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Given a closed hyperbolic Riemannian surface, the aim of the present paper is to describe an explicit construction of smooth deformations of the hyperbolic metric into Finsler metrics that are not Riemannian and whose properties are such that the classical Riemannian results about entropy rigidity, marked length spectrum rigidity and boundary rigidity all fail to extend to the Finsler category.

Introduction

In this paper, we construct Finsler metrics on hyperbolic surfaces, proving that certain recent Riemannian rigidity results fail to extend to the Finsler category. Recall that a Finsler metric F on a manifold M is a continuous function F : T M -→ R such that F (p, •) is a norm on T p M for any p ∈ M. If in addition F is C ∞ on T M {0} (the tangent bundle minus the zero section), then F is said to be smooth. In that case, F is called strongly convex iff for any (p, v) ∈ T M {0}, the symmetric bilinear form ∂ 2 F 2 ∂v 2 (p, v) on T p M is positive definite. Note that a Riemannian metric g on M gives rise to an associated Finsler metric F defined by F (p, v) = (g(p)•(v, v)) 1/2 . We will then say that F is Riemannian.

Perhaps the most significant Riemannian rigidity results are the minimal entropy rigidity theorems of Katok for surfaces and of Besson, Courtois, and Gallot in higher dimensions, due to their many applications (see for example the surveys [START_REF] Besson | Entropies et rigiditiés des espaces localement symétriques de courbure strictement négative[END_REF] and [START_REF] Croke | Rigidity theorems in Riemannian geometry[END_REF]). We begin by stating these two theorems and one of their consequences, relevant to our work (for a more general version in higher dimensions, see [START_REF] Besson | Minimal entropy and Mostow's rigidity theorems[END_REF]).

Given a Finsler metric F on a simply connected manifold M, the volume growth entropy of F , denoted by h(F ), is the asymptotic exponential growth rate of F -balls in M , i.e., h(F ) := lim sup By extending this definition, if F is a Finsler metric on a compact manifold M whose universal cover is M , the upper limit above is actually a limit, and the volume growth entropy h(F ) of F is defined to be equal to that h(F ) of the lift F to M of the metric F . Theorem 1.1 (Katok, [START_REF] Katok | Entropy and closed geodesics[END_REF]). Let (S, g 0 ) be a closed hyperbolic (Riemannian) surface, and let g be a Riemannian metric on S. Then, denoting by vol the usual Riemannian volume, we have (1) h(g 0 ) 2 vol g 0 (S) h(g) 2 vol g (S), and

(2) h(g 0 ) 2 vol g 0 (S) = h(g) 2 vol g (S) if and only if g is hyperbolic.

Later, Besson, Courtois and Gallot extended the first part (inequality) of this result to higher dimensions and obtained something different for the second part (rigidity): Theorem 1.2 (Besson-Courtois-Gallot, [START_REF] Besson | Entropies et rigiditiés des espaces localement symétriques de courbure strictement négative[END_REF] and [START_REF] Besson | Minimal entropy and Mostow's rigidity theorems[END_REF]). Let (M, g 0 ) be a closed n-dimensional Riemannian locally symmetric space of negative curvature with n 3, and let (N, g) be a closed negatively curved Riemannian manifold homotopy equivalent to (M, g 0 ). Then, denoting by vol the usual Riemannian volume, we have (1) h(g 0 ) n vol g 0 (M) h(g) n vol g (N), and

(2) h(g 0 ) n vol g 0 (M) = h(g) n vol g (N) if and only if (N, g) is homothetic to (M, g 0 ).

An important corollary of these results is the boundary rigidity of negatively curved symmetric spaces (see [START_REF] Croke | Rigidity theorems in Riemannian geometry[END_REF] for a general discussion of boundary rigidity). Let (M, g 0 ) denote a compact connected Riemannian manifold with a non-empty boundary ∂M, and let d g 0 denote the induced metric on ∂M by the distance function on M associated with g 0 . Such a manifold is called boundary rigid if and only if for any compact connected Riemannian manifold (N, g) with non-empty boundary ∂N, any metric isometry (∂M, d g 0 ) -→ (∂N, d g ) extends to a smooth isometry (M, g 0 ) -→ (N, g), where d g is defined the same way as d g 0 .

Theorem 1.3 ([8], Corollary 6.3). Any bounded domain in a Riemannian symmetric space of negative curvature has a closure that is boundary rigid.

Another Riemannian rigidity result is related to the marked length spectrum. The marked length spectrum of a Finsler manifold (M, F ) is the map that assigns to each free homotopy class of M the F -length of a shortest closed parameterized curve [0, 1] -→ M (thus a F -geodesic since it is locally F -length minimizing) in that free homotopy class.

Theorem 1.4 ([9], Theorem 1.1. See also [START_REF] Croke | Rigidity theorems in Riemannian geometry[END_REF], Theorem 8.2). Let g 0 be a negatively curved Riemannian metric on a closed manifold M. Let (g λ ) λ∈(-ε,ε) be a smooth variation of g 0 through Riemannian metrics on M such that for each λ ∈ (-ε, ε), the marked length spectrum of g λ is the same as that of g 0 . Then g λ is isometric to g 0 for all λ ∈ (-ε, ε).

We now state our main result.

Main Theorem. Let D denote an open ball in the two-dimensional hyperbolic space (H 2 , g 0 ). Then there exist ε > 0 and a continuous function Φ : (-ε, ε) × T H 2 -→ R that is C ∞ on (-ε, ε) × (T H 2 {0}) and such that for each λ ∈ (-ε, ε), we have (1) F λ (•) := Φ(λ, •) is a smooth strongly convex Finsler metric on H 2 , (2) F 0 is associated with g 0 , and F λ is not Riemannian whenever λ = 0, (3) d F λ = d F 0 , where d F 0 and d F λ are the metrics induced on ∂D by the distance functions on H 2 associated respectively with F 0 and F λ , (4) every two points in D can be joined by a geodesic of F λ whose image is contained in D, (5) F λ (x, u) = F 0 (x, u) for all x ∈ H 2 D and u ∈ T x H 2 , (6) F λ has no conjugate points.

It is important to point out that the greatest difficulty in the proof of this theorem is the smoothness property we expect from our family of Finsler metrics. Indeed, how to get a Finsler metric on an open disc in H 2 that induces a given distance function on the boundary of that disk is a construction that is well known (see [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF]). However, we want here to construct a family of Finsler metrics on an open disk in H 2 that all induce on the boundary of that disk the same distance function as that induced by the hyperbolic Riemannian metric g 0 on H 2 , and that extend to g 0 outside the disk in a smooth way, this latter point being not something classical. Moreover, we expect the extended family (F λ ) λ∈(-ε,ε) to be also smooth with respect to the real parameter λ since this may be useful in studying the behaviour of some invariants associated with these Finsler metrics by differentiating them with respect to λ.

As corollaries to our Main Theorem, we get that all of the Riemannian rigidity results stated above fail to extend to the Finsler category for surfaces. In particular, Katok's rigidity result about closed hyperbolic surfaces (see Theorem 1.1, point (2)) does not hold any longer for Finsler metrics. By the way, it is interesting to note that Besson, Courtois and Gallot conjectured in their paper [START_REF] Besson | Entropies et rigiditiés des espaces localement symétriques de courbure strictement négative[END_REF] (page 630) that Theorem 1.2 should remain true in the Finslerian context.

Corollary 1.1. Let (S, g 0 ) be a closed hyperbolic surface. Then there exist a domain Ω in S with non-empty boundary ∂Ω, a number ε > 0 and a continuous function Ψ : (-ε, ε) × T S -→ R that is C ∞ on (-ε, ε) × (T S {0}) and such that for each λ ∈ (-ε, ε), we have (1) F λ (•) := Ψ (λ, •) is a smooth strongly convex Finsler metric on S, (2) F 0 is associated with g 0 , and F λ is not Riemannian whenever λ = 0, (3) d F λ = d F 0 , where d F 0 and d F λ are the metrics induced on ∂Ω by the distance functions on S associated respectively with F 0 and F λ .

Corollary 1.2. Let (S, g 0 ) be a closed hyperbolic surface. Then there exist ε > 0 and a continuous function

Ψ : (-ε, ε) × T S -→ R that is C ∞ on (-ε, ε) × (T S {0}
) and such that for each λ ∈ (-ε, ε), we have

(1) F λ (•) := Ψ (λ, •) is a smooth strongly convex Finsler metric on S, (2) 
F 0 is associated with g 0 , and F λ is not Riemannian whenever λ = 0, (3) the marked length spectrum of F λ is equal to that of F 0 .

Corollary 1.3. Let (S, g 0 ) be a closed hyperbolic surface. Then there exist ε > 0 and a continuous function

Ψ : (-ε, ε) × T S -→ R that is C ∞ on (-ε, ε) × (T S {0}) and such that for each λ ∈ (-ε, ε), we have (1) F λ (•) := Ψ (λ, •) is a smooth strongly convex Finsler metric on S, (2) 
F 0 is associated with g 0 , and F λ is not Riemannian whenever λ = 0,

(3) h(F λ ) 2 Vol F λ (S) = h(F 0 ) 2 Vol F 0 (S)
, where Vol denotes the Holmes-Thompson volume.

Proofs of the Corollaries

In this section, we will explain how the Main Theorem implies Corollaries 1.1, 1.2 and 1.3. Let (H 2 , g 0 ) be the two-dimensional hyperbolic space and let F 0 be the (smooth strongly convex) Finsler metric associated with g 0 . Let Γ be a discrete cocompact subgroup of g 0isometries acting properly discontinuously on H 2 without fixed points. Then S = H 2 /Γ is a closed surface endowed with the quotient hyperbolic metric g 0 and the projection map π : H 2 -→ S is a Riemannian covering. Finally, let D be an open ball in (H 2 , g 0 ) such that π |D is injective, where D stands for the closure of D in (H 2 , g 0 ).

Notations. For any Finsler metric F on S, we will denote by F the lift of F to H 2 and by D F the distance function on H 2 associated with F . The F -length (respectively F -length) of curves will be denoted by L F (respectively L F ), and the induced metric on ∂D by D F will be denoted by d F . For x ∈ H 2 and R > 0, let B F (x, R) denote the open ball about x in H 2 of radius R with respect to D F . In addition, given x, y ∈ H 2 , any D F -distance minimizing geodesic [0, 1] -→ H 2 connecting x to y will be denoted by [x, y] F (it is to be noticed that F is complete since S is closed, and thus F is complete too). Corollary 1.1 will be a straightforward consequence of the following lemma: Lemma 2.1. There exist ε > 0 and a continuous function

Ψ : (-ε, ε) × T S -→ R that is C ∞ on (-ε, ε) × (T S {0}) and such that for each λ ∈ (-ε, ε), we have (1) F λ (•) := Ψ (λ, •) is a smooth strongly convex Finsler metric on S, (2) 
F 0 is associated with g 0 , and F λ is not Riemannian whenever λ = 0,

) d F λ = d F 0 , (3 
every two points in D can be joined by a geodesic of F λ whose image is contained in D, (5)

F λ (x, u) = F 0 (x, u) for all x ∈ H 2 Γ(D) and u ∈ T x H 2 , (6) 
F λ has no conjugate points.

Proof.

Roughly speaking, the proof will first consist in spreading out the family (F λ ) λ∈(-ε,ε) obtained in the Main Theorem all over H 2 by the deck transformations of the universal covering π : H 2 -→ S. Then, we will get a new family (F λ ) λ∈(-ε,ε) of Finsler metrics on H 2 that are invariant under the group Γ, which will make it possible to consider their quotients on the surface S. This will finally give rise to a family (F λ ) λ∈(-ε,ε) of Finsler metrics on S, each of them being equal to the Riemannian hyperbolic metric g 0 outside a small topological disk.

Let ε > 0 and Φ : [START_REF] Boland | Minimal entropy rigidity for Finsler manifolds of negative flag curvature[END_REF] in the Main Theorem, we can define the new continuous function Φ :

(-ε, ε) × T H 2 -→ R as given in the Main Theorem. Since π |D is injective, D is compact and π : H 2 -→ S is a covering map, there exists an open set U in H 2 such that D ⊆ U and π |U is still injective. So, as Φ(λ, (x, u)) = F 0 (x, u) for all λ ∈ (-ε, ε), x ∈ H 2 D and u ∈ T x H 2 by property
(-ε, ε) × T H 2 -→ R by setting Φ(λ, (γ(x), T x γ •u)) = F λ (x, u) for all γ ∈ Γ if x ∈ U and u ∈ T x H 2 , and Φ(λ, (x, u)) = F 0 (x, u) if x ∈ H 2 Γ(U) and u ∈ T x H 2 .
Note that this definition makes sense since we have γ(U) ∩ U = ∅ for all γ ∈ Γ with γ = I H 2 (indeed, if γ ∈ Γ and x 0 ∈ U are such that γ(x 0 ) ∈ U, then necessarily γ(x 0 ) = x 0 by injectivity of π |U , and hence γ = I H 2 since Γ has no fixed points).

This function Φ is then C ∞ on (-ε, ε) × (T H 2 {0}) and for each λ ∈ (-ε, ε) satisfies (i) Φ(λ,
•) is a smooth strongly convex Finsler metric on H 2 , (ii) Φ(0, •) is associated with g 0 , and Φ(λ, •) is not Riemannian whenever λ = 0.

Since Φ(λ, (γ(x), T x γ •u)) = Φ(λ, (x, u)) for all λ ∈ (-ε, ε), (x, u) ∈ T H 2 and γ ∈ Γ by construction, the quotient function Ψ : (-ε, ε) × T S -→ R given by Ψ (λ, T π(x, u)) = Φ(λ, (x, u)) is well defined and immediately satisfies points (1) and (2) of Lemma 2.1 thanks to points (i) and (ii) above. Furthermore, points (3) to [START_REF] Burago | A course in metric geometry[END_REF] in the Main Theorem automatically yield points (3) to (6) of Lemma 2.1.

Proof of Corollary 1.1.

Choose Ω = π(D) and apply Lemma 2.1.

On the other hand, keeping in mind that d F 0 denotes the induced metric on ∂D by the distance function D F 0 on H 2 associated with F 0 , Corollaries 1.2 and 1.3 will need the following lemma: Lemma 2.2. Let F be a Finsler metric on S such that we have [START_REF] Álvarez Paiva | What is wrong with the Hausdorff measure in Finsler spaces[END_REF] 

d F = d F 0 , and (2) 
F (x, u) = F 0 (x, u) for all x ∈ H 2 Γ(D) and u ∈ T x H 2 . Then D F (x, y) = D F 0 (x, y) for all x, y ∈ H 2 Γ(D).

Proof.

Fix x, y ∈ H 2 Γ(D) and let us consider a F -distance minimizing geodesic [x, y] F connecting x to y.

We will construct a curve σ also connecting x to y such that L F 0 (σ) = L F ([x, y] F ), and hence conclude that

D F 0 (x, y) L F 0 (σ) = L F ([x, y] F ) = D F (x, y).
A similar argument will give the reverse inequality, proving the lemma.

As the image of [x, y] F is compact, it intersects only a finite number N 1).

0 of connected components of the open set Γ(D) = π -1 (π(D)) in H 2 . If N = 0, i.e., if [x, y] F does not enter Γ(D), then hypothesis (2) implies L F ([x, y] F ) = L F 0 ([x, y] F ),
C i ) 1 i k , (e i ) 1 i k and (o i ) 1 i k by induction, where k ∈ {1, . . . , N} is such that the image of [o k , y] F does not intersect Γ(D) (see Figure
C 1 C 2 x y e 1 o 1 e 2 o 2 [x, y] F [e 1 , o 1 ] F 0 [e 2 , o 2 ] F 0 Figure 1. Proof of Lemma 2.2
Now we have

L F ([x, y] F ) = L F ([x, e 1 ] F ) + L F ([e 1 , o 1 ] F ) + L F ([o 1 , e 2 ] F ) + • • • + L F ([e k , o k ] F ) + L F ([o k , y] F ).
The F -length and the F 0 -length of each segment lying entirely outside Γ(D) are already equal by hypothesis [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF]. In particular, we have

L F ([o i , e i+1 ] F ) = L F 0 ([o i , e i+1 ] F )
for each 1 i k -1 (in case k 2), as well as

L F ([x, e 1 ] F ) = L F 0 ([x, e 1 ] F ) and L F ([o k , y] F ) = L F 0 ([o k , y] F ).
Furthermore, for each i ∈ {1, . . . , k}, observing that e i and o i lie in ∂C i , we have

L F 0 ([e i , o i ] F 0 ) = D F 0 (e i , o i ) = d F 0 (e i , o i ) = d F (e i , o i ) = D F (e i , o i ) = L F ([e i , o i ] F )
by hypothesis [START_REF] Álvarez Paiva | What is wrong with the Hausdorff measure in Finsler spaces[END_REF]. Thus, if σ is the curve

σ = [x, e 1 ] F #[e 1 , o 1 ] F 0 #[o 1 , e 2 ] F # • • • #[e k-1 , o k-1 ] F 0 #[o k-1 , e k ] F #[e k , o k ] F 0 #[o k , y] F ,
where # is the concatenation operator, then

L F 0 (σ) = L F ([x, y] F ), as desired.
The same argument reversing the roles of F 0 and F shows that D F (x, y) D F 0 (x, y), and hence we have D F (x, y) = D F 0 (x, y), completing the proof.

Proof of Corollary 1.2.

Let ε > 0 and Ψ : (-ε, ε) × T S -→ R as given by Lemma 2.1. Fix λ ∈ (-ε, ε) and consider a free homotopy class Σ of S that is not trivial. As in the proof of Lemma 2.1, let U be an open set in H 2 such that D ⊆ U and π |U is injective.

If σ λ : [0, 1] -→ S is a closed curve of shortest F λ -length within Σ, the image σ λ ([0, 1]) of σ λ can not entirely lie in π(D). Indeed, if this were the case, the image of the curve f -1 • σ λ would be included in D, where f : (U, F λ ) -→ (π(U), F λ ) is the isometry induced by π and F λ is the lift to H 2 of F λ . But f -1 • σ λ is contractible to a point in D and thus σ λ would be contractible to a point in π(D), which is not possible since Σ is not trivial. So, there exists a point p 0 in the image of σ λ that is not in π(D).

Let x 0 ∈ H 2 such that π(x 0 ) = p 0 and denote by σ λ the unique lift of σ λ to H 2 starting at x 0 .

If y 0 ∈ π -1 (p 0 ) is the end point of σ λ , then we have x 0 , y 0 ∈ H 2 Γ(D), and therefore (2.1)

D F λ (x 0 , y 0 ) = D F 0 (x 0 , y 0 ) by Lemma 2.2. Now, we have (2.2) L F λ (σ λ ) = L F λ (σ λ ) since π : (H 2 , F λ ) -→ (S, F λ ) is a local isometry.
But this implies that σ λ is a distance minimizing geodesic connecting x 0 to y 0 in (H 2 , F λ ) because if this were not the case, there would be a

F λ -geodesic [x 0 , y 0 ] F λ such that L F λ ([x 0 , y 0 ] F λ ) < L F λ (σ λ ) and hence L F λ ([x 0 , y 0 ] F λ ) < L F λ (σ λ ) by Equation 2.2. Therefore, we would get L F λ (π • [x 0 , y 0 ] F λ ) < L F λ (σ λ ), which is not possible since π • [x 0 , y 0 ] F λ
is a closed curve that belongs to Σ (indeed, as [x 0 , y 0 ] F λ is homotopic to σ λ in the simply connected space H 2 with fixed ends x 0 and y 0 , the closed curve π • [x 0 , y 0 ] F λ is homotopic to σ λ in S with fixed base point p 0 ).

So, we have L F λ (σ λ ) = D F λ (x 0 , y 0 ), and hence

(2.3) L F λ (σ λ ) = D F 0 (x 0 , y 0 )
by Equations 2.1 and 2.2.

Next, if σ 0 : [0, 1] -→ H 2 is a D F 0 -distance minimizing geodesic connecting x 0 to y 0 , the curve σ 0 := π • σ 0 is a closed curve that belongs to Σ (same reasoning as above for π

• [x 0 , y 0 ] F λ ) with L F 0 (σ 0 ) = L F 0 (σ 0 ) since π : (H 2 , F 0 ) -→ (S, F 0 ) is a local isometry. Thus, we get (2.4) L F λ (σ λ ) = L F 0 (σ 0 )
by Equation 2.3.

On the other hand, starting with is a closed curve τ 0 : [0, 1] -→ S of shortest F 0 -length within Σ and using exactly the same steps as previously (reversing the roles of F λ and F 0 ), there exists a closed curve τ λ : [0, 1] -→ S that belongs to Σ and satisfies (2.5)

L F 0 (τ 0 ) = L F λ (τ λ ).
Finally, Equations 2.4 and 2.5 yield

L F λ (σ λ ) L F λ (τ λ ) = L F 0 (τ 0 ) L F 0 (σ 0 ) = L F λ (σ λ ),
and therefore L F λ (σ λ ) = L F 0 (τ 0 ). This proves Corollary 1.2.

Remark. It is to be noticed here that the proof of Corollary 1.2 shows that for each non-trivial free homotopy class Σ for S and each λ ∈ (-λ 0 , λ 0 ), there is a unique (up to reparameterization) closed curve T 1 := R/Z -→ S in Σ of shortest F λ -length.

Proof.

Let σ : T 1 -→ S and τ : T 1 -→ S be closed curves in Σ of (the same) shortest F λ -length (thus F λ -geodesics) and prove they are equal up to a translation in T 1 .

If there were p 0 ∈ σ(T 1 ) π(D) and p 1 ∈ τ (T 1 ) π(D) with p 0 / ∈ τ (T 1 ) and p 1 / ∈ σ(T 1 ), then the same reasoning as in the proof of Corollary 1.2 would lead to the existence of closed curves σ 0 : T 1 -→ S and τ 0 : T 1 -→ S in Σ of shortest F 0 -length with p 0 ∈ σ 0 (T 1 ) and p 1 ∈ τ 0 (T 1 ). As p 0 = p 1 , we would get σ 0 = τ 0 , which is not possible since it is well known there is a unique (up to reparameterization) closed curve T 1 -→ S in Σ of shortest F 0 -length since F 0 is Riemannian hyperbolic.

So, we have σ(T 1 ) π(D) ⊆ τ (T 1 ) or τ (T 1 ) π(D) ⊆ σ(T 1 ), and this implies there exist t 0 ∈ T 1 and a neighborhood V of 0 in T 1 such that σ(t) = τ (t + t 0 ) for all t ∈ V. Thus σ(t) = τ (t + t 0 ) for all t ∈ T 1 since σ and T 1 ∋ t -→ τ (t + t 0 ) ∈ S are F λ -geodesics. Last, we discuss the volume growth entropy, considered with respect to the Holmes-Thompson volume, which we now define. Let (M, F ) be an n-dimensional Finsler manifold. • its dual set in T * p M (recall that for any set X in a finite dimensional vector space V , we have X

• := {ϕ ∈ V * | ϕ(v) 1 for all v ∈ X} ⊆ V * ). Then define the unit F -ball co-tangent bundle B F M • := p∈M {p}× B F p M • = (p, ϕ) ∈ T * M | ϕ(v) 1 for all v ∈ B F p M ⊆ T * M.
Let ω be the canonical symplectic form on T * M given by ω := dα, where α is the Liouville 1-form on T * M, and

Ω := 1 n! ω ∧ • • • ∧ ω n times
be the canonical volume form on T * M.

For any Borel subset A ⊆ M, define the Holmes-Thompson volume of A by

Vol F (A) := 1 C n (B F M ) • |A Ω,
where The Holmes-Thompson volume generalizes the Riemannian volume in the sense that if F is the Finsler metric associated with a Riemannian metric g on M, then Vol F = vol g . Note that for a Finsler manifold there is another choice of volume that generalizes Riemannian volume called the Busemann volume which corresponds to the Hausdorff measure (see [START_REF] Burago | A course in metric geometry[END_REF], page 192). It is to be mentionned that partial results concerning the entropy rigidity question have been obtained using the Busemann volume (see [START_REF] Verovic | Problème de l'entropie minimale pour les métriques de Finsler[END_REF] and [START_REF] Boland | Minimal entropy rigidity for Finsler manifolds of negative flag curvature[END_REF]). Moreover, to get a taste of the difference between these two notions of volume in Finsler geometry, one may have a look at [START_REF] Álvarez Paiva | What is wrong with the Hausdorff measure in Finsler spaces[END_REF].

B F M • |A := (p, ϕ) ∈ B F M • | p ∈ A ⊆ T * M
Remark 2.1.

(1) If F * : T * M -→ R is the dual Finsler metric of F defined by

F * (p, ϕ) := max {ϕ(v) | v ∈ T p M and F (p, v) = 1},
then, for each p ∈ M, we have

B F p M • = B F * p M := {ϕ ∈ T * p M | F * (p, ϕ) < 1} ⊆ T * p M.
(2) Given any Riemannian metric g on M, we have the formula

Vol F (A) = 1 C n A vol g * (p) B F p M • dvol g (p)
for any Borel subset A ⊆ M, where g * (p) is the dual scalar product of g(p) on T * p M and vol g * (p) its associated Haar measure (see [START_REF] Burago | On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume[END_REF]).

(3) In case the Finsler metric F is smooth and strongly convex, let Ω F be the symplectic volume form on T M {0} associated with F defined as the pullback of the canonical volume form on T * M by the Legendre transform T M {0} -→ T * M induced by F (this map is a local diffeomorphism since F is strongly convex).

Then we can write

Vol F (A) = 1 C n (T M \{0})∩B F M |A Ω F ,
where

B F M |A := {(p, v) ∈ T M | p ∈ A and F (p, v) < 1} ⊆ T M.
We shall now use the Main Theorem together with the following key result by Ivanov to prove Corollary 1.3.

Theorem 2.1 (Ivanov,[START_REF] Ivanov | On two-dimensional minimal fillings[END_REF]). Let ∆ be an open Euclidean disk in R 2 , and consider smooth strongly convex Finsler metrics F 0 and F on R 2 . Assume that every two points in ∆ can be joined within ∆ by a unique (up to reparametrization) geodesic of F 0 and by a geodesic of F. Then, if d F (x, y) d F 0 (x, y) for all x, y ∈ ∂∆, we have Vol F (∆) Vol F 0 (∆), where d F 0 and d F are the metrics induced on ∂∆ by the distance functions on R 2 associated respectively with F 0 and F.

From this, we get Consequence 2.1. Let F be a smooth strongly convex Finsler metric on H 2 without conjugate points and such that every two points in D can be joined by a geodesic of

F whose image is contained in D. Then, if d F = d F 0 , we have Vol F (D) = Vol F 0 (D).

Proof.

First of all, the hyperbolic Finsler metric F 0 is smooth and strongly convex, and every two points in H 2 can be joined by a unique (up to reparametrization) geodesic of F 0 . Therefore, since D is an open ball in (H 2 , F 0 ), the unique (up to reparametrization) F 0 -geodesic joining two points in D has its image contained in D. Thus,

d F d F 0 yields Vol F (D) Vol F 0 (D) by Theorem 2.1.
On the other hand, since the smooth strongly convex Finsler metric F has no conjugate points, every two points in D can actually be joined within D by a unique (up to reparametrization) geodesic of F. So, using

d F d F 0 , we have Vol F (D) Vol F 0 (D) still by Theorem 2.1. Conclusion: Vol F (D) = Vol F 0 (D).
Let us now prove the following two independent lemmas:

Lemma 2.3. Let F be a Finsler metric on S such that (1) d F = d F 0 , (2) F (x, u) = F 0 (x, u) for all x ∈ H 2 Γ(D) and u ∈ T x H 2 .
Let c > 0 be a constant such that diam F (D) c and diam F 0 (D) c. Then for all x ∈ H 2 Γ(D) and R > c, we have

B F 0 (x, R -c) ⊆ B F (x, R) ⊆ B F 0 (x, R + c).
and Lemma 2.4. Let F be a Finsler metric on S such that (1)

Vol F (D) = Vol F 0 (D), (2) F (x, u) = F 0 (x, u) for all x ∈ H 2 Γ(D) and u ∈ T x H 2 . Let c > 0 be a constant such that diam F (D) c and diam F 0 (D) c. Then for all x ∈ H 2 Γ(D) and R > 2c, we have Vol F (B F 0 (x, R -c)) Vol F 0 (B F 0 (x, R)) Vol F (B F 0 (x, R + c)) . Proof of Lemma 2.3. Let x ∈ H 2 Γ(D) and y ∈ H 2 . We will show D F 0 (x, y) -c D F (x, y) D F 0 (x, y) + c,
which immediately implies the result.

Let us fix distance minimizing geodesics [x, y] F and [x, y] F 0 for F and F 0 respectively connecting x to y.

By Lemma 2.2, we know that if y ∈ H 2 Γ(D), then D F (x, y) = D F 0 (x, y), and the inequalities above hold.

So, suppose y is in a connected component C of Γ(D) and let e F 0 and e F be the points at which respectively [x, y] F 0 and [x, y] F enter C the first time (e F 0 and e F lie in ∂C, see Figure 2).

As diam F 0 (D) c and diam F (D) c, we have D F 0 (e F 0 , y) c and D F (e F , y) c. Furthermore, by Lemma 2.2 and since x, e F 0 and e F all lie outside Γ(D), we have

D F (x, e F ) = D F 0 (x, e F ) and D F (x, e F 0 ) = D F 0 (x, e F 0 ). Thus D F (x, y) D F (x, e F ) + D F (e F , y) D F 0 (x, e F ) + c and D F 0 (x, y) D F 0 (x, e F 0 ) + D F 0 (e F 0 , y) D F (x, e F 0 ) + c.
We conclude that

D F 0 (x, y) -c D F (x, y) D F 0 (x, y) + c, as claimed. C x y e F e F 0 [x, y] F [x, y] F 0 Figure 2. Proof of Lemma 2.3 Proof of Lemma 2.4. Let x ∈ H 2 and R > 2c.
By assumption (1), we have Vol F (γ(D)) = Vol F 0 (γ(D)) for each γ ∈ Γ since Γ is a group of isometries for both F and F 0 .

On the other hand, by assumption (2), Borel sets in H 2 not intersecting Γ(D) have the same Holmes-Thompson volume with respect to F 0 as with respect to F (the boundary of Γ(D) being a set of zero measure for both Holmes-Thompson volumes).

Let U be the union of the connected components of Γ(D) that intersect ∂B F 0 (x, R). Then

Vol F (B F 0 (x, R) U) = Vol F 0 (B F 0 (x, R) U)
and

Vol F (B F 0 (x, R) ∪ U) = Vol F 0 (B F 0 (x, R) ∪ U) . Since for each connected component γ(D) (γ ∈ Γ) of Γ(D) we have diam F 0 (γ(D)) c and diam F (γ(D)) c, one gets B F 0 (x, R -c) ⊆ B F 0 (x, R) U ⊆ B F 0 (x, R) ⊆ B F 0 (x, R) ∪ U ⊆ B F 0 (x, R + c),

and hence

Vol

F (B F 0 (x, R -c)) Vol F 0 (B F 0 (x, R)) Vol F (B F 0 (x, R + c)) .
Before proving Corollary 1.3, we need the following lemma about the volume growth entropy:

Lemma 2.5. Let F be a Finsler metric on S such that

(1) d F = d F 0 , (2) Vol F (D) = Vol F 0 (D), and (3) 
F (x, u) = F 0 (x, u) for all x ∈ H 2 Γ(D) and u ∈ T x H 2 . Then h(F ) = h(F 0 ).

Proof.

Choose x ∈ H 2 Γ(D) and R > 2c. By Lemma 2.3, we have

B F 0 (x, R -c) ⊆ B F (x, R) ⊆ B F 0 (x, R + c). Therefore Vol F (B F 0 (x, R -c)) Vol F (B F (x, R)) Vol F (B F 0 (x, R + c))
, and hence, by Lemma 2.4,

Vol F 0 (B F 0 (x, R -2c)) Vol F (B F (x, R)) Vol F 0 (B F 0 (x, R + 2c)) . But h(F 0 ) = lim R→+∞ 1 R log (Vol F 0 (B F 0 (x, R -2c))) = lim R→+∞ 1 R log (Vol F 0 (B F 0 (x, R + 2c))).
Thus h(F ) = h(F 0 ), as desired.

We are now able to prove Corollary 1.3.

Proof of Corollary 1.3.

Let ε > 0 and Ψ : (-ε, ε) × T S -→ R as given by Lemma 2.1. Fixing λ ∈ (-ε, ε), the smooth strongly convex Finsler metric F λ on H 2 satisfies points (4) and ( 6) of Lemma 2.1, and thus the hypotheses of Consequence 2.1. Furthermore, as it satisfies point (3) in Lemma 2.1, we then get Vol F λ (D) = Vol F 0 (D) by Consequence 2.1.

So, by point (5) in Lemma 2.1, F λ satisfies all the three hypotheses of Lemma 2.5. Therefore, according to this latter lemma,

h(F λ ) = h(F 0 ), or equivalently h(F λ ) = h(F 0 ). Now, let U be an open set in H 2 such that D ⊆ U and π |U is injective as in the proof of Lemma 2.1. Then π induces isometries from (U, F λ ) onto (π(U), F λ ) and from (U, F 0 ) onto (π(U), F 0 ), which yield Vol F λ (D) = Vol F λ (π(D)) and Vol F 0 (D) = Vol F 0 (π(D)). Hence Vol F λ (π(D)) = Vol F 0 (π(D)). On the other hand, point (5) in Lemma 2.1 implies that F 0 (p, v) = F 0 (p, v) for all p ∈ S π(D) and v ∈ T p S. Thus Vol F λ (S π(D)) = Vol F 0 (S π(D)), and finally Vol F λ (S) = Vol F 0 (S). Conclusion: h(F λ ) 2 Vol F λ (S) = h(F 0 ) 2 Vol F 0 (S).
This finishes the proof of Corollary 1.3.

Proof of the Main Theorem

Throughout all this section, denote by

•, • the usual scalar product in R 2 and | • | its associated norm. Let H 2 := {p ∈ R 2 | |p| < 1} ⊆ R 2 endowed with the Klein metric g 0 that is given by (3.1) g 0 (p)•(v, w) := v, w 1 -|p| 2 + p, v p, w (1 -|p| 2 ) 2 for all p ∈ H 2 and v, w ∈ T p H 2 = R 2 .
Thus (H 2 , g 0 ) is a model of the hyperbolic plane where images of the geodesics are affine segments.

For each r ∈ (0, 1], let

D(r) := {p ∈ R 2 | |p| < r} ⊆ H 2 .
Finally, fix an arbitrary R ∈ (0, 1), let D := D(R), and denote by d g 0 the induced metric on ∂D by the distance function on H 2 associated with g 0 .

Arcostanzo's construction.

In [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF], Arcostanzo gives conditions on a distance d on ∂D and a set S of parameterized curves γ : [0, 1] -→ D in such a way that there exists a Finsler metric F on D whose associated distance on D extends to a distance on D that induces the metric d on ∂D and such that {γ |(0,1) | γ ∈ S} coincides with the set of maximal geodesics of F after reparametrization by (0, 1). We will state this result precisely in the specific case when the distance on ∂D is d g 0 , though more general results are established in [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF].

We begin by giving Arcostanzo's conditions on a set of parameterized curves. Definition 3.1. A set S of parameterized curves γ : [0, 1] -→ R 2 is said to be admissible for D if and only if the following properties hold:

(1) each γ ∈ S is C ∞ , regular, injective, and satisfies γ((0, 1)) ⊆ D;

(2) for each γ ∈ S, we have γ(0), γ(1) ∈ ∂D;

(3) for any p, q ∈ D with p = q, there exists a unique (γ, t 0 , t 1 ) ∈ S × [0, 1] × [0, 1] such that p = γ(t 0 ) and q = γ(t 1 ) with t 0 < t 1 ; (4) for any p ∈ D and v ∈ T p D = R 2 with v = 0, there exists a unique (γ, t) ∈ S × (0, 1) such that p = γ(t) and γ ′ (t) is parallel to v with the same direction.

For Arcostanzo's construction to yield a Finsler metric and not just a distance on D, a certain amount of regularity is required about the way the end points γ(0), γ(1) ∈ ∂D depend on the parameterized curve γ ∈ S.

More precisely, given S an admissible set of parameterized curves for D, for each x ∈ ∂D and p ∈ D, there is a unique γ ∈ S such that x = γ(0) and p ∈ γ([0, 1]) according to point [START_REF] Besson | Entropies et rigiditiés des espaces localement symétriques de courbure strictement négative[END_REF] in Definition 3.1. Setting σ(x, p) := γ(1), we then get a map σ : ∂D × D -→ ∂D we will call the 'end point map' associated with S (see Figure 3). Arcostanzo points out, for example, that the set of maximal geodesics in D (reparameterized by [0, 1]) of a negatively curved Riemannian metric on an open neighborhood of D is admissible for D and satisfies Property (C) (see [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF], page 242).

We can now state Arcostanzo's result:

Theorem 3.1 ([2]
, Théorème 2, page 243). Let S be an admissible set of parameterized curves for D that satisfies Property (C). Then there exists a unique Finsler metric F on D whose associated distance function on D extends to a distance on D that induces the metric d g 0 on ∂D and such that {γ |(0,1) | γ ∈ S} coincides with the set of maximal geodesics of F after reparametrization by (0, 1). Its precise formula is given by (1) Given x 0 = Re it 0 and y 0 = Re is 0 in ∂D = RS 1 such that x 0 = y 0 , the partial derivative ∂ 2 d g 0 ∂x∂y (x 0 , y 0 ) is defined as to be equal to

F(p, v) = 1 4 ∂D ∂ 2 d g 0 ∂x∂y (x, σ(x, p)) ∂σ ∂p (x, p)•v dx for any (p, v) ∈ T D = D × R 2 ,
∂ 2 f ∂t∂s (t 0 , s 0 ) ∈ R, where f (t, s) = d g 0 (Re it , Re is )
for all t, s ∈ R.

(2) Arcostanzo's result applies here since g 0 is the hyperbolic metric and an easy computation then shows that ∂ 2 d g 0 ∂x∂y (x, y) > 0 for any x, y ∈ ∂D with x = y.

(3) By uniqueness of F in Theorem 3.1, if we choose S to be the set of maximal geodesics of g 0 in D after reparametrization by [0, 1] (whose images are the chords of the Euclidean circle ∂D), then we get that F equals the restriction to T D of the Finsler metric F 0 on H 2 associated with g 0 .

( (5) The existence of a unique Finsler metric F on D given by the formula in Theorem 3.1 still holds without the assumption that the admissible set of parameterized curves S for D has Property (C), but in that case F is not necessarily reversible nor smooth.

Remark 3.3. Although it is not written in [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF], the fact that F is a smooth Finsler metric on D can be proved as follows.

Proof.

Consider the map Υ :

D × R 2 × ∂D -→ R 2 defined by Υ((p, v), x) := 1 4 ∂ 2 d g 0 ∂x∂y (x, σ(x, p)) ∂σ ∂p (x, p)•v. Since d g 0 is C ∞ on (∂D × ∂D) {(x, x) | x ∈ ∂D} and σ is C ∞ on ∂D × D (point (1) in Definition 3.2) which satisfies σ(x, p) = x for all (x, p) ∈ ∂D × D, the positive function (x, p) → ∂ 2 d g 0 ∂x∂y (x, σ(x, p)) is C ∞ on ∂D × D, and therefore Υ is C ∞ .
This implies in particular that Υ is continuous, thus the function

F : T D = D × R 2 -→ R in Theorem 3.1 given by F(p, v) = ∂D |Υ((p, v), x
)|dx is well defined and continuous.

On the other hand, for any

((p, v), x) ∈ D × (R 2 {0}) × ∂D, the vector ∂σ ∂p (x, p) • v ∈ R 2 vanishes iff x = e -(p, v) or x = e + (p, v) (point (2) in Definition 3.2). So, given (p, v) ∈ D × (R 2 {0}), the differential ∂|Υ| ∂(p, v) ((p, v), x) ∈ L(R 4 , R) exists for all x ∈ ∂D {e -(p, v), e + (p, v)} and writes ∂|Υ| ∂(p, v) ((p, v), x)•(w, ξ) = ∂|Υ| ∂p ((p, v), x)•w + ∂Υ ∂v ((p, v), x)•ξ = ∂Υ ∂p ((p, v), x)•w, Υ((p, v), x) + Υ(p, ξ, x), Υ((p, v), x) |Υ((p, v), x)|
for every w, ξ ∈ R 2 (notice that Υ is linear with respect to v). Therefore, if we fix τ > 0 and take 0 < |v| τ together with |w| 1 and |ξ| 1, we get

∂|Υ| ∂(p, v) ((p, v), x)•(w, ξ) ∂Υ ∂p ((p, v), x)•w + |Υ((p, ξ), x)| (by Cauchy-Schwarz inequality) τ ∂Υ ∂p ((p, •), x) + Υ((p, •), x) ,
where 

• and |||•||| are respectively the operator norms on L(R 2 , R 2 ) and L 2 (R 2 × R 2 , R 2 ) (bilinear maps from R 2 × R 2 to R 2 ). Since Υ is C ∞ , the functions (x, p) → Υ((p, •), x) and (x, p) → ∂Υ ∂p ((p, •), x)
∂|Υ| ∂(p, v) ((p, v), x)•(w, ξ) τ Λ 1 + Λ 2 .
Now, since {e -(p, v), e + (p, v)} is a set of zero measure with respect to dx, we obtain from Lebesgue's dominated convergence theorem (see for example [START_REF] Dieudonné | Éléments d'analyse -Tome II[END_REF], page 123) that the Finsler metric

F on D is differentiable on D(r) × {v ∈ R 2 | 0 < |v| < τ }.
As this holds for arbitrary r ∈ (0, R) and τ > 0, we eventually get that F is differentiable on

D × (R 2 {0}) = T D {0} with ∂F ∂(p, v) (p, v) = ∂D ∂|Υ| ∂(p, v) ((p, v), x)dx.
Finally, using the same reasonning as above, one can show by induction that for every n ∈ N the Finsler metric F is n times differentiable on T D {0} with

∂ n F ∂(p, v) n (p, v) = ∂D ∂ n |Υ| ∂(p, v) n ((p, v), x)dx.
This proves that F is smooth. Now, using Theorem 3.1, our aim is to construct a 'good' family (S λ ) λ∈(-ε,ε) of admissible sets of parameterized curves for D satisfying Property (C), from which we shall later be able to get a family (F λ ) λ∈(-ε,ε) of Finsler metrics on H 2 as needed in the Main Theorem. But, as we already mentionned, the main difficulty will be to ensure these Finsler metrics be smooth on the whole space H 2 (and not only on the disk D) and coincide with the Riemannian hyperbolic metric g 0 outside D. Given any λ ∈ (-ε, ε) and according to Theorem 3.1, it seems reasonable to ask all the parameterized curves in S λ to coincide with the geodesics for g 0 in a neighborhood of ∂D (note that since (H 2 , g 0 ) has been chosen to be the Klein model of the hyperbolic plane, the images of the g 0 -geodesics are affine segments, thus very easy to be dealt with). However, we also want the Finsler metric F λ not to be Riemannian, and this will be the case if we choose S λ to be the set of the parameterized curves obtained as a 'barycenter' of the geodesics for g 0 and the geodesics for some 'good' Riemannian metric g λ conformal to g 0 .

The advantage in constructing a family (S λ ) λ∈(-ε,ε) in this way is that all the Finsler metrics of the associated family (F λ ) λ∈(-ε,ε) obtained by Arcostanzo's theorem will satisfy the desired properties listed in the Main Theorem, but this construction will have a cost. Indeed, proving that the set S λ of parameterized curves is admissible for D and has Property (C) is not easy and will be done at the expense of great effort. This is why we will have to make very technical considerations just in order to ensure admissibility and Property (C) for the family (S λ ) λ∈(-ε,ε) .

3.2.

Constructing a family of admissible sets of parameterized curves.

The setting.

We will now construct a family of admissible sets of parameterized curves for D by interpolating between the maximal geodesics for the hyperbolic metric g 0 on H 2 and those for a nearby Riemannian metric of non-constant curvature that is conformal to g 0 .

More precisely, let ∆ be the Laplacian for g 0 and fix a regular eigenfunction ψ : D -→ R of ∆ on D associated with the first eigenvalue a of ∆ and satisfying the Dirichlet condition ψ |∂D ≡ 0. It is then well known that a > 0 and that ψ can be chosen to be positive on D. Furthermore, as g 0 is invariant under the group O(R 2 ) of linear Euclidean isometries (i.e., A * g 0 = g 0 for all

A ∈ O(R 2 )) thanks to Equation 3.1, we get that ψ is O(R 2 )-invariant. Next, let θ : H 2 -→ R be any C ∞ function that is O(R 2 )-invariant and such that θ ≡ 1 on D(R/4) and θ ≡ 0 on H 2 D(R/2). The new function f : H 2 -→ R defined by f (p) = ψ(p)θ(p) if p ∈ D 0 if p ∈ H 2 D is thus C ∞ and O(R 2 )-invariant, together with f ≡ 0 on H 2 D(R/2
) and ∆f = af on D(R/4).

In particular, since a > 0 and ψ is positive on D, there exists a number δ 0 > 0 such that (∆f )(p) 1/δ 2 0 for all p ∈ D(R/4).

Proposition 3.1. The function

α : (-δ 0 , δ 0 ) × H 2 -→ R (λ, p) -→ α(λ, p) = α λ (p) := e 2λ 2 f (p)
is C ∞ and satisfies the following:

(1) α 0 ≡ 1;

(2) for all λ ∈ (-δ 0 , δ 0 ) and p ∈ H 2 D(R/2), we have α λ (p) = 1; and

(3) for all λ ∈ (-δ 0 , δ 0 ) with λ = 0, the Riemannian metric

g λ : H 2 -→ Sym 2 (T H 2 ) defined by g λ (p) = α λ (p)g 0 (p) is C ∞ , complete
, and has non-constant negative Gaussian curvature on any neighborhood about 0 in H 2 .

Proof.

The only two things to be proved deal with completeness and Gaussian curvature, since all the other points are clear.

So, fix λ ∈ (-δ 0 , δ 0 ) {0}.

•

Step 1: To prove g λ is complete, we will use the Hopf-Rinow theorem.

Let X be a closed set in H 2 that is bounded for g λ , and prove it is compact.

We

have X = X 1 ∪ X 2 with X 1 = X ∩ D and X 2 = X ∩ (H 2 D). As X 1 is closed in the compact set D, it is compact.
On the other hand, X 2 is included in the open set (H 2 D(R/2)) of H 2 on which g λ coincide with g 0 . So, X 2 is bounded for g 0 , and hence compact since the Klein metric g 0 is complete.

Conclusion: X = X 1 ∪ X 2 is compact.

• Step 2: The Gaussian curvature K λ of the metric g λ depends on that K 0 ≡ -1 of g 0 according to the formula α λ K λ = K 0 -∆(ln(α λ ))/2 (see for example [START_REF] Gromoll | Riemannsche Geometrie im Groβen[END_REF], page 97), which implies K λ (p) = -(1 + λ 2 (∆f )(p))e -2λ 2 f (p) for all p ∈ H 2 . Thus, for every p ∈ D(R/4), we have K λ (p) < 0 since 1 + λ 2 (∆f )(p) 1 -λ 2 /δ 2 0 > 0. On the other hand, given r ∈ (0, R/4), if K λ were constant on D(r), there would exist C ∈ R such that for all p ∈ D(r), 

ln(1 + λ 2 (∆f )(p)) = 2λ 2 f (p) + C,
(3.3) ln(1 + aλ 2 t) = 2λ 2 t + C for all t ∈ [t 0 , t 1 ] = f (D(r)).
Since the function f coincides with ψ > 0 on D(R/4), it never vanishes on D(r), and hence it cannot be constant on D(r) (indeed, if f were constant on D(r), then we would have f = (∆f )/a ≡ 0 on D(r) ⊆ D(R/4)). Therefore we have t 0 < t 1 , which makes sense to differentiate Equation 3.3 with respect to t and get

aλ 2 1 + aλ 2 t = 2λ 2 for all t ∈ [t 0 , t 1 ].
But this is impossible since a = 0 and λ = 0.

Conclusion: the Gaussian curvature K λ cannot be constant on D(r).

Let us now show how we use Proposition 3.1 to construct a family (S λ ) λ∈(-δ 0 ,δ 0 ) of sets of parameterized curves γ : [0, 1] -→ R 2 we will prove later they are admissible for D and have Property (C).

For each λ ∈ (-δ 0 , δ 0 ) and x ∈ H 2 , denote by exp λ x : T x H 2 = R 2 -→ H 2 the exponential map at x associated with g λ , and let exp λ :

T H 2 = H 2 × R 2 -→ H 2 × H 2 be defined by exp λ (x, v) = (x, exp λ x (v))
. Since g λ is negatively curved, it has no conjugate points and thus exp λ is a C ∞ diffeomorphism. In particular, g λ is uniquely geodesic.

We next fix a C ∞ function ρ : R -→ [0, 1] such that (1) ρ ≡ 1 on [1/2, 2/3];

(2) ρ ≡ 0 on [3/4, +∞); and

(3) ρ(t) = ρ(1 -t) for all t ∈ R.

(3.4) Given any λ ∈ (-δ 0 , δ 0 ) and x ∈ H 2 , let G λ x : H 2 × R -→ H 2 and ϕ λ x : H 2 × R -→ R 2 be defined by G λ x (y, t) := exp λ (x , t(exp λ x ) -1 (y)) and ϕ λ x (y, t) := (1 -ρ(t))G 0 x (y, t) + ρ(t)G λ
x (y, t). Roughly speaking, we obtain the parameterized curve ϕ λ x (y, •) : R -→ R 2 as the 'barycenter' in R 2 with 'weights' 1 -ρ and ρ of the unique maximal geodesics G 0

x (y, •) and G λ x (y, •) for g 0 and g λ respectively passing through x at t = 0 and y at t = 1 (see Figure 4).

0 ∂D ∂D(R/2) G 0 x (y, •) G λ x ( y , • ) x y ϕ λ x (y, •) Figure 4. Constructing ϕ λ x (y, •)
In the rest of this section, we prove that if we shrink δ 0 > 0, then for each λ ∈ (-δ 0 , δ 0 ), the set of parameterized curves ϕ λ x (y, •) : [0, 1] -→ R 2 , where x and y are distinct points in ∂D, is admissible for D and satisfies Property (C).

Then, in section 3.3, we prove these parameterized curves have additional properties that will be used to ensure that the Finsler metrics resulting from Theorem 3.1 satisfy our Main Theorem.

In the following technical lemma, we show that for any λ ∈

(-δ 0 , δ 0 ), if C is a closed convex set in R 2 containing the open disk D(R/2), then C ∩ H 2 is in some sense convex with respect to the set of parameterized curves G λ x (y, •) : [0, 1] -→ H 2 (respectively ϕ λ x (y, •) : [0, 1] -→ R 2 ), where x, y ∈ C ∩ H 2 . Lemma 3.1. For each λ ∈ (-δ 0 , δ 0 ), we have (1) ϕ λ x (y, t) = ϕ λ y (x, 1 -t) for all x, y ∈ H 2 and t ∈ R, (2) if C is any closed convex set in R 2 such that D(R/2) ⊆ C, then G λ
x (y, t) ∈ C and ϕ λ

x (y, t) ∈ C for all x, y ∈ C ∩ H 2 and t ∈ [0, 1], (3) for all x, y ∈ ∂D and t ∈ R, the equivalence ϕ λ

x (y, t) ∈ D ⇐⇒ t ∈ (0, 1) holds.

Proof.

Fix λ ∈ (-δ 0 , δ 0 ).

• Point (1): Given any x, y ∈ H 2 , the parameterized curves t ∈ R → G λ x (y, t) ∈ H 2 and t ∈ R → G λ y (x, 1 -t) ∈ H 2 are both g λ -geodesics passing through x at t = 0 and y at t = 1. They are thus equal since g λ is uniquely geodesic. Then point (1) follows from property (1) in Equation 3.4 satisfied by the function ρ.

• Point (2): Let C be a closed convex set in R 2 such that D(R/2) ⊆ C. Let x, y ∈ C ∩ H 2 ,
and consider the g λ -geodesic κ : R -→ H 2 defined by κ(t) := G λ x (y, t). We shall now prove by contradiction that the image of κ is included in C. Then, since the image of the g 0 -geodesic G 0

x (y, •) is in C, we will get that the image of the interpolated curve ϕ λ

x (y, •) is also in C. So, let us suppose that there exists t 0 ∈ [0, 1] such that p 0 = κ(t 0 ) / ∈ C and prove this is not possible.

Let τ 0 := max{t ∈ [0, t 0 ] | κ(t) ∈ C} and τ 1 := min{t ∈ [t 0 , 1] | κ(t) ∈ C} (note that τ 0 and τ 1 exist since κ(0) = x ∈ C and κ(1) = y ∈ C).

Then τ 0 < t 0 < τ 1 , and for all t ∈ (τ 0 , τ 1 ) we have κ(t) / ∈ C, which implies that κ((τ 0 , τ 1 )) is the affine segment ]κ(τ 0 ), κ(τ 1 )[ since the metric g λ coincides with g 0 on the open set H 2 C of H 2 (recall images of the g 0 -geodesics are affine segments). But ]κ(τ 0 ), κ(τ 1 )[ ⊆ [κ(τ 0 ), κ(τ 1 )] ⊆ C since κ(τ 0 ), κ(τ 1 ) ∈ C and C is convex. As p 0 = κ(t 0 ) ∈ κ((τ 0 , τ 1 )) = ]κ(τ 0 ), κ(τ 1 )[, we get a contradiction. So, κ([0, 1]) ⊆ C.

On the other hand, the image of [0, 1] under the g 0 -geodesic G 0 x (y, •) is the affine segment [x, y], which lies in C since x, y ∈ C and C is convex.

Finally, for all t ∈ [0, 1], the barycenter point (1

-ρ(t))G 0 x (y, t) + ρ(t)G λ x (y, t) = ϕ λ x (y, t) is contained in the convex set C.
• Point (3): Let x, y ∈ ∂D such that x = y (the case x = y is trivial). To prove the =⇒ part, we show that ϕ λ x (y, t) / ∈ D for all t ∈ R (0, 1). The idea consists here in saying that if the parameterized curve ϕ λ x (y, •) leaves the disk D, then it is equal to a g 0 -geodesic. Hence, since the image of any geodesic for g 0 is an affine segment, ϕ λ x (y, •) can never go back into D.

So, let c : R -→ H 2 be the g 0 -geodesic defined by c(t) := G 0 x (y, t). As the images of g 0 -geodesics are affine segments, we can write c(t) = x + θ(t)(y -x) for all t ∈ R, where θ : R -→ R is a C ∞ function. Since c is a regular parameterized curve (it is a non-constant geodesic for a Riemannian metric) satisfying c(0) = x and c(1) = y, the derivative of θ never vanishes and we have θ(0) = 0 and θ(1) = 1. Therefore θ is an increasing homeomorphism with θ([0, 1]) = [0, 1]. This implies that c(R (0, 1)) is equal to the complement of the affine segment ]x, y[ in the intersection of the straight line (xy) with H 2 . Since ]x, y[ is the intersection of (xy) with D, we get the inclusion c(R (0, 1)) ⊆ H 2 D.

But ϕ λ

x (y, t) = c(t) for all t ∈ R (0, 1) since ρ ≡ 0 on R (0, 1) by property (2) in Equation 3.4, and thus ϕ λ

x (y, •)(R (0, 1)) = c(R (0, 1)) ⊆ H 2 D. This establishes the =⇒ part in point (3).

To prove the ⇐= part, let ν : R -→ H 2 be the g λ -geodesic defined by ν(t) := G λ x (y, t). Applying point (2) with C = D, we already have ν((0, 1)) ∈ D. Then suppose there exists t 0 ∈ (0, 1) such that p 0 = ν(t 0 ) ∈ ∂D and prove this is not possible.

Since p 0 lies in the open set H 2 D(R/2) of H 2 , the continuity of ν at t 0 implies there exists

ε > 0 such that [t 0 -ε, t 0 + ε] ⊆ [0, 1] and ν([t 0 -ε, t 0 + ε]) ⊆ H 2 D(R/2). But g λ agrees with g 0 on H 2 D(R/2), so ν(t) = G 0 x (y, t) for all t ∈ [t 0 -ε, t 0 + ε], and thus ν([t 0 -ε, t 0 + ε]) is the affine segment [ν(t 0 -ε), ν(t 0 + ε)]. Hence ν(t 0 -ε), ν(t 0 + ε) ∈ D with p 0 ∈ [ν(t 0 -ε), ν(t 0 + ε)],
which is impossible since p 0 ∈ ∂D is an extreme point for the convex set D. This shows that ν((0, 1)) ⊆ D.

On the other hand, the image of (0, 1) under the g 0 -geodesic G 0

x (y, •) is the affine segment ]x, y[, which lies in D since x, y ∈ ∂D and D is strictly convex.

Finally, for all t ∈ (0, 1), the barycenter point (1 -ρ(t))G 0

x (y, t) + ρ(t)G λ x (y, t) = ϕ λ x (y, t) is contained in the convex set D.

We now consider the C ∞ map Φ : (-δ 0 , δ 0 ) × ∂D × ∂D × R -→ ∂D × R 2 defined by Φ(λ, (x, y, t)) = Φ λ (x, y, t) := (x, ϕ λ x (y, t))

and denote by ∆ := {(x, x) | x ∈ ∂D} the diagonal of ∂D × ∂D.

Using this map Φ, we shall prove that for all λ ∈ (-δ 0 , δ 0 ), the set

S λ := {γ λ (x,y) | (x, y) ∈ (∂D × ∂D) ∆} of C ∞ parameterized curves γ λ (x,y) : [0, 1] -→ R 2 defined by γ λ (x,y) (t) := ϕ λ x (y, t
) is admissible for D and satisfies Property (C) provided δ 0 > 0 is sufficiently small.

Diffeomorphism property for Φ λ .

Let

T := {(x, p) ∈ ∂D × H 2 | p -x ∈ T x ∂D} = {(x, p) ∈ ∂D × H 2 | x, p -x = 0}, M := ((∂D × ∂D) ∆) × (R {0}) and N := (∂D × H 2 ) T .
The aim of this section is to prove the following: Proposition 3.2.

(1) For every λ ∈ (-δ 0 , δ 0 ), we have Φ λ (M) ⊆ N.

(2) There is a ∈ (0, δ 0 ) such that Φ λ : M -→ N is a diffeomorphism for each λ ∈ (-a, a).

Thanks to this key proposition and Corollary 3.1 below, we will be able to prove that the set S λ satisfies properties (1), ( 3) and ( 4) in Definition 3.1 (admissibility) together with point (2) in Definition 3.2 (Property (C)) after a suitable shrink of a > 0. Then, since property (2) in Definition 3.1 is obvious by construction of S λ and since point (1) in Definition 3.2 will be a consequence of Proposition 3.3 below, S λ will finally be a set of parameterized curves that is admissible for D and has Property (C). Now, the argument to prove Proposition 3.2 consists in saying that since it is obviously true for λ = 0, it still remains true for any λ that is very close to 0.

In order to apply this perturbation argument in a rigorous way, we will make use of two classical results in algebraic and differential topology we recall here: Lemma 3.2 (Covering maps. See [START_REF] Godbillon | Éléments de topologie algébrique[END_REF], page 109). Let X and Y be Hausdorff topological spaces such that X is compact and Y is connected. Then any local homeomorphism f : X -→ Y is a covering map with a finite number of sheets. and Lemma 3.3 (Regular points. See [START_REF] Guillemin | Differential topology[END_REF], page 35). Let Λ, M and N be C 1 manifolds, and let

F : Λ × M -→ N (λ, x) -→ F (λ, x) = f λ (x) be a C 1 map. Let λ 0 ∈ Λ, y 0 ∈ N and K ⊆ M be a compact set. Then, if every x ∈ f -1 λ 0 (y 0 ) ∩ K is a regular point of f λ 0 , there exists an open neighborhood U of λ 0 in Λ such that for each λ ∈ U, any x ∈ f -1 λ (y 0 ) ∩ K is a regular point of f λ .
Proof of Proposition 3.2. The proof will consist in five steps.

After showing that Φ 0 (M) ⊆ N and Φ 0 : M -→ N is a bijection, we first prove that Φ 0 is a local diffeomorphism. We use this and Lemma 3.3 (Regular points Lemma) to find a value a ∈ (0, δ 0 ) such that for each λ ∈ (-a, a), Φ λ (M) ⊆ N and Φ λ : M -→ N is also a local diffeomorphism. Next, we use Lemma 3.2 (Covering maps Lemma) to obtain that Φ λ : M -→ N is a finite sheeted covering map. Finally we prove there is a point in N at which the number of pre-images for this covering map is 1, and conclude Φ λ : M -→ N is a diffeomorphism.

• Step 1: We begin by showing that Φ 0 (M) ⊆ N and Φ 0 : M -→ N is a bijection. Since the images of g 0 -geodesics are affine segments, for each (x, y, t) ∈ ((∂D × ∂D) ∆) × R, there is a unique real number ω(x, y, t) such that ϕ 0

x (y, t) = G 0 x (y, t) = x + ω(x, y, t)(y -x), and thus Φ 0 (x, y, t) = (x , x + ω(x, y, t)(y -x)). The function ω : ((∂D × ∂D) ∆) × R -→ R is therefore C ∞ by smoothness of Φ 0 , and satisfies the two following properties for each (x, y) ∈ (∂D × ∂D) ∆:

(i) ω(x, y, 0) = 0 and ω(x, y, 1) = 1;

(ii) for any t ∈ R, ∂ω ∂t (x, y, t) = 0.

For x, y ∈ ∂D with x = y and t ∈ R {0}, we then have x , x + ω(x, y, t)(y -x) -x = ω(x, y, t) x, y -x = 0 since x, y -x = 0 (∂D is a Euclidean circle), ω(x, y, 0) = 0 (point (i) above) and ω(x, y, •) : R -→ R is injective (point (ii) above). This shows Φ 0 (M) ⊆ N. Now, given any (x, p) ∈ N, let y be the intersection point of the straight line (xp) with ∂D. We have y = x, and thus we can write p = x + ω(x, y, t)(y -x) with a unique t ∈ R (ω(x, y, •) : R -→ R is injective) which is not equal to 0 since p = x. This proves there is a unique (x, y, t) ∈ M such that Φ 0 (x, y, t) = (x, p). Hence Φ 0 : M -→ N is a bijection.

• Step 2: Let us prove Φ 0 : M -→ N is a local diffeomorphism.
Given any (x, y, t) ∈ M, it suffices to show that the linear tangent map T (x,y,t) Φ 0 : T (x,y,t) M -→ T Φ 0 (x,y,t) N is injective since the manifolds M and N have the same dimension (equal to three).

But for all (u, v, s) ∈ T (x,y,t) M = T x ∂D × T y ∂D × R, we compute

T (x,y,t) Φ 0 •(u, v, s) = u , u + ∂ω ∂x (x, y, t)•u + ∂ω ∂y (x, y, t)•v + s ∂ω ∂t (x, y, t) (y -x) + ω(x, y, t)(v -u) . So, if T (x,y,t) Φ 0 •(u, v, s) = (0, 0) ∈ T Φ 0 (x,y,t) N = T x ∂D × R 2 , we get u = 0 and u + ∂ω ∂x (x, y, t)•u + ∂ω ∂y (x, y, t)•v + s ∂ω ∂t (x, y, t) (y -x) + ω(x, y, t)(v -u) = 0. Hence ∂ω ∂y (x, y, t)•v + s ∂ω ∂t (x, y, t) (x -y) = ω(x, y, t)v.
As v ∈ T y ∂D, the first member of this equality lies in T y ∂D too, which implies

(3.5) ∂ω ∂y (x, y, t)•v + s ∂ω ∂t (x, y, t) = 0 since x -y / ∈ T y ∂D.
Thus ω(x, y, t)v = 0, that is v = 0 since ω(x, y, t) = 0 (use t = 0 and points (i) and (ii) in Step 1).

Finally, replacing v = 0 in Equation 3.5, we obtain s ∂ω ∂t (x, y, t) = 0 and deduce s = 0 from point (ii) in Step 1. Thus, Φ 0 : M -→ N is a local diffeomorphism.

• Step 3: Now we fix λ ∈ (-δ 0 , δ 0 ) and show by contradiction that Φ λ (M) ⊆ N. Let (x 0 , p) ∈ T and suppose there exist y 0 ∈ ∂D {x 0 } and t 0 ∈ R {0} such that Φ λ (x 0 , y 0 , t 0 ) = (x 0 , p). Denoting by L the tangent line to ∂D at x 0 , we have p ∈ L.

As ρ ≡ 0 on (-∞, 1/4] ∪ [3/4, +∞) by properties ( 2) and ( 3) in Equation 3.4, we have ϕ λ

x 0 (y 0 , t) = G 0 x 0 (y 0 , t) for all t ∈ (-∞, 1/4] ∪ [3/4, +∞). Thus, if we had t 0 ∈ (-∞, 1/4] ∪ [3/4, +∞), we would get p = ϕ λ x 0 (y 0 , t 0 ) = G 0 x 0 (y 0 , t 0 ), and thus p would lie on the straight line (x 0 y 0 ). But this implies p = x 0 since (x 0 y 0 ) ∩ L = {x 0 }, and hence x 0 = G 0

x 0 (y 0 , t 0 ), which means that Φ 0 (x 0 , y 0 , t 0 ) = (x 0 , x 0 ) = Φ 0 (x 0 , y 0 , 0).

Since Φ 0 : M -→ N is injective, we then get t 0 = 0, which is not possible. Therefore, we have t 0 ∈ [1/4, 3/4]. But this is also impossible since by point (3) of Lemma 3.1, t 0 ∈ (0, 1) implies that p = ϕ λ x 0 (y 0 , t 0 ) ∈ D, and L ∩ D is empty.

• Step 4: Now, let ℓ := R/ √ 3 > 0.
Then any chord of ∂D that is tangent to ∂D(R/2) has a Euclidean length equal to 3ℓ.

Define Ω := {(x, y) ∈ ∂D × ∂D : |y -x| < ℓ} and consider the compact set

K := ((∂D × ∂D) Ω) × [1/4, 3/4] ⊆ M. The complement of K in M is the disjoint union of the open sets U 1 := (Ω ∆) × (R {0}) and U 2 := ((∂D × ∂D) Ω) × ((-∞, 0) ∪ (0, 1/4) ∪ (3/4, +∞)) of M.
We will first show that for each λ ∈ (-δ 0 , δ 0 ), Φ λ : M -→ N induces a diffeomorphism from M K onto an open set in N. Then we will use Lemma 3.3 to find a number a ∈ (0, δ 0 ) such that for all λ ∈ (-a, a), Φ λ : M -→ N is a local diffeomorphism at any point in K.

Fix λ ∈ (-δ 0 , δ 0 ). For every (x, y) ∈ Ω ∆, the image of the g 0 -geodesic G 0 x (y, •) : R -→ H 2 lies in the open set H 2 D(R/2) of H 2 since this image is equal to the intersection of the straight line (xy) with H 2 . As the Riemannian metrics g λ and g 0 coincide on H 2 D(R/2), we get that the g λ -geodesic

G λ x (y, •) : R -→ H 2 is actually equal to G 0 x (y, •) : R -→ H 2 . Hence, (Φ λ ) |U 1 = (Φ 0 ) |U 1 . Next, using again the fact that ρ ≡ 0 on (-∞, 1/4] ∪ [3/4, +∞), we have ϕ λ x (y, t) = G 0 x (y, t) for all (x, y, t) ∈ ∂D × ∂D × ((-∞, 1/4] ∪ [3/4, +∞)). Thus, (Φ λ ) |U 2 = (Φ 0 ) |U 2 .
We conclude that we have

(Φ λ ) |(M \K) = (Φ 0 ) |(M \K) , and hence Φ λ : M -→ N induces a diffeomorphism from M K onto Φ λ (M K) = Φ 0 (M K), which is an open set of N since Φ 0 : M -→ N is an open map by Step 2.
On the other hand, fixing (x, p) ∈ N, we have that the unique point (x, y, t) ∈ M satisfying Φ 0 (x, y, t) = (x, p) is regular for the diffeomorphism Φ 0 : M -→ N, thus any point in Φ -1 0 ((x, p)) ∩ K is regular for Φ 0 . We can then apply Lemma 3.3 to Φ : (-δ 0 , δ 0 ) × M -→ N and get the existence of a number a ∈ (0, δ 0 ) such that for each λ ∈ (-a, a), all the points in Φ -1 λ ((x, p)) ∩ K are regular for Φ λ : M -→ N. As M and N have the same dimension, Φ λ : M -→ N is a local diffeomorphism at any point in K.

Summing up, we proved that Φ λ : M -→ N is a local diffeomorphism for every λ ∈ (-a, a).

•

Step 5: From now on, fix λ ∈ (-a, a).

As Φ λ : M K -→ Φ λ (M K) is a diffeomorphism, what remains is for us to show that the map Φ λ : K -→ Φ λ (K) is one-to-one. Since Φ λ : K -→ Φ λ (K) is a local homeomorphism by
Step 4 and K is compact and connected, we can apply Lemma 3.2 with X = K and Y = Φ λ (K) in order to get that Φ λ : K -→ Φ λ (K) is a covering map with a finite number of sheets. We complete the argument by finding a point in the image of this covering map at which the number of pre-images is 1.

Choose (x 0 , y 0 , t 0 ) ∈ K with |y 0 -x 0 | = 2ℓ and let p := ϕ λ x 0 (y 0 , t 0 ). Since any chord of ∂D that is tangent to ∂D(R/2) has a Euclidean length equal to 3ℓ and since |y 0 -x 0 | < 3ℓ, the straight line (x 0 y 0 ) does not intersect with D(R/2). Then we have ϕ λ

x 0 (y 0 , t) = G 0 x 0 (y 0 , t) for all t ∈ R, and thus p = G 0 x 0 (y 0 , t 0 ). Consider any y 1 ∈ ∂D {x 0 } and t 1 ∈ [1/4, 3/4] such that p = ϕ λ x 0 (y 1 , t 1 ), and let us prove that y 1 = y 0 and t 1 = t 0 . Fix a closed half cone C in R 2 whose vertex is x 0 and that contains D(R/2) with y 0 / ∈ C (see Figure 5).

C 0 ∂D ∂D(R/2) x 0 y 0 p y 1 G 0 x 0 ( y 0 , • ) ϕ λ x 0 (y 1 , •) Figure 5. The map Φ λ : K -→ Φ λ (K) is one-to-one
We show by contradiction that

y 1 / ∈ C. If we assume y 1 is in C, then point (2) in Lemma 3.1 implies p = ϕ λ x 0 (y 1 , t 1 ) ∈ C since t 1 ∈ [0, 1].
But this is not possible since p / ∈ C (indeed, we have y 0 / ∈ C and p = G 0 x 0 (y 0 , t 0 ) lies on the affine segment ]x 0 , y 0 [). We conclude that we necessarily have y 1 / ∈ C.

It follows that the straight line (x 0 y 1 ) does not meet D(R/2), and thus ϕ λ x 0 (y 1 , t) = G 0 x 0 (y 1 , t) for all t ∈ R. Therefore, G 0

x 0 (y 0 , t 0 ) = p = ϕ λ x 0 (y 1 , t 1 ) = G 0 x 0 (y 1 , t 1 ), or equivalently Φ 0 (x 0 , y 0 , t 0 ) = (x 0 , p) = Φ 0 (x 0 , y 1 , t 1 ), which implies y 1 = y 0 and t 1 = t 0 since Φ 0 : M -→ N is injective.

In other words, we showed that Φ -1 λ ((x 0 , p)) = {(x 0 , y 0 , t 0 )} with (x 0 , y 0 , t 0 ) ∈ K. Hence (x 0 , p) ∈ Φ λ (K) and there is a unique point in the fiber of Φ λ : K -→ Φ λ (K) over (x 0 , p). This proves that the covering map Φ λ : K -→ Φ λ (K) has only one sheet, which implies it is bijective.

But on the other hand, as we have seen that

(Φ λ ) |(M K) = (Φ 0 ) |(M K) and Φ 0 : M -→ N is a bijection, the map Φ λ : M K -→ Φ λ (M K) is also a bijection.
Hence Φ λ : M -→ N is bijective. As we showed this map is a local diffeomorphism in Step 4, it is finally a diffeomorphism and this ends the proof of Proposition 3.2.

For each λ ∈ (-a, a), we can now define the map σ λ : N -→ ∂D by σ λ (x, p) := y, where y ∈ ∂D is such that (x, y, t) is the unique point in M that satisfies Φ λ (x, y, t) = (x, p) according to Proposition 3.2 (see Figure 6). Let us now prove the following useful result:

Lemma 3.4. Let Λ, M and N be C k manifolds (k 1 integer), and let (f λ ) λ∈Λ be a family of C k diffeomorphisms from M to N.

If θ : Λ × M -→ N (λ, x) -→ f λ (x) is of class C k , then the map h : Λ × N -→ Λ × M (λ, x) -→ (λ, f -1 λ (x)) is a C k diffeomorphism.
In particular,

Λ × N -→ M (λ, x) -→ f -1 λ (x) is of class C k .
Proof.

Since the map

h : Λ × M -→ Λ × N (λ, x) -→ (λ, f λ (x)) =: (λ, θ(λ, x)) is of class C k and bijective, it
suffices to show it is a local diffeomorphism. But this is equivalent to showing that for any (λ, x) ∈ Λ × M, the linear tangent map T (λ,x) h :

T (λ,x) (Λ × M) -→ T h(λ,x) (Λ × N) is injective
since the manifolds M and N have the same dimension by hypothesis. Now, for all (ξ, v)

∈ T (λ,x) (Λ × M) = T λ Λ × T x M, we have T (λ,x) h•(ξ, v) = (ξ , T (λ,x) θ•(ξ, v)) = ξ , ∂θ ∂λ (λ, x)•ξ + ∂θ ∂x (λ, x)•v = ξ , ∂θ ∂λ (λ, x)•ξ + T x f λ •v . So, if T (λ,x) h•(ξ, v) = (0, 0) ∈ T h(λ,x) (Λ × N) = T λ Λ × T f λ (x) N, we get ξ = 0 and ∂θ ∂λ (λ, x)•ξ + T x f λ •v = 0. Hence T x f λ •v = 0, which implies v = 0 since f λ is a diffeomorphism. Conclusion: h is a C k diffeomorphism. Therefore, if π : Λ × M -→ M denotes the natural projection, π • h -1 : Λ × N -→ M is of class C k , which establishes Lemma 3.4.
This lemma then implies

Proposition 3.3. The map (-a, a) × N -→ ∂D (λ, (x, p)) -→ σ λ (x, p) is C ∞ .
Proof.

If we introduce the natural projection π : R 2 ×R 2 ×R -→ R 2 onto the second factor, we can write σ λ (x, p) = π(Φ -1 λ (x, p)) for all (x, p) ∈ N. Then, applying Lemma 3.4 with Λ := (-a, a) and f λ := Φ λ (which is a diffeomorphism by point (2) in Proposition 3.2), we get the result.

A direct consequence of Proposition 3.2 is the following: Corollary 3.1. Given any λ ∈ (-a, a), we have (1) for every (x, y) ∈ (∂D × ∂D) ∆, the C ∞ parameterized curve ϕ λ x (y, •) : R -→ R 2 is regular and injective, and

(2) for every (x, p) ∈ N and V ∈ R 2 {0},

∂σ λ ∂p (x, p)•V = 0 ⇐⇒ V and ∂ϕ λ x ∂t (y, t) are parallel vectors,
where p := ϕ λ x (y, t).

Proof.

• Point (1): Let (x, y) ∈ (∂D × ∂D) ∆.

For any t ∈ R, we have

0 , ∂ϕ λ x ∂t (y, t) = ∂Φ λ ∂t (x, y, t) = T (x,y,t) Φ λ •(0, 0, 1) = (0, 0) since T (x,y,t) Φ λ : T (x,y,t) M -→ T Φ λ (x,y,t)
N is one-to-one by Proposition 3.2, and therefore

∂ϕ λ x ∂t (y, t) = 0. Hence ϕ λ x (y, •) : R -→ R 2 is regular. Let t 0 , t 1 ∈ R such that ϕ λ
x (y, t 0 ) = ϕ λ x (y, t 1 ). Then Φ λ (x, y, t 0 ) = Φ λ (x, y, t 1 ). If t 0 = 0 and t 1 = 0, we have (x, y, t 0 ), (x, y, t 1 ) ∈ M, and thus t 0 = t 1 since Φ λ : M -→ N is injective by Proposition 3.2. If t 0 = 0 and t 1 = 0, we get ϕ λ x (y, t 0 ) = ϕ λ x (y, 0) which also writes ϕ λ y (x, 1 -t 0 ) = ϕ λ y (x, 1) by point (1) in Lemma 3.1. Since x = y, we have 1 -t 0 = 0, and thus 1 -t 0 = 1 in the same way as previously, i.e., t 0 = 0 = t 1 .

This shows that ϕ λ x (y,

•) : R -→ R 2 is injective. • Point (2): Let (x, p) ∈ N and V ∈ R 2 {0}.
By Proposition 3.2, there are unique elements (x, y, t) ∈ M, v ∈ T y ∂D and s ∈ R such that (x, p) = Φ λ (x, y, t) and (0, V ) = T (x,y,t) Φ λ •(0, v, s).

Then we have the equivalences

∂σ λ ∂p (x, p)•V = 0 ⇐⇒ T (x,p) σ λ •(0, V ) = 0 ⇐⇒ T (x,y,t) (σ λ • Φ λ )•(0, v, s) = 0 ⇐⇒ v = 0 (since σ λ (Φ λ (x, y, t)) = y) ⇐⇒ (0, V ) = T (x,y,t) Φ λ •(0, 0, s) = s ∂Φ λ ∂t (x, y, t) = 0 , s ∂ϕ λ x ∂t (y, t) ⇐⇒ V = s ∂ϕ λ x ∂t (y, t),
and we are done.

3.2.3. Admissibility and Property (C) for the set S λ .

The following two propositions allow us to shrink a > 0 so that for each λ ∈ (-a, a), the set of parameterized curves S λ = {γ λ (x,y) | (x, y) ∈ (∂D × ∂D) ∆} be admissible for D and have Property (C). Proposition 3.4. There exists a number b ∈ (0, a) such that for all λ ∈ (-b, b) and p, q ∈ D with p = q, there is a unique (x, y, t 0 , t 1 ) ∈ ((∂D×∂D) ∆)×[0, 1]×[0, 1] such that p = ϕ λ x (y, t 0 ), q = ϕ λ x (y, t 1 ) and t 0 < t 1 . This proposition will imply that S λ satisfies property (3) in Definition 3.1 (admissibility) for every λ ∈ (-b, b). Proposition 3.5. There exists a number c ∈ (0, a) such that for all λ ∈ (-c, c), p ∈ D and V ∈ R 2 {0}, there is a unique (x, y, t) ∈ ((∂D × ∂D) ∆) × (0, 1) such that p = ϕ λ x (y, t) and ∂ϕ λ x ∂t (y, t) is parallel to V with the same direction.

This proposition will imply that S λ satisfies property (4) in Definition 3.1 (admissibility) for every λ ∈ (-c, c).

In order to prove these two results, we need the following classical lemma from differential topology. This lemma allows us to show certain properties that are true for λ = 0 continues to hold for λ ∈ (-a, a) close enough to 0. Lemma 3.5 (Regular value. See [START_REF] Hirsch | Differential topology[END_REF], Theorem 2.7). Let Λ, M and N be C 1 manifolds, and let F : Λ × M -→ N (λ, x) -→ F (λ, x) = f λ (x) be a C 1 map. Given y 0 ∈ N, we have (1) if y 0 is a regular value of f λ for all λ ∈ Λ, then y 0 is a regular value of F , (2) if y 0 is a regular value of F , then W = F -1 (y 0 ) is a C 1 submanifold of Λ × M with dimension equal to dim (Λ) + dim (M) -dim (N), and we have the equivalence ∀λ ∈ Λ, (y 0 is a regular value of f λ ) ⇐⇒ (λ is a regular value of π |W : W -→ Λ),

where π : Λ × M -→ Λ is the natural projection.

Proof of Proposition 3.4.

Fix two distinct points p, q ∈ D.

• Case 1: Suppose p ∈ ∂D (the case q ∈ ∂D is similar). Then for each λ ∈ (-a, a), there exist a unique y ∈ ∂D with y = p and a unique t 1 ∈ R {0} such that Φ λ (p, y, t 1 ) = (p, q) by point (2) in Proposition 3.2 since (p, q) ∈ N. Hence we have p = ϕ λ p (y, 0) and q = ϕ λ p (y, t 1 ) with (p, y, 0) ∈ ((∂D ×∂D) ∆)×[0, 1] and t 1 ∈ (0, 1] by point (2) in Lemma 3.1 since q ∈ D.

Now, let (x ′ , y ′ , t ′ 0 , t ′ 1 ) ∈ ((∂D × ∂D) ∆) × [0, 1] × [0, 1] be such that p = ϕ λ x ′ (y ′ , t ′ 0 ) and q = ϕ λ x ′ (y ′ , t ′ 1 ) with t ′ 0 < t ′ 1 .
If we had t ′ 0 > 0, then we would have t ′ 0 ∈ (0, 1), and therefore p ∈ D by point (3) in Lemma 3.1. But this is not true. So t ′ 0 = 0, which implies x ′ = ϕ λ x ′ (y ′ , 0) = p, and hence Φ λ (p, y ′ , t ′ 1 ) = (p, q). But we already had Φ λ (p, y, t 1 ) = (p, q), thus y ′ = y and t ′ 1 = t 1 since t 1 , t ′ 1 ∈ R {0} and Φ λ : M -→ N is injective by point (2) in Proposition 3.2.

• Case 2: Suppose that both p and q are in D.

Consider the function F : (-a, a)×∂D -→ R defined by F (λ, x) := f λ (x) = det V λ p (x), V λ q (x) , where V λ p (x) := σ λ (x, p)-x and V λ q (x) := σ λ (x, q)-x (see Figure 7). Thanks to Proposition 3.3, this function is Let x 0 and y 0 be the two intersection points of the strait line (pq) with ∂D. As the images of g 0 -geodesics are affine segments, we have σ 0 (x 0 , p) = y 0 = σ 0 (x 0 , q), which shows that V 0 p (x 0 ) = y 0 -x 0 = V 0 q (x 0 ) and thus f 0 (x 0 ) = 0. Similarly f 0 (y 0 ) = 0, and we actually have f -1 0 (0) = {x 0 , y 0 }. So, in order to prove 0 is a regular value of f 0 , we have to show both x 0 and y 0 are regular points of f 0 .

C ∞ . 0 ∂D ∂D(R/2) V λ p (x) V λ q (x) x σ λ (x, p) q σ λ (x, q) p
Let us prove x 0 is a regular point of f 0 (arguments are the same for y 0 ). For any u ∈ T x 0 ∂D, we have

T x 0 f 0 •u = det V 0 p (x 0 ) , T x 0 V 0 q •u + det T x 0 V 0 p •u , V 0 q (x 0 ) = det y 0 -x 0 , T x 0 V 0 q •u -T x 0 V 0 p •u = det y 0 -x 0 , ∂σ 0 ∂x (x 0 , q)•u - ∂σ 0 ∂x (x 0 , p)•u .
Now σ 0 (x, p) = p + α(x)(p -x) and σ 0 (x, q) = q + β(x)(q -x) for any x ∈ ∂D, where α : ∂D -→ R and β : ∂D -→ R are functions that are C ∞ (since σ 0 is).

For any u ∈ T x 0 ∂D with u = 0, we have

∂σ 0 ∂x (x 0 , p)•u - ∂σ 0 ∂x (x 0 , p)•u = (T x 0 α•u)(p -x 0 ) -(T x 0 β •u)(q -x 0 ) + (β(x 0 ) -α(x 0 ))u,
and thus

T x 0 f 0 •u = (β(x 0 ) -α(x 0 )) det((y 0 -x 0 , u)).
As u is not parallel to y 0 -x 0 by strict convexity of D, the point x 0 will be regular for f 0 if β(x 0 ) = α(x 0 ). But if β(x 0 ) were equal to α(x 0 ), we would get y 0 = σ 0 (x 0 , p) = p+α(x 0 )(p-x 0 ) and y 0 = σ 0 (x 0 , q) = q + β(x 0 )(q -x 0 ). Therefore (1 -α(x 0 ))(q -p) = 0, and hence α(x 0 ) = β(x 0 ) = 1 since p = q. This would then imply 2p = x 0 + y 0 = 2q, contradicting the fact that p and q are distinct points. Thus 0 is a regular value of f 0 .

Then, from Lemma 3.3 with K := ∂D, there exists b ∈ (0, a/2) such that 0 is a regular value of f λ for all λ ∈ (-2b, 2b). This implies by Lemma 3.5 that 0 is a regular value of F |(-2b,2b)×∂D , and hence that any λ ∈ (-2b, 2b) is a regular value of π |W : W -→ (-2b, 2b), where π : (-2b, 2b) × ∂D -→ (-2b, 2b) is the natural projection and W = (F |(-2b,2b)×∂D ) -1 (0).

But dim (W ) = 1 = dim ((-2b, 2b)), so π |W is a local diffeomorphism, thus a local homeomorphism, which implies that π : W 0 -→ [-b, b] is also a local homeomorphism, where , there are exactly two distinct points x, y ∈ ∂D such that det V λ p (x), V λ q (x) = 0 and det V λ p (y), V λ q (y) = 0. But this means that σ λ (x, p) = σ λ (x, q) = y by Remark 3.4. So, there exist t 0 , t 1 ∈ R such that p = ϕ λ x (y, t 0 ) and q = ϕ λ x (y, t 1 ) with t 0 t 1 after a suitable labelling of x and y. As ϕ λ

W 0 := W ∩ ([-b, b] × ∂D). Next, as W 0 is compact (since W is closed in (-2b, 2b) × ∂D
x (y, •) : R -→ R 2 is injective by point (1) in Corollary 3.1, such t 0 and t 1 are unique with 0 < t 0 < t 1 < 1.

This proves Proposition 3.4.

Proof of Proposition 3.5. Let x 0 and y 0 be the two intersection points of the straight line p + RV with ∂D, and write G 0

x (y, t) = x + ω(x, y, t)(y -x) for all (x, y, t) ∈ ((∂D × ∂D) ∆) × R, where ω is the function introduced in Step 1 in the proof of Proposition 3.2. As we have f -1 0 (0) = {x 0 , y 0 }, the value 0 will be regular for f 0 if x 0 and y 0 are regular points of f 0 .

So, let us prove x 0 is a regular point of f 0 (arguments are the same for y 0 ).

Using the diffeomorphism Φ 0 : M -→ N (see point [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF] in Proposition 3.2), we can write

f 0 (x) = det V , ∂ω ∂t (Φ -1 0 (x, p)) (σ 0 (x, p) -x)
for all x ∈ ∂D. Thus, for any u ∈ T x 0 ∂D, we have

T x 0 f 0 •u = det V , T Φ -1 0 (x 0 ,p) ∂ω ∂t •{T (x 0 ,p) Φ -1 0 •u} (σ 0 (x 0 , p) -x 0 ) + det V , ∂ω ∂t (Φ -1 0 (x 0 , p)) ∂σ 0 ∂x (x 0 , p)•u -u = det V , T Φ -1 0 (x 0 ,p) ∂ω ∂t •{T (x 0 ,p) Φ -1 0 •u} (y 0 -x 0 ) + ∂ω ∂t (Φ -1 0 (x 0 , p)) det V , ∂σ 0 ∂x (x 0 , p)•u -u , that is, T x 0 f 0 •u = ∂ω ∂t (Φ -1 0 (x 0 , p)) det V , ∂σ 0 ∂x (x 0 , p)•u -u since y 0 -x 0 is parallel to V .
As ∂ω ∂t (Φ -1 0 (x 0 , p)) = 0 (from property (ii) for ω in Step 1 in the proof of Proposition 3.2),

x 0 will be a regular point of f 0 if the vector ∂σ 0 ∂x (x 0 , p)•u -u is not parallel to V for u ∈ T x 0 ∂D with u = 0. In order to prove this, just write σ 0 (x, p) = p + α(x)(p -x) for any x ∈ ∂D, where α : ∂D -→ R is a function that is C ∞ (since σ 0 is) and positive (since p is in the affine segment ]x, σ 0 (x, p)[). Then, for u ∈ T x 0 ∂D with u = 0, we have

∂σ 0 ∂x (x 0 , p)•u -u = (T x 0 α•u)(p -x 0 ) -(1 + α(x 0 ))u,
which is not parallel to V since p -x 0 is parallel to V and u is not (by strict convexity of D).

Hence we have shown that 0 is a regular value of f 0 , and we conclude exactly the same as in the end of the proof of Proposition 3.4 with c instead of b.

We can now use all we proved in this section to eventually obtain what we wanted: Theorem 3.2. There exists a number ε 0 ∈ (0, a) such that for all λ ∈ (-ε 0 , ε 0 ), the set 

S λ := {γ λ (x,y) | (x, y) ∈ (∂D × ∂D) ∆} of parameterized curves γ λ (x,y) : [0, 1] -→ R 2 defined by γ λ (x,y) (t) := ϕ λ x (y,

Towards the Main Theorem.

At this stage of the paper and following Arcostanzo's construction in [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF], let us define for each λ ∈ (-ε 0 , ε 0 ) the function

F λ : T D = D × R 2 -→ R by setting F λ (p, v) := 1 4 ∂D ∂ 2 d g 0 ∂x∂y (x, σ λ (x, p)) ∂σ λ ∂p (x, p)•v dx for all (p, v) ∈ T D.
Since the distance function d g 0 is C ∞ on (∂D × ∂D) ∆ with ∂ 2 dg 0 ∂x∂y (x, y) > 0 for all (x, y) ∈ (∂D × ∂D) ∆ (point (2) in Remark 3.2), we get from Theorem 3.1 and Theorem 3.2 that F λ is a smooth Finsler metric on D such that d F λ = d g 0 .

On the other hand, since we have γ 0 (x,y) (t) = ϕ 0 x (y, t) = G 0 x (y, t) for all (x, y) ∈ (∂D × ∂D) ∆ and t ∈ [0, 1], the set S 0 coincides with the set of maximal geodesics of g 0 in D after reparametrization by [0, 1]. Thus, as mentionned in point (4) of Remark 3.2, F 0 equals the restriction to T D of the Finsler metric F 0 on H 2 associated with g 0 .

We are now going to give some properties about F λ that will lead to the Main Theorem.

The first one shows that F λ agrees with F 0 near the boundary ∂D of D, which is not a surprise since our construction of F λ has especially been made for this. Moreover, we prove that the region in D near the boundary of ∂D on which F λ agrees with F 0 can actually be chosen in such a way that it does not depend on the parameter λ. This uniformity will later ensure that the family of Finsler metrics we will obtain in the Main Theorem is smooth with respect to λ. Proposition 3.6. There exists R 0 ∈ (R/2, R) such that for every λ ∈ (-ε 0 , ε 0 ), the Finsler metric F λ coincides with

F 0 on (D D(R 0 )) × R 2 .
In order to establish this fact, we will need the following useful lemma which proves that F λ is invariant under the Euclidean isometries since all the objects we constructed so far have as much symmetry as the Euclidean circle ∂D has. Lemma 3.6. For any λ ∈ (-ε 0 , ε 0 ) and any linear Euclidean isometry A ∈ O(R 2 ), we have

F λ (A(p), A(v)) = F λ (p, v) for all p ∈ D and v ∈ R 2 .
Remark 3.5. Before proving this lemma, recall for the reader's convenience that the Klein metric g 0 whose associated Finsler metric is F 0 is given by

g 0 (p)•(v, v) = F 0 (p, v) 2 = |v| 2 1 -|p| 2 + v, p 2 (1 -|p| 2 ) 2 for all p ∈ H 2 and v ∈ R 2 .
Proof of Lemma 3.6.

Fix λ ∈ R and A ∈ O(R 2 ). For every p ∈ H 2 , we have |A(p)| = |p|, and thus α λ (|A(p)|) = α λ (|p|). Since the Klein metric g 0 on H 2 is invariant under A (i.e., A * g 0 = g 0 ) by the formula for g 0 in Remark 3.5, we get that g λ is A-invariant too from the very definition of g λ .

Hence, given any x, y ∈ H 2 and any t ∈ R, we have G 

0 A(x) (A(y), t) = A(G 0 x (y, t)) and G λ A(x) (A(y), t) = A(G λ x (y, t)), which implies ϕ λ A(x) (A(y), t) = (1 -ρ(t))G 0 A(x) (A(y), t) + ρ(t)G λ A(x) (A(y), t) = (1 -ρ(t))A(G 0 x (y, t)) + ρ(t)A(G λ x (y, t)) = A (1 -ρ(t))G 0 x (y, t) + ρ(t)G λ x (y, t) = A(ϕ λ x (y, t)) (3 
λ -geodesic G λ x (z, •) : R -→ H 2 is actually equal to the g 0 -geodesic G 0 x (z, •) : R -→ H 2 . Thus, ϕ λ x (z, t) = G 0 x (z, t) = ϕ 0 x (y, t) for all t ∈ R.
But the definition of z says that p ∈ (xz), which means there is t 0 ∈ R such that p = G 0

x (z, t 0 ). So, p = ϕ λ x (z, t 0 ) = ϕ 0 x (z, t 0 ), and therefore σ λ (x, p) = z = σ 0 (x, p).

Conclusion: for every

λ ∈ [-a/2, a/2], x ∈ ∂D and p ∈ D D(R 0 ), we have σ λ (x, p) = σ 0 (x, p). Hence, for any λ ∈ (-ε 0 , ε 0 ) ⊆ [-a/2, a/2], p ∈ D D(R 0 ) and v ∈ R 2 , we can write F λ (p, v) = 1 4 ∂D ∂ 2 d g 0 ∂x∂y (x, σ λ (x, p)) ∂σ λ ∂p (x, p)•v dx = 1 4 ∂D ∂ 2 d g 0 ∂x∂y (x, σ 0 (x, p)) ∂σ 0 ∂p (x, p)•v dx = F 0 (p, v) = F 0 (p, v).
This proves Proposition 3.6.

From now on, for each λ ∈ (-ε 0 , ε 0 ) and thanks to Proposition 3.6, we extend the Finsler metric F λ on the whole H 2 by setting

F λ (p, v) = F 0 (p, v) for all (p, v) ∈ (H 2 D(R 0 )) × R 2 .
Then we have Proposition 3.7. The family of Finsler metrics (F λ ) λ∈(-ε 0 ,ε 0 ) on H 2 satisfies the following:

(1) the function Φ :

(-ε 0 , ε 0 ) × T H 2 -→ R defined by Φ(λ, •) := F λ (•) for all λ ∈ (-ε 0 , ε 0 ) is continuous and C ∞ on (-ε 0 , ε 0 ) × H 2 × (R 2 
{0}); and (2) there exists ε ∈ (0, ε 0 ) such that for each λ ∈ (-ε, ε), the smooth Finsler metric F λ is strongly convex and has no conjugate points.

Proof.

• Point (1): Consider the map Υ :

(-ε 0 , ε 0 ) × H 2 × R 2 × ∂D -→ R 2 defined by Υ((λ, p, v), x) := 1 4 ∂ 2 d g 0 ∂x∂y (x, σ λ (x, p)) ∂σ λ ∂p (x, p)•v. Since d g 0 is C ∞ on (∂D × ∂D) {(x, x) | x ∈ ∂D} and (λ, x, p) → σ λ (x, p
) is a C ∞ map from (-ε 0 , ε 0 )×∂D ×D to ∂D by Proposition 3.3 which satisfies σ λ (x, p) = x for all λ ∈ (-ε 0 , ε 0 ) and (x, p) ∈ ∂D×D, the positive function (λ, x, p) → ∂ 2 d g 0 ∂x∂y (x, σ λ (x, p)) is C ∞ on (-ε 0 , ε 0 )×∂D×D, and therefore Υ is C ∞ on (-ε 0 , ε 0 ) × D × R 2 × ∂D.

Then, using the same arguments as in Remark 3.3, we get that the function Φ is continuous on (-ε 0 , ε 0 ) × D × R 2 and C ∞ on (-ε 0 , ε 0 ) × D × (R 2 {0}) since we have Φ(λ, (p, v)) = ∂D |Υ((λ, p, v), x)|dx for all λ ∈ (-ε 0 , ε 0 ) and (p, v) ∈ T H 2 = H 2 × R 2 .

On the other hand, since Φ(λ, (p, v)) = F 0 (p, v) for all λ ∈ (-ε 0 , ε 0 ) and (p, v) ∈ (H 2 D(R 0 ))× R 2 by construction, the function Φ is continuous on (-ε 0 , ε 0 ) × (H 2 D(R 0 )) × R 2 and C ∞ on (-ε 0 , ε 0 ) × (H 2 D(R 0 )) × (R 2 {0}).

Conclusion: Φ is a continuous function that is C ∞ on (-ε 0 , ε 0 ) × H 2 × (R 2 {0}).

• Point (2): As a consequence of the first point, the map λ → Φ(λ, •) = F λ (•) from (-ε 0 , ε 0 ) to C 2 (T H 2 {0}, R) is continuous when C 2 (T H 2 {0}, R) is endowed with the C 2 -topology. This first implies that

∂ 2 F 2 λ ∂v 2 is close to ∂ 2 F 2 0
∂v 2 in C 0 (T H 2 {0}, R) with respect to the C 0 -topology whenever λ ∈ (-ε 0 , ε 0 ) is sufficiently small. Hence, there exists ε 1 ∈ (0, ε 0 ) such that F λ is strongly convex for all λ ∈ (-ε 1 , ε 1 ) since the hyperbolic Finsler metric F 0 is. Furthermore, if V ⊆ T (T H 2 ) is the vertical vector bundle over T H 2 (the kernel of the differential of the natural projection T H 2 -→ H 2 ) and ϕ λ = (ϕ t λ ) t∈R is the geodesic flow of F λ on T H 2 {0} for any λ ∈ (-ε 1 , ε 1 ) (i.e., the Euler-Lagrange flow of the non-degenerate Lagrangian L λ := 1 2 F 2 λ : T H 2 {0} -→ R), the map λ → ϕ λ from (-ε 1 , ε 1 ) to C 1 (R×(T H 2 {0}), T H 2 {0}) is continuous when C 1 (R × (T H 2 {0}), T H 2 {0}) is endowed with the C 1 -topology.

Since the hyperbolic Finsler metric F 0 has no conjugate points, we have V (p,v) ∩ T ϕ t 0 (p,v) ϕ -t 0 (V ϕ t 0 (p,v) ) = {0} for all (t, (p, v)) ∈ R × (T H 2 {0}). Thus, there exists ε ∈ (0, ε 1 ) such that V (p,v) ∩ T ϕ t λ (p,v) ϕ -t λ (V ϕ t λ (p,v) ) = {0} for all (t, (p, v)) ∈ R × (T H 2 {0}) and all λ ∈ (-ε, ε). But this is equivalent to saying that the Finsler metric F λ has no conjugate points whenever λ ∈ (-ε, ε). Proposition 3.8. For any λ ∈ (-ε, ε), the Finsler metric F λ is not Riemannian whenever λ = 0.

Before proving this result, we will need to establish the following: Lemma 3.7. There exists r 0 ∈ (0, R/2) such that for every λ ∈ (-ε, ε), all the geodesics of the restriction of the Riemannian metric g λ to D(r 0 ) are geodesics for F λ .

Proof.

It will consists in four technical steps. We first show that for any λ ∈ R and x ∈ ∂D, the parameterized curve ϕ λ x (-x, •) : R -→ R 2 passes through the origin 0 at t = 1/2 (here y = -x ∈ ∂D is the symmetric of x about 0). Then, remembering that ϕ λ x (y, •) = (1 -ρ)G 0 x (y, •) + ρG λ x (y, •) for all y ∈ ∂D and using the fact that ρ ≡ 1 on [1/3, 2/3], we deduce the lemma.

• Step 1: Fix arbitrary λ ∈ R and x ∈ H 2 {0}. If A ∈ O(R 2 ) is the Euclidean reflection through the line x ⊥ , we have ϕ λ

x (-x, 1/2) = ϕ λ A(-x) (A(x), 1/2) = A(ϕ λ -x (x, 1/2)) on the one hand by Equation 3.6, and ϕ λ -x (x, 1/2) = ϕ λ x (-x, 1/2) on the other hand by the first point in Lemma 3.1. Therefore ϕ λ x (-x, 1/2) ∈ x ⊥ . Next, if B ∈ O(R 2 ) is the reflection through the line Rx, we have ϕ λ

x (-x, 1/2) = ϕ λ B(x) (B(-x), 1/2) = B(ϕ λ x (-x, 1/2)) by Equation 3.6, and hence ϕ λ -x (x, 1/2) ∈ Rx. This shows that ϕ λ x (-x, 1/2) = 0. • Step 2: Now, as in the proof of Proposition 3.6, we will make use of the map h : (-a, a) × M -→ (-a, a) × N defined by h(λ, (x, y, t)) = (λ, (x, ϕ λ x (y, t))). Consider the open set V := ((∂D × ∂D) ∆) × (1/3, 2/3) in M, and define the compact set L := {(x, -x) | x ∈ ∂D} ⊆ ∂D × ∂D.

Since L × {1/2} ⊆ V , the set h([-a/2, a/2] × L × {1/2}) is included in the open set V := h((-a, a) × V ) of (-a, a) × N. But Step 1 implies that we have [-a/2, a/2] × ∂D × {0} ⊆ h([-a/2, a/2] × L × {1/2}). So, using the compactness of [-a/2, a/2] × ∂D × {0}, there exists a number r 0 ∈ (0, R/2) such that [-a/2, a/2] × ∂D × D(r 0 ) ⊆ V, which means that for every λ ∈ [-a/2, a/2], x ∈ ∂D and p ∈ D(r 0 ), there are z ∈ ∂D and τ ∈ (1/3, 2/3) satisfying p = ϕ λ x (z, τ ). • Step 3: For any λ ∈ (-ε, ε) ⊆ [-a/2, a/2] and x, y ∈ ∂D with x = y, we have {t ∈ (0, 1) | ϕ λ x (y, t) ∈ D(r 0 )} ⊆ (1/3, 2/3). Indeed, if t ∈ (0, 1) satisfies p := ϕ λ x (y, t) ∈ D(r 0 ), then by Step 2 there exist z ∈ ∂D and τ ∈ (1/3, 2/3) such that ϕ λ x (y, t) = ϕ λ x (z, τ ). So Φ λ (x, y, t) = Φ λ (x, z, τ ), and therefore t = τ ∈ (1/3, 2/3) since Φ λ : M -→ N is injective by point (2) in Proposition 3.2.

• Step 4: For this last step, fix λ ∈ (-ε, ε), let c : I -→ H 2 be a g λ -geodesic such that c(I) ⊆ D(r 0 ), where I ⊆ R is an interval, and prove that c is also a F λ -geodesic.

For doing this, choose arbitrary s 0 , s 1 ∈ I with s 0 < s 1 , and define p 0 := c(s 0 ) and p 1 := c(s 1 ). By Proposition 3.4, there exists (x, y, t 0 , t 1 ) ∈ ((∂D × ∂D) ∆) × (0, 1) × (0, 1) such that p 0 = ϕ λ x (y, t 0 ) and p 1 = ϕ λ x (y, t 1 ) with t 0 t 1 .

Then, by Theorem 3.1, the parameterized curve κ : [t 0 , t 1 ] ⊆ (0, 1) -→ H 2 defined by κ(t) := ϕ λ x (y, t) is a F λ -geodesic. This implies that the reparametrized curve α : [s 0 , s 1 ] -→ H 2 defined by α(s) := κ(t 0 + (s -s 0 )(t 1 -t 0 )/(s 1 -s 0 )) is a F λ -geodesic too. Now, since p 0 = c(s 0 ) and p 1 = c(s 1 ) are in D(r 0 ), we have t 0 , t 1 ∈ (1/3, 2/3) by Step 3, and hence [t 0 , t 1 ] ⊆ (1/3, 2/3). But ρ ≡ 1 on [1/3, 2/3] by properties (1) and (3) in Equation 3.4, so we get (3.8) κ(t) = G λ x (y, t) for all t ∈ [t 0 , t 1 ].

This leads to considering the reparameterized curve c : [s 0 , s 1 ] -→ H 2 defined by c(s) := G λ x (y, t 0 + (s -s 0 )(t 1 -t 0 )/(s 1 -s 0 )) which is a g λ -geodesic that satisfies c(s 0 ) = G λ x (y, t 0 ) = κ(t 0 ) = p 0 = c(s 0 ) and c(s 1 ) = G λ x (y, t 1 ) = κ(t 1 ) = p 0 = c(s 1 ) by Equation 3 As this holds for arbitrary s 0 , s 1 ∈ I with s 0 < s 1 , we have proved that c : I -→ H 2 is a F λ -geodesic. This establishes Lemma 3.7.

Proof of Proposition 3.8.

Let λ ∈ (-ε, ε) with λ = 0.

As in [START_REF] Arcostanzo | Des métriques finslériennes sur le disque à partir d'une fonction distance entre les points du bord[END_REF], we use the following theorem of Beltrami to verify that within D the F λ -geodesics do not arise as geodesics for a metric diffeomorphic to g 0 : Theorem 3.3 (Beltrami. See [START_REF] Spivak | A comprehensive introduction to differential geometry[END_REF], Chapter 7, page 26). If (X, g) is a connected Riemannian manifold such that for every point p ∈ X, there is a chart about p that maps the g-geodesics onto straight lines, then (X, g) has constant sectional curvature.

R→+∞ 1 R

 1 log (Vol F (B F (x, R))) ∈ [0, +∞] for an arbitrary x ∈ M , where B F (x, R) is the open ball of radius R in M about x with respect to F , and Vol F denotes the Holmes-Thompson volume on M associated with F (see Section 2 for the definition).

  hence we may take σ = [x, y] F and obtain the result. Suppose N 1, and let C 1 be the first connected component of Γ(D) that [x, y] F enters. Let e 1 be the point at which [x, y] F enters C 1 the first time, and o 1 be the point at which [x, y] F leaves C 1 the last time. Similarly let C 2 be the first connected component of Γ(D) met by the geodesic [o 1 , y] F , define e 2 to be the point at which [o 1 , y] F enters C 2 the first time, and o 2 to be the point at which [o 1 , y] F leaves C 2 the last time. Continuing in this fashion, we define finite sequences (

  For each p ∈ M, let B F p M := {v ∈ T p M | F (p, v) < 1} be the unit open ball in T p M for the norm F (p, •), and B F p M

  and C n is the volume of the unit open ball in n-dimensional Euclidean space.

0 ∂DxFigure 3 .

 03 Figure 3. The 'end point map' σ

  ) If we choose S to be the set of maximal geodesics in D (reparameterized by [0, 1]) of a negatively curved Riemannian metric on an open neighborhood of D (the set S is then admissible for D and satisfies Property (C) as shown by Arcostanzo in [2], page 242), the unique Finsler metric on D we get by Theorem 3.1 is not Riemannian.

  are continuous on ∂D × D. So, given any r ∈ (0, R), the compactness of ∂D × D(r) implies that there exist positive constants Λ 1 and Λ 2 such that Υ((p, •), x) Λ 1 and ∂Υ ∂p ((p, •), x) Λ 2 for all (x, p) ∈ ∂D × D(r). Conclusion: for any p ∈ D(r), v ∈ R 2 such that 0 < |v| τ , x ∈ ∂D {e -(p, v), e + (p, v)} and w, ξ ∈ R 2 with |w| 1 and |ξ| 1, we have

1 +

 1 aλ 2 f (p)) = 2λ 2 f (p) + C since ∆f = af on D(r) ⊆ D(R/4) by construction of f . Defining t 0 := min{f (p) | p ∈ D(r)} and t 1 := max{f (p) | p ∈ D(r)}, Equation 3.2 writes
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 634 Figure 6. The 'end point map' σ λ
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 7 Figure 7. Proof of Proposition 3.4

  and [-b, b] × ∂D is compact) and [-b, b] is connected, we get that π : W 0 -→ [-b, b] is a covering map with a finite number of sheets by Lemma 3.2. Since π -1 (0) ∩ W 0 = {(0, x 0 ), (0, y 0 )}, we have card (π -1 (λ) ∩ W 0 ) = 2 for all λ ∈ [-b, b]. Hence, given λ ∈ [-b, b]

8 Figure 8 .

 88 Figure 8. Proof of Proposition 3.5

  t) is admissible for D and satisfies Property (C). Proof. Define ε 0 := 1 2 min {b, c} > 0, where b and c are given respectively by Proposition 3.4 and Proposition 3.5, and let λ ∈ (-ε 0 , ε 0 ). The fact that the set S λ is admissible for D follows from point (1) in Corollary 3.1, Proposition 3.4 and Proposition 3.5. Property (C) for S λ is a consequence of Proposition 3.3 and point (2) in Corollary 3.1.

. 8 .

 8 Thus, c = c |[s 0 ,s 1 ] since g λ has no conjugate points. This writesc(s) = c(s) = G λ x (y, t 0 + (s -s 0 )(t 1 -t 0 )/(s 1 -s 0 ) ∈[t 0 ,t 1 ] ) = κ(t 0 + (s -s 0 )(t 1 -t 0 )/(s 1 -s 0 )) (by Equation 3.8) = α(s) for all s ∈ [s 0 , s 1 ]. Hence c |[s 0 ,s 1 ] = α, which shows that c |[s 0 ,s 1 ] is a F λ -geodesic (since α is).

  .6) Let z ∈ ∂D be the intersection point between ∂D and the open half line x + R * + (p -x). If |x -z| √ 3R, then (x, p) ∈ E, and thus (λ, (x, p)) ∈ U by Equation 3.7. This means that there are y ∈ ∂D and t ∈ (3/4, +∞) satisfying p = ϕ λ x (y, t), which implies that σ λ (x, p) = y. •) : R -→ H 2 lies in the open set H 2 D(R/2) of H 2 , since this image is equal to the intersection of the straight line (xz) with H 2 and since any chord of ∂D that is tangent to ∂D(R/2) has a Euclidean length equal to √ 3R. Since the Riemannian metrics g λ and g 0 coincide on H 2 D(R/2), we get that the g

	But, since ρ ≡ 0 on (3/4, +∞) by property (2) in Equation 3.4, we also have p = ϕ λ x (y, t) = G 0 x (y, t) = ϕ 0 x (y, t), and hence σ 0 (x, p) = y. If |x -z| < √ 3R, then the image of the g 0 -geodesic G 0 x (z,

for all t ∈ R.

So, for every λ ∈ (-ε 0 , ε 0 ) and (x, p) ∈ N, we have σ λ (A(x), A(p)) = A(σ λ (x, p)), and therefore, for every λ ∈ (-ε 0 , ε 0 ), p ∈ D and v ∈ R 2 , one has

This ends the proof of Lemma 3.6.

Proof of Proposition 3.6.

Applying Lemma 3.4 with Λ := (-a, a) and 

is included in the open set U := h((-a, a) × U) of (-a, a) × N. Thus, there exists a number τ 0 ∈ (0, R/2) such that [-a/2, a/2] × {x 0 } × Σ ⊆ U, where Σ := {(1 + τ )y | y ∈ K and τ ∈ (-τ 0 , τ 0 )}. But Lemma 3.6 implies that for any (λ, (x, p)) ∈ U and A ∈ O(R 2 ), we have (λ, (A(x), A(p))) ∈ U. Hence, if

Now, if F λ were Riemannian, then by the boundary rigidity of (D, g 0 |D ) given in Theorem 1.3, F λ would be isometric to F 0 in restriction to D, which would imply that the F λ -geodesics within D are diffeomorphically mapped onto straight lines in R 2 .

In particular, this would be true for all the F λ -geodesics within the open set D(r 0 ) defined in Lemma 3.7. But this lemma says that every geodesic of the restriction of g λ to D(r 0 ) is a geodesic for F λ , and therefore the g λ -geodesics within D(r 0 ) would be diffeomorphically mapped onto straight lines in R 2 .

Hence the curvature of g λ would be constant on D(r 0 ) by Beltrami's theorem, which is impossible by point (3) in Propositon 3.1.