.92 0.93

Node # 12 13 14 15 16 17 18 19 20 21 22

[bæb] 0.87 0.81 0.88 0.94 0.95 0.86 0.79 0.87 0.57 0.81 0.90

[bεb] 0.79 0.82 0.85 0.94 0.93 0.80 0.73 0.84 0.53 0.66 0.92

[dæd] 0.83 0.79 0.75 0.97 0.93 0.91 0.85 0.82 0.66 0.88 0.89

[dεd] 0.83 0.74 0.72 0.97 0.92 0.92 0.84 0.83 0.67 0.93 0.89
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FIGURES

FIG. 1. a) The epidermal mesh in black thin lines and the lines of action of the muscles in gray

thick lines. b) the superimposed texture map. The face model was adapted to the same speaker

for both parts of the figure.

FIG. 2. Positions of OPTOTRAK markers (crosses), EMG electrode insertion points (filled

circle) and face model nodes (triangle).

FIG. 3. a) The talker in Experiment 3 with the 22 OPTOTRAK markers attached to his face.

b) Overlay of the talker’s image and the mesh. The height and width of the mesh were manually

adjusted to match the talker’s head size. c) The 22 nodes of the mesh selected to match the

OPTOTRAK marker positions on the talker’s face. The two ’∗’ signs (17 and 21) were used to

automatically adapt the mesh size to talker’s head size. The four squares (4, 6, 14 and 20) were not

used in the inversion of Experiment 3, but were used to test the accuracy of the inversion-synthesis.
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FIG. 1. Michel Pitermann, The Journal of the Acoustical Society of America.



Michel Pitermann The Journal of the Acoustical Society of America 36

FIG. 2. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 3. Michel Pitermann, The Journal of the Acoustical Society of America.


