Holonomy representations which are a diagonal direct sum of two faithful representations

Thomas Krantz

To cite this version:

Thomas Krantz. Holonomy representations which are a diagonal direct sum of two faithful representations. 2007. hal-00142749v3

HAL Id: hal-00142749
 https://hal.science/hal-00142749v3

Preprint submitted on 21 Feb 2008 (v3), last revised 21 Feb 2008 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HOLONOMY REPRESENTATIONS WHICH ARE A DIAGONAL DIRECT SUM OF TWO FAITHFUL REPRESENTATIONS

TOM KRANTZ

Abstract

We study holonomy representations admitting a pair of supplementary faithful sub-representations. In particular the cases where the sub-representations are isomorphic respectively dual to each other are treated. In each case we have a closer look at the classification in small dimension.

1. Introduction

The notion of torsion-free connection on the tangent bundle $T M$ of a smooth manifold M gives rise to the notion of parallel transport along paths contained in the manifold, and it is well known that if one considers all closed contractible paths based in the a point o of the manifold M, the set of the corresponding parallel transports forms a Lie subgroup of $G l\left(T_{o} M\right)$ called the restricted holonomy group of the connection. To this linear Lie group corresponds its linear Lie algebra which will be noted \mathfrak{g} throughout this text. Seen as a representation we will refer to it as the holonomy representation. For a general study of connections and holonomy and precise definitions we refer for example to [KN].

Holonomy representations $\mathfrak{g} \subset \mathfrak{g l}\left(T_{o} M\right)$ have been completely studied in the Riemannian case through the classical result of the De Rham-theorem reducing the classification problem to the one of the classification irreducible metric holonomy representations. In the pseudo-Riemannian case Wu's generalization of the de Rham-theorem allows to reduce the classification problem to the one of weakly-irreducible representations. All irreducible holonomy representations are by now known, but in the weakly irreducible case mainly signature $(1, n)$ (see [BBI], [I2], [Boub], [Le1], [Le2], [Le3], [Le4], $[\mathrm{Gal1}]),(2, n)$ (see [BBI], [I3], [Gal2]) are explored. For signature (n, n) see ([BBI]). Lionel Bérard Bergery has classified indecomposable semi-simple non simple pseudo-Riemannian holonomy representations. These are examples of $V \oplus V^{*}$ representations which we examine in this paper generally.

If the connection is not supposed to preserve a metric very little is known, we have no longer a general result like the De Rham-Wu theorem. In my

[^0]thesis $([K])$ (under the direction of Lionel Bérard Bergery), I studied representations admitting two pairs of supplementary invariant spaces(see also [BBK]). In the pseudo-Riemannian or symplectic case appear naturally factors of type $V \oplus V^{*}$. When the representation is weakly irreducible and admits a decomposition into two supplementary non trivial subspaces, it is of this type as shown in the paper. In the general setting appear factors of type $V \otimes \mathbb{R}^{2}$ (with \mathbb{R}^{2} being the trivial representation). Here we examine more closely both types of holonomy representations.

The paper is structured as follows: We start by formulating Bergercriteria for representations which are a diagonal direct sum of two faithful representations. We explore then the local geometric structure of torsionfree connections with this holonomy and calculate curvature in an adapted basis. Finally we examine closely holonomy representations of type $V \oplus V^{*}$ and $V \otimes \mathbb{R}^{2}$ and give classifications in dimension 2×2 (which was known for the case $V \oplus V^{*}$ and is new for the case $\left.V \otimes \mathbb{R}^{2}\right)$.
1.1. Notation. We will say a representation $\mathfrak{g} \subset \mathfrak{g l}(V)$ is decomposable along the direct sum $V=V_{1} \oplus V_{2}$ if $\mathfrak{g}=\mathfrak{g} \cap V_{1}^{*} \otimes V_{1} \oplus \mathfrak{g} \cap V_{2}^{*} \otimes V_{2}$.

2. BERGER-TYPE CRITERIA

2.1. The first Berger criterion. Let $\mathfrak{g} \subset \mathfrak{g l}(V)$ be a finite-dimensional representation.

Note

$$
\begin{gathered}
\mathcal{K}(\mathfrak{g}):=\left\{R \in\left(V^{*} \wedge V^{*}\right) \otimes \mathfrak{g} \mid R(x, y) z+R(y, z) x+R(z, x) y=0 \text { for } x, y, z \in V\right\} \\
\underline{\mathfrak{g}}:=<R(x, y) \mid x, y \in V, R \in \mathcal{K}(\mathfrak{g})>
\end{gathered}
$$

Since the work of Marcel Berger([Ber]) it is known that:
Proposition 1. If $\mathfrak{g} \subset \mathfrak{g l}(V)$ is a holonomy algebra of a torsion-free connection then $\underline{\mathfrak{g}}=\mathfrak{g}$.

Recall also the second criterion of Berger:
Note
$\mathcal{K}^{1}(\mathfrak{g}):=\left\{D \in V^{*} \otimes \mathcal{K}(\mathfrak{g}) \mid D x(y, z)+D y(z, x)+D z(x, y)=0\right.$ for $\left.x, y, z \in V\right\}$.
Proposition 2. If $\mathfrak{g} \subset \mathfrak{g l}(V)$ is a holonomy algebra of a torsion-free connection which is non locally symmetric then $\mathcal{K}^{1}(\mathfrak{g}) \neq\{0\}$.

In this text we are interested representations V of a Lie algebra \mathfrak{g} such that $V=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are two faithful representations of \mathfrak{g}.

Let's write $\mathfrak{g}_{i} \subset \mathfrak{g l}\left(V_{i}\right)$ for the restriction of the action of \mathfrak{g} to V_{i}.
In the context of these particular representations the first Berger criterion can be specialized to the following.

Note
$k(\mathfrak{g}):=\left\{\begin{array}{l|l}R \in V_{1}^{*} \otimes V_{2}^{*} \otimes \mathfrak{g} & \begin{array}{l}R\left(x, y^{\prime}\right) z^{\prime}=R\left(x, z^{\prime}\right) y^{\prime} \\ R\left(x, y^{\prime}\right) t=R\left(t, y^{\prime}\right) x\end{array} \quad \text { for } x, t \in V_{1}, y^{\prime}, z^{\prime} \in V_{2}\end{array}\right\}$,
We have then:

Proposition 3. If $\mathfrak{g} \subset \mathfrak{g l}(V)$ is a finite dimensional representation and V_{1} and V_{2} are two faithful representations of \mathfrak{g} such that $V=V_{1} \oplus V_{2}$ then:

$$
\underline{\mathfrak{g}}=<R\left(x, y^{\prime}\right) \mid x \in V_{1}, y^{\prime} \in V_{2}, R \in k(\mathfrak{g})>.
$$

Proof. This follows from the fact that if R is in $K(\mathfrak{g})$ then $R(x, y) \in \mathfrak{g l}\left(V_{i}\right)$ for $x, y \in V_{i}$, from which follows $R(x, y)=0$ by the condition that V_{1} and V_{2} are two faithful representations of \mathfrak{g}.

Note
$k^{1}(\mathfrak{g}):=\left\{D \in V^{*} \otimes k(\mathfrak{g}) \left\lvert\, \begin{array}{l}D x\left(y, z^{\prime}\right)=D y\left(x, z^{\prime}\right) \\ D t^{\prime}\left(y, z^{\prime}\right)=D z^{\prime}\left(x, t^{\prime}\right)\end{array}\right.\right.$ for $\left.x, y \in V_{1}, z^{\prime}, t^{\prime} \in V_{2}\right\}$,
Berger's second criterion reads then:
Proposition 4. Let $\mathfrak{g} \subset \mathfrak{g l}(V)$ be a representation and V_{1} and V_{2} two faithful representations of \mathfrak{g} such that $V=V_{1} \oplus V_{2}$.

If \mathfrak{g} is a holonomy algebra of a torsion-free connection which is non locally symmetric then $k^{1}(\mathfrak{g}) \neq\{0\}$.
2.2. A general weak criterion. We write

$$
\mathfrak{g}_{i}^{(1)}:=V_{i}^{*} \otimes \mathfrak{g}_{i} \cap S^{2}\left(V_{i}^{*}\right) \otimes V_{i},
$$

the first prolongation of \mathfrak{g}_{i}.
Let

$$
\underline{\underline{\mathfrak{g}_{i}}}:=<r(x) \mid x \in V_{i}, r \in \mathfrak{g}_{i}^{(1)}>.
$$

Proposition 5. \mathfrak{g} verifies the first Berger criterion implies $\underline{\underline{\mathfrak{g}_{i}}}=\mathfrak{g}_{i}$ for $i=1,2$.

Weaker than the first Berger criterion this criterion considers only the \mathfrak{g}_{i} and ignores their coupling.

If W_{i} is a sub-representation of V_{i}, note $\mathfrak{g}_{i / W_{i}} \subset \mathfrak{g l}\left(V_{i} / W_{i}\right)$ the representation obtained from \mathfrak{g}_{i} by passing to the quotient.

The following result shows some properties of holonomy representations we are interested in this article in.

Proposition 6. For $i=1,2, \underline{\underline{\mathfrak{g}_{i}}}=\mathfrak{g}_{i}$ implies that for a sub-representation W_{i} of $V_{i}, \underline{\underline{\mathfrak{g}_{i / W_{i}}}}=\mathfrak{g}_{i / W_{i}}$

3. Local geometric structure

3.1. Basic results. Assume we have a connection ∇ on a manifold \mathcal{M} admitting a holonomy representation $\mathfrak{g} \subset \mathfrak{g l}\left(T_{o} \mathcal{M}\right)$ (at the point $\left.o \in \mathcal{M}\right)$ for which $T_{o} M=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are two faithful representations of \mathfrak{g}.

One can transport parallely the direct sum $V_{1} \oplus V_{2}$ to any point of the manifold. Each V_{i} gives a distribution on \mathcal{M} which is integrable and gives rise to a foliation \mathcal{F}_{i} of the manifold with flat leaves. On the leaves $\mathcal{F}_{1}(o)$ (resp. $\left.\mathcal{F}_{2}(o)\right)$ we can choose coordinates $x_{o}^{i}\left(i=1 \ldots n_{1}\right)\left(\right.$ resp. $\left.y_{o}^{j}\left(j=1 \ldots n_{2}\right)\right)$ for which $\nabla_{\partial_{x_{o}^{i}}} \partial_{x_{o}^{j}}=0, \forall i, j$, and $\nabla_{\partial_{y_{o}}} \partial_{y_{o}^{j}}=0, \forall i, j$. The coordinates are in bijection with the basis $\left(\partial_{x_{o}^{1}}, \ldots, \partial_{x_{o}^{n_{1}}}, \partial_{y_{o}^{1}}, \ldots, \partial_{y_{o}^{n_{2}}}\right)$ in o.

The manifold \mathcal{M} - as a differential manifold - locally a product and to a point p of the manifold one can (locally) associate coordinates $\left(x_{o}^{i}(p), i=\right.$ $\left.1 \ldots n_{1}, y_{o}^{j}(p), j=1 \ldots n_{2}\right)$ by considering the coordinates of the intersection point of $\mathcal{F}_{2}(p)$ with $\mathcal{F}_{1}(o)$ (respectively the ones of the intersection of $\mathcal{F}_{1}(p)$ with $\left.\mathcal{F}_{2}(o)\right)$.

On the other hand one can equip each leaf $\mathcal{F}_{1}(r)$ containing the point $r \in \mathcal{F}_{2}(o)$, because it is flat, with coordinates $x_{r}^{i}, i=1 \ldots n_{1}$ such that $\nabla \partial_{\partial_{r}^{i}} \partial_{x_{r}^{j}}=0, \forall i, j$ on the leaf $\mathcal{F}_{1}(r)$ and such that $\partial_{x_{r}^{i}}(r)$ is obtained by parallely transporting $\partial_{x_{o}^{i}}(o)$ along the leaf $\mathcal{F}_{2}(o)$. Analogously one defines $y_{q}^{i}, i=1 \ldots n_{2}$ on the leaf $\mathcal{F}_{2}(q)$.

One has finally as well the following coordinates: $\quad\left(x^{i}(p), i=\right.$ $\left.1 \ldots n_{1}, y^{j}(p), j=1 \ldots n_{2}\right)$, with $x^{i}:=x_{o}^{i}$ and $y^{j}(p):=y_{q}^{j}(p)$.
Proposition 7. Let \mathcal{M} be a manifold equipped with a torsion-free connection ∇ such that the holonomy algebra (in o) \mathfrak{g} verifies $T_{o} M=V_{1} \oplus V_{2}$ with V_{1} and V_{2} faithful representations of \mathfrak{g}. For o in \mathcal{M} let x_{o}^{i} (respectively $\left.y_{o}^{j}\right)$ designate local flat coordinates on $\mathcal{F}_{1}(o)$ (resp. $\left.\mathcal{F}_{2}(o)\right)$ corresponding to a choice of basis $\left(b_{1}\right)$ of V_{1} and $\left(b_{2}\right)$ of V_{2}. To $\left(b_{1}\right)$ (resp. $\left(b_{2}\right)$) is associated for any point r of $\mathcal{F}_{2}(o)$ (resp. q of $\mathcal{F}_{1}(o)$) flat coordinates x_{r}^{i} (respectively $\left.y_{q}^{j}\right)$ of $\mathcal{F}_{1}(r)\left(\right.$ resp. $\left.\mathcal{F}_{2}(q)\right)$.

Let p be a point of \mathcal{M} close to o and q (resp. r) the unique intersection point of $\mathcal{F}_{1}(o)$ with $\mathcal{F}_{2}(p)$ respectively $\mathcal{F}_{2}(o)$ with $\mathcal{F}_{1}(p), \gamma_{1}$ a path contained in $\mathcal{F}_{1}(o)$ from o to q, γ_{2} a path contained in $\mathcal{F}_{2}(p)$ from q to p, γ_{3} a path contained in $\mathcal{F}_{1}(p)$ from p to r, γ_{4} a path contained in $\mathcal{F}_{2}(o)$ from r to o, γ the composition $\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$. Then τ_{γ} depends only on p, and one has: $\tau_{\gamma_{1} \gamma_{2}}\left(\partial_{x_{o}^{i}, o}\right)=\partial_{x_{o}^{i}, p}$ and $\tau_{\gamma_{3} \gamma_{4}}^{-1}\left(\partial_{x_{o}^{i}, o}\right)=\partial_{x_{r}^{i}, p}$. Similarly $\tau_{\gamma_{1} \gamma_{2}}\left(\partial_{y_{o}^{i}, o}\right)=\partial_{y_{q}^{i}, p}$ et $\tau_{\gamma_{3} \gamma_{4}}^{-1}\left(\partial_{y_{o}^{i}, o}\right)=\partial_{y_{o}^{i}, p}$.

More precisely one has:

$$
\tau_{\gamma}\left(\partial_{x_{o}^{i}, o}\right)=\sum_{j} \frac{\partial x_{r}^{j}}{\partial x_{o}^{i}}(p) \partial_{x_{o}^{j}, o},
$$

et

$$
\tau_{\gamma}\left(\partial_{y_{o}^{i}, o}\right)=\sum_{j} \frac{\partial y_{o}^{j}}{\partial y_{q}^{i}}(p) \partial_{y_{o}^{j}, o} .
$$

Moreover the holonomy group is generated by the τ_{γ} of this type.
Proof. The first part of the proposition can be shown by evaluating parallel transport of the given basis vectors along the given paths.

For the latter statement we will show show that one can approximate any path γ contained in a neighbourhood of oby a sequence of paths γ_{n} such that $\tau_{\gamma_{n}}$ is generated by the parallel transports of curves of the type described in the proposition (which we will call "rectangles" for simplicity) and such that τ_{γ} is the limit of the $\tau_{\gamma_{n}}$.

Let $p_{1, p}$ be the local projection of \mathcal{M} onto the leaf $\mathcal{F}_{1}(p)$ along the leaves of \mathcal{F}_{2} and $p_{2, p}$ be the local projection of \mathcal{M} onto the leaf $\mathcal{F}_{2}(p)$ along the leaves of \mathcal{F}_{1}.

For a given curve $\mu:\left[t_{0}, t_{1}\right] \rightarrow M$ define the curve $\mu_{(1)}:\left[t_{0}, t_{1}\right] \rightarrow M$ by $\mu_{(1)}=\left(p_{1, \mu\left(t_{0}\right)} \circ \mu\right)$ and the curve $\mu_{(2)}:\left[t_{0}, t_{1}\right] \rightarrow M$ by $\mu_{(2)}=\left(p_{2, \mu\left(t_{1}\right)} \circ \mu\right)$.

Finally let $\mu^{\prime}:\left[t_{0}, t_{1}\right] \rightarrow M$ be the curve defined by $\mu^{\prime}\left(\xi t_{0}+(1-\xi) \frac{t_{0}+t_{1}}{2}\right)=$ $\mu_{(1)}\left(\xi t_{0}+(1-\xi) t_{1}\right)$ for $0 \leq \xi \leq 1$ and by $\mu^{\prime}\left(\xi \frac{t_{0}+t_{1}}{2}+(1-\xi) t_{1}\right)=\mu_{(2)}\left(\xi t_{0}+\right.$ $\left.(1-\xi) t_{1}\right)$ for $0 \leq \xi \leq 1$.

For a given sequence of reals $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}<t_{n+1}=1$ one considers the curve $\nu:[0,1] \rightarrow M$ such that $\nu\left[t_{i}, t_{i+1}\right]=\left(\gamma_{\left[t_{i}, t_{i+1}\right]}\right)^{\prime}$ is obtained by the preceding method.

One can show that the parallel transport τ_{ν} is equal to a product of parallel transports along "rectangles": In fact if $\rho=\rho_{1} \rho_{2}$ is a closed curve then $\rho_{1}^{\prime} \rho_{2}^{\prime}$ is a "rectangle". One decomposes parallel transport τ_{ν} then into a product of parallel transports along the "rectangles": $R_{1}^{-1}, R_{2}, R_{3}^{-1}, R_{4} \ldots, R_{2(n-1)}^{-1}, R_{2 n}$ defined as follows:

By setting $\omega_{2 i}=\gamma_{\left[t_{0}, t_{i}\right]}$ and $\omega_{2 i+1}=\gamma_{\left[t_{0}, t_{i}\right]}\left(\gamma_{\left[t_{i}, t_{i+1}\right]}\right)_{(1)}$ for $i<n$, let R_{r} be the "rectangle" $\omega_{r}^{\prime}\left(\omega_{r}^{-1}\right)^{\prime}$ for $r<2 n$ and let $R_{2 n}$ be the "rectangle" $\left(\gamma_{\left[t_{0}, t_{n}\right]}\right)^{\prime}\left(\gamma_{\left[t_{n}, t_{n+1}\right]}\right)^{\prime}$.

When $\left|t_{i+1}-t_{i}\right|$ tends towards $0, \nu$ tends to γ in the sense of the compactopen topology which implies that τ_{ν} tends towards τ_{γ}.

So the parallel transports along "rectangles" generate the whole holonomy group.

3.2. Generic calculus.

Proposition 8. If the holonomy representation of the manifold \mathcal{M} equipped with the connection ∇ is of type $T_{o} M=V_{1} \oplus V_{2}$ with V_{1} and V_{2} two faithful representations of the holonomy algebra \mathfrak{g}, using the notations of pre preceding subsection and writing a_{i}^{j} and \tilde{a}_{l}^{m} the coefficients defined by the relations $\partial_{y_{q}^{k}, p}=\sum_{l} a_{k}^{l}(p) \partial_{y_{o}^{l}, p}$, and $\partial_{y_{o}^{l}, p}=\sum_{m} \tilde{a}_{l}^{m}(p) \partial_{y_{q}^{m}, p}$ where q is the intersection point of $\mathcal{F}_{2}(p)$ with $\mathcal{F}_{1}(o)$, defining Γ by the relations

$$
\nabla_{\partial_{x_{o}^{i}}} \partial_{x_{o}^{k}}=\sum_{m} \Gamma_{i, k}^{m} \partial_{x_{o}^{m}}
$$

one has:

$$
\begin{aligned}
R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{x_{o}^{k}} & =-\sum_{m} \partial_{y_{o}^{j}}\left(\Gamma_{i, k}^{m}\right) \partial_{x_{o}^{m}} \\
R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{y_{q}^{k}} & =-\sum_{m} \partial_{y_{o}^{j}}\left(\sum_{l} \partial_{x_{o}^{i}} a_{k}^{l} \tilde{a}_{l}^{m}\right) \partial_{y_{q}^{m}}
\end{aligned}
$$

Proof. One can write (using in the point p the equality: $d y_{o}^{i}=$ $\left.\sum_{j}\left(\partial_{y_{q}^{j}} y_{o}^{i}\right) d y_{q}^{j}\right): a_{k}^{l}(p)=\partial_{y_{q}^{k}, p} y_{o}^{l}$.

Clearly one has: $\sum_{j} a_{k}^{j} \tilde{a}_{j}^{l}=\delta_{k}^{l}$ and $\sum_{j} \tilde{a}_{k}^{j} a_{j}^{l}=\delta_{k}^{l}$. By applying a derivation ∂ to these relations one obtains:

$$
\sum_{j}\left(\partial a_{k}^{j}\right) \tilde{a}_{j}^{l}=-\sum_{j} a_{k}^{j}\left(\partial \tilde{a}_{j}^{l}\right) \text { et } \sum_{j}\left(\partial \tilde{a}_{k}^{j}\right) a_{j}^{l}=-\sum_{j} \tilde{a}_{k}^{j}\left(\partial a_{j}^{l}\right)
$$

The equality $\nabla_{\partial_{o}^{j}} \partial_{y_{q}^{k}}=0$ (which is verified because the leaf $\mathcal{F}_{2}(q)$ is flat), can be written when defining Γ^{\prime} by the relations

$$
\nabla_{\partial_{y_{o}^{i}}} \partial_{y_{o}^{k}}=\sum_{m} \Gamma_{i, k}^{\prime m} \partial_{y_{o}^{m}}:
$$

$$
\begin{aligned}
0 & =\nabla_{\partial_{y_{o}^{j}}} \partial_{y_{q}^{k}} \\
& =\nabla_{\partial_{y_{o}^{j}}} \sum_{l} a_{k}^{l} \partial_{y_{o}^{l}} \\
& =\sum_{l}\left(\left(\partial_{y_{o}^{j}} a_{k}^{l}\right) \partial_{y_{o}^{l}}+a_{k}^{l} \nabla_{\partial_{y_{o}^{j}}} \partial_{y_{o}^{l}}\right) \\
& =\sum_{l}\left(\left(\partial_{y_{o}^{j}} a_{k}^{l}\right) \partial_{y_{o}^{l}}+a_{k}^{l} \sum_{p} \Gamma_{j, l}^{\prime p} \partial_{y_{o}^{p}}\right)
\end{aligned}
$$

By separating the basis vectors one has for any j, k, l :

$$
\begin{equation*}
\partial_{y_{o}^{j}} a_{k}^{l}+\sum_{p} a_{k}^{p} \Gamma^{\prime l}{ }_{j, p}^{l}=0 . \tag{A}
\end{equation*}
$$

One can isolate $\Gamma^{\prime}{ }_{j, p}$ by writing:

$$
\begin{equation*}
\Gamma_{j, p}^{\prime l}=-\sum_{k} \tilde{a}_{p}^{k} \partial_{y_{o}^{j}} a_{k}^{l} \tag{B}
\end{equation*}
$$

Deriving relation (A) by $\partial_{x_{o}^{i}}$ one obtains:

$$
\begin{equation*}
\partial_{x_{o}^{i}} \partial_{y_{o}^{j}} a_{k}^{l}+\sum_{p}\left(\partial_{x_{o}^{i}} a_{k}^{p}\right) \Gamma_{j, p}^{\prime l}+\sum_{p} a_{k}^{p}\left(\partial_{x_{o}^{i}} \Gamma_{j, p}^{\prime l}\right)=0 \tag{*}
\end{equation*}
$$

By choosing a path γ_{1} from o to q contained in $\mathcal{F}_{2}(o)$ and a path γ_{2} from q to p contained in $\mathcal{F}_{1}(p)$ and noting $\gamma=\gamma_{1} \gamma_{2}$ and τ_{γ} the parallel transport along the path $\gamma, \tau_{\gamma}\left(\partial_{x_{o}^{k}}\right)=\partial_{x_{o}^{k}}$ and $\tau_{\gamma}\left(\partial_{y_{o}^{l}}\right)=\partial_{y_{q}^{l}}$.

At point p one can calculate:

$$
R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{x_{o}^{k}}=\sum_{m}\left(-\partial_{y_{o}^{j}} \Gamma_{i, k}^{m}\right) \partial_{x_{o}^{m}}
$$

The more one has:

$$
\begin{aligned}
R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{y_{q}^{k}} & =\nabla_{\partial_{x_{o}^{i}}} \underbrace{\nabla_{\partial_{y_{o}^{j}}} \partial_{y_{q}^{k}}}_{0}-\nabla_{\partial_{y_{o}^{j}}} \nabla_{\partial_{x_{o}^{i}}} \partial_{y_{q}^{k}} \\
& =-\nabla_{\partial_{y_{o}^{j}}} \nabla_{\partial_{x_{o}^{i}}} \sum_{l} a_{k}^{l} \partial_{y_{o}^{l}} \\
& =-\nabla_{\partial_{y_{o}^{j}}} \sum_{l}\left(\partial_{x_{o}^{i}} a_{k}^{l}\right) \partial_{y_{o}^{l}}-\underbrace{\sum_{l} a_{k}^{l} \nabla_{\partial_{x_{o}^{i}}} \partial_{y_{o}^{l}}}_{0} \\
& =-\sum_{l}\left(\left(\partial_{y_{o}^{j}} \partial_{x_{o}^{i}} a_{k}^{l}\right) \partial_{y_{o}^{l}}+\partial_{x_{o}^{i}} a_{k}^{l} \nabla_{\partial_{y_{o}^{j}}} \partial_{y_{o}^{l}}\right) \\
& =-\sum_{l}\left(\left(\partial_{y_{o}^{j}} \partial_{x_{o}^{i}} a_{k}^{l}\right) \partial_{y_{o}^{l}}+\partial_{x_{o}^{i}} a_{k}^{l} \sum_{p} \Gamma_{j, l}^{\prime p} \partial_{y_{o}^{p}}\right)
\end{aligned}
$$

By the relation $(*)$ and by the fact that $\partial_{x_{o}^{i}}$ and $\partial_{y_{o}^{j}}$ commute one obtains:

$$
\begin{aligned}
R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{y_{q}^{k}} & =\sum_{l}\left(\sum_{p} a_{k}^{p}\left(\partial_{x_{o}^{i}} \Gamma^{\prime} l, p\right)\right) \partial_{y_{o}^{l}} \\
& =\sum_{m, l, p}\left(a_{k}^{p}\left(\partial_{x_{o}^{i}} \Gamma_{j, p}^{l}\right) \tilde{a}_{l}^{m}\right) \partial_{y_{q}^{m}}
\end{aligned}
$$

The coefficient of $\partial_{y_{q}^{m}}$ can be written:

$$
\begin{aligned}
\sum_{p, l}\left(a_{k}^{p}\left(\partial_{x_{o}^{i}} \Gamma^{\prime l}{ }_{j, p}\right) \tilde{a}_{l}^{m}\right) & =\sum_{p, l}\left(a_{k}^{p} \partial_{x_{o}^{i}}\left(-\sum_{n} \tilde{a}_{p}^{n} \partial_{y_{o}^{j}} a_{n}^{l}\right) \tilde{a}_{l}^{m}\right) \\
& =-\sum_{p, n, l}\left(a_{k}^{p} \partial_{x_{o}^{i}} \tilde{a}_{p}^{n} \partial_{y_{o}^{j}} a_{n}^{l} \tilde{a}_{l}^{m}+a_{k}^{p} \tilde{a}_{p}^{n} \partial_{x_{o}^{i}} \partial_{y_{o}^{j}} a_{n}^{l} \tilde{a}_{l}^{m}\right) \\
& =-\sum_{p, n, l}\left(\partial_{x_{o}^{i}} a_{k}^{p} \tilde{a}_{p}^{n} a_{n}^{l} \partial_{y_{o}^{j}} \tilde{a}_{l}^{m}+a_{k}^{p} \tilde{a}_{p}^{n} \partial_{x_{o}^{i}} \partial_{y_{o}^{j}} a_{n}^{l} \tilde{a}_{l}^{m}\right) \\
& =-\sum_{l}\left(\partial_{x_{o}^{i}} a_{k}^{l} \partial_{y_{o}^{j}} \tilde{a}_{l}^{m}+\partial_{x_{o}^{i}} \partial_{y_{o}^{j}} a_{k}^{l} \tilde{a}_{l}^{m}\right) \\
& =-\partial_{y_{o}^{j}}\left(\sum_{l} \partial_{x_{o}^{i}} a_{k}^{l} \tilde{a}_{l}^{m}\right)
\end{aligned}
$$

4. $V \oplus V^{*}$ HOLONOMY

In the para-Kähler case there is a bilinear symmetric non degenerate form b on $T_{o} M$ which is invariant by the action on the holonomy algebra and $T_{o} M$ is equal to the direct sum of two totally isotropic invariant subspaces V_{1} and V_{2}. In particular the signature of b is neutral.

Remark that the mapping $\Psi: V_{2} \rightarrow V_{1}^{*},\left.v \mapsto b(v, \cdot)\right|_{V_{1}}$ is injective, and surjective for dimension reasons. In addition Ψ is a morphism of representations. As a consequence we have: $T_{o} M=V_{1} \oplus V_{1}^{*}$.

Inversely if one has the equality of representations $E=V_{1} \oplus V_{1}^{*}$, one can associate to E the symmetric bilinear non degenerate form b defined for $x, y \in V_{1}, u, v \in V_{1}^{*}$, by $b(x+u, y+v)=u(y)+v(x) . V_{1}$ and V_{1}^{*} are totally isotropic for this form. As a conclusion we are in the para-Kähler case.

So it is equivalent to be in the para-Kähler case or to have a holonomy of type $V \oplus V^{*}$.

Note that is this case the form $\omega(x+u, y+v)=u(y)-v(x)$ for $x, y \in V_{1}, u, v \in V_{1}^{*}$ which is non degenerate bilinear antisymmetric is also invariant.

4.1. Berger criteria.

Proposition 9. When $E=V \oplus V^{*}$, note $\tilde{k}(\mathfrak{g}):=\left(S^{2}\left(V^{*}\right) \otimes S^{2}(V)\right) \cap\left(V^{*} \otimes\right.$ $\mathfrak{g} \otimes V)$, and $\mathfrak{g}:=<\left\{r\left(x, \cdot, \cdot, z^{\prime}\right) \mid r \in \tilde{k}(\mathfrak{g}), x \in V, z^{\prime} \in V^{*}\right\}>$. If $\mathfrak{g} \subset \mathfrak{g l}(V)$ acting on $V \oplus V^{*}$ is a holonomy representation of a torsion-free connection then $\mathfrak{g}=\underline{\mathfrak{g}}$.

Proof. Recall that for $x, y \in V, z^{\prime}, t^{\prime} \in V^{*}$ and R a formal curvature tensor one has: $R(x, y)=0$ and $R\left(z^{\prime}, t^{\prime}\right)=0 . R$ is entirely known by the data of $R\left(x, z^{\prime}\right) y$ for $x, y \in V$ and $z^{\prime} \in V^{*}$. By the first Bianchi identity necessarily $x, y \in V$ and $z^{\prime} \in V^{*}, R\left(x, z^{\prime}\right) y=R\left(y, z^{\prime}\right) x$. We can restate this by saying: $R\left(\cdot, z^{\prime}\right) \cdot{ }_{V \times V} \in \mathfrak{g}^{(1)}$.

Let us introduce the tensor r defined for $x, y, z^{\prime}, t^{\prime} \in V \oplus V^{*}$ by $r\left(x, y, z^{\prime}, t^{\prime}\right):=\left\langle R\left(x, z^{\prime}\right) y, t^{\prime}\right\rangle$ which satisfies the classical relations in pseudoRiemannian geometry: $r\left(x, y, z^{\prime}, t^{\prime}\right)=-r\left(z^{\prime}, y, x, t^{\prime}\right)=r\left(y, x, t^{\prime}, z^{\prime}\right)$. We can restrict to $x, y \in V$ and $z^{\prime}, t^{\prime} \in V^{*}$. As a consequence $r \in S^{2}\left(V^{*}\right) \otimes S^{2}(V)$. Becauser $\left(x, \cdot, \cdot, z^{\prime}\right)=R\left(x, z^{\prime}\right) \in \mathfrak{g}$ it is clear that $r \in \tilde{k}(\mathfrak{g})$.

A condition for \mathfrak{g} being a holonomy representation is that \mathfrak{g} is generated by the $R\left(x, z^{\prime}\right)=r\left(x, \cdot, \cdot, z^{\prime}\right)$ for r in $\tilde{k}(\mathfrak{g}), x$ in V and z^{\prime} in V^{*}.
Proposition 10. When $E=V \oplus V^{*}$, note
$\tilde{k}^{1}(\mathfrak{g}):=\left(S^{3}\left(V^{*}\right) \otimes S^{2}(V)\right) \cap\left(S^{2}\left(V^{*}\right) \otimes \mathfrak{g} \otimes V\right) \oplus\left(S^{2}\left(V^{*}\right) \otimes S^{3}(V)\right) \cap\left(V^{*} \otimes \mathfrak{g} \otimes S^{2}(V)\right)$.
If $\mathfrak{g} \subset \mathfrak{g l}(V)$ acting on $V \oplus V^{*}$ is a holonomy representation of a torsionfree non locally symmetric connection then $\tilde{k}^{1}(\mathfrak{g}) \neq 0$.
Proof. This is again simply a specialization of the second Berger criterion to this case.
4.2. Classification in dimension 2×1 and 2×2. In dimension $1+1$ the algebra $\mathfrak{s o}(1,1)$ corresponding to the metric of matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is precisely $\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$. It is the generic holonomy algebra in the pseudoRiemannian case of signature $(1,1)$.

The paper $[\mathrm{BBI}]$ gives a classification in signature $(2,2)$:
Proposition 11. For V of dimension 2, $V \oplus V^{*}$ is an indecomposable holonomy representation if and only if V or V^{*} is in the following list:
(1) $\left\{\left.\left(\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\}$
(2) For fixed $\lambda \in[-1,1],\left\{\left.\left(\begin{array}{cc}a & c \\ 0 & \lambda a\end{array}\right) \right\rvert\, a, c \in \mathbb{R}\right\}$
(3) $\left\{\left.\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$
(4) $\mathfrak{s l}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$
(5) $\mathfrak{g l}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$
(6) $\mathfrak{c o}(2)=\left\{\left.\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$

5. $V \oplus V$ HOLONOMY

A representation $V \oplus V$ can be written as well $V \otimes \mathbb{R} \oplus V \otimes \mathbb{R}=V \otimes \mathbb{R}^{2}$ where \mathbb{R} and \mathbb{R}^{2} are the trivial representations.
5.1. Berger criteria. Let $V_{1} \oplus V_{2}$ be a holonomy representation of $\mathfrak{g} \subset$ $\mathfrak{g l}\left(V_{1}\right)$ and let $\Phi: V_{1} \rightarrow V_{2}, x \mapsto x^{\prime}$ be an isomorphism of representations. The curvature tensor R verifies then the following relations due to the Bianchi identity: $x, y, z \in V_{1}$:

$$
\begin{gathered}
R(x, y)=0 \\
R\left(x^{\prime}, y^{\prime}\right)=0 \\
R\left(x, y^{\prime}\right) z=R\left(z, y^{\prime}\right) x \\
R\left(x, y^{\prime}\right) z^{\prime}=R\left(x, z^{\prime}\right) y^{\prime}
\end{gathered}
$$

In addition because of the isomorphism Φ we have:

$$
R\left(x, y^{\prime}\right) z^{\prime}=\left(R\left(x, y^{\prime}\right) z\right)^{\prime}
$$

One can deduce that the tensor T defined for $x, y, z \in V_{1}$ by $T(x, y, z):=$ $R\left(x, y^{\prime}\right) z$ verifies:

$$
T \in S^{3}\left(V_{1}^{*}\right) \otimes V_{1} .
$$

In addition The Ambrose-Singer theorem gives us for $x, y \in V_{1}$:

$$
T(x, y, \cdot) \in \mathfrak{g} .
$$

Note

$$
\mathfrak{g}^{(2)}:=S^{3}\left(V_{1}^{*}\right) \otimes V_{1} \cap\left(V_{1}^{*}\right)^{\otimes 2} \otimes \mathfrak{g}
$$

and

$$
\hat{\mathfrak{g}}:=\left\{T(x, y, \cdot) \mid T \in \mathfrak{g}^{(2)}, x, y \in V_{1}\right\} .
$$

The first Berger criterion can be formulated in this context simply by
Proposition 12. Let $\mathfrak{g} \subset \mathfrak{g l}\left(V_{1}\right)$. A necessary condition for $\mathfrak{g} \subset \mathfrak{g l}\left(V_{1}\right)$ acting by $V_{1} \otimes \mathbb{R}^{2}$ is a holonomy representation for a torsion-free connection is that $\mathfrak{g}=\hat{\mathfrak{g}}$.

Note that the second Bianchi identity can be formulated here by: for $x, y, z \in V_{1}$,

$$
\left(\nabla_{x} R\right)\left(y, z^{\prime}\right)=\left(\nabla_{y} R\right)\left(x, z^{\prime}\right),
$$

so that the tensor S defined by $S(x, y, z, t):=\left(\nabla_{x} R\right)\left(y, z^{\prime}\right) t$ lives in $S^{4}\left(V_{1}^{*}\right) \otimes$ V_{1}.

By noting

$$
\mathfrak{g}^{(3)}:=S^{4}\left(V_{1}^{*}\right) \otimes V_{1} \cap\left(V_{1}^{*}\right)^{\otimes 3} \otimes \mathfrak{g}
$$

the second Berger criterion can be formulated:
Proposition 13. If $\mathfrak{g} \subset \mathfrak{g l}\left(V_{1}\right)$ acting by $V_{1} \otimes \mathbb{R}^{2}$ is a holonomy representation for a torsion-free non locally symmetric connection then necessarily $\mathfrak{g}^{(3)} \neq\{0\}$.
5.2. Geometric structure. By using the notations and calculus used in the proof of proposition 8 we obtain:

If the holonomy is of type $V \otimes \mathbb{R}^{2}$, at the origin $o \partial_{x_{o}^{k}, o}$ and $\partial_{y_{o}^{k}, o}$ transform by the same endomorphism. Their parallel transport along a path γ from o to p defined as the product $\gamma_{1} \gamma_{2}$ of a path γ_{1} from o to q contained in $\mathcal{F}_{1}(o)$ and a path γ_{2} from q to p contained in $\mathcal{F}_{2}(p)$ gives: $\tau_{\gamma}\left(\partial_{x_{o}^{k}}\right)=\partial_{x_{o}^{k}}$ et $\tau_{\gamma}\left(\partial_{y_{o}^{k}}\right)=\partial_{y_{q}^{k}}$.
$R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right)$ acts again "identically" on these two vectors, which means that the relation between $R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{x_{o}^{k}}$ and $R_{p}\left(\partial_{x_{o}^{i}}, \partial_{y_{o}^{j}}\right) \partial_{y_{q}^{k}}$ obtained in proposition 8 can be translated by:

$$
\partial_{y_{o}^{j}} \Gamma_{i, k}^{m}=\partial_{y_{o}^{j}}\left(\sum_{l} \partial_{x_{o}^{i}} a_{k}^{l} \tilde{a}_{l}^{m}\right),
$$

or by:

$$
\Gamma_{i, k}^{m}=\sum_{l} \partial_{x_{o}^{i}} a_{k}^{l} \tilde{a}_{l}^{m}+\text { const } .
$$

By evaluating this equality in o it follows

$$
\Gamma_{i, k}^{m}=\sum_{l} \partial_{x_{o}^{i}} a_{k}^{l} \tilde{a}_{l}^{m}
$$

So that we can write:

Proposition 14. If the holonomy of the connection ∇ is of type $V \otimes \mathbb{R}^{2}$, a_{i}^{j} et \tilde{a}_{l}^{m} being the coefficients defined by $\partial_{y_{q}^{k}, p}=\sum_{l} a_{k}^{l}(p) \partial_{y_{o}^{l}, p}$, and $\partial_{y_{o}^{l}, p}=$ $\sum_{m} \tilde{a}_{l}^{m}(p) \partial_{y_{q}^{m}, p}\left(\right.$ where q is the intersection point of $\mathcal{F}_{2}(p)$ with $\left.\mathcal{F}_{1}(o)\right)$, defining Γ by the relations

$$
\nabla_{\partial_{x_{o}^{i}}} \partial_{x_{o}^{k}}=\sum_{m} \Gamma_{i, k}^{m} \partial_{x_{o}^{m}}
$$

we have:

$$
\Gamma_{i, k}^{m}=\sum_{l} \partial_{x_{o}^{i}} a_{k}^{l} \tilde{a}_{l}^{m}
$$

The condition that ∇ is torsion-free gives then the following equalities:
Proposition 15. The coordinates defined before verify the relations (for any $i, j, k)$:

$$
\frac{\partial^{2} y_{o}^{k}}{\partial x^{i} \partial y^{j}}=\frac{\partial^{2} y_{o}^{k}}{\partial x^{j} \partial y^{i}}
$$

5.3. Classification in dimension 2×2. Remark that the representations $V \otimes \mathbb{R}^{2}$ which are decomposable are all holonomy representations (for a torsion-free connection) because all representations of dimension 2 are.

Proposition 16. For V of dimension $2, V \otimes \mathbb{R}^{2}$ is an indecomposable holonomy representation if and only if V is in the following list:
(1) $\left\{\left.\left(\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\}$
(2) For fixed $\lambda \in \mathbb{R},\left\{\left.\left(\begin{array}{cc}a & c \\ 0 & \lambda a\end{array}\right) \right\rvert\, a, c \in \mathbb{R}\right\}$
(3) $\left\{\left.\left(\begin{array}{ll}0 & c \\ 0 & a\end{array}\right) \right\rvert\, a, c \in \mathbb{R}\right\}$
(4) $\left\{\left.\left(\begin{array}{cc}a & c \\ 0 & b\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$
(5) $\mathfrak{s l}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$
(6) $\mathfrak{g l}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$
(7) $\mathfrak{c o}(2)=\left\{\left.\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$

Proof. Recall the list of the representations of dimension 2:

	Lie group	Lie algebra
$G l^{+}(2, \mathbb{R})$	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a d-b c>0$	$\left(\begin{array}{lll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{R}$
$S l(2, \mathbb{R})$	$\left(\begin{array}{ll}a & b \\ a & b \\ c & d\end{array}\right)$ with $a d-b c=1$	$\left(\begin{array}{cc}a \\ a & b \\ c & -a\end{array}\right)$ with $a, b, c \in \mathbb{R}$
$\mathrm{SO}(2)$	$\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ with $\theta \in \mathbb{R}$	$\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right)$ with $a \in \mathbb{R}$
$\mathrm{CO}(2)$	$\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ with $a^{2}+b^{2} \neq 0$	$\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ with $a, b \in \mathbb{R}$
$C O(2)_{\lambda}$	$e^{\theta}\left(\begin{array}{cc}\cos (\lambda \theta) & -\sin (\lambda \theta) \\ \sin (\lambda \theta) & \cos (\lambda \theta)\end{array}\right)$ with $\lambda \neq 0$ fixed and $\theta \in \mathbb{R}$	$\binom{\theta}{\lambda \theta}$
Id	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	0
Homotheties	$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ with $a>0$	$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ with $a \in \mathbb{R}$
$S O(1,1)$	$\left(\begin{array}{ll}a & 0 \\ 0 & a^{-1}\end{array}\right)$ with $a>0$	$\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right)$ with $a \in \mathbb{R}$
$S O_{\lambda}$	$\left(\begin{array}{cc}a & 0 \\ 0 & a^{\lambda}\end{array}\right)$ with λ fixed $\neq-1,0,1$ and $a>0$	$\left(\begin{array}{ccc}a & 0 \\ 0 & \lambda a\end{array}\right)$ with $a \in \mathbb{R}$
$S O-1_{1}$	$\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right)$ with $a>0$	$\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$ with $a \in \mathbb{R}$
$C O(1,1)$	$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ with $a, b>0$	$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ with $a, b \in \mathbb{R}$
He	$\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ with $a \in \mathbb{R}$	$\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$ with $a \in \mathbb{R}$
Tr - X	$\left(\begin{array}{cc}e^{t} & t e e^{t} \\ 0 & e^{t}\end{array}\right)$ with $t \in \mathbb{R}$	$\left(\begin{array}{ll}a & a \\ 0 & a\end{array}\right)$ with $a \in \mathbb{R}$
Tr - H	$\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ with $a>0, b \in \mathbb{R}$	$\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ with $a, b \in \mathbb{R}$
Tr - SO(1, 1)	$\left(\begin{array}{lll}a & b \\ 0 & a^{-1}\end{array}\right)$ with $a>0, b \in \mathbb{R}$	$\left(\begin{array}{cc}a & b \\ 0 & -a\end{array}\right)$ with $a, b \in \mathbb{R}$
Tr $-S^{\text {S }}{ }_{\lambda}$	$\left(\begin{array}{cc}a & b \\ 0 & a^{\lambda}\end{array}\right)$ with λ fixed $\neq-1,0,1$ and $a>0, b \in \mathbb{R}$	$\left(\begin{array}{cc}a & b \\ 0 & \lambda a\end{array}\right)$ with $a, b \in \mathbb{R}$
$\mathrm{Tr}-\mathrm{SO}-1_{1}$	$\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ with $a>0, b \in \mathbb{R}$	$\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ with $a, b \in \mathbb{R}$
$\mathrm{Tr}-\mathrm{SO}-1_{2}$	$\left(\begin{array}{ll}1 & b \\ 0 & a\end{array}\right)$ with $a>0, b \in \mathbb{R}$	$\left(\begin{array}{lll}0 & b \\ 0 & a\end{array}\right)$ with $a, b \in \mathbb{R}$
Tr	$\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with $a>0, c>0, b \in \mathbb{R}$	$\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with $a, b, c \in \mathbb{R}$

By examining the different representations V in dimension 2, we have:
$C O(1,1), I d$ et $S O-1_{1}$ are decomposable.
$S O(2), C O(2)_{\lambda}($ for $\lambda \neq 0), S O(1,1), T r-X$, the homotheties and $S O_{\lambda}$ (for $\lambda \neq-1,0,1)$) are excluded because $V \otimes \mathbb{R}^{2}$ is then a representation of a Lie algebra of dimension 1 whose image is generated by an endomorphism of rank bigger or equal to 3 which can not be a holonomy representation because of the first Bianchi identity.

For the other cases we construct associated connections by making explicit the coordinate relations by proposition 7 and verifying the relations stated in 15 . Note that y^{i} and y_{o}^{i} have to coincide if $\forall j, x^{j}=0$.

For $G l^{+}(2, \mathbb{R})$ we take:

$$
\begin{gathered}
y_{o}^{1}=x_{o}^{1} y^{2}+x_{o}^{2} y^{1}+y^{1} \\
y_{o}^{2}=x_{o}^{1} y^{2} x_{o}^{2} y^{1}+y^{2}
\end{gathered}
$$

$S l(2, \mathbb{R})$ is an example known from the work of R . Bryant (see [Br1] and [Br 2$]): \mathfrak{s u}(1,1)$ is a holonomy representation.

For $C O(2)$ we take: $X=x_{o}^{1}+i x_{o}^{2}, Y=y^{1}+i y^{2}$ a holomorphic function $F: U \rightarrow \mathbb{C}$ (with U an open neighbourhood of o in \mathbb{C}^{2}) such that $\frac{\partial^{2} F}{\partial X \partial Y}$ is not identically vanishing and such that $F(0, Y)=Y$ et $F(X, 0)=X$, for example $F(X, Y)=X Y+X+Y$. We note $F=F_{R}+i F_{I}$ with F_{R} and F_{I} real-valued functions. The functions

$$
\begin{gathered}
y_{o}^{1}=F_{R} \\
y_{o}^{2}=F_{I}
\end{gathered}
$$

define then a connection of the wanted type.
$H e$, enters is as well of type $V \oplus V^{*}$. One can take:

$$
\begin{gathered}
y_{o}^{1}=y^{1}+f\left(x^{2}, y^{2}\right), \\
y_{o}^{2}=y^{2}
\end{gathered}
$$

f is a function vanishing for $x^{2}=0$.

For $T r$ one can take

$$
\begin{gathered}
y_{o}^{1}=x^{1} y^{1}+y^{1}+y^{2}, \\
y_{o}^{2}=y^{2}\left(1+x^{2}\right),
\end{gathered}
$$

as an example.
$\operatorname{Tr}-H, \operatorname{Tr}-S O(1,1), \operatorname{Tr}-S O_{\lambda}(\lambda \neq-1,0,1), \operatorname{Tr}-S O-1_{1}$, which enter the scheme $\left(\begin{array}{cc}a & b \\ 0 & a^{\lambda}\end{array}\right)$ with λ one can take:

$$
\begin{gathered}
y_{o}^{1}=x^{1} y^{2}+x^{2} y^{1}+y^{1} \\
y_{o}^{2}=y^{2}\left(1+x^{2}\right)^{\lambda}
\end{gathered}
$$

For the group $\operatorname{Tr}-S O-1_{2}$ one can take

$$
\begin{gathered}
y_{o}^{1}=y^{1}+y^{2} \\
y_{o}^{2}=y^{2}\left(1+x^{2}\right) .
\end{gathered}
$$

6. Final remark

We evaluated the Berger criteria for both types of representations $V \oplus V^{*}$ and $V \otimes \mathbb{R}^{2}$ for all representations V up to dimension 3 using the software Maple. These results might appear in future articles.

References

[AS] W. Ambrose, I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 79 (1953), pp. 428-443. On the Holonomy of Lorentzian Manifolds, Proceeding of symposia in pure math., volume 54, 1993, pp. 27-40.
[BBI] L. Bérard Bergery, A. Ikemakhen, Sur l'holonomie des variétés pseudoriemanniennes de signature (n, n), Bulletin de la Société Mathématique de France, 125 no. 1 (1997), pp. 93-114.
[BBK] L. Bérard Bergery, T. Krantz, Representations admitting two pairs of supplementary invariant spaces, arXiv:0704.2777/, 2007
[Ber] M. Berger, Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), pp. 279-330.
[BL] A. Borel, A. Lichnerowicz, Groupes d'holonomie des variétés riemanniennes, C.R. Acad. Sci. Paris 234 (1952), pp.1835-1837.
[Boub] Ch. Boubel, On the holonomy of Lorentzian metrics, Prépublication UMPA no. 323 (2004), Écol. Norm. Sup. Lyon.
[Br1] R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2) $\mathbf{1 2 6}$ (1987), pp. 525-576, MR 89b:53084, Zbl 0637.53042
[Br2] R. L. Bryant, Classical, exceptional, and exotic holonomies: a status report, in Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., vol. 1 (1996), pp. 93-165, Soc. Math. France, Paris MR 98c:53037. bibitem[Ca]cartan E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité générale I, II, Ann. Sci. Écol. Norm. Sup. 40 (1923), pp. 325-417, et 41 (1924), pp.1-25, Voir aussi Euvres complètes Tome III.
[CMS] Q.-S. Chi, S. Merkulov, L. Schwachhöfer, On the existence of infinite series of exotic holonomies, Inventiones Math. 126 (1996), pp. 391-411.
[DR] G. de Rham, Sur la réductibilité d'un espace de Riemann, Math Helv. 26 (1952), pp. 328-344.
[Gal1] A. Galaev, Metrics that realize all types of Lorentzian holonomy algebras, arXiv:math.DG/0502575, 2005.
[Gal2] A. Galaev, Holonomy groups and special geometric structures of pseudo-Kählerian manifolds of index 2, thèse de doctorat de la Humboldt-Universität, Berlin, 2006.
[I2] A. Ikemakhen, Examples of indecomposable non-irreducible Lorentzian manifolds, Ann. Sci. Math. Québec 20 (1996), no. 1, pp. 53-66.
[I3] A. Ikemakhen, Sur l'holonomie des variétés pseudo-riemanniennes de signature $(2,2+\mathrm{n}), 1998$.
[K] T. Krantz, Holonomie des connexions sans torsion, PhD thesis of the Université Henri Poincaré Nancy I, 2007.
[KN] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol I/II, Interscience, 1963.
[Le1] T. Leistner, PhD Thesis, Humboldt University Berlin, 2003.
[Le2] T. Leistner, Berger algebras, weak-Berger algebras and Lorentzian holonomy, sfb 288 preprint no. 567, 2002.
[Le3] T. Leistner, Towards a classification of Lorentzian holonomy groups, arXiv:math.DG/0305139, 2003.
[Le4] T. Leistner, Towards a classification of Lorentzian holonomy groups. Part II:Semisimple, non-simple weak-Berger algebras, arXiv:math.DG/0309274, 2003.
[MS] S. Merkulov and L. Schwachhöfer, Classification of irreducible holonomies of torsion-free affine connections, Ann. of Math. (2) 150 (1999), no. 1, pp. 77-149.
[Sch] L. Schwachhöfer, On the classification of holonomy representations, Habilitation Leipzig, 1999.
[W] H. Wu, Holonomy groups of indefinite metrics, Pacific Journal of Mathematics, 20 (1967), pp. 351-392.

[^0]: e-mail: Tom.Krantz@uni.lu
 Address: Institut Élie Cartan Nancy. Université Henri Poincaré Nancy 1. B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France.

 Université du Luxembourg. 162a, avenue de la Faïencerie. L-1511 Luxembourg. G.-D. of Luxembourg.
 The author is supported by BFR 03/095 of the ministry of research of the G.-D. of Luxembourg.

