
HAL Id: hal-00142844
https://hal.science/hal-00142844v1

Preprint submitted on 23 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MARS: a hybrid scheme based on Resolution Search
and Constraint Programming for Constraint Satisfaction

Problems
Mireille Palpant, Christian Artigues, Cristian Oliva

To cite this version:
Mireille Palpant, Christian Artigues, Cristian Oliva. MARS: a hybrid scheme based on Resolution
Search and Constraint Programming for Constraint Satisfaction Problems. 2007. �hal-00142844�

https://hal.science/hal-00142844v1
https://hal.archives-ouvertes.fr

MARS: a hybrid scheme based on Resolution

Search and Constraint Programming for

Constraint Satisfaction Problems.

Mireille Palpant1, Christian Artigues2, Cristian Oliva1

1Departamento de Ingeniera Industrial, Edmundo Larenas 215, Concepción, Chile
2Université de Toulouse, LAAS-CNRS, 7 avenue du Colonel Roche, 31077

Toulouse Cedex 4, France

mireille.palpant@orange.fr, artigues@laas.fr, oliva@udec.cl

Abstract

In this paper, we present a solution approach based on Chvátal’s
Resolution Search [2] to solve combinatorial optimization problems.
Resolution Search constitutes an alternative to classical enumeration
methods and possesses strong connections to nogood recording ap-
proaches, and in particular dynamic backtracking, though it is de-
signed to deal with binary linear programming problems. Accordingly,
we suggest to hybridize the procedure using constraint programming
techniques, in order to apply it to Constraint Satisfaction Problems
(CSP). Furthermore, the introduction of such techniques allows some
specific improvements that speed up the process and let many out-
comes for further research.

In order to evaluate the interest of the proposed method, we use
it to tackle some particular graph coloring instances, known as the
Queens n

2 problem. The experimental results obtained so far prove
the validity of the approach and compete with state-of-the-art com-
plete solution methods.

1 Introduction

In 1997, Chvátal [2] proposes a new solution method, called Resolution
Search, dedicated to binary linear programming problems. Unlike classi-

1

cal implicit enumeration procedures, this approach is based on an original
exploration of the search space. Indeed, like intelligent backtracking ap-
proaches, such as among others dynamic backtracking [5], it involves learning
to identify and memorize fails occurring all along the search. More precisely,
whenever a fail is detected at a given node of the search tree, the (partial)
instantiation conducting to the fail is memorized as a nogood in order to
(hopefully) discard the whole subtree below the incriminated node for the
rest of the search process. Resolution Search allows to manage these nogoods
so to limit both memory space and computational time and indicates how to
continue the search after a failure, while preserving completeness.

To our knowledge, this procedure was only applied once, by Demassey et
al. [3], to the widely studied resource-constrained project scheduling prob-
lem. The results they obtain by strictly applying the procedure seem to prove
its effectiveness towards a classical enumeration procedure but still, it re-
mains widely dedicated to binary linear problems. Thus, our goal is twofold:
first, to apply the approach to CSPs; and secondly, to confirm its validity
through experimental results. In order to meet those two requirements, the
original procedure has been integrated with constraint programming tech-
niques and applied to the Queens n2 problem.

The paper is organized as follows: in Section 2, Resolution Search prin-
ciples are introduced along with some definitions and notations that will be
used throughout the paper, afterwards we present our new hybrid scheme.
Section 3 is devoted to the Queens n2 problem, including preliminary results
obtained by a solution approach based on the previously described method.
Finally, Section 4 presents additional improvements conjuncted to extensive
experimental results and clues for further research.

2 An hybrid scheme based on Resolution Search

to solve CSPs

2.1 Resolution Search for combinatorial optimization

As previously said, Resolution Search constitutes an alternative to classical
implicit enumeration methods, and more precisely branch-and-bound. In-
deed, it is more likely to first explore the deep levels of the search tree before
exploring its top. More precisely, the method exploits failure information to
exclude subspaces of increasing size until excluding the entire search space.

2

This mechanism is based on the ground resolution refutation principle [11],
which aims to generate a sequence of clauses leading to optimality proof.

Resolution Search starts by involving a classical enumeration process, in
a descent move all along the tree, until a terminal node is reached, i.e. a node
whose subtree does not contain any improving solution. At this point, a back-
track phase is initiated in order to find an ascendant node that still satisfies
the failure condition. Since Resolution Search is dedicated to combinatorial
optimization, this ”waning phase” has to take into account the optimization
criterion and is not as trivial as in intelligent backtracking processes. Thus,
all decisions taken during the descent phase are reversed one by one, starting
from the last but one. If a node appears to be non-terminal, the associated
decision is re-established and the process goes on with the preceding decision.
At the end of the backtracking move, the clause corresponding to the mini-
mal terminal node is recorded and the descent or ”waxing phase” is initiated
again from another point of the search space. Both phases alternate until the
root of the search tree is proven to be terminal. At this point, the problem
is solved, and the best solution encountered so far is optimal.

It is worth noting that, due to specific backtrack and restart mechanisms,
the search space is more likely represented by a graph rather than a classical
tree (i.e., during the waning phase, the nodes are not explored along the
descent branch as the last decision is kept). This specificity hopefully leads
the method to be less dependent to branching rules.

In order to avoid reconsidering bad regions of the search space in the
future, one could decide to memorize all the encountered terminal nodes.
This may induce an exponential memory usage and a loss of computational
time so to ensure that the search does not move towards a previously explored
region. Resolution Search, on the contrary, is based on the use of a family
of clauses whose properties allow (hopefully) to avoid these two drawbacks.
Indeed, the heart of the procedure lies in the way this family is managed:
its specific path-like structure enables clauses aggregation as well as a quick
determination of the new starting point of the search.

2.2 Nogood management

Let us consider the following minimization problem:

P : min f(X), X = (x1, . . . , xn), AX ≥ b, X ∈ {0, 1}n (1)

3

A partial instantiation u of the variables of this problem is given by a vector

u = (u1, . . . , un) ∈ {0, 1, ∗}n (2)

where ui corresponds to the value assigned to variable xi with ui = ∗ if xi

is unassigned. u is associated to a value oracle(u1, . . . , un) equivalent to the
optimal value of the relaxed problem.

Resolution Search works on a family F = {C1, C2, . . . , CM} of clauses,
i.e. partial instantiations u whose associated search space is removed from
further exploration. To simplify the notations, we express u under the form
of a set of literals:

{xi|i ∈ I0} ∪ {xi|i ∈ I1} (3)

where xi and xi correspond respectively to indices i ∈ I0 such that ui = 0
and i ∈ I1 such that ui = 1. For example, partial instantiation (1, ∗, ∗, 1, ∗, 0)
will be represented by x1x4x6. The empty clause (∗, . . . , ∗), denoted ∅, cor-
responds to the root of the tree.

To guide the search towards a region not included in any of the subspaces
induced by the clauses of F , Resolution Search exploits the notion of exten-
sion, which defines a partial order relation over {0, 1, ∗}n, denoted ⊑: u ⊑ v
if the search space associated to v is included on the one associated to u (v
constitutes an extension of u). For example, x1x4x6x7 constitutes an exten-
sion of x1x4x6. Resolution Search considers partial instantiations that are
not extensions of any of the clauses in F . Consequently, at least one literal
of each clause has to be reversed in the partial instantiations that are to be
examined in the future.

Thus, Resolution Search associates to clauses {C1, C2, . . . , CM} of family
F the literals l1, l2, . . . , lM that have to be reversed in the continuation of the
search. Furthermore, it maintains a particular structure, called path-like, to
F by supplying to the following properties:

li ∈ Cj ⇐⇒ i = j (4)

l
i
∈ Cj =⇒ j > i (5)

∀l, l ∈ Ci, l ∈ Cj : l = liorl = lj (6)

Thanks to these properties, we can associate a clause uF to family F , by
defining the new starting point of the descent phase, such that:

uF = (
⋃M

k=1(Ck\{l
k} ∪ l

k
)) (7)

4

It is easy to verify that uF is well-defined, i.e. that it does not exist any
literal l such that l ∈ uF et l ∈ uF . Moreover, and trivially, uF is not an

extension of any clause Ck of F (since l
k
∈ uF and lk ∈ Ck).

In addition, the descent phase ends when encountering a nogood u′ that
constitutes an extension of uF . Since minimal nogood u is deduced from u′

by unassigning some variables, u′ is also an extension of u. As u ⊑ u′ and
uF ⊑ u′, the following property is verified:

l ∈ uF ⇒ l /∈ u (8)

This observation assumes that the path-like structure of F is maintained
while updating it with nogood u.

The way F is updated depends on the nature of nogood u. In the case u
is obtained after a descent phase, it is simply added to F and it is easy to
verify that it exists a literal l ∈ u\uF that we can associate to u (since at
least one literal has been added during the descent phase and that the last
decision is kept). This operation trivially maintains the path-like structure
of F . On the contrary, if u has not been obtained after a descent phase,
that means, if uF itself induces a failure, then u ⊑ uF and it is impossible to
determine l ∈ u\uF . F is also updated by a more complicated process.

Basically, if we consider two clauses u and v, differing from each other by
only one literal x, for example x1x4x6 and x1x4x6, then those two clauses are
said in clash and we can define C = u▽ v as resolvent of u and v, such that:

C = u\{x} ∪ v\{x} (9)

It is clear that, if u and v are the two only children of C, and if their associated
search space is about to be removed from further exploration, then those
two clauses can advantageously been replaced by C itself. Next, if all the
children of the root of the tree are terminal, the root itself is proven to be
a terminal node and the best solution encountered so far is optimal. This
principle is extended in Resolution Search to reduce F with u when the latter
covers part of the search space induced by a clause from F . This iterative
process, involving series of resolvents, allows to save memory space at a low
computational time. Moreover, although the excluded search space region
delimited by the new family may not cover entirely the previous one (i.e.
the procedure may visit previously explored solutions), it is strictly more
extended and yields completeness.

For a more formal description of convergence proof and management of
the nogood family, we refer to [2].

5

2.3 Example

In order to illustrate the Resolution Search principle, we apply it to a sim-
ple minimization problem containing three variables, x1, x2, x3. Let us now
suppose that the lower bound value is equal to 0 if x1 = 1 and x3 = 0 or one
of these two variables is unassigned, 1 otherwise. Finally, we consider that
branching over variables follows the lexicographic order while branching over
values first tries value 0, then 1.

The search begins from the root until computing the complete solution
(0, 0, 0). From this point, the new incumbent solution is recorded, fixing an
upper bound value of 1, and the waning phase is initiated. It begins by
unassigning x2 (0, ∗, 0). The lower bound still being equal to 1, the search
goes on, unassigning x1 (∗, ∗, 0), obtaining a new lower bound equal to 0.
Nogood x1x3 is then recorded and the process is iterated by inverting a
decision, for example (0, ∗, 1). Since this node is terminal (the lower bound
is equal to 1), associated nogood x1x3 is used to update F : the two clauses
are replaced by their resolvent x1x3 ▽ x1x3 = x1. The search continues
from (1, ∗, ∗) until new best solution (1, 0, 0) is reached, updating then the
upper bound value to 0. Consequently all nodes are now terminal, since it is
impossible to compute any partial solution with a lower bound value lesser
than 0. We then skip the end of the execution since F will successively been
reduced by series of resolvents until it becomes empty.

This approach is very similar to intelligent backtracking processes, and in
particular dynamic backtracking [5]. The main difference is that nogoods are
not just kept for their relevance to the current partial instantiation, but are
directly used to reorient the search (i.e. the next partial instantiation is build
according to these nogoods). A simple example is as follows: considering
x1x2, the nogood extracted from partial instantiation (0, 0, ∗, 1, 0, 0, 1) after
a first descent phase, with x2 the last assigned variable, dynamic backtracking
goes on by considering (0, 1, ∗, 1, 0, 0, 1) while Resolution Search restarts the
search from (0, 1, ∗, ∗, ∗, ∗, ∗). It thus enables a mobility even bigger in the
search of solutions.

2.4 Hybridizing Resolution Search with constraint pro-

gramming

In this section we describe precisely the Resolution Search-based method
we propose to solve CSPs. Note also that optimization problems can be

6

reduced to CSPs. The main idea is to exploit Resolution Search guiding of the
search within a backtracking framework. On one hand, some problems seem
to be solved more effectively by constraint programming rather than linear
programming and it might then be prejudicious to solve them by strictly
applying Resolution Search procedure. On the other hand, Resolution Search
involves an original and seductive methodology that seems to be efficient
compared with classical enumeration schemes, not only regarding execution
times but also the number of nodes expanded during the search [4].

Let us consider the following CSP:

CSP : (X, D, C), X = (x1, . . . , xn), xi ∈ Di∀i (10)

where C denotes the set of constraints of CSP .
As explained before, the search will be performed within a constraint

programming framework involving consistency algorithms to cut the search
space. Consequently, the algorithm maintains a set CF of the assignment
constraints throughout the whole process.

Associating to every variable xi a set of binary variables yij , we can easily
verify the following assertion:

{(xi 6= v) : i ∈ I0} ∪ {(xi = v) : i ∈ I1} ⇐⇒ {yiv : i ∈ I0} ∪ {yiv : i ∈ I1}(11)

This property allows us to switch between the constraint and linear pro-
gramming formulations involved during the distinct phases of the algorithm,
whose general procedure is given in Figure 1.

At each decision point, a variable xi is chosen among the non-fixed vari-
ables and assigned to a value v of its domain Di, following ad-hoc strategies
that have to be specified according to the considered problem. CF is then
updated with assignment constraint (xi = v) and the new information is
propagated. This consists in checking whether or not the new partial instan-
tiation is consistent within the initial constraints of the problem by reducing
the domain of non-instantiated variables. The process is performed by a call
to function Propagate(CF ,D,C) which returns FALSE if an inconsistency is
detected, TRUE otherwise. In the first case, minimal nogood Cmin in case of
the failure is determined and converted to clause u which is used to update
F as explained in Subsection 2.2. Clause uF and associated set CF , consti-
tuting the new starting point of the search, are then generated. The whole
process is iterated until F becomes empty or a complete solution is found.

7

Begin

1. F = ∅ ; CF = ∅ ;
2. While Propagate(CF ,D,C)=TRUE et ∃i | xi = ∗
3. Chose xi = ∗ and assign it to a value v ∈ Di

4. CF = CF ∪ {(xi = v)}
5. If all variables are assigned
6. Return CF

7. Else

8. Determine nogood Cmin ⊆ CF and associated clause u
9. Update F with u
10. If F = ∅ Then

11. Return ∅
12. Else

13. Determine uF and CF

14. Goto 2.
End

Figure 1: General algorithm of the proposed method

As a first advantage, the proposed method enables an automatic iden-
tification of failure reasons. Indeed, Resolution Search takes into account
the optimization criterion, which complicates the detection of the minimal
nogood. On the contrary, constraint programming, since it always maintains
local consistency, allows to immediately identify the partial instantiation in
case of fail. Indeed, a failure occurs whenever a constraint is violated by
the current partial instantiation. Trivially, it is sufficient to check out the
variables invoked in this constraint to identify the associated nogood. In our
method, this mechanism replaces advantageously the waning phase, which
may hopefully lead to a speed up of the global process.

A second advantage is that this hybrid scheme allows to solve pure CSPs
with dedicated tools that are likely to tackle them efficiently, in particular
constraint propagation techniques.

Note that this hybridization is closely linked to the experiments that have
been successfully carried out to associate intelligent backtracking techniques
with constraint propagation such as [7].

8

3 Solving the Queens n2 problem with Reso-

lution Search

In this section we propose an innovating approach since it deals with the
application of Resolution Search to a CSP. Our choice concerns the Queens n2

problem that can be expressed in the simplest way with the help of constraint
programming.

In Subsection 3.1, we briefly describe this problem as well as the used
model and make a short review of exact approaches encountered in the lit-
erature. Next, we detail all the specific points of the approach in Subsection
3.2. Finally, some experimental results are shown in Subsection 3.3.

3.1 The Queens n2 problem

Considering a n × n chess board game, we can define a graph G = (V, E),
namely the queen graph, composed of n2 vertices, each corresponding to
a case of the board, and whose arcs represent the queen move rules: two
vertices are connected by an arc if the cases they represent are located in the
same row, column or diagonal.

The coloring problem consists on assigning a color to each vertice assum-
ing that two adjacent vertices are assigned different colors. The objective
studied in this paper deals with the determination of the chromatic number
of a queen graph of size n2, and more precisely, the question if it is equal
to n. Obviously, as such a graph possesses maximal cliques of size n, the
problem lies in finding a valid n-coloration for this graph.

In our study, we consider the simplest model that consists in determining
the vector C = {c1, . . . , cn2} of the colors assigned to the vertices of the
graph, under the following constraints:

ci ∈ {1, . . . , n} ∀i ∈ V (12)

ci 6= cj ∀(i, j) ∈ E (13)

While coloring problems are intensively studied, few references deal with
that particular case. We refer to [6] for a complete study over coloring prob-
lems and methods involved to tackle them.

Regarding complete solution methods for the Queens n2 problem, several
approaches are encountered. Caramia and Dell’Olmo [1] propose a complex
algorithm which iteratively intends to extend the coloring of a maximum

9

clique. As for Mehrotra and Trick [8], and later Vasquez [12], they work on
the independent set formulation of the problem. The first authors present
a column generation approach involving an efficient algorithm to solve the
problem arising in the column generation process. Vasquez begins by gener-
ating all the possible n-sized independent sets with the help of a depth-first
search invoking forward checking before searching for a complete covering of
the chess board with an implicit enumeration method associated with con-
straint propagation rules. It is worth noting that an incomplete version of
the latter approach, involving specific symmetry rules that remove part of
the global search space, has obtained the best results ever on this problem,
solving all instances up to n = 28, excepted for n = 27. Nevertheless, best
exact methods fail so far to solve instances for n > 14.

3.2 Specification of Resolution Search for the Queens n2

problem

The general algorithm begins by fixing one of the main diagonal and perform-
ing adequate constraint propagation before entering the process described in
Subsection 2.4. At each decision point, a vertice i not fixed yet is selected
and assigned to a color ci of its domain Di. As a general strategy, the pro-
cess intends to assign the colors one by one to the distinct vertices: it first
tries to fix all first-colored queens, then second-colored queens,. . ., and so on
until all colors have been filled up. More precisely, at each decision point, we
select a vertice whose domain contains the corresponding color and perform
the assignment. In case several vertices are candidate, the tie is broken by
selecting the first vertice in the lexicographic order.

Apart from that explicit branching scheme, another branching mechanism
is involved implicitly by the Resolution Search component. Indeed, selecting
the literal associated to a clause entering the nogood family amounts to
guiding the search along the reverse decision. After a descent phase, the
last assigned variable is memorized, since it is directly in case of the failure
(and consequently appears in the nogood) and satisfy to condition (6). In
the other case (after a reduction phase), the first literal in the lexicographic
order satisfying the required conditions is chosen.

Another key point of the method concerns the consistency algorithm em-
ployed to propagate new decisions. This works on the maximal cliques of the
graph restricted to rows, columns and diagonals, and consists in a ”light”

10

version of AllDiff algorithm [10]. Since the scope of this paper deals with
Resolution Search hybridization using constraint programming techniques,
we don’t give here the details of this algorithm. We refer to [9] for further
information.

3.3 Experimental results

In this section, we present a first set of experimental results. The method
has been assessed upon Queens n2 instances, n varying from 5 to 14. The
code is written in C++ and experimentations have been conducted on a 2.4
GHz PC equipped with 1 Mo RAM.

In order to demonstrate the validity of our new hybrid scheme (RS), we
first compared the obtained results with those of a classical backtracking
method (CP). In order to ensure a fair comparison, all branching schemes
and constraint propagation algorithms employed are strictly the same for the
two approaches. In both cases, the process ends when reaching an execution
time of one hour.

We report in Table 1 the number of expanded nodes and the compu-
tational times (in seconds) obtained by the two approaches over the set of
instances for n from 5 to 11 (instances such that n ≤ 5 are solved at the root
of the tree, those for n ≥ 12 are left unsolved by the two methods).

n # nodes CPU

(RS) (CP) (RS) (CP)

5 1 1 0 0
6 10 4 0 0
7 17 24 0 0
8 633 15333 0 1
9 43646 14482595 14 576
10 2097498 - 1158 -
11 1386527 - 1115 -

Table 1: First results for n ≤ 11

It is clear that the hybrid procedure performs better than the classical
one. Indeed, excepted for instance Queens 62, both criterion values are much
smaller for RS than for CP. Moreover, CP fails to solve instances such that

11

n ≥ 10. This preliminary results seem to indicate the usefulness of letting
Resolution Search conduct the search and confirm the conclusions stated by
Demassey et al. [4].

In order to make a more valuable comparison, we also compared our
procedure with some state-of-the-art exact methods. Then, we confront the
obtained results with those of Mehrotra and Trick [8], Caramia and Dell’
Ormo [1] and finally Vasquez [12].

Table 2 shows comparative results in terms of computational times (in
seconds in case no other indication is reported) of all above approaches on
instances for n varying from 5 to 14, since none of the presented methods is
able to solve instances such that n ≥ 15.

n (RS) [8] [1] [12]

5 0 0 0 0
6 0 1 0 0
7 0 4 0 0
8 0 19 0 0
9 14 515 0 0
10 1158 - - 0
11 1115 - - 1
12 - - - 6963
13 - - - 168 hours
14 - - - 131 hours

Table 2: Comparative results for n from 5 to 14

Though our results are far beyond those of Vasquez, they are really en-
couraging if we refer to the two other methods. Here, excepted for instance
Queens n9, the computational times are in favor of RS. Moreover, unlike these
approaches, our procedure was able to solve Queens 102 and Queens 112.

In addition to these encouraging results, handling Resolution Search within
a constraint programming framework allows a major improvement of the pro-
cedure, whose details are given in the following section.

12

4 Extending the Resolution Search addition

mechanism: MARS

In this section, we propose a new method, called MARS (for Multiple Addi-
tions Resolution Search), that exploits constraint programming advantages
to tune adequately Resolution Search process.

Indeed, the use of constraint programming techniques allows us to incor-
porate many additional modules in the general framework. We then present
a major improvement that speeds up the global process. The aim is to ex-
ploit more accurately the consistency information so to include additional
nogoods to family F all along the descent phase.

The principle behind this improvement is detailed in Subsection 4.1. We
then present in Subsection 4.2 the experimental results we obtain using this
new version of the algorithm. Finally, some clues to further research that
exploit the constraint programming aspect of the method are highlighted.

4.1 Including additional nogoods to F

At a given decision point, several possibilities are available to extend the
current partial solution and continue the search. From all of these, only one
choice is made, w.r.t. suitable selection rules, discarding all others possibil-
ities, some of which that could lead to inconsistency. Our objective is to
exploit all those alternate inconsistent branching possibilities to update fam-
ily F while performing the descent process, following the mechanism detailed
in Figure 2.

Once a branching variable xi and its assignment value velig are selected,
all other possible assignments are considered so to add to family F all the
nogoods corresponding to choices that lead to inconsistent instantiations. In
Step 7., if both complementary choices (xi = v) and (xi 6= v) induce failure,
then the node immediately ascendent is itself terminal and F can be updated
with associated nogood u. In the case the assignment (xi = v) only leads
to inconsistency, the minimal partial set Cmin is computed as usual and its
associated nogood u added to F . The process is then iterated until all values
of domain Di have been considered. At the end of the loop (if the process has
not been exited at Step 7.), the descent phase goes on normally by branching
on (xi = velig).

Since the procedure only discards inconsistent instantiations, this tech-

13

Begin

1. Select branching variable xi;
2. For all value v ∈ Di, v 6= velig

3. CF = CF ∪ {(xi = v)}
4. If Propagate(CF ,D,C)=FALSE
5. CF = CF − {(xi = v)} ∪ {(xi 6= v)}
6. If Propagate(CF ,D,C)=FALSE
7. Update F with nogood u corresponding to CF = CF − {(xi 6= v)}
8. Return
9. Else

10. Update F with nogood u corresponding to Cmin ⊆ CF

11. Else

12. CF = CF − {(xi = v)}
13. Branch on (xi = velig)
14. End

Figure 2: Update of F at a given decision point

nique does not remove regions of the search space that are likely to contain
the optimal solution and allows then to maintain completeness. Moreover,
this mechanism keeps the path-like structure of F and avoids recomputing
each time a new starting point of the search, as the latter can be continued
from the current node while respecting Resolution Search assertions.

At first sight, this technique presents many advantages, as several bad
branching choices are discarded once in a row. First, the nogoods are gener-
ated all along the descent phase, without need of calculating each time the
new starting point of the search. Secondly, these multiple additions are likely
to activate a quicker closing of ascendant nodes. All of these characteristics
could then lead to a global speed up of the process. In order to confront
those intuitive assessments with reality, we applied the methodology to the
Queens n2 problem. The obtained results are discussed in the following sub-
section.

4.2 Experimental results

The new procedure is obtained by adding the described module to the pre-
vious implementation. As before, the method has been assessed on instances

14

with n varying from 5 to 14.
In order to judge the efficiency of the proposed improvement, Table 3

presents the comparative results of the two versions of the method in terms
of expanded nodes and computational times on instances such that n ≥ 5
and n ≤ 11.

n # nodes CPU

(MARS) (RS) (MARS) (RS)

5 1 1 0 0
6 2 10 0 0
7 15 17 0 0
8 567 633 0 0
9 40406 43646 23 14
10 1997871 2097498 2049 1158
11 1336845 1386527 2106 1115

Table 3: Results of the new version of the method for n ≤ 11

A spotting point is that MARS performs better than the original ver-
sion of RS regarding the number of nodes expanded, while requiring much
more computational times as the problem size increases slightly. A simple
explanation probably lies in the fact that the operations realized on family
F become more costly: for example, when the maximal family size is equal
to 37 with the original version of the method, it reaches the value 78 in the
new implementation! Moreover, it is coherent to think that some of these
extra-additions only contribute to slow down the process, as the information
they provide may be irrelevant, as for nodes located very deep in the tree.
It appears indeed more interesting to keep clauses as small as possible in F .
This observation leads us to consider a new improvement that performs these
multiple additions only upon a given depth. Thus, a new parameter d is used
to specify the depth from which the first version of the method is applied
strictly. Figure 3 shows the evolution of both the number of expanded nodes
and the computational time function to the value of d on instance Queens 92.

It is clear that the two curves vary in a reverse mode: as the number of
expanded nodes decreases, the computational time increases. Moreover, the
variations themselves seem to follow the same behavior. Indeed, to the limits,
both curves behave in an asymptotic manner while varying exponentially in-
between.

15

Figure 3: Evolution of the number of expanded nodes and the computational
times according to depth parameter d

Two observations come out of those graphics: a small value of d does not
provide a great improvement considering the number of expanded nodes, and
it remains true for big values of d. The fact possesses a realistic justification
since few additional clauses are likely to be added on top of the tree (as there
may be too few fixed variables to induce inconsistency), as well as in the
bottom of the tree (as most of the variables may possess very small domains,
thanks to effective constraint propagation). Thus, it seems more interesting
to apply the multiple additions methodology at depths ranging from an upper
value dmax to a lower value dmin.

Empirically fixing dmin to 0 if n < 11, 1 otherwise, and dmax = dmin + 5,
Table 4 displays the final results obtained by applying this methodology.

Though the method still fails to solve problems such that n ≥ 12, it ap-
pears to be more effective regarding both criteria, particularly computational
times, since they are almost divided by a factor of 2. However, in order to
solve problems of larger size, the request to a heuristic procedure seem to be
necessary. Constraint programming precisely offers various possibilities.

Indeed, in backtracking procedures, a guiding heuristic may be used to
lead the search towards most promising regions. In particular, this heuris-
tic allows to rank all the branching possibilities. The main idea from the
restricted candidate lists is inspired from that principle. Thus, the method-
ology consists of removing from further search branches unlikely to contain
good solutions, w.r.t. a discriminating or heuristic criterion. Generaliz-

16

n # nodes CPU

(MARS) (RS) (MARS) (RS)

5 1 1 0 0
6 2 10 0 0
7 7 17 0 0
8 578 633 0 0
9 43498 43646 9 14
10 2096239 2097498 686 1158
11 1386524 1386527 547 1115

Table 4: Results of the final version of the method for n ≤ 11

ing MARS’ multiple additions idea, family F can easily be updated with
the clauses corresponding to non promising partial instantiations, excluding
then assignment values for variables that are likely to lead to non-improving
solutions.

Another possibility of hybridization with heuristic components consists
of delegating part of the search process to a (meta)heuristic method, in a
scheme that could be seen as a Depth-Bounded Resolution Search, in the
same spirit as the work presented in [13].

The approach can be summed up as follows: a parameter d determines
the depth upon which MARS is applied as-if. Once this depth is reached,
a heuristic process is then initiated in order to explore the sub-tree located
under the current partial instantiation. To this end, many methods can be
employed, all depending from the desired time/quality trade-off. Thus, these
could range from the simplest greedy algorithm to the most sophisticated
metaheuristic. In the latter however, it is necessary to conveniently restrict
the search to the adequate sub-tree.

Once the sub-tree explored in a more or less partial way, the clause corre-
sponding to the initiating partial instantiation is added to the nogood family
and the process goes on normally.

An interesting feature of the approach lies on the suitable tuning of pa-
rameter d, since it influences directly the quality/time ratio and brings then
a great flexibility in use. Designing such flexible methods constitutes a major
goal of our research.

17

Acknowledgements

The authors would like to thank Sophie Demassey, whose previous work in
the field highlighted the path, and Philippe Michelon and Michel Vasquez
for their friendly support.

References

[1] M. Caramia and P. Dell’Olmo. Constraint propagation in graph coloring.
Journal of Heuristics, 8(1):83–107, 2002.

[2] V. Chvátal. Resolution search. Discrete Applied Mathematics, 73:81–99,
1997.

[3] S. Demassey. Méthodes hybrides de programmation par contraintes et
programmation linéaire pour le problème d’ordonnancement de projet à
contraintes de ressources. PhD thesis, Université d’Avignon, 2003.

[4] S. Demassey, C. Artigues, and P. Michelon. An application of resolution
search to the rcpsp. In 17th European Conference on Combinatorial
Optimization ECCO’04, Beyrouth, Lebanon, june 2004.

[5] M. Ginsberg. Dynamic backtracking. Journal of Artigicial Intelligence
Research, 1:25–46, 1993.

[6] J. P. Hamiez. Coloration de graphes et planification de rencontres
sportives : heuristiques, algorithmes et analyses. PhD thesis, Univer-
sité d’Angers, 2002.

[7] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice
of Constraint Programming (CP 2000), number 1894 in Lecture Notes
in Computer Science, pages 249–261. Springer-Verlag, 2000.

[8] A. Mehrotra and M. A. Trick. A column generation approach for graph
coloring. INFORMS Journal of Computing, 8(4):344–354, 1996.

[9] M. Palpant. Recherche exacte et approchée en optimisation combina-
toire : schémas d’intégration et applications. PhD thesis, Université
d’Avignon, 2005.

18

[10] J.-C. Regin. A filltering algorithm for constraints of difference in csps.
In 12th National Conference on Artificial Intelligence (AAAI-94), pages
362–367, 1994.

[11] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. J. ACM, 12:23–41, 1965.

[12] M. Vasquez. New results on the queens n2 graph coloring problem.
Journal of Heuristics, 10(4):407–413, 2004.

[13] T. Walsh. Depth-bounded discrepency search. In Fifteenth International
Joint Conference on Artificial Intelligence, pages 1388–1395. Morgan
Kaufmann, 1997.

19

