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Abstract

In this paper, we establish some local stability estimate for a problem of determining
a domain D appearing in the heat equation: ∂u

∂t
− ∆u + χD u = 0 from a Neumann

additional data on a part of the lateral boundary. This estimate is obtained by
taking advantage of some shape optimization tools.

Key words: Inverse problem ; Heat equation ; Local stability estimate ; Shape
optimization

1 Introduction

Let Ω be an open bounded domain of R
N with smooth boundary ∂Ω and T

be an arbitrary positive constant. Let QT = Ω × (0, T ), Σ0 = Ω × {0} and
ΣT = ∂Ω × (0, T ). We consider the following initial boundary value problem
(IBVP)



























∂u

∂t
− ∆u+ χD u = 0 in QT

u = u0 on Σ0

u = f on ΣT ,

(1)

∗ Corresponding author.
Email addresses: chakib@fstbm.ac.ma (A. Chakib),

nachaoui@math.univ-nantes.fr (A. Nachaoui), a.zeghal@fstbm.ac.ma (A.
Zeghal).

submitted



where χD denotes the characteristic function of a subdomain D of Ω, and u0

and f are given functions defined respectively on Ω and ΣT .

The IBVP (1) describes the heat conduction procedure in a given medium Ω
and χDu(x, t) represents the discontinuous heat source. In the present paper we
are concerned with the inverse problem consisting in the determination of heat
conduction properties of the medium from additional information about the
solution. Mathematically speaking, we discuss the following inverse problem:
Determine D in the IBVP (1) from the additional data on the flux ∂u(D)

∂ν
|ΓT

,
where ΓT = Γ × (0, T ), Γ is a subset of ∂Ω and u(D) is the solution of IBVP
(1) corresponding to D.
Here and henceforth ∂

∂ν
denotes the derivative with respect to the outward

normal to ∂Ω.

In recent years, there are several works devoted to the study of uniqueness
and stability results for the inverse problem associated to steady state case
governed by elliptic equations (see for instance [1,3,5,6,9,11] and the references
therein). The main purpose of this paper is to extend the strategy from [5,6]
to the parabolic IBVP (1). More precisely we examine the local stability in
the inverse heat problem. That is to establish the following estimate:

meas(DV ∆D) ≤ C

∥

∥

∥

∥

∥

(

∂u(DV )

∂ν
−
∂u(D)

∂ν

)

∣

∣

∣

ΓT

∥

∥

∥

∥

∥

X

, (2)

where V is an admissible vector field, DV = (I+V )(D), I denotes the identity
matrix of R

N and X is a suitable Sobolev space. The proof of this estimate
relies on the Gâteaux-differentiability of the mapping: V → ∂u(DV )

∂ν
at V = 0

and the injectivity of its Gâteaux derivative, by taking advantage of some
shape optimization tools.

Before closing this introduction, we notice that a problem of determining the
diffusivity of a parabolic equation arising in hydrology, where the diffusivi-
ties are of the form a(x) = A + KχD(x) has been considered previously by
Bellout [2] where entirely different methods were used. The author obtains a
(weak) local stability result. In [4] Cannon and Pérez-Esteva obtain a loga-
rithmic stability estimate for a problem of finding a region D, where D have
a symmetic property, in the 3D heat equation: ∂u

∂t
− ∆u = f(t)χD(x). They

use a fundamental solution representation for the solution of this equation in
order to derive the stability estimate. More recently, Hettlich and Rundell [10]
considered a 2D heat equation of the form ∂u

∂t
− ∆u = χD(x), where D is an

unknown subdomain of a disc. They establish the uniqueness in determining
the subdomain D from the measures of the solution at two different points on
the boundary.
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2 Position of the problem and statement of the main result

Throughout this paper, we assume that Ω is of class C2 and D ⊂⊂ Ω is of
class C1. We suppose also that f ∈ C2,1(ΣT ) and that u0 ∈ C1(Ω). In this case,
it is known (see, for example [8] or [12]) that the unique solution of IBVP
(1), u = u(D), associated to fixed D belongs to H2,1(QT ) ∩ C(QT ), where
Hr,s(QT ) := L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)), (for r, s ∈ R

+).
For the study of the stability result, we will use shape optimization techniques
which are based on the computation of the shape derivative of u with respect
to D, in the direction of a vector field V . For this, we fixe Ω0 an open subset
of Ω with smooth boundary, such that D ⊂ Ω0 ⊂⊂ Ω and we introduce the
closed subspace of vector fields:

X = {V ∈ C1,b(RN ; RN) / supp V ⊂ Ω0}

where C1,b(RN ; RN) is the Banach space of vector fields in C1(RN ; RN) which
are bounded and having bounded first derivatives. We define the quotient
Banach space Y = X/F , where F = {V ∈ X / V · n = 0}, where Y is
equipped with the usual quotient norm, denoted by ‖·‖Y , and n is the outward
normal to ∂D. Next, we choose U a neighborhood of 0 in Y in such way that
DV = (I+V )D is contained in Ω0, for all V ∈ U , where I denotes the identity
matrix of R

N . The aim of this paper is to show a stability result of type (2),
for all V ∈ U . For this, the basic idea is to show that the operator

Λ : V ∈ U −→
∂uV

∂ν
|ΓT

∈ X

is Gâteaux-differentiable at V = 0 and its derivative is one to one, where X
is an appropriate space and uV = u(DV ) is the solution of IBVP (1) with
DV in place of D. In order to state our main result, we need to introduce the
following Sobolev space Hr,s(ΓT ) := L2(0, T ;Hr(Γ)) ∩Hs(0, T ;L2(Γ)) (for all
s, r ∈ R

+) equiped with its natural norm and for r, s ≤ 0 we define by duality
Hr,s(ΓT ) := (H−r,−s(ΓT ))′.

Theorem 1. Let us assume

(H1) Γ is a closed subset of ∂Ω with nonempty interior.

(H2) f is non negative and non identically null on ΣT ,.

(H3) u0 ≥ 0 and supp u0 ⊂ Ω \ Ω0.

Then Λ has the following properties
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(i) Λ is Gâteaux-differentiable at V = 0 and its derivative at V = 0 is given
by

Λ′(0)(V ) := lim
s−→0

Λ(sV ) − Λ(0)

s
=
∂u′(V )

∂ν
∈ H− 1

2
,− 1

4 (ΓT ),

where u′(V ) is the shape derivative of u in the direction V defined in (6).
(ii) Ker Λ′(0) = {0Y }.

3 Proof of Theorem 1 and local stability result

We first begin by showing that the restriction of the normal derivative of uV

on ΓT is contained in the space H− 1

2
,− 1

4 (ΓT ). This is stated in the following
lemma.

Lemma 1. The trace operator

γ1 : V(WT ,
∂

∂t
− ∆) −→ H− 1

2
,− 1

4 (ΓT )

υ −→
∂υ

∂ν

is continuous, where

V(WT ,
∂

∂t
−∆) = {υ ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω)) /

∂υ

∂t
−∆υ ∈ L2(WT )}

and WT = Ω \ Ω0 × (0, T )

Proof. From Costabel [7], the trace operator γ1 is continuous fromH1, 1
2 (WT ,

∂

∂t
−

∆) = {υ ∈ H1, 1
2 (WT ) /

∂υ

∂t
−∆υ ∈ L2(WT )} to H− 1

2
,− 1

4 (ΓT ). Accordingly, the

proof of the lemma follows from the continuous imbedding of L2(0, T ;H1(Ω))∩
H1(0, T ;H−1(Ω)) in L2(0, T ;H1(Ω\Ω0))∩H

1(0, T ;H−1(Ω\Ω0)) and the den-

sity result of L2(0, T ;H1(Ω \ Ω0)) ∩ H
1(0, T ;H−1(Ω \ Ω0)) in H1, 1

2 (WT ) (see
for example [7]). 2

Now, the proof of the theorem is based on the following steps. The first step
consists in proving Gâteaux-differentiability of Λ at V = 0.

Proposition 1. Λ is Gâteaux-differentiable at 0 and Λ′(0)(V ) = ∂u′(V )
∂ν

|ΓT
,
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where u′(V ) ∈ L2(0, T ;H1
0(Ω))∩H1(0, T ;H−1(Ω)) is the solution of the IBVP



























∂u′

∂t
− ∆u′ + χD u

′ = µ(V ) in QT

u′ = 0 in Σ0

u′ = 0 on ΣT ,

(3)

where µ(V ) ∈ L2(0, T ;H−1(Ω)) is defined by

〈µ(V ), ψ〉 = −

T
∫

0

∫

∂D

(V · n) uψ for all ψ ∈ L2(0, T ;H1
0(Ω)),

here n denotes the outward normal to ∂D and 〈·, ·〉 stands for the duality
pairing between L2(0, T ;H−1(Ω)) and L2(0, T ;H1

0(Ω)).

Proof. Let F0 ∈ C2,1(QT ), be such that F0|ΣT
= f . We consider Ψ ∈ C∞

c (RN),
such that











Ψ = 1 on Ξ(∂Ω)

supp Ψ ⊂ Ω \ Ω0,

where Ξ(∂Ω) is a neighborhood of Γ. We denote by F the function defined by
F = ΨF0. Since χD F = 0 on QT , it follows easily that v = u− F is solution
of the IBVP



























∂v

∂t
− ∆v + χD v = G in QT

v = U0 on Σ0

v = 0 on ΣT ,

(4)

where U0(x) = u0(x) − F (x, 0) and G = ∆F − ∂F
∂t

. In addition, from Re-
nardy [13], the unique solution v of (4) belongs to the space L2(0, T ;H1

0(Ω))∩
H1(0, T ;H−1(Ω)).

Now, we will compute the shape derivative of v with respect to D. For this,
we fixe V ∈ X and we choose a small interval Jε = (−ε, ε) in such way that
Ds = (I + sV )D ⊂ Ω0, for all s ∈ Jε. Let us consider vs = us −F the solution
of IBVP (4) with Ds in place of D. As in [14], we define the material derivative
of v in the direction of the vector field V by

v̇ = lim
s−→0

vs − v

s
,
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where vs = vs ◦Ts, Ts = Ts(V ) = ((I + sV ), I1) and I1 is the identity mapping
of R, and v = v(D) is the solution of IBVP (4). In order to determine the
material derivative v̇ in the direction of a vector field V it should be remarked
that vs satisfy the following integral identity

−
∫ ∫

QT

vs

∂ϕ

∂t
dx dt+

∫ ∫

QT

∇vs · ∇ϕdx dt+
∫ ∫

QT

χDs
vs ϕdx dt

=
∫ ∫

QT

Gϕdx dt+
∫

Σ0

U0 ϕdx,

for all ϕ ∈ L2(0, T ;H1
0(Ω)) ∩H1(0, T ;H−1(Ω)), such that ϕ(x, T ) = 0.

Using the change of variable x = Ts(X). It can be shown that vs = vs ◦ Ts is
solution of the following integral identity

−
∫ ∫

QT

γ(s) vs ∂ϕ

∂t
dx dt+

∫ ∫

QT

A(s)∇vs · ∇ϕdx dt
∫ ∫

QT

χD v
s ϕdx dt

=
∫ ∫

QT

Gs ϕdx dt+
∫

Σ0

Us
0 ϕdx

for all ϕ ∈ L2(0, T ;H1
0(Ω)) ∩ H1(0, T ;H−1(Ω)), such that ϕ(x, T ) = 0. Here

γ(s) = det(I + sDV ), A(s) = γ(s)DT−1
s

t(DT−1
s ), Us

0 = γ(s)U0 ◦ Ts and
Gs = γ(s)G ◦ Ts, with DV = (∂iVj)1≤i,j≤n, DT

−1
s denotes the inverse of the

matrix DTs and t(DT−1
s ) denotes the transpose of the matrix DT−1

s . We note
that the small interval Jε is also chosen such that γ(s) ≥ 0, for all s ∈ Jε.
Arguing as in Sokolowski and Zolesio [14] and using the following relations

lim
s−→0

γ(s) − 1

s
= div(V ), lim

s−→0

A(s) − I

s
= A′ = DV +t (DV ) − div(V ) I

and

lim
s−→0

Us
0 − U0

s
= ∇U0 · V, lim

s−→0

Gs −G

s
= ∇G · V ,

we can prove that v̇ exists in the space L2(0, T ;H1
0(Ω)) ∩ H1(0, T ;H−1(Ω))

and satisfies the following IBVP











































∂v̇

∂t
− ∆v̇ + χD v̇

= div(GV ) −
∂v

∂t
div(V ) + div(A′ ∇v) − χD v div(V ) in QT

v̇ = div(U0 V ) on Σ0

v̇ = 0 on ΣT .

(5)
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Now, since supp U0 ⊂ Ω/Ω0 and supp V ⊂ Ω0, we have that v̇ |Σ0
= 0. By

using the following known formula

div(A′ ∇v) = ∆v div(V ) − ∆(∇v · V ) + ∇(∆v) · V

and the fact that v′, the shape derivative of v, is given by

v′ = v̇ −∇v · V, (6)

we can show that v′ is solution of the IBVP


























∂v′

∂t
− ∆v′ + χD v

′ = µ(V ) in QT

v′ = 0 on Σ0

v′ = 0 on ΣT ,

(7)

where µ(V ) = v∇χD·V ∈ L2(0, T ;H−1(Ω)) is defined, for all ψ ∈ L2(0, T ;H1
0(Ω)),

by

< µ(V ), ψ >=< v∇χD · V, ψ >

=−
∫ ∫

QT

χDdiv(v ψ V )

=−

T
∫

0

∫

D

div(v ψ V ).

Since D is chosen enough regular, an application of the Green’s formula leads
to

< µ(V ), ψ >= −

T
∫

0

∫

∂D

v ψ (V · n).

We note that from Renardy [13], the solution v′ of (7) is in the space L2(0, T ;H1
0(Ω))∩

H1(0, T ;H−1(Ω)). Since we have us = vs + F s (with F s = F ◦ ((I + sV ), I1)),
then the shape derivative of u is given by u′ = v′ + F ′. Following Sokolowski
and Zolesio [14], we have that

F ′ = lim
s−→0

F s − F

s
−∇F · V = 0

and consequently u′ = v′ ∈ L2(0, T ;H1
0(Ω)) ∩H1(0, T ;H−1(Ω)) is solution of

IBVP (7) with µ(V ) = u∇χD · V (because F ∇χD · V = 0).
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Next, since us = u(Ds) the solution of IBVP (1), with Ds in place of D, is
in L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) and satisfies the following equation in
WT = Ω \ Ω0 × (0, T )

∂us

∂t
− ∆us = 0 in WT , (8)

we have that us ∈ V(WT ,
∂
∂t

− ∆) and consequently us = us ◦ Ts is also
in V(WT ,

∂
∂t

− ∆). From equation (3) we have that u′ exists in the space
L2(0, T ;H1

0(Ω)) ∩H1(0, T ;H−1(Ω)) and satisfies the equation

∂u′

∂t
− ∆u′ = 0 on WT . (9)

Therefore, we have that u′ exists in V(WT ,
∂
∂t

− ∆). Hence, we have shown
that the mapping

s ∈ Jε = (−ε, ε) −→ us = us ◦ Ts ∈ V(WT ,
∂

∂t
− ∆)

is differentiable at s = 0 and its derivative at s = 0 is equal to u′ |WT
. Moreover,

from Lemma 1, we have that the trace operator

ω ∈ V(WT ,
∂

∂t
− ∆) −→

∂ω

∂ν
|ΓT

∈ H− 1

2
,− 1

4 (ΓT )

is continuous. This imply that the operator

Λ : θ ∈ U −→
∂uθ

∂ν
|ΓT

∈ H− 1

2
,− 1

4 (ΓT ),

has directional derivative at 0 in the direction V given by

Λ′(0)(V ) = lim
s−→0

Λ(sV ) − Λ(0)

s
=
∂u′(V )

∂ν
∈ H− 1

2
,− 1

4 (ΓT ).

Finally, to show that Λ is Gâteaux-differentiable at 0, it remains to prove that
the operator

Λ′(0) : V ∈ Y −→
∂u′(V )

∂ν
∈ H− 1

2
,− 1

4 (ΓT )

is bounded. Indeed, let V ∈ X. On account of the continuity of the trace
operator from H1, 1

2 (WT ,
∂
∂t

− ∆) to H− 1

2
,− 1

4 (ΓT ), due to Costabel [7] there
exists C1 > 0 such that,
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‖Λ′(0)(V )‖
H

−
1
2

,− 1
4 (ΓT )

= ‖
∂u′(V )

∂ν
‖

H
−

1
2

,− 1
4 (ΓT )

≤C1 ‖u
′(V )‖

H
1, 1

2 (WT )
.

On the other hand, since u′ ∈ L2(0, T ;H1
0(Ω))∩H1(0, T ;H−1(Ω)) ⊂ L2(0, T ;H1

0(Ω\
Ω0))∩H

1(0, T ;H−1(Ω \Ω0)) and ∂u′

∂t
−∆u′ = 0, it follows from [7] that there

exists two constants C2 > 0 such that

‖u′(V )‖
H

1, 1
2 (WT )

≤ C2 ‖u
′(V )‖L2(0,T ;H1(Ω\Ω0)) ≤ C2 ‖u

′(V )‖L2(0,T ;H1
0
(Ω)).

Using an a priori estimate for the solution of IBVP (3) (see Renardy [13]), we
conclude that

‖u′(V )‖L2(0,T ;H1
0
(Ω)) ≤ C3 ‖µ(V )‖L2(0,T ;H−1(Ω)),

where C3 is a positive constant. By elementary calculation we obtain

‖Λ′(0)(V )‖
H

−
1
2

,− 1
4 (ΓT )

≤C4‖V · n‖L∞(∂D)

≤C4‖(V +W ) · n‖L∞(∂D), for all W ∈ F

≤C4‖V ‖Y

where C4 is a positive constant independent of V . This ends the proof of the
proposition. 2

Now, to prove that Λ′(0) is injective, we need the two following lemmas

Lemma 2. Assume that f and u0 satisfy the hypotheses (H2)-(H3). Then the
solution of IBVP (1) satisfies u > 0 on ∂D × (0, T ).

Proof. Let H2,1
0 (QT ) := {ϕ ∈ H2,1(QT ) such that ϕ |ΣT

= 0}. It is easily seen
that u is solution of the following integral identity:

∫

Ω

u(x, τ)ϕ(x, τ) dx−
∫

Σ0

u0ϕdx

−
∫ ∫

Qτ

u
∂ϕ

∂t
dx dt+

∫ ∫

Qτ

∇u · ∇ϕdx dt+
∫ ∫

Qτ

χD uϕ dx dt = 0,

for a.e. τ ∈ (0, T ) and for all ϕ ∈ H2,1
0 (QT ). By Choosing ϕ = −u− ∈ H2,1

0 (QT )
together with the relations

u+u− = ∇u+ · ∇u− = u+∂u
−

∂t
= u−

∂u+

∂t
= 0, for a. e.

9



where u− := − inf(u, 0) and u+ := sup(u, 0), we obtain

∫

Ω

1

2
(u−(x, τ))2dx+

∫

Qτ

|∇u−|2dxdt+
∫

Qτ

χD( u−)2dxdt = 0.

It follows that u− = 0 a.e. on QT and therefore u = u+ ≥ 0 on QT .

Now, we suppose by absurd that there exists (x0, t0) ∈ ∂D × (0, T ) such that
u(x0, t0) = 0. By using Harnack inequality for weak solution (see [15]), we can
construct two small cubes R+ and R− contained in QT such that (x0, t0) ∈ R−

and

sup
R+

u ≤ C inf
R−

u

where C is a constant independent of u. Thus u is identically null on R+.
According to the uniqueness of continuation property we can conclude that
u = 0 on QT . But this contradicts the fact that f = u |ΣT

is non identically
null. 2

Lemma 3. For all V ∈ X, if Λ′(0)V = 0 then µ(V ) = 0.

Proof. Let V in X such that Λ′(0)V = 0. Then from Proposition 1, we have
∂u′(V )

∂ν
|ΓT

= 0. We define u′e := u′(V ) |Ω\D×(0,T ). By using the fact that µ(V ) is
supported on ∂D × (0, T ), we conclude that u′e is solution of the problem































∂u′e
∂t

− ∆u′e = 0 in (Ω \D) × (0, T )

u′e = 0 on ΣT ,

∂u′e
∂ν

= 0 on Γ × (0, T )

(10)

According to the uniqueness of the continuation for the heat equation, we
deduce that u′e = 0 on (Ω \D) × (0, T ).

Now, set u′i := u′(V ) |D×(0,T ). we verify that u′i is solution of the following
IBVP



























∂u′i
∂t

− ∆u′i + u′i = 0 in D × (0, T )

u′i(x, 0) = 0 on D,

u′i = 0 on ∂D × (0, T ) .

(11)
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It follows from the uniqueness of the solution that u′i = 0 in D × (0, T ) and
therefore u′(V ) = 0 in Ω × (0, T ). This leads to desired conclusion. 2

Proof of Theorem 1. The item (i) was established in Proposition 1. To prove
(ii), let V be in Ker Λ′(0). According to Lemma 1, it follows that µ(V ) = 0
and thus V ·n u = 0 on ∂D× (0, T ). But from Lemma 2, we known that u > 0
on ∂D × (0, T ). This leads to V ∈ F , namely V = 0Y . 2

As consequence of the theorem, we state the following local stability result:

Corollary 1. Let assumptions (H1) − (H3) hold. Then for all V ∈ X \ F ,
there exists two constants ε = ε(V ) and k = k(V ) such that:

meas (DsV ∆D) ≤ k‖
∂usV

∂ν
−
∂u

∂ν
‖

H
−

1
2

,− 1
4 (ΓT ),

, for all s ∈] − ε, ε[,

where u(sV ) is the solution of IBVP (1) associated to DsV .

Proof. The proof of this result follows from the fact that

lim
s−→0

‖
Λ(sV ) − Λ(0)

s
‖ = ‖Λ′(0)(V )‖ > 0 for all V ∈ X \ F

and the inequality (see for instance [6]):

meas (DsV ∆D) ≤ k1(V )|s|.
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