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CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR AN
ARBITRARY LAGRANGIAN EULERIAN FORMULATION OF A
FLUID-STRUCTURE INTERACTION PROBLEM *

GUILLAUME LEGENDRE! AND TAKEO TAKAHASHI?

Abstract. In this paper, we propose a numerical scheme to compute the motion of a two-dimensional
rigid body in a viscous fluid, modeled by the Navier-Stokes equations. Our method combines a finite
element approximations and the use of the method of characteristics to solve an Arbitrary Lagrangian
Fulerian formulation of the problem. We derive error estimates for this scheme which imply its con-
vergence.

1991 Mathematics Subject Classification. 35Q30, 65M12, 76D05, 76M10.

April 23, 2007.

1. INTRODUCTION

The present work aims at proposing and analyzing a Lagrange-Galerkin scheme for the numerical solution
of an Arbitrary Lagrangian Eulerian (ALE) formulation of a fluid-rigid solid interaction problem. While the
Lagrange-Galerkin technique has been used for years for the numerical treatment of convection diffusion equa-
tions like the Navier-Stokes equations (see, for instance, [1,23,27]), it was more recently introduced in the
context of ALE formulations of free surface or two-fluid flow problems [8,12,19] and fluid-structure interaction
problems [20,21].

The system we consider is composed of a viscous homogeneous fluid and a rigid solid, both contained in a
bounded domain @ of R? with regular boundary 0. At the initial time, the rigid body is assumed to occupy
a regular open connected subset S of O, surrounded by the fluid filling the domain F = O\ S. For the sake of
simplicity and without loss of generality, we shall suppose that the center of mass of S is located at the origin.
The domain occupied by the rigid body at each instant ¢ > 0 is then defined by

S(¢(1),0(t)) = {¢(t) + Ry, = € S},
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Lagrange-Galerkin method.
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where ((t) and Ry are respectively the position of the center of mass and the orientation of the rigid body
at time ¢ (Ry being the matrix of rotation of angle #). The fluid then occupies the domain F({(t),0(¢)) =
O\ S(C(1),0(1)).

The fluid flow is assumed to be incompressible and modeled by the classical Navier-Stokes equations, the
motion of the rigid body being governed by Newton’s laws. As a consequence, the following system of partial
and ordinary differential equations describes the evolution of the coupled system

ou

B +(u-V)u—-—vAu+ Vp=fin F({(t),0(t)), t €[0,T], (1)
diva = 0 in F(¢(8), 6(1), t € [0,7], @)
u =0 on 90, t€[0,7T], (3)
u(w,t) = C/(t) + 9’(t)(:c - C(t))L7 T e aS(C(t)’e(t))v te [07T]7 (4)
M (E) = —/ a(u,p)ndr+/ po @) da, t € [0,T], (5)
aS(¢(t),0)(t) S(¢(t),0(1))
19/ = - | olupn- 2 - () ar+ [ pefl@.t) - (@~ C(1) da, e [0,7],  (6)
0S8(¢(¢),0)(t) S(¢(1),0(1))
u(-,0) = u® in F, (7)
¢(0) =0, ¢'(0) =¢™M e R?, 6(0) =0, 6'(0) =6 € R. (®)

In the above equations, the unknowns are the Eulerian velocity field w(x,t) and the pressure field p(x,t) in
the fluid, the position {(¢) of the center of mass and the angle of rotation 6(¢) of the rigid body. To simplify,
we assume that the density of the homogeneous fluid is equal to unity and that the density of the rigid body
is a positive constant, denoted by ps. The positive scalar v denotes the viscosity of the fluid and M and I are
respectively the mass and the moment of inertia of the solid. The relations between M, I and ps are given by

M:/psdcc7 [:/ps\m\zdw.
s s

o(u,p) = —pId + 2v D(u),
where Id is the identity tensor and D(u) is the strain tensor given by

The stress tensor o is defined by

D(u) == (Vu+'Vu).

N —

Finally, the field f(x,t) represents the density (per mass unit) of forces applied to the system, n is the unit
normal vector to the boundary of the rigid body 9S({(t),0(t)), pointing to the interior of the solid and, for any
T = <2>, we have denoted by x* the vector ' = _;fz

The well-posedness of this type of problem has been the subject of a large number of papers (see for instance
[28] and the references therein). We aim here at approximating strong solutions of the above system.

Concerning the numerical solution of such fluid-solid interaction problems, while several different approaches
have been introduced in the literature, some being based on an ALE formulation [8,16,20,21], a fictitious domain
formulation [13] or a Lagrange-Galerkin method [25], only a few have actually received a rigorous analysis of
their numerical properties. In this area, let us cite the paper of Grandmont et al. [14] for proofs of convergence
of time decoupling algorithms used to solve an ALE formulation of a one-dimensional fluid-structure interaction
problem. More recently, the convergence of a numerical scheme based on a Lagrange-Galerkin method, using
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a fixed mesh, has been established in [25]. Also of interest, since the present work involves a finite element
approximation for solving an ALE formulation, are the paper of Gastaldi [11], which focuses on the derivation of
a priori estimates in space and time in the case of an advection-diffusion equation in a moving two-dimensional
domain, and the proof of convergence in [26] of a scheme based on an ALE formulation, a mixed finite element
discretization in space and an implicit Euler scheme in time, for the non-steady Stokes equations in a two-
dimensional, non-cylindrical domain. However, up to our knowledge, there is no convergence result for the
numerical approximation of system (1)-(8) using an ALE method.

Our main result, stated in Theorem 3.5, asserts that the solution to a Lagrange-Galerkin discretization
scheme of an ALE formulation of system (1)-(8) converges towards the exact solution of the problem, provided
some assumptions on the regularity of this exact solution, on the finite element mesh and on the discrete time
step. We stress that we prove here the convergence of a numerical scheme for a free boundary problem, and that
we managed to get rid of the hypothesis of a one-dimensional model [14] or of the hypothesis of the equality
of the fluid and solid densities [25] which were present in above mentoned works. Let us emphasize that, if a
number of issues encountered in establishing this result can be circumvented with techniques already existing
in the literature for non-moving domains (we will rely in particular on a paper by Achdou and Guermond [1]),
the bulk of the difficulties arises from the coupling condition (4) on the solid boundary. To be more precise,
the treatment of this condition at the discrete level brings up some nontrivial questions from the point of view
of the finite element approximation on non-conforming meshes. It indeed appears that most of the methods
introduced to deal with the discrepancy between the exact and approximate domain prove to be ineffective
when applied to a finite element semi-discretization of problem (1)-(8). The solution we propose is based on
a particular approximation of the fluid domain, a drawback being that the order of the convergence rate of
the method is then confined, whatever the regularity of the exact solution and the order of the finite element
approximation.

An outline of the paper is the following. A characteristicssALE weak formulation of problem (1)-(8) is
presented in Section 2. Section 3 deals with the discretization scheme and states the main result of the paper.
Section 4 introduces a change of variables which is an essential tool for comparing the exact and approximate
solutions. Sections 5 and 6 are devoted to the derivation of error estimates. In the remaining Section 7, the
proof of the convergence result is established.

2. A CHARACTERISTICS-ALE FORMULATION OF THE PROBLEM
2.1. Hypotheses

In what follows, we shall assume that the data satisfy

f € C(0,T],HY(0)?), u® € H(F)?, divu® =0in F,
u@(z) = ¢ 400zl ve e dS, and u® =0 on 0.
We moreover suppose that
dist(S(¢(¢),0(¢)),00) > 0, Vt € [0,T]. (10)
Owing to the result in [28], we have the following regularity for the solution to problem (1)-(8):

w € L2(0, T3 H2(F(C(1), 0(4)))*) NHI(0, T L2 (F(C (1), (1)) N C([0, T HN (F(E(1), 6(1)))%),
p € L2(0, T HY (F(L(1),6(1)))), ¢ € H(0,T;R?), 6 € H2(0,T;R).

2.2. Weak formulation of the problem
For any ¢ € O and 0 € R such that dist(S(¢,0),90) > 0, we introduce the functional spaces

V(¢,0) = {(U,Ev,wv) € Hl(.i’:(C,@))2 xR®; v=0o0n 00 and v = &, +wy(x — C)L on 88((,9)}
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and
Q(¢,0) = L§(F(¢,0) = {q e L*(F(¢,0)) ; / q(z)de = 0} .
F(¢,0)

In the sequel, we denote by € = ¢’ and w = @’ the translational and angular velocities of the rigid body, and
also use the notations

Fart) = / p F( 1) dz and f1(t) = / oo f(@,t) - (@ — C(t) - da, W€ [0,T].  (12)
S(¢(1),0(1)) S(¢(1),0())

One can easily check (see [13,16,20]) that the strong solution of (1)-(8) satisfies the following mixed variational
formulation: find (u, ¢, 0,p) verifying (7), (8), (11), and, for almost every t in (0,T),

0
/ (u +(u-V) u) vde+M ﬁ’-§v+1w'wv+2u/ D(u) : D(v) da:—/ p divodz
F(C(#),0(¢)) ot F(C(#),0(t)) F(C(#),0(t))

- / Foodat far €y + frw V(0,€y.00) € VC(E),0(1), (13)
F(¢(1),0(t))

7/ gdivudz =0, Yg € Q(C(1),6(1)). (14)
F(&(1),0(1))

In conjunction with this weak formulation of the problem, a feature of the numerical scheme we use is the
method of characteristics for the treatment of the nonlinear convection term in the Navier-Stokes equations.
It is well known (see, for instance, [23]) that the material derivative in the flow w can be written as a total
derivative

(?9? +(u- v)u) (@.0) = & (Cliss )00, _,. )

by using the characteristic function C, which, for all  in F({(s),0(s)), is solution to the initial value problem

oc
E(t, s,x) = u(C(t; 8, x),t),

C(s;s,x) = a.

(16)

However, these characteristics are defined over the moving domain F({(s), 6(s)) which complicates their effective
computation in a discrete setting. The idea introduced by Maury in [20,21] consists of adapting this method
to an ALE framework. We address the specifics of this combination in the next subsections.

2.3. Domain velocity and ALE mapping

A very popular technique for the simulation of fluid-structure interaction problems since its introduction at
the beginning of the eighties [7,17], the Arbitrary Lagrangian Eulerian (ALE) formulation combines advantages
of both Lagrangian and Eulerian formalisms by introducing a domain velocity which makes possible for the
space discretization mesh to follow the motion of the fluid domain. Such a velocity can be defined quite
arbitrarily, as long as it satisfies a compatibility condition, with respect to the fluid velocity, on the boundary
of the domain [16,19,20]. This being done, one is then able to construct a transformation linking any point
of a reference configuration to a point of the current configuration, simply by using the characteristic curves
associated to the domain velocity.

Choosing the fluid domain at the initial time as the frame of reference, we introduce a family of ALE mappings
A(t;0,), which, at each ¢ in [0,7T], maps F into F({(t),0(t)). At each instant ¢ in (0,7, it is assumed that
the application .A(t;0, -) is an homeomorphism, that is, A(t; 0, ) € C°(F)? is invertible with continuous inverse
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A(t;0,-)71 € CO(F(L(t),0(t)))?, and that the application t — A(t;0, ), for all = in F, is differentiable almost
everywhere in [0,7]. The domain velocity w is defined by

wia.t) = 24 (1:0, 410, (@) v € FC.00). (17)

and the ALE mapping between two time levels s and ¢ in [0, 7] is given by
Alt;s,-) = A(t;0,-) 0 A(s;0,-) % (18)
We easily check that the application ¢t — A(t; s, x), V& € F({(s),0(s)), is solution to the initial value problem

O 1:5,2) = wl(Alt: 5, ), 1

Al(s;s,x) = .

(19)

Since we use the transformations A(t; s, -) in the sequel, it is important to ensure that these transformations
are compatible with the functional spaces involved in the weak formulation (13) of the problem. We obtain
this compatibility by adding some regularity properties to the ALE mapping. Let us first recall the following
classical proposition (see [15, pp. 19-20] and [10]).

Proposition 2.1. Assume that the ALE mapping A(t;0,-) satisfies, for each t in (0,T), the following condi-
tions:
F(€(t),0(t) = A(t;0,F) is bounded and the boundary OF ({(t),0(t)) is Lipschitz continuous, (20)
A(t0,) € WH2(F)?, A(t0,-) 71 € WH(F(L(1), 0(1))*. (21)
Then, a function v belongs to HY(F(((t),0(t))) if and only if © = v o A(t;0,-) belongs to H'(F).

As recalled in the references [10,11], there exist several techniques in the literature to construct a mapping
satisfying the above assumptions. We opt for the approach followed in [9,11], in which the reference domain
is viewed as an elastic solid being deformed into the current domain. This leads us to solve a linear elasticity
problem: for all t in (0,T), find d(-,t) satisfying

—Ad(-,t) = AV divd(-,t) =0 in F,
d(x,t) = ¢(t) + Ryyx — « on IS, (22)
d(-,t) =0 on 00,

where A is an arbitrary positive constant. Existence, uniqueness and regularity issues for solutions of this type
of system have been extensively studied and it is known (see, for instance, [5,11]) that, for all r > 2,

(-, )llwzr 2 < C (ICH)[+100)]), VE € (0,T). (23)
The ALE mapping is then defined by
A(t;0,x) =z + d(x,t), Ve € F, (24)

and we have the following result.

Lemma 2.2. Let us assume that

1€ ILoe 0,72 + 1012 0,7y < co, (25)
with co a small enough constant. Then, for allt in (0,T), the mapping A(t;0,) is a diffeomorphism from F
onto F({(t),0(t)). Moreover, it satisfies assumptions (20) and (21).
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Proof. We first extend the mapping A(; 0, -) to the whole of R? by setting
d(z,t) = ¢(t) + Ryn — @, Vo € S(¢(1),0(t)), and d(-,t) = 0in R*\ O.

Using the inequality (23) and assuming that the constant ¢y appearing in (25) is small enough, we infer that
d(-,t) is a contraction. This implies the invertibility of the mapping defined by (24) from R? onto R2. Since it
is clear that

A(t:0,R2\ 0) = R2\ O and A(:0,S) = S(C(t),0(t)),

we have proved the assertion. O

Remark 2.3. Assumption (25) is important and supposed to hold hereafter. It expresses the fact the displace-
ment of the rigid solid is not too large. This restriction cannot be avoided when using an ALE formulation.
Indeed, as described below, the principle of this method is to modify the mesh, according to a discrete ALE
mapping, in order to follow the solid in its movement. In order to preserve the needed properties of the space
discretization (regularity and quasi-uniformity of the mesh triangulation, for instance), we have to assume that
these displacements are small enough (see [20] for more details).

Remark 2.4. In the proof of Lemma 2.2, we have extended .A(%; 0, -) to R? and proved that it is a diffeomorphism
from R? onto R2. In the sequel, we identify this mapping with its extension. Notice that its extension has also
the form (24) with d(-,¢) small enough. More precisely, we always consider that the constant ¢y in (25) is such
that

| @llr.00 (0, 75w1 2 (0)2) < (26)

Py

2.4. Characteristics-ALE formulation

The introduction of the ALE mapping allows us to introduce a new characteristic function, which involves a
fixed spatial domain, and will thus be more manageable from a discrete point of view. The importance of such
a mapping comes from the fact that we can rewrite the material derivative in the flow as a total derivative (see
(15)). Let B be a characteristic function such that

C(t;s,z) = Alt; s, B(t; s, x)), Yo € F({(s),0(s)). (27)
For all t and s in (0,7, we have that the application
B(t;s, ) « F(C(s),0(s)) — F({(s),0(s))

is a diffeomorphism satisfying, for all « in F({(s),8(s)), the initial value problem

%—?(t; s,x) = (u—w)(B(t;s,x),t), (28)
B(s;s,x) = x,
where the functions w and w are respectively defined by
u(a,t) = [VA(L s, @) u(Alt;s,@),t) and w(w,t) = [VAs,@)] " w(A(t s, @), 1), (29)

for all © in F({(s),0(s)) and ¢ in (0,T).
Remark 2.5. By extending the velocity field u(-,t) to R? by the formulas

u(a,t) = &(t) + w(t) (@ — ¢(1)™, Yo € S(C(1),0(1)), Vit € [0,T],
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and
u(zx,t) =0, Ve c R?*\ O, Vt € [0,T],

the unique solution C(-; s, ) of the initial value problem (16) exists for any « in R?. Owing to Remark 2.4, the
ALE mapping \A(t; s,-) is now defined in R? and, consequently, so is the domain velocity w(-,t). Considering
these extensions, problem (28) thus actually defines a diffeomorphism B(t; s, ) from R? onto R?.

The expressions (15) and (27) are finally substituted into the system (13)-(14) to yield the following equivalent
weak formulation of problem (1)-(8): for almost every t in (0,T), find (u, ¢, 0,p) such that (u(-,t),€(t),w(t)) €
V(¢(t),0(t)) and p(-,t) € Q(C(t),0(t)) are solution to

d
/ — [ (At Bt @), 1)] (1) - vde + ME(t) - &, + 1w (t) wo
Flew.o)
+ 21// D(u) : D(v)dx 7/ p divode
F(C(),6(t)) F(C(#),0(t))

= / frode+ far(t)- & + fit) wo, ¥ (v,&,,w0) € V(C(1),6(1)), (30)
FE0).61))

—/ gdivudez =0, VYge Q(C(t),0(t)). (31)
F(C(0),0(1))

3. DISCRETIZATION OF THE PROBLEM AND CONVERGENCE RESULT

This section is concerned with the description of the discrete scheme we propose for computing an approxi-
mation of the solution to the variational problem (30)-(31). While clearly inspired from the method introduced
by Maury in [20,21] to simulate the motion of 2D rigid particles in a viscous incompressible fluid, our scheme
differs on two main points. First, the discrete domain velocity is derived from its associated discrete ALE
mapping in a different way. Second, for the needs of the error analysis in the convergence study, the mesh of
the fluid domain must satisfy some special, non-standard features which are absent from references [20,21].

In the sequel, we suppose that O is the interior of a convex polygon. This assumption is not essential, but
it allows to make simpler the forthcoming finite element analysis, already cumbersome due to the conditions
on the moving boundary, while guaranteeing the expected regularity for the solution of the problem. The more
general case of a domain O with a curved boundary dO can be dealt with by using the classical techniques
presented in [4,6] for instance.

3.1. Discrete scheme

For N in N*, we introduce a partition of the time interval [0,7] by denoting 6t = T/N and t* = két,
k =0,...,N. The quantities ufw pfl, CZ, 9,’?, 5;3 and w,’j are then the respective approximations of w(-,t*),
p(,t9), (%), O(t%), €(tF) and w(t®).
3.1.1. Initialization

At the initial time, we consider an approximation F? of the fluid domain F, which is the union of straight
triangles, with mesh size h, of a triangulation .7;° and satisfies the property

Fp CF. (32)

Since F is not convex, even if O is convex, the hypothesis (32) is in no way standard. It implies in particular
that OF) is a piecewise linear continuous curve whose boundary nodes are not necessarily on dF. A way to



8 CONVERGENCE OF AN ALE FORMULATION OF A FLUID-STRUCTURE INTERACTION PROBLEM

construct such a mesh is the following. We first build a quasi-uniform triangulation 2? of the whole domain
O. We then define Hy,, the union of all triangles in ﬂho such that their three vertices are contained in Gy, with

gh = UN Ka
Keg?
f{m‘os;é@

and divide the triangles into three categories as follows (see Figure 1):

e 7 is the subset of ?,? formed by all triangles K € 9,? such that K C S,
e 7, is the subset formed by all triangles K € i/ho\% such that K C Hp,,
o Ty= TNV R).

We finally set .7, = 73 and

f}?: U K, 8220\‘?2: U K,

FIGURE 1. Detail of the discretization mesh with the position of the rigid solid and the three
categories of triangles.

In this paper, we assume that we obtain the mesh of the fluid by using the above constructionl. Notice that
the discrete domain verifies by construction

dist (F, F) < Ch. (33)

1It will also be the process repeated whenever a remeshing is needed (i.e., when the quality of the mesh degrades too much
due to its movement). Of course, this step, while common in practical applications of the method (see reference [20], in which the
domain is said to be remeshed every five or ten time steps in actual computations), cannot be taken into account in the study
of convergence of the scheme and we assume that the mesh remains regular enough during the whole course of its use, which is
consistent with assumption (25).



CONVERGENCE OF AN ALE FORMULATION OF A FLUID-STRUCTURE INTERACTION PROBLEM 9

We next define the finite element space
P = {7 € CO ) i . € P1(K), VK € TP},

where P (K') denotes the set of affine functions on K, over the triangulation of the domain F; ,?, and its analogous
over the triangulation of O,

PO — {7 € C°0)?; 7, € Py(K), VK € 9,?}

We finally take C% =0, 69 = 0 and we obtain the initial approximate velocity (u?, 52, w?) by first extending
u(9) using the rigid velocity formula

u® (@) =¢W +0Wzt vees,

~\2
then by considering u{ as the projection of this extended field on (772) , and finally by setting

5‘2 = /50 psugdw and wg = /Ops’u%(@ : (w—Cg)de-
h

Sh
3.1.2. Computation of the new domain

Let us suppose that the quantities C’Z, o, SZ and w¥ are known for some k in {0, ..., N—1}. We approximate
the position of the center of mass and the orientation of the rigid body at instant t**! by the relations

ML= CF 4 (ot) &F and 051! = 0F + (ot) W (34)
The approximations of the domains occupied respectively by the solid and the fluid at instant t*+! are then

SE = {ch + Ry (@ = Ch), we S} and AT = 0\ SFFL (35)

3.1.3. Computation of the ALE mapping and of the characteristic function
The finite element approximation at time t*+1 of the ALE mapping, denoted AEH, is defined by the relation

At (z) =z +d) T (x), Ve € F, (36)
where the field dﬁ“ € (732)2 is uniquely determined by
ditH (@) = ¢t 4 Ryena —x, Ve € 0], and di* =0 on 90, (37)

and
/f0 Vit . vd, dz + A/fo (divds ) (divdy)de = 0, Ydy, € (PY)” s.t. dj = 0 on OF. (38)
h h

Remark 3.1. The problem (37)-(38) is well-posed, but we do not know if relation (36) defines an invertible

~k+1
mapping. Let us consider the field d;,  solution to

i1 1
~Ad," ~A\Vdivd, =0inF,
k1
dh+ (x) = ¢t + Ryroiw —x, Vo € oS, (39)

~k+1
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Inequality (4.26) in [11] (see also [22,24]) yields the following estimate

«k ~k
7 <ot

Wl,oo(]:’tz)z W2,oo(]:}(3)2 ’

Since we have, by continuity of the solution of (39) with respect to the data,

Ak+1 )
el <o (Iek +165H)

W2,oc(]:2)2
we get

[Casl <o (ick+1es). (40)

which implies, as in the continuous case and if the quantity |Cfl+1| + \92+1| is small enough, that the mapping
Affl is invertible. Setting

Wl,oc(]:’?)Z

-1
AT = Ao (A7) (41)

we have in particular that AZH’k(]:,’fH) = FF.
To end this remark, notice that the mapping AZ'H can be easily extended to a diffeomorphism of R? by setting

& (@) = ¢ + Rypnz — @, Ve € S, and &7 =0 on R\ O,

and that we will identify Aﬁ“ with its extension without any change in the notation in what follows.

In order to define the approximate domain velocity w¥ : FF — R2 we first introduce the following linear
interpolations in time of the approximate center of mass and orientation of the rigid solid:

0, (t) = A oF + — OR+L vt e [tF, 1R
P st h st )oh b

R bk
Cult) = (& ) Ch+ ( 5 ) MLt e [tR, R,
and of the discrete ALE mapping:

thrt —¢ k t—tk k1 k k1 0

Using (36) and (40), we infer that Ay(-,¢) is invertible from F; onto F3(t) = A (Fy,t) and set

0A;

wp(x,t) = e

(t. AL D) (=), Ve € Filt). (43)
Introducing the finite element space
K= {y e H'(F) ; v, €PuK), VK € FF},

we then define the approximate domain velocity at time t*, wf € (PF)?,

wf = lim  wy,(-,1). (44)

t—tk, t>tk
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Remark 3.2. We easily see that
wip(x,t) = EF +wi(x — ¢, (1)L, Yo € dS(t), and wy(-,t) = 0 on DO, t € (t* tF+1),
which in turn implies
wh(z) = & + wi(x — ¢f)*, Vo € Sk, and wk = 0 on 90.
We next consider the approximate characteristic function Bj, which, for any « in ]—',’f“, is solution to

DB 141 ) — (a — W) B8+ ),

By (tF Ltk ) =

(45)

-1 —1
@ (@) = [VAT (@) uh (A @) and W(2) = (VAT @)|  wh(AT (@), ve e B (46)

and denote BF = By, (th; ekt ).

Remark 3.3. The discrete ALE mapping having been extended to the whole of R? (see Remark 3.1), it suffices
to extend the discrete velocity field “Z in a similar way to what has been done in the continuous case to define
the characteristic mapping BZ in R? using problem (45).
3.1.4. Calculation of the new velocity and pressure

The triangulation 7, k41 6f the new domain Fy k+1 i obtained as the image of the triangulation Tk at the
previous step by the ALE application Ak A1 Likewise, the triangulation of SkJrl is given by k“\ﬂ k1
where the triangulation .7 7+ is obtained as the image of the triangulation .,/ k at the previous step by tho
ALE application AZ LAk Defining the finite element spaces

Vit = {(v§+1,5v2+17wv2+1) € COFT? xR? 5 wft! € [P1(K) @ (\Mda))?, VK € FFHY,

|k
vt =0 on 00 and v (z) = €v1;;+1 + (.Uv;cLJrl(.’B — YL v e 55,’:“} ,

with {\; }i=12,3 the set of barycentric coordinates (with respect to the vertices of K), and

Qk+1 { k+1 GLO(]_—k+1)mC0(}-k+1) qEHI e P, (K), VK € %LkJrl}’

the discrete velocity and pressure at instant t**! are then obtained as solution of a discrete generalized Stokes
problem: find (uf™!, v wity € VI and pitt € QF Y such that

k1 E+Lk o gk k1 s k
/ (“h u, 5;4 ° ) oft dg + MSh Sk &, € LT hy,
Fh+l h

ot ot

+ 21// . D(u}™) : D(vf ) da —/ pptt divoy ™ de
Frtt

k41
'7:h,

= fﬁJrl k+1d +fk+1 EUIZ+1 —I-f}lfjlwvﬁﬂ, V(’Uh ,£ ki1, w k+1) S V;erl, (47)

k+1
fh
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—/ gt divufttde =0, Vgt e QFY (48)
]_-k+1
k+1 Skt
where f} 7" denotes the projection of f(, tF+1) on (Ph+ ) , with

it = {7 € C°0) ; v, € PU(K), VK € 5},

and
= [t dwand i = [ i @) - e e
Skt Sptt

Remark 3.4. It is worth noticing that the discrete mixed problem (47)-(48) is well-posed for any k € {0,..., N}.
Indeed, by adapting the proof of Lemma 4.3 in [25], one can prove a discrete inf-sup condition, that is, there
exists a positive constant 3, independent of h, such that

ff,’f, qn div vy, dz

2 Br.

inf  sup
o vt ooty Ton Ty Ian e

Using hypothesis (25), with ¢y small enough, we can also prove that [ is greater than a positive constant 3*
independent of k.

3.2. Statement of the main result

Let us recall the hypotheses made so far. We assumed that the domain O is the interior of a convex polygon
and that there is no contact between the solid and the boundary 00, a condition expressed by (10), and that the
data verify the regularity and compatibility conditions (9). We shall now assume that the solution to problem
(1)-(8) is smoother than the regularity given in (11) by making the additional regularity hypotheses:

u € C([0, T); H*(F(C(1), 0(1)))*) N HY(0, Ty HY(F (L (1), 0(1)))%), % € L2(0, T: L2(F(C(1), 0(1)))%),

p € C([0, T HY(F(C(1), (1)), ¢ € H(0,T)?, w € H(0,T).

(49)

The main result of the present paper is the following.

Theorem 3.5. Assume that there exists two positive constants cs and C such that
h <6t < CyhY/2,

Under the hypotheses (10), (11), (25), (49) and the assumptions on the space discretization, there exist some
positive constants C, h and r, depending on neither h nor §t, such that, for all h in (0,h), 6t in (0,x) and k in
{0,..., N}, we have

C(F) = ¢l + 10(£%) — 6F] < C(6t + h'/?)
and

lu(A*;0,), %) =y 0 Af [z +1€(°) — &1 + |w(t*) — wii] < C(6t +h'72).

Remark 3.6. In the above result, the ALE mappings appear in the error estimates for the velocity fields since
the exact and approximate velocities are not defined a priori on the same domain at instant t*. Of course,
we could alternatively use the extensions of these fields given in the previous sections to state a similar result
without the ALE mappings and with quantities defined in the whole domain O.
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4. CHANGE OF VARIABLES

To prove Theorem 3.5, one needs to compare the exact solution, defined at instant ¢* in the domain
F(C(tF),0(t%)), with the approximate one, defined at the same moment in the approximate domain FF. This
is accomplished with the help of a change of variables similar to the one featured in [18] and subsequently used
in [25] for an identical purpose. A description of this transformation and some of its properties are briefly
recalled in the next subsections.

4.1. Construction of the change of variables

In this subsection, we introduce a family of changes of variable which, for any & in {0, ..., N}, transforms a
function defined on F(¢(t%), 6(t*)) into a function defined on F(¢F,0F).
First, hypotheses (10) and (11) imply the existence of > 0 such that

dist (S(¢(¢),0(t)), 00) > n, Vt € [0,T).

We then assume? that

C(t*) = Gl + 10(*) — 03] < C(5t + h'/?), (50)
for some positive constant C' independent of h and k. As a consequence, for 6t and h both small enough, and
for all A in [0, 1], we verify that

M) + (1= A)CE + Raoyop) (S(CH05) = ¢h) c O,

and

dist (AC(E) + (1 = N)Ck + Rogoqoy—op) (S(Ch.08) — ¢k ) .00) > 1.

Let x € C*(R?,R) be a function with compact support contained in O, such that, for all = in O,

1 if dist(x, 00) >

)

x(x) =

=SS

0 if dist(z,00) <

Defining the following smooth functions
() = (C(t") = ¢) -2t + (0(t") — 07) < = () + =N ¢h)- m)

and
A (@A) = V (x(@) (@, 2)
for all  in O, we check that, for all A in [0, 1],

A, \) = CHF) = CF 4 (0(t%) — 0F) ( — AC(tF) — (1 = N¢H)Eif dist(z, 00) >
o 0 if dist(x, 00) <

and
div A¥(x,\) = 0. (51)

2This assumption will be proved later by induction.
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Considering the following initial value problem

20 (02 = AF (. 2), ),

Y(y,0) =y, ycO,

we can show that the application
X (y) =y, 1), vy € F (¢ 07), (52)
is a diffeomorphism which maps F(¢F,0F) onto F(¢(t*), 0(t*)) and satisfies

X*(y) = ¢(t*) + Ry (y — C1) (53)

for any y in a neighborhood of S(¢F, or).

4.2. Transformed system

The purpose of the change of variables defined by the mapping X" is to be applied to the exact solution of
problem (1)-(8). We thus introduce the following quantities

U (y) = Jyr (X () u(X (y), 1), PH(y) = p(X*(y).t*), Yy € F (. 05),

Ek = Rehfe(tk)g(tk) and Qk = W(tk),

where we have denoted by Y* the inverse of X* and by Jy« the jacobian matrix of YF

oYk,
Ty = < ) .
Y Ox; 1<i,5<2

Also needed will be the transformed characteristic function

ch=YFocC(th;thtt, ) o XML, (54)
Note that, using a Liouville lemma (see [2, pp. 251], for instance) and property (51), we verify that
div U* = 0 in F(¢F, 00), (55)
and also, using notably (53),
Ur(y) =B + Q% (y — ¢H)*L, Yy € 8S(¢F,0F), and U* = 0 on 90.
Finally, in order to write down the expressions of Au and Vp after the change of variables, we define (see [18])

( lm i _|_ Zglml—\? i ) Uk]7 (56)

2

[LFU*); Z&( )—l—ZZg

J,l=1 Jlm=1 Jlm=1

2 k
[GFP*); =) gY or- (57)
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2
1 09im | OGjm  0gij
I‘l..zf ilm J J
b=g o (G B ) (59)

4.3. Properties

We end this section by stating a series of estimates satisfied by the change of variables. Their proofs can
obtained by using the papers [28] and [25] where the same kind of estimates are derived. All the constants C'
appearing below and in the sequel denote positive constants which are independent of 6t, h and k.

Lemma 4.1. The functions X", defined by (52), and its inverse YF satisfy the following inequalities
X[l (et o2 < O I [l (reery 00092 < C,
IX* — Tdlle(or < C (1) = ¢kl +100%) = 051) . I = Tl oy < C (I6(E) = ChI -+ 100t%) — 03

e = Tl oy < C (IC(E) = G +10() = 0k1) s Il — Tdllu(ops < € (I6(E%) = ChI+ 160(%) - 651)

92X*
3%‘3%‘

aQYk

(9371‘(91‘3'

< (I¢(t) ¢kl +166") - 651)

Lo (0)2

< C (I¢(t) = ¢kl +loer) - k1)
LOO(O)2
Vi,j € {1,2}.
Lemma 4.2. Assume that (U P*) € H2(F(CF,08))% x HY(F(CF,0F)). We have
v (2" = A)U" iz e apye < € (1G5 = G+ 16(E) = 851) 10 ke (g

and
IV = G*YPF et apye < C (I6() = ChI+ 100 = 051 1P lhss et o

Lemma 4.3. The function X", defined by (52), and its inverse Y* satisfy the following inequalities

X4 = XE [l oy < C(68) (10(8°) — 051 + [€(E°) = €51+ lw(t*) — whl) + C(61)? (I€ Il ory2 + 1 o)

Y4 = Yl o2 < C(61) (100E%) = 051 + €)= €51 + w(t*) — wh]) + O30 (1€ w0y + 1/ le0.19)

[[Jx s 1= Txr[lLee (0ys < C(61) (\H(tk) — 05|+ E(t") — €5 + |w(t*) — wﬁl)ﬂLC(&)2 (1€l 0,72 + 19l 0,7)) -

5. ERROR BOUNDS ON THE ALE MAPPINGS

We need to establish a number of preliminary results related to the ALE mappings. We assume, as in the
previous section, that (50) holds and that the steps 6t and h are small enough, so that the preceding results
remain valid. For sake of simplicity, we assume in the estimates that 6t and h are smaller than unity.
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We first complete Lemma 2.2 by giving additional results on the continuous ALE mapping. By differentiating
problem (22) with respect to time, we get that %(-, t) is solution of the system

(M) o () oo

(g) (:E,t) = £(t) + w(t) Rg(t)il:l, Yx € 08, (60)

(%) (=0 mao

In particular, the following estimate holds (see, for instance, [5,11])

SO (O] + w®)]), vt € (0,T).

ad
<-,t>‘
H ot W2.00 (F)2

Using the regularity assumptions (9), we conclude that
d, A(:;0,-) € W>>(0,T; W>>(F))>. (61)
We also have, owing to definition (17),
w € WHoo(0,T; W2 (F))?, (62)
and, from the proof of Lemma 2.2,
(,1) = [A(£0,)] " (=) € W>(0,T; W (F((1), (1)) (63)

We now state a result on the difference between the mapping A(t*; 0, -) and its discrete counterpart A],fb Let
us recall that both of these mappings have been extended (see Remarks 2.4 and 3.1) to the whole of R2.

Lemma 5.1. For all k € {0,..., N}, there exists a positive constant C independent of h and k such that
k.o \_ gk < ky _ ~k k\ _ pk )
a0 —af]| <o (166) — chi+ 106 — o1+

and

k.o oy k < ky _ #k ky _ ok 1/2
[vAik0) —va] | < (et - chi+loe) o] + 7).
Proof. From definitions (24) and (36), we have, for all « in O,
A(t";0,2) — Aj () = d(=, ") - dj (x)
and

VA(tF:0,2) — VAL (x) = Vd(x,t*) — Vd} ().
On the one hand, the error estimates (4.26) and (4.25) in [11] respectively yield

~k
Iy = df i~ (rpe < Ch2|10g bl (15| + 16£1)

and
~k
IV, — Vg0 < Ch (ICH +164])
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and, on the other hand, it holds
ky_FF k k k k
(-, t5) = dy (o < € (IC(E) = kI + [0") — 01

and
~k
V(1) = Wy 2oy < € (1C(E) = ¢kl + 10(t") — 651

We infer from these relations and the triangle inequality that
1) = df e e < C (1CEF) = G+ 16(8%) — 8] + b log Al )

and
V(1) ~ Vafllaspe < O (1C05) — ChI+ 100%) — 0f + 1)

17

Then, given the form of the extensions of the ALE mappings (see Remarks 2.4 and 3.1), we easily prove the

following estimates
(1) = df sy < C (1€ = Gl + 10(¢%) — 651)
V(- 5) — V|20 < Clo(E*) — 0]
Finally, owing to the mean value theorem and property (33), it follows

- t5) = di e rge < C (BIAC )l ryz + G(E) = ChI 4+ [0(E) — 05
and, using directly (33),
IVd(-, %) = Vil rgye < CBY2 (1A ) e mye + Rgx — 1))

which ends the proof of the lemma.

It is also natural to compare the discrete mapping A]fl with the diffeomorphism
~k
A =Y"o A(t*;0,)
~k
which verifies A (F) = F(¢F,0F). Notice that, from assumptions (9) and Lemma 4.1, we have
~k
[ o <€
W2,00 ()2

for all h and k. Using (63) and Lemma 4.1, we can also check that

@’

N

C,
W1ee(0)2

for all h and k.
Lemma 5.2. For all k € {0,..., N}, there exists a constant C independent of h and k such that

~k
|4 -4
Lo (0)2

(&) ()

<C (I¢(t) — ¢kl + 1) — of1 + n)

and

< C (I¢(t) = kI +10(tn) — 051 + 1) .
Lo (0)?2

(66)
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Proof. The first assertion is an easy consequence of Lemmata 4.1 and 5.1. To prove the second one, we write

(&) ()

(2) ot () "o

Lo (0)2 Lo (0)2
~k\ 1 e\ "Lk
_ H(A) o Af— (A7) oA .
Le2(0)2
Consequently, using the mean value theorem and (66), we find
~k —1 —1 ~k
(4) "~ () <o & -4 .
L (0)2 Le<(0)?

The above inequality and the first statement of the lemma imply the result. O

We now recall a classical result (see [1]).

Lemma 5.3. Assume that Z; : O — O (i = 1,2) are two diffeomorphisms such that, for all p in [0,1],
wZi+(1—-—pZy: 0O—=0

is a diffeomorphism with Jacobian J,, satisfying

JH Z Cc1, (67)
with ¢y a positive constant. Then, for any n in H(O), we have
1
o Zy =ne Zslro) < —IVillzo 121 = Zalluz o)

From the above lemma, we infer the following.

Lemma 5.4. Assume that the steps 6t and h are small enough. Then, for all k in {0,..., N} and p in [0, 1],
the application

k
pA +(1—-p) A0 —0
is a diffeomorphism with Jacobian satisfying inequality (67). The same property holds for the family of mappings
kN — 1 —1
p(A) +a-pm(4f) 0-o0,

with w in [0,1].

Proof. Let us recall that the constant ¢o in (25) has been chosen in such a way that the bound (26) is satisfied.
We first deduce from estimate (40) and hypothesis (50) that, for all k in {0,..., N},

Iy llwr.o ()2 < Cleo + 0t + h'/?).

Then, choosing cg, h and x small enough, we obtain that, for all & in (0,h) and dt in (0, k),

(68)

NG

) lw.o ()2 <

This implies, for all £ in {0,..., N} and p in [0, 1],

1
ld (%) + (1= ) dy[lwr.< 0y <
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which yields the first result (see the proof of Lemma 2.2 for details).
Next, using again the bounds (26) and (68), we infer that, for all k in {0,..., N},

1

g\ 1 . - .

(4) —1a+d', (A1) =1d+d),

with ) )
<k <k
[d" [|wr.(0)2 < 5 and [dp [wr.e(0)2 < 3
&\ 1 -1

so that, for all p in [0, 1], the mapping u (.A ) +(1—p) (A,li) is a diffeomorphism of O onto itself with
Jacobian satisfying (67). O

We are now in position to prove the following result.

Lemma 5.5. For all k in {0,...,N — 1}, there exists a positive constant C independent of h and k such that

1

et e

Proof. Differentiating, we have respectively

v (@) )] = ea (@) )] [va (@) )]
[mwwrhﬁﬂaﬁﬂ”ﬂ%mﬂ@wyﬂl.

We use this to rewrite the following difference as the sum of four terms:

[V <ﬁk o (ﬁk“)l)] o (VAL =S R, (69)

i=1

< C (¢t = Chl +10(t%) — 051 + n1/2).
L2(O)4

and

where

= (&) )] 2 () )] e
e ()] [ (@) )]

e o2 (@) )] [ (6 )] .
B [VAZH ((AZH)_ )] [Vﬁk ((ﬁk“) )} :

o [rm () ) [0 (@) - o ()]
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e () )] o (1)) _1
e ()] s )]

Using the bounds (65) and (66), we infer from Lemma 5.4 that

-1

IRl < C H () ()

L2(O)2 '

Combining the above inequality with Lemma 5.2 then yields
|Rallieoy < C (I6(8) = Gl + 16(tx) — 051 + 1)
Next, using Lemmata 5.1 and 5.4, we obtain
| Ralli oy < € (1C(t) = CEI + 16(t) — 051 + 11/2).

To estimate Rs, we first write

(@) - ()]
[ea (@) [ra () ) e (A )
ot (4 )]
Consequently, using Lemmata 5.2, 5.3 and 5.4, we get

IRslliaoy < C H ()" ()

< C (I¢(t) — ChI+ 10(tx) — 651 + 1)
L2(0)2

Finally, using the relation
VA - [vay] = [vA] (vab-vAY) [val]
in conjunction with Lemmata 5.1, 5.3 and 5.4, it can be shown that
|Rilliaops < € (1C(t) = ChI + 16(tx) — 051 + 11/2),

which ends the proof of the lemma. O

We close this subsection with an error estimate for the discrete domain velocity, which is derived from the
approximate ALE mapping. Let us denote

WE(y) = Jyr (X* () w(X (y), t").

We have the following result.
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Lemma 5.6. For all k in {0,..., N}, there exists a positive constant C independent of h and k such that
IW* — whllaore < C (16(%) — Ch1+ 10(t*) — 051 + 6(%) — €] + |o(t*) — wh| + 6t + h)

Proof. From definition (17) of the domain velocity and identity (24) defining the ALE mapping, it follows that

DA, od

— a(j

w(A(tIH_l; 07 ')a t) = E(tv 07 ) -

t) in F,

and 22(.,) is solution of (60).
On the other hand, combining definitions (42), (43) and (44), we obtain that
k k
wh o AF = #

Moreover, using (36), (37) and (38), we get that the field

LA
3t
satisfies
Yh(x) = €5t +th9ka: + (0t) exr (), Vo € dSY, and YV = 0 on 9O,
where .
exp(@) = —@h)? [ (1= Rygpupwds
and

. vYF:vd,de + A/fo (div X§)(divdy) de = 0, Vdy, € (PY)” s.t. dj, = 0 on OFD.
h h
Then, using inequality (4.26) in reference [11] and proceeding as in Lemma 5.1, we deduce that

0A

( AZ-H - Aﬁ
ot

.
0.-) = ot

C (1&(t*) - €kl + lw(t*) = whl + 8t + 1) . (70)

L2(0)2

Owing to the definition of W*, we can write

Wk = Jo (XF)w(XF, 15) —awh = (Jyk( )fId) (X", %) + 2‘: <(A )l,tk> ‘2‘: <(A’“> 1,75’“)

# 00 ()™ ) - AT ()

From assumptions (9) and Lemma 4.1, we get

H (Jyk(x’“) - Id) w(Xk,tk)‘

< (I¢(t) = ¢hl+106%) - 651)

L2(O)2

From the regularity of d and Lemma 5.2, we deduce that

[ ((2) ) =5 () ")

C (I6(t%) = ¢l + 16G%) — 0k + 1)

L2(0)2
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Finally, from inequality (70) and Lemma 5.4, we obtain
od -1 AL Ak -1
= ((.A’,i) ,tk> - T T (Af) < C (1) — €1+ |w(t*) — wh| + 5t + 1)

ot ot
L2(0)2

The last four relations yield the result. (I
Lemma 5.7. For all k in {0,...,N — 1}, there ezists a positive constant C' independent of h and k such that

/Alk o (.ZkJrl)fl B .Alfb S (Afﬁl)il

L2(0)2
< C(61) (1C(5) = ChI+ 10(t) — O] + 1€(¢%) — &5 + w(t") = whl + 8t + 1)

Proof. We have

Ao (A e () = (ﬁk AT gy AAT (47) ")

= (dt) <M o (AZ-i-l)_l 3 ,Ak_at,,ct’““ . (A\k_,'_l)—l)

ot
+(0t) (Yk — Id) o M o (.[lk+1)71 .

ot
Owing to (49), the mapping .A(-; 0, -) belongs to W2°°(0, T; L2(0)) and we thus can write

AP — AR ~k+1\ "L 0A k1 1
T o (AT) =500 (A7) reba
with

lef.allLz(oy> < C(6t).
Consequently, using (61), (65) and Lemma 5.4, we deduce that

~k ~k+1\ —1 -1 oA AkLH—Ak
Ao (A7) - Ao (A7) <C(5t>< Bp (1150:) = S
e L2(0)?
~k41\ 1 -1 YE _ykt+l
@7 - () XYYy o £ at).
L2(0)2 6t
L2(0)2

The result is obtained by combining the above inequality with the estimate (70) and those in Lemmata 4.1, 4.3
and 5.2. (]

6. ERROR BOUNDS ON THE CHARACTERISTICS

In the forthcoming proof of the main result, we will also need some estimates on the difference C* —AZHJC OBZ
between the exact and approximated characteristics. We assume, as in the previous sections, that (50) holds
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and that the steps 6t and h are small enough, so that the preceding results remain valid. We continue as well
to suppose that 0t and h are smaller than unity.

Let us recall once more that the various mappings are now defined in R2. In the sequel, the diffeomorphisms
X* and Y* are extended to R2 by setting X* = Y* = 1d in R2 \ O. We assume moreover that there exists ¢
small enough such that following relations hold:

(6t) [Y*+ o (@ - w) o X441 <e (71)
Lo (th th+1, W00 (0))2

and
(o1 -

where, for all ¢ in [tF, t*+1] and = in F(¢(t*+1), 6(t5+1)), the functions w and w are defined by

E;CLHWI,OC(O)Q < & (72)

-1 —1

u(z,t) = [VAGL T 2)] w( A 2), 1), w(x,t) = [VAGLET 2)]  wAGE T 2),t).  (73)

These assumptions are stability results to be proven in the proof of Theorem 3.5 by induction, and the positive
constant € will be fixed below. The main result of this subsection is the

Theorem 6.1. For all k in {0,...,N — 1}, the error on the characteristics can be estimated by
I — AF 0 Bl laop < €08 (UF = whllaop +1C(H) = ChI+10(¢%) - 6] + ot+h12) . (74)

where C' is a positive constant which is independent of h and dt.
To prove Theorem 6.1, we have to derive some auxiliary results. First, let us consider the mapping
Bt; t5t1 ) = Y o B(t; 511 ) o XFFL vt e 1R ¢4,

and denote

~k ~

B = B(t"; ")), (75)
From problem (28), we know that B(t; t*+1,.) satisfies, for any @ in F(CFT 08, the initial value problem

OB

S G ) = Y o (@ —w) (1) o XM B 15 @), 1),

B(th 1 th+1 ) = g,

(76)

in which the functions @ and w are defined by (73). Using the bounds (71) and (72) for e small enough , we
~k

can show that, for any p in [0, 1], the mapping u B + (1 — p) BZ is a diffeomorphism with Jacobian satisfying
(67) for some positive constant c;.
We next establish the following result.

Lemma 6.2. Consider the functions w and w given by (73), and Eﬁ and Eﬁ given by (46). Then, we have,
for allk in {0,...,N — 1},

(Rl

/k HY’““ o (@—w)(-,t) o X" — (uf —ﬁﬁj)‘

L2(0)2

< C(01) (JU* = uflluaop + I6(F) = ChI+ 104%) - 05| + ot + n1/2).
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Proof. From the definitions (46) and (73), it follows that, for any y in O and ¢ in [t*, tF+1],
Yo (@ —w) (-, t) o XM (y) — (g, —wy) (y)
-1
= yh! ([wut; X )] (- w) (A, X ), t>)
-1
k+1,k k+1.k
— [VAR )] (- wh) (A ().

The right hand side of the above identity is then decomposed into a sum of five terms:
Y o (@ —w) (1) o X (y) — (@ — W) (y) = > Eily),
i=1

where
—1

Ei(y) = [Y’f“ _ Id} ([VA(t;tk“,Xk“(y))} (u — w) (A(t;tk+1,Xk+1(y))7t>) :

Ex(y) = [VAM I X )] (- w) (A 15, X5 (), 1

— [FAGE A X )] w) (A X ), 08,

83(y) _ ([Vﬁk . (ﬁk+1)_l (y):| -1 B [VAZH’k(y)} 1> (Uk _ Wk) (,Zk . (ﬁk+1>_1 (y)) |
£xtw) = [VAT )] (00 W (A7 (A7) ) ) - (0F - WAL ).

-1
Esly) = VAT )] ((UF = WH) = (uf = wh) ) (A ().
First, we deduce from Lemma 4.1 that

tk+1

/t  Eillaope dt < CEDIYH = Tdlliop < C(01) (1€ = ¢l + 10(t) - 641) -
We then infer from (49), (61), (62) and Lemma 4.1 that the family of mappings
—1
(y,1) = [VALET X ()] (u - w) (A, X (), )

is bounded in W1°°(0,T; L>°(0)) with respect to k and we thus find

(L

H£2HL2(O)2 dt < O(&t)Q

tk
For the third term, the use of (49), (62), (65) and Lemmata 4.1 and 5.5 yield that

(Rl

15120y 4t < C38) (1C(E5) = ChI + 16(%) — 0]+ 11/2).
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-1
HVAEH’I“} is uniformly bounded with respect to k
Leo(0)4

and h (see the proof of Lemma 5.4 for details). In addition, using the regularity hypothesis, we obtain that
|V (U* - Wk)||Loc(O)4 is also uniformly bounded with respect to k and h. Therefore, we have

Using assumption (25), we can show that

tk+1

~k K41\ 1
/tk €4l 202 dth(at)HA o (A ) — Ayt

b

Loo(0)2

which in turn implies

el
/tk

Hence, using Lemma 5.2, we obtain

[Ealliaop dt < (1) (Hﬁ’“ S H (A7) ()

1
Loo(0)2 .

tk+1

1€l dt < C(6t) (IG(E°) = ¢kl + 16(E%) — 0} + h).

Finally, using a change of variables, we get

tk+1

€50 dt < C01) (ITU* = ub a0y + W = whllizor2)

and infer from Lemma 5.6 that

R+l

/ 152 0y dt < C6t) (I1U* = wh a0y + IC() = ChI+ 10(t") — 0] + 6t + 1)
Collecting all these bounds then yields the desired estimate. O
Proof of Theorem 6.1. From definition (54), we have
ck— AT o BE = Y o A(tF 5 ) 0 B(F; ¢7H1,) o XL — ARTER o BE
and it follows from (64) and (75) that
Ch— AR o BE = YRo AR P ) o XEHL o YR o B(1F; P ) o XEHL — AFTLE o B

Ao (2’“”)71 oB" — Ao (A’;H)*l 0B,

The right-hand side of the above equality is then broken into two contributions:

ck— AFTVE o BE = A" (ﬁkH)*l 0B _ A (ﬁkH)*l o B
+A o (A7) Bl - Abo () Bl (77)

Using (65) and (66), we have that

Ao (A7) B - Ao (A7) T omy

~k
< OB = B lL2(0)- (78)
L2(0)2
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Additionally, taking the difference between problems (76) and (45), we find that, for all ¢ in [t*, tF+1],

H%(ta tk+15 ) - Bh(t;tk+17 )‘

L2 (0)2
tk+1

g/t HV(Y“lo(ﬁ_ﬁ)(-,s)oxk“)
tk:+1

+/t H (YkJr1 o (u—w)(-s) 0 X — (my —Eﬁ)> o By (st .)’

B(S;tk+17 ) - Bh(S, tk+17 )‘

[ oy

ds.

LQ(O)Z

Combining the above inequality with Gronwall’s inequality and the fact that the jacobian of B; is bounded
(owing to assumption (72)), we get

tk+1
B4 4+l N _ k1l k41 = o k+1 _ =k _ -k
Bt~ s o <e [ Y e@-me g o X - @ —w
We finally deduce that
|Beekseer =B <060 (10"~ ufllop + 164 — ¢kl + 106) — 0F] +5t+0172) . (79)

using Lemma 6.2.
We now turn our attention on the second term in the right-hand side of (77). Since the jacobian of BY is
bounded, we get

A\k o (AAk+1)—1 OBi —Aﬁo (AZH)ﬂ OBZ

<C Hftk S (AAk+1)—1 Ao (.AZH)A

L2(O)2 LZ(O)Z '

Given the bound obtained in Lemma 5.7, we have

~ N -1 -1
Ako(AkJrl) oBZ—A’ZO(AﬁH) 0Bk <
L2(0)2
C(6t) (IG(1) = ChI + 10(8%) — OF| + [€(t*) — €F| + [w(t*) —wh| + 8t + 1) . (80)
Collecting (77), (78), (79) and (80) therefore yields estimate (74). O

Lemma 6.3. Assume that h is small enough. Then, for all k in {0,...,N — 1} and p in [0,1], the mapping
pC (1 —p) AT o By 00

is a diffeomorphism with Jacobian satisfying (67) for some positive constant c;.

Proof. Tt suffices to write
~k ~k+1\ "1 ok -1
pC (=) A 0B = p A o (A7) 0B+ (1-p) Ao (AFT) 0B,

and follow the proof of Lemma 5.4 using assumptions (71) and (72). O
Lemma 6.4. For allk in {0,...,N} and p in [0, 1], there exists a constant C independent of h and k such that

IC* — Tdlliz (o < C(3t) (18(E°) — 0] + 1€(") — &5 + [w(t¥) = wh]) + C(31). (81)
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Proof. Let us define, for all ¢ in [tF, tk+1],
Ct;t*+1 ) =Y o C(t;tFH1, ) o XFHL,

so that (Al'(tk; thtl ) = C*. We then deduce from problem (16) that, for all  in O, the function a(-;tk+1,w)
satisfies the following initial value problem

O 11 ) =y (X1 ) w(XF (5585 ). 1),

/C\(tk+1; tk+17 CE) _ Yk? o Xk+1(:1:).

Consequently, we get from a Taylor-Lagrange inequality combined with the regularity assumption (49) and with
Lemma 4.1 that
IC* = Id||i2 0y < Y 0 X*H —1d |20y + C(81),

from which the result is inferred using Lemma 4.3. (]

7. PROOF OF THE MAIN RESULT
As previously, we assume that dt and h are smaller than unity in order to simplify the estimates.

7.1. Consistency analysis

We now show that the exact strong solution of (1)-(8) satisfies at each instant t* a perturbed system of
semidiscretized equations which leads to a weak formulation similar to problem (47)-(48), and estimate the
perturbations.

Consider (u, ¢, 0, p) the solution to (1)-(8) and assume that it satisfies (49). For any k in {0,..., N — 1}, we
have that

u(,,thrl) — ’U,(C(tk, tk+1a )7tk)

- VAu('vthrl) + Vp(.’thrl) = f('atk+1) + egtu in f(C(thrl)v e(tk+1))7 (82)

5t
k+1y _ k
I (. p) e, 1) T 4 £, (1547) + ef, (53)
ot DS (C(th+1),0(t4+1))
tk+1 _ tk
Iw = —/ (= ¢tYE - o(u,p)n(e, t* ) AT + fr(tFTY) + ek, (84)
DS (¢(th+1),0(tk+1))
where ( k+1) ( ( k. 1k+1 ) k)
e u(t —u(C(t5 ", ), tY)  d kg1
edtui 6t dt [UOC](,t )
and k+1 k k+1 k
elg _ €(t zst_ £(t ) —gl(tk+1)7 65, _ w(t )5; w(t ) —w/(tk+1).

Using the regularity assumptions (49) and the Taylor-Lagrange inequality, we get the following consistency
estimates.

Lemma 7.1. There exists a positive constant C' independent of h and k such that the quantities e’;tu, e’g and
el defined above satisfy the following inequalities

2
1/2 i[uoc]

" , (35)

L2(th, 17 L2 (F(C(1),0(1))))?

lef,wllLz @ es).0s1y))2 < C (1)

€] < CO0) € sy and [eh] < OO agen gvs)- (56)
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The change of variable introduced in Section 4 allows us to transform the equations (82) to (84), set at instant

t**+1 in a domain in which the rigid body has ¢(t**!) as the position for its center of mass and 6(t**!) as its

orientation, into a system of equations set in a domain where the solid is centered on Cﬁ“ with orientation

9’;“. This step will permit the subsequent comparison between the exact and approximate solution of the
problem. We suppose that (50) holds so we can consider the change of variables X*1 and keeping with the

other notations introduced in Section 4, we get that the couple (Uk‘H, PkE+1Y satisfies

k k k k k
U +1 — (JYk+1 [¢] X +1)(JXk OC )(U OC ) —v [Lk+1Uk+1] 4 [Gk-‘rlPk-i-l] — Fk+1 + Eldctu in F(Cﬁ+1,9£+1)’

ot
(87)
where
Fi(y) = Jyren (X (y) F(XE P (y), 17, Ef,u(y) = Jyren (X (y) ef, (XM (y)),
and, from property (55),
div U = 0 in F(¢FH, 05 F). (88)
The transformed equations for the rigid solid are obtained using property (53), and we have
= k+1 pk k+1 k
M;:—/ o(UMH PP Ondl + Fyf '+ EE, (89)
ot PS(ChH1 gh+) M 3
Qk+1 _ Qk
=" = f/ (x — ¢ o (UM PP Y dD + A 4 B (90)
6t 8S(CZ+179})€L+1)

where Fi/ ! = R9:+1—9(tk+1).fM(tk+1)) FIICH = f}cHa Eé = Re;gfe(tk)e’g and Efj = ef).

We observe that, while V,lf‘H is not a subspace of V( ]ZH, HZ'H) due to the nonconforming approximation of

the domain, any function (’UZ+1,£,UR+1,W,UR+1) of V,’f“, defined on f}’f+17 can be easily extended to the whole
h h

domain O into a function of H}(0)? x R? by setting
vaJrl(a:) = Evﬁ+l + wv:ﬂ (:B - Z+1)J', Vo € S}]jJrl.

Similarly, any function q’,i“ of QZ“ can be extended into a function of L3(O) by setting qﬁ“ =0 iAn/S;f“, We
therefore introduce the couple of “extended” discretization spaces, defined over the triangulation fhkﬂ,

Vi = { (vn: €0, w0n) € HY(O)? N COO) X B 5 v, € [P1(K) & (idada)?, VK € F1F
vh(m) = Svh +wv}z(x - Z-H)Lv Vo € SII:—H} ’

and Q’ZH = {qh cL(0O)nC°(0) ; an), € P1(K), VK € 92”1, gn =0in S,’f“}, and their respective contin-
uous counterparts

V0 = {(0,6,,00) € HYOPNCOO) x R 5 v(w) = £, +wol@ — Ci)E, va € S(CH 05},

and Q(¢FH,05") = {q € 13(©)N C*(@) 5 ¢ =0 in S(CFH 05 }.
Then, multiplying scalarly equation (87) (respectively (88)) by a test function v ** such that (vf ™, évl:LJrl , wleJrl)

belongs to V,’f“ (respectively by qﬁ“ in QZH), integrating over the domain F (¢ ;“LH, 9,’?“) and using equations
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(89) and (90), we obtain that the quadruplet (U*+ ZF1 Qk+1 pk+ly ig solution to the following variational
problem

Uk+1 o Uk: ° Ck: 1 Ek-‘rl _ Ek Qk+1 . Qk
‘/]_-(Ck+1 pE+1) <5t “ Uy, dx + MT . gvzﬂ + Iva’;+1

- 21// D(U*) : D(@ft!) de —/ PFHY div ot dee
]_-(Ck+1 9k+1) f(ck+1 9k+1)
- k+1  k+1 k+1 k+1
-/J-‘(Ck+1 ol ¥ v A Fy 6”’;“ +F Yoyt

k k Sk
+/(C"“ o) (Edtu"‘E ) Hdx+ Ef - €, k1 +Efw, koL V(Uh+1,€v1;+17wv1;+1) eV, (91)

— / gr ™t divURttdz =0, Vgt e OF (92)
]_-(Ck+1 9k+1)

with

(Jyrss 0 XY (Jgr 0 CF) — Id} (U* o k)
ot

We infer from Lemmata 4.1 and 4.2 that

Ech _ 4 V(Lk‘-‘rl _ A)Uk+1 T (GkJrl _ V)Pk+1. (93)

IES Nl et gy < C (1) = ChI+ 16(2%) — 651)

C

+ 5 (Ix00s = Jrllieoye + 1€° = Tdlacops (16(5) = ¢kl +10(8%) — 651 ) -

Then, using Lemmata 4.3 and 6.4 and the above inequality, we reach

1B lla e gyye < C (IG5 = G+ 16(E%) — 85| + £(E%) — €] + lw(t*) — wh])

+C (W) — OF] + 1€(t5) — k1 + (") — whl +1) (165 = Chl +10(¢%) = 6F]) + C(61).  (94)
We are now in position to proceed with the finite element analysis of problem (47)-(48). We make use of a
result from [25] relative to the existence of projectors, which is something made possible due to the particular

construction of the domain f}’f“ (compare Subsection 3.1 of the present paper with Section 4 in [25]). First,
let us notice that

2w / DU D(vft!) dee — / PEHL div ol de
f(<2+1*6:+1) ]_—(CkJrl 6k+1)

= QV/OD(UkH) :D(viT!) de — /OPI“‘L1 div ot de

and that
—/ g7t divUM da = —/ R div UM dee.
F(CEHL g1y

Adapting the proof of Lemma 4.4 in [25], we can show the following result.
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Proposition 7.2. Suppose that assumption (25) holds. Then, for any k in {0,..., N}, there exists a unique
quadruplet (Vﬁ,ﬁvﬁ,wvﬁ,Qﬁ) € V,’f X Qﬁ satisfying

2u/ D(U* — V) : D(vf)de — / (P¥ —QF) dive)dz =0,
F(E}08) F(¢h.08)

—/ ¢ div(UF = vi)dz =0,
F(¢k.0p)

for all (vﬁ,&vzﬁ,wvﬁ,qﬁ) mn )A/,lf X Qﬁ Moreover, there exists a positive constant C independent of h and k such
that

|U* = V}li2(0)2 < Ch. (95)

Using the above lemma and equations (91) and (92), we deduce that

Uk+1 _ Uk o Ck k_;,_l Ek+1 Ek Qk+1 _ Qk‘ &
/f . <6t A e e T

—|—21// D(V}th . D(uﬁ*l)daz—/ QI divor da
FERTLorth FERTorTh

_ k+1 , k+1 k+1 k+1

= /]:(CkJrl . F (o dx + FM £Uﬁ+1 + FI wvi+1

+/ (Edtu + Effh) k+1 dx + E$ 5 k1 + E w oL V(UZ+1,€vk+l7ka+l) S ]A/}]f-i_l, (96)
f(ck+1 9k+1) h h

— / g divvittde =0, Vgitt € QFFL (97)
]_-(Ck-u 9k+1)

1 Vk"rl k+1

Choosing v} ™ = u, " as a test function in both (47) and (96) and subtracting the respective results,

we then obtam

1 M I
— [VEFL —uf ™2 de + €y ren — EFT 2+ Jwpren —wf T2 4+ 20 DV —uf T2 de
(St 6t h t h ]_-k+1
1
= & - <Vﬁ o Ck? o ’U,]}CL o Alé—l—l,k o BZ) . (V;CL+1 k+1)d.’1} + 7(£Vk 52) . (€V:+1 o £Z+1)
Frrt

9
I
+ E(Wvﬁ — w’ﬁ)(wvi“ —withy ; E;. (98)
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where the terms in the indexed sum are defined as follows

Uk"rl _ Uk ck
]_—(Cl}z+1795+1)\}-§+1 ot
1
B g [ UM VAR (VR e (100)
ot Fht
1
E3 - a Lk+l (Uk © Ck - Vﬁ °© Ck) ’ (VZ+1 - ufl+1) dw’ (]-0]-)
h
M =k k+1
Ey = — &7 —&yrn) (Eyen — &), (102)
M _
By = E(‘zk - EV’,;) : (fvﬁ“ - €Z+1)7 (103)
1
Eg = _E(Qkﬂ _ wV:H) . (WV’;“ _ wﬁ+1)’ (104)
1
E; = g(Qk - CUV;CL) : (UJV;»;+1 — wZ-H), (105)
_ k+1 k+1 ) k+1 o k+1 k41, kt1
By = /}'(CZH,GZ“) ¥ (Vh b ) de /J-',’fﬂ h (Vh uy, ) de,
+ (B = fhr) - € — 667D + FF = ) (wyn —wf ), (106)
Ey = /f@k+1 e (Estu + th) (VIR bt da + B - €y — B | Rk Wyt — W (107)
h " h

To estimate |E |, we recall that

Uk—i—l _ Uk o Ck

d
5 = |Jyk+1 0 Xk+1} o [wo €] (XFH ¢+ + EY

[(JW o XE+1) (Jxk 0 CF) — Id] (U* o k)

+ 5t

The property (33), the regularity hypotheses (49), the bound (94) and Lemmata 4.1, 4.3 and 6.4 can therefore
be used to get

|E1| < Ch [lc(t’“) — Chl +10(t%) — 0F | + |€(t%) — €5 | + |w(t*) — wf| + 6t + 1

+ (1608%) = 051 + 6(%) = €h] + w(t*) — whl) (I6(%) = ¢kl + 10(t%) - e,‘i)]

(V5 =l agrannye + €y — E5 ]+ oy —EH1) . (108)

The terms |E;|, i = 2,...,7, can be bounded using Proposition 7.2, which gives

7

h
Z |El| < C& (”VﬁJrl o ui+1||L2(]__’;:+1)2 + ‘&.Vfﬁl — €Z+1| + |wV;€L+1 — wZ+l|> . (109)
=2
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We next remark that, for all (vj ! & B, W k+1) in VIt

/ ’Z'H k+1 dz + JUH_1 & et + ff,f—}_lkaﬂ = / Q—H k+1 dz + / Ps k+1 k+1 dz.  (110)
Fhtt h ’ " st

; k41
h Fh

Since S(Cﬁ"'l7 QEH) C S;f“ by construction, we also have

Fk+1 k+1 dx + Fk-H £ k1 + Fk+1w k1
k+1 gk+1 vy, 1 vy
F(¢ 0,7)

= , PRl de 4 ps FFTLpfitlde, (111)
FERT Rt S(Cphopth

for all ('vh ,£ k41, W k+1) in VhH Indeed, for any element ( ,f k1, W k+1) of V , one can write
CFRHLL bt g = CFRH () ( _ k1 J_) d
‘/(4,chl g+ P vy, € S(ckH g+ p (z) Ev’;“ + Wyt (x h) T

— k+1 s k+1 . k+1
- </s<c:“:9,’:“)pSF dw) €v2+1+</‘9(ck+1 e’“+1>pSF @)t a dgc) RO

Using (12), the respective definitions of FFHL FIX/}H and F’Iﬁ'l, and the property (53) of the change of variables
X**1 the above relation implies (111). Subtracting (110) from (111) then yields

Fk+1 . vk+1 d:c _ k-‘rl kJrl d.’.C 4 Fk)+1 k-‘rl 5 k+1 + Fk‘+1 k+1 W k41
]_-(Ck+1 9k+1) h Fh+l h h.1 Up,
h

:/ k41 lek+1-v2+1dw+/ k41 klpsFlﬁ_l.vffldw
FEEToTh ST et

— IfLH coft de — Ps IfLH Soft de,
k+1 h k+1 h
'7:h Sh

and we obtain
1Bs] < Ch ([Eyn — 571 + oy — ™) 4 CIF = pi7 o VAT — a0y, (112)
Due to assumptions (9) and Lemma 4.1, we have
[ — o < € (16 — ¢+ 106%) = 01) + 1G4 = i e (113)
N2
In addition, since f’;“ is the projection of f(-,#**1) on (732) , it satisfies

FC 5 = £ oy < Ch (114)

Note that the positive constant C' in the above inequality can be chosen in such a way that it does not depend
on k, as it is assumed that (25) holds for some constant ¢y small enough. Gathering the bounds (112) to (114),
we get

|Bs| < Ch (& y ke — €57 |+ oy —wbT1) +C (1608 = ChI+10(8%) = 051 + ) IVE = wb 202
(115)
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Finally, we infer from Lemma 7.1 and estimate (94) that
|Bo] < M2 (VA = wh | gprtyys + [Eyes — €Y+ wyen — wf 1))
+ 0( (16(¢%) - 051 + lEt*") — &kl + lw(t®) — whl) (I6(5) = ¢kl + o) — 0}])
+16(E) = ¢+ 16(6) — OF1-+ €¢4) = €51+ 1wlt") = w1+ 60 ) IVE™ — w sy gy (110
Collecting the bounds (108), (109), (115) and (116) and identity (98) leads to the following inequality:

k1 k412 o pkt1p2 L kH1p2 R+l k4142
2L}1:+1 Vi uy | dm+M|£Vﬁ+1 P +I|WVIZ+1 w7 —|—4I/(5t)/]::+1 D(V5 u, )| de

S 2/ (Viocr —ubo AT o BY) - (V! — b ™) da + Mlgyy — €5 + Tloyy — wh
}_}):+1 h h
+ Ch(dt) (IC(tk) — Chl +10(%) — 05| + &(t*) — &3] + |w(t*) — wi| + 6t + 1

+ (1606%) - 851+ 6(¢%) — €h] + lw(t*) — wh]) (I6(E%) = ¢kl + lo(t*) — 0}]) )
+ Ch (HVQ‘H o quHHm(}‘{f“)Z + |£V1;L+1 — £ﬁ+1| + ‘wvi+1 — wale‘)
+ Ch(6t) (\5‘/:“ — & lwyen — w’,;+1|) + C(dt) (|c(tk) — Chl +10(t%) — 05 + h) IVEH — w2 o)

+ C(6t)%/? (HV’ZH _ “Z+1||L2(f(ci“ﬁﬁ“>>2 + |£V§+1 — e 4 \wviﬂ — w2+1‘)
- 0(&)( (190t - 851 + 1) — €kl + o(t®) — whl) (I6() = ¢hl + 16) — 03]
+ 1G(%) = ChI+ 10(t5) — 0 + 6(#%) — €51 + w(t") — wf] + 6t) VAT = s gy (117)

Next, the first term in the right-hand side of (117) can be decomposed as follows

/k (V’fL oCF —ufo A’ZH’k o Bﬁ) (VT ity de = / ((Vﬁ —uf)o Ck) (VI it de
Fht1 Fht1

h h

[ (V= uhyect - (Vi) o Ao BY) L (VER - uf ) de
Frtt

h

+ /}-k+1 (Vf oCk — VZ o Aiﬂ’k o Bfl) . (VZH _ ulfiH) de. (118)

h

Denoting respectively by I, Is and I3 the three integrals in the right-hand side above, we first easily check that

1
Ll <3 (/k |Vt —u;j+1|2dm+/ \%4 —u§|2dcc> : (119)
]:h+1 ]:k

h

Then, arguing as in [1], we have

k+1 k
|IQ‘ < ||Vh+ — uh+1||Loo(]__:+1)2 ,

(Vi = uf)oC" = (Vh —uf) o AL o B

Ll(}';erl)Z
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which yields, using an inverse inequality (see, for instance, [3]) and Lemmata 5.3 and 6.3,

1/2
1
L < C <log <h>) [Vt — u’g+1||H1(f:+1)2 IV (VE —uf)|LzopllC — AFTHF 0 BY||rz 0y

From the Poincaré and Korn inequalities, we get

1/2
1
nl <0 (e (3)) IDVE™ —uhhampoon IDOVE = ) hampe€* = A7 0 B o

Combining the above inequality with Theorem 6.1, we reach

h

1/2
2l < o) (10 (1)) " DOV = )l IDOVER — ) e
(0% = wkllizcope + C(5) = ChI + 10(%) — 0] + 6t + n1/2) . (120)
The last term can be treated as follows
13| < [lC* — Ayt o BIZHLz(f,’;'“)z||V]Z||w1>oo(f;§)2 Vit - ’U’Z+1”L2(]—':+1)27
so that finally
13| < C(&)HVZHWLOOMQ)?||VZ+1 - “2+1||L2(f;;+1)2
(0% = wkllizcope + C(E5) = ChI + 16(%) — 6] + 6t + n1/2) . (121)

Gathering (95), (117), (118), (119), (120) and (121), we obtain that

k k k k k k
/fm [V — a2 de + M|&y s — B2 Twy ke — W2 4 4p(6t) / . DV —uf )2 da

T

< [ VE - ke + Migyy — € + Tlovy - whP
f,

h

h

1/2
1
+ O ((log (7)) IDOA = Dl IDVE — wblisirpys + V5 - u’;“||L2(f;+l)2>

(IVE = uh a0y + 1C() = ChI+ 10(t%) — 0] + 8t + n'/2)
+C ((&)3/2 + h(5t) + h) (|5Vﬁ+1 — €+ oy — w,’§+1|) + CRIVE — Y e

h

+ OGOV = ™ liareron by [|<<tk> — ChI+ 10(t) — O] + 6(#%) — €51 + lw(t") — wf] + (1)
+ (100%) — 051+ €(t%) — &1 + () — wil) (1C(t*) = ¢kl +10(¢%) - eﬁ)]
+CEIVET = uh o (1) — ChI+ 10(t*) — 0F] + 1)

+ Ch(5t) [IC(t’“) — Chl+10(%) — 051 + [€(t*) — &1 + [w(t") — wi| + 6t +1

+ (1608%) - 851 + 6(¢%) - €h] + lw(t*) = wh]) (I6(E%) = ¢kl + Io(t*) — 0}]) } (122)
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Denoting, for all k in {0,..., N},
NF = ||VE - umi%fﬁy + M|£V’; - £;€L|2 + I|Wv§ - W]ii 2a
and using that h < 1, 6 < 1, we infer from inequality (122) that

N () DV — a2, ), < A

w6t (s (1)) IDOE 0 e DOV o
(/\/’“ +CHR) = il + 10(E%) — 0F | + 6t + hl/Q)
+ C((5)%/2 + (6t)hM/ 2 NFHL
+ CEONS (W™ 4 [G(E%) = Gl +10(8%) = 051 + (V™ + 166%) — 051) (1€(t5) — ¢kl + 1o(t*) - 031) )
+ Ch(3t) (N* + [G(F) = CRI + 10%) = 0] + 1+ (V" + 10¢%) = 1) (1) — ¢kl +10(t") = 651) ) . (123)

7.2. Conclusion
We are finally in a position to demonstrate the main result of the paper.
Proof of Theorem 8.5. Hereafter, the constants do not depend on d¢, h, nor on the time index k.

First, from the definitions of w9, ¢%, 69, &) and w (see Subsection 3.1.1) and the assumption (9) on the
regularity of the initial datum u(?), we have

N+ 20(B0)||D(VS, — ) |22 rys < Coldt +h172),
for some positive constant Cp.

Second, we proceed by induction on k to show that the bounds (71) and (72) and the following induction
relations

N 4 20(68) |ID(VE — wh) 12 zpy < Cr(dt + ht/?), (124)
[C(t%) = €l + 10(8%) — O3] < ex (5t + h'/?) (125)
hold, with
C k—1 1 k—1
Ch=—2 _43006)y —————and ¢, = (6t) S (C; +C7),
(1—4C(st))F ;0 (1 —4C(6t))’ =

where C'is the constant appearing in (123) and C" = [|€'|| (0, 7)2 + [|&/]|L> (0,1)-
Notice that, since csh < dt, there exist two positive constants Co, and ¢, independent of 6t and h, such
that, for all k£ in {0,..., N},

Cr < Oy and ¢, < Coo. (126)

The first step is to show that the statement is true when k£ = 0. In that case, it remains only to prove that
(71) and (72) are satisfied, that is

(5t) ”ﬁ - EHLOO((MI;Vvl,oo(@))z <e

and

N

(6t) ||ﬂ2 _ﬁgHWl,oc(O)Q X 57
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where, for all ¢ in [0,¢!] and z in F({(t'),0(¢')), the functions w and W are defined by taking s equal to ¢! in

(29), and where @) and W, are given by (46).
The first bound being only a condition on the time step, we check the second one by using an inverse inequality:

o N2
(001, - w0 < 60) (108 (3 )) 18~ W

Then, from assumption (25) and the properties of the mapping .A(;)L, we get that

o 1V 172
(6t)||up, — Wy lwr. ()2 < C(3t) <log <h>) .

The above relation and the fact that 6t < C;h'/? thus imply the result for & = 0.

The second step of the proof is to assume that the relations (71), (72), (124) and (125) hold for some k > 0,
and subsequently show they are also true for k + 1.

The relation (71) is simply a consequence of Lemma 4.1 and results (61) to (63) if ¢ is chosen small enough.
Next, from regularity assumptions (49), we deduce

G = G+ 10 ) — 07| < (en + (O + CT)(01)) (8t + hY/2), (127)

and (125) thus holds. Then, using inequality (123), we infer that

NEEL L4 (5t) |ID(VET — bt de < N*

”LQ ]_-k+1)4
1\ /2
000 (108 (1)) (et Gt D@+ REIDVET = wb ) aspony IDVE = w)lss
+ CNFH <(5t)3/2 + (S)RY2 + (6t) (cx + Cr)(3t + hY/2) (e + Cr) (6t + hV/?) + 1))
+ Ch(ot) ((ck + Cu) (0t + B2 (e + Ci) (6t + hM/2) + 1) + 1) . (128)

Using that 0t < Csh1/2, we have

1/2
C (10g (;)) (cr + Cr + 1) (0t + h1/2) < 2v
so relation (128) and a Young inequality imply
NFFL 1 20(8t) DV — w7, (FEys S N¥ +2u(5t) DV — UZ)HiQ(f;f)zl
+ CNFH ((51&)3/2 + 0t(hY/2) 4 (6t) (ck, + Cr) (5t + BY?)((cx, + Cr) (0t + BY/?) + 1))
+ Ch(5t) ((ck + CR) (0t + B2 (e + Cu) (5t + RY2) + 1) + 1) :
and, owing to (124),
NEHL Loy (6t) DV — ’f+1)|| iy < Cr(dt + n'/2)
+ CONFHE ((5t)3/2 + ét(hl/Q) + (8t) (e + Cr) (6t + A2 ((cx + Cr) (6t + hY/?) + 1))

+ Ch(5t) ((ck 4 CR) (6t + hY2) (e + CW) (6t + YY) +1) + 1) . (129)
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Taking into account the fact that

h<1, 6t <1and (coo + Coo) (3t + %) < 1,

we infer

Ck

- 3C(6t)h
FHE T 1 —40(6t)

k+1 9 D k+1 _ k+1 2' i SOV
NF+20(68) [D(V, wy )l 1—4C(6t)’

(6t + h'/?) +

which clearly implies

Cy 3C(ot)
1—4C(00) T 1-4000)

Cry1 =

It remains to prove (72) holds. We have

—k+1 —k+1 —k+1 k —k+1 k
Ot)|[apt -y lwre 0)2 < (5t) (”uh+ — Vi w0y + [T T = W i (02

HIVE w0 + IWE w0 )

which yields, proceeding as in the first part of the proof and using an inverse inequality,

1\ /2
(B0 = w5 e o < 00 (30410 + (105 (1))

Taking the time step dt small enough thus gives the result.
The two estimates of the theorem finally derive from (124) and (125). Indeed, combining these bounds with
(95), (126) and the results of Lemma 4.1, we have

(-, t*) — ujllL202) < C(5t + h'?).

Given the regularity hypotheses (49), the error bounds on ¢ and 6 obtained above and Lemma 5.1, the proof is
complete. (I

(1]
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