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SECOND ORDER AVERAGE ESTIMATES ON LOCAL DATA OF CUSP FORM St

FARRELL BRUMLEY?

Abstract

We specify sufficient conditions for the square modulus efltdtal parameters of
a family of GL,, cusp forms to be bounded on average. These conditions dral glo
in nature and are satisfied far< 4. As an application, we show that Rankin-Selberg
L-functions onGL,,, x GL,,, for n;, < 4, satisfy the standard convexity bound.

1 Introduction

Let F' be a number field andl its ring of adeles. Let = ®,m, be a cuspidal automor-
phic representation &L, (A). At each finite place = p of F' there is associated witt) a
semisimple conjugacy class, (p) in GL,(C), the matrix of local (Langlands) parameters
A, (p) = diag(a(p, 1), ..., ax(p,n)). The Ramanujan conjecture states tfhatp, )| < 1
forall 1 <4 < n, with strict equality whenr, is unramified.

One may use the information supplied by the Ramanujan Clumgeto derive impor-
tant analytic results fof.-functions. In doing so one trades strong pointwise infdroma
for results that often have more to do with the average behafithe local parameters,
with «,(p,7) ranging over primes and possibly overr is some family. One such con-
sequence of the Ramanujan Conjecture is that any (apptelgrizormalized)L-function
associated ta satisfies the optimal estimat& (C'(7)¢) onRe(s) > 1. The quantityC ()
is the analytic conductor of (see Sectiofj 3 for the definition). When this property holds,
we say that thé.-function satisfies the standard convexity bound.

One technique used to demonstrate optimal bounds on sunwsiivp coefficients
was introduced by Iwaniec [6] for cusp formson GL,. lwaniec uses a linearization pro-
cess to show that if the coefficienté, =) of L(s, 7) don’t begin to showD(1) behavior by
the timeNn is of sizeO (C(7)¢) then this late excess will so propogate through the remain-
ing coefficients via their multiplicative relations as tont@dict the polynomial control
granted by the Rankin-Selberg theory. Molteni [16], wogkiout the difficult combina-
torics involved in implementing Iwaniec’s idea in full geaéty, was then able to show
that for = any cusp form orGL,, the principal L-function L(s, ) satisfies the standard
convexity bound.

To apply the same reasoning to the Rankin-Selldefgnction L(s, 7 x ) requires
a more delicate analysis. It may come as a surprise to sorhdehpite the recent break-
throughs in certain cases sfilconvexity, it is still not known in complete generality and
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under no assumptions thats, = x ) satisfies the standard convexity bound. Molteni [16]
went some way toward this goal by showing thatfaany cusp form ortzL,, as long as

|t (p, 4)] < Np'/* (1)

for all but finitely many primes and1 < ¢ < n thenL(s, 7 x m) satisfies the standard
convexity bound (see his Hypothesis)YRAt present, however, bounds of this quality are
known only for cusp forms oftiL,(A) where we havéo (p, i)| < Np'/? [11].

In this paper we remove hypothesf$ (1) in certain cases,imydhat L(s, m; x )
satisfies the standard convexity bound for péirs ;) on GL,,, x GL,, for n; < 4. This
improvement upon the range given by Molteni's work is duegoemter emphasis on global
infomation and benefits from some recent advances in fuiatitgr Throughout the paper
we take pains to describe what happens on higher rank in ar gffcompare the strengths
of our method with those of other approaches.

1.1 Main Theorem

We consider a Dirichlet series which acts as a majorizeL(@f = x 7). Forzm any
cuspidal representation 6fL,,(A), define

L(s,n, |max|?) := Z A(n, 7, |max|*)Nn~* := H Zm?ﬂaﬂ(p,i)\% Np~".
n p r>0
We shall specify sufficient conditions under which ttigs, 7, jmax|?) is O.(C(7)) on
Re(s) > 1. We call this estimate the convexity bouatls = 1, detailing the specific
point in this case sincé(s, 7, |max|?), lacking a functional equation, does not allow for
an interpolation to points to the left of 1.

This functionL(s, 7, |max|?) has the advantage ovets,  x 7) of being completely
multiplicative in its coefficients. As we shall see in Projios [LQ, Dirichlet series whose
coefficients are positive and completely multiplicative ¢ subjected to lwaniec’s boot-
strapping method with no additional assumption on the dizkeir coefficients.

The disadvantage of working with(s, 7, |max|?) is that it is not an_-function com-
ing from an automorphic form, making its analytic propestigrd to unearth. To remedy
this problem, we majoriza (p, 7, [max|?) for p at which, is unramified by a sum of the
absolute values of certain more naturally arising coefiiisiésee Propositidi 5). In doing
so, we make use of the fact that for unramifyeithe unitarity ofr, restricts the number of
roots that can possibly violate the Ramanujan conjectune.miatrix of Satake parameters
A, (p) in this case is forced to lie in the same semi-simple conjygdass asA, (p)~!,
meaning that onlyn/2| of then roots can have size greater than 1. The functien is
the “floor” function outputting the largest integer lessritm equal to the imput value.

The following is our main theorem. For the definition afteongisobaric lift consult
SectionR.

THEOREM 1. Let 7 a cuspidal representation dfL,(A). For an integerj > 2
denote by\’ the exteriorj-power representation dfL,(C). Assume that for every <




j < |n/2] there exists a strong’-isobaric lift. ThenL(s, 7, |max|?) satifies the convexity
bound ats = 1.

1.2 Applications

Whenn = 2 or 3, the conditions of Theoref 1 are empty, so the conclusioonaa-
ically holds. Whem = 4 or 5 the sole condition in is that there exists a strong isobaric
A? lift. For n = 4, this condition was proven by Kim [9, Proposition 5.3.1]dao we can
state unconditionally the following practical result. Fsp forms orGL3; andGLy, this
result is new.

COROLLARY 2. Let7; be cuspidal representations 6fL,,(A) wheren; < 4 for
i =1,2. ThenL(s, T x ), as well asL(s, 7;, A%) and L(s, m;, sym?) for i = 1, 2, satisfy
the standard convexity bound.

The proof of Corollary]2, essentially an application of theuchy-Schwartz inequal-
ity, is provided in sub-sectidn 3.2.

We now given several examples where Theofem 1 can be usqul@ceg¢he Ramanu-
jan Conjecture or the hypothetical bounfls (1). The first @rgd sieve inequality for long
sums of Fourier coefficients of cusp forms 6il.,,. For cusp formsr on GL,/Q and
their imagessym?r under the Gelbart-Jacquet lift this large sieve inequadity theorem,
by Duke and Kowalski [2] in the level aspect whens holomorphic, by Luo [13] in the
eigenvalue aspect whenis a Maass form.

For a parametef) > 1 let S, (< Q) be the set of all cusp forms daL,, /Q with an-
alytic conductor bounded bY. Under a remaining assumption giving polynomial growth
on S, (< Q), the results of [2] and [13] can be extendedhts: 4 using Theorenp] 1.

COROLLARY 3. Letn = 3 or 4. Assume that there exists a numlker- 0 such
that |S,(< Q)| = 0(QY). Leta = 1 — (n?> +1)~! and form, m € S,(< Q) define
B = B(n) > 0 to be the exponent appearing in the convexity bound(efm; x m3) at
s = a, so thatL(a, m; x m) <, QBT. Then for any > 0 the inequality

Z Z apA(n, )

TES(SQ) ' nIN

2

< (NQF(N + QPN Y fa,

n<N

holds for all complex numberg,,)1<,<n-

The proof of Corollary]3 is by a well-known duality argumeblite shall only sketch
the details which pertain to the role of Theorgm 1. The twmgeon the right-hand side
of the large sieve inequality come from a majorization ofraegral involving the Rankin-
SelbergL-function at the point = 1 and along the line@ = a+¢ for smalle > 0. Ats =1
one uses Theorefh 1 to show that the residuk(efr x 7) is <. Q. Onthelines = a+e¢
Theorem[]L is used to establish the convergence and nedtigitfi the correction factor
that relates the bilinear Rankin-Selbdrgunction to the true convolution. This correction



factor, labeled (s, m; x m2) in [2], is the producl [, H,(s, m x m2) of polynomials inp~*
whose coefficients are symmetric polynomials in the locats®f m; andr, and whose
linear term is zero. The product convergesaris) > « and satisfies? (s, m x m) < Q°
in this region by the Luo-Rudnick-Sarnak bounds (see dysffj¥) and Theorer 1.

As afinal application we state a zero-density theorem fergypal L-functions of cusp
forms onGL,, for n = 3 or4. Kowalski and Michel [10] have proven a quite powerful zero-
density statement near the line 1 #functions of generalzL,, cusp forms ovef). They
assume the boundg (1) on the local parameters, in this caseve a mean-value theorem
with pseudo-characteesla Selberg As in Corollary[B we may remove this assumption for
n = 3 and4 using our Theorerfj 1. See the introduction to [10] for appilices of this type
of zero-density statement to moments/adfl, 7) for certain families ofr.

Let M(a,T) = {z € C| Re(z) > a and|Im(z)| < T} fora € R, T > 0. For any
cuspidal automorphic representationf GL,,/Q, we let

N(ma,T) = [{p € M(a,T)|L(r, p) = 0}|
(zeros counted with multiplicity).

COROLLARY 4. Letn = 3 or4. LetS, (< Q), @ > 1, be as above. Assume that there
exists a numbed > 0 such that S, (< Q)| = O(Q?). Leta > 1 — (n*> + 1)~ andT > 2.
Then there exist constantsB > 0, depending only on andd, such that

Z N(m;a,T) < TEQ1=2)

forall Q > 1. The implied constant depends only on the choice of

1.3 Strength of method

We have tried in this paper to give the reader an idea of tleagths of our method
relative to other approaches. Itis for this reason thapitethe extremity of its hypotheses,
Theoren{]L was stated for general

One weakness of the method we outline is that there is mudmniation loss in
passing from the conclusion of Theorg¢in 1 to Corolldry 2. Tbé information is hard
to quantify, and it is not at all clear that additional apations could be gleaned from the
stronger result. To see the information loss, imagine grymreverse the logic to deduce
the convexity bound at = 1 of L(s, 7, |max|?) from that of L(s, 7, sym?) and L(s, 7, A?)
alone. Note that convexity for these latter two implies thes for their produck (s, 7 x ),
and indeed for any Rankin-Selberg paifs, m; x ) by the Cauchy-Schwartz inequality.
But asn gets large ¢ greater that 5 will work), our Propositidih 5 shows that maryren
representations are needed to control the modulus-sqaétiee roots.

Theoren{]l thus seems best suited/io< 5 where the degree of the representations
whose automorphy we assume is no larger than those to whésections we apply the
result. But even fon < 5, where the standard and the exterior square represensaiioce



to control the square-modulus of the roots, there is inféiondoss simply by the reduction
to a completely multiplicative Dirichlet series. When appt Theoren{ll td.(s, 7 x 7)
for example, we are using the quantity(p, 7 x 7) + |A(p, 7, A?)|)" to control\(p", 7w x 7)
for everyr > 0. Whenr = 1 the presence of the exterior square is clearly unnece$3ary.
treating all coefficients with essentially the same magtdran, we neutralize the otherwise
helpful effect of interior cancellation among the rootstthmght lead to some coefficients
being small or zero.

Let us say more about other methods for proving the standamdexity bound for
Rankin-Selberd.-functions. The most direct way to force the convexity botord. (s, 7 x
7) is by assuming the existence of both an exterior and symersgjtiare lift. For it is clear
from the identityL(s, 7 x ) = L(s,w,sym?)L(s,m, A?) that the convexity bound for
L(s, 7 x ) follows from that of bothZ(s, 7, sym?) and L(s, 7, A?); by the results in [16]
again, this would follow from the (isobaric) automorphy aftbsym?r and A%?z. Hence
L(s,m x m), wherer is a cusp form orizLy(A), satisfies the standard convexity bound for
yet another reason: the Gelbart-Jacquet lift [3].

In SectionR we are able to shed some light on the relationdmiwhe hypothetical
bounds 1) on the local roots and the direct assumption aftéuiality of both A? and
sym?. In Corollary[® we show that fon < 5 the assumption of both functorial lifts is
stronger than the conditiof] (1). Fer> 5 no such implication can be made by our method.
In fact, working locally one unramified prime at a time, anthgsonly unitarity as input,
we show that many more functorial lifts are needed to break th exponent that Molteni
requires. Of course we lose lots of global information irtiegtup this implication, but
it is interesting nonetheless to consider whether, for éiighnk general linear groups, the
existence of both functorial lifts, already such an extrdmpothesis, might actually be
weaker than the bounds ifj (1).

AcknowledgementsThis paper represents a chapter in my doctoral dissertation
would like to thank my thesis advisor Peter Sarnak for sugggshis problem to me and
Ramin Takloo-Bighash, Philippe Michel, and Akshay Venkatéor their encouragement.

2 Consequences of unitarity

In the following proposition, we have chosen the exterioweplifts for simplicity.
The proof uses only properties on the size of the eigenvalueslternative sets of repre-
sentations ofzL,,(C) may be chosen, though one would then have to take into caaside
tion the arguments of the;.

PROPOSITIONS. Letn > 1 andm = [n/2]. There exists a constant > 0 depend-
ing only onn such that for any matrixd = diag(a, ..., a,) € GL,(C) with A~* and A



lying in the same semi-simple conjugacy class

max|o;|? < ¢, <1 + Z |Trace(/\jA)|2/j> : 2)

j=2

Proof: The assumption od means that there is some permutatoaf the indices
such thatv;a,;) = 1 for all i. The elements may be ordered by their size, say

log| > > am| 21> > |a. 3)
We note that

Trace(N A) = Z Qi+ Q. (4)

1<i1<<ij<n

For the moment lef?,, ..., R,,.; be any array of positive real numbers satisfying
Ry =1and0 < R; < 1for2 <i <m+ 1. Itis clear that either

(i) there exists somg € {1,...m} such thafo;| > R;|a;|foralll < ¢ < jand
laj+1| < Rji1]aq|; or else

(i) |otmia| > Rpga|oa].

In case (i), we havén |2 < B2 o> < R;2 by @).
Now letj be as in case (i). The leading term fih (4)is- - - a; which has size

j
lay - ] > <HRZ-> oy 7.
i=1
From (B) all other terms are bounded in absolute value by

lay a4 < Rjjalogl.

Thus we have

Trace(NA) = ay -+ -a; + O((r; — 1) Rjy1]aq}?), (5)
where the implied constant is bounded by 1 ande the number of terms present in
Trace(N A), thatisr; = #{(i1, -+ ,4;) |1 <43 <--- < i; <n}. The numbers?; should

now be chosen to make the main term[ih (5) dominate the emar. téorl < j < m + 1,
set

j—1
R; = (H RZ-) rl
=1



Here we have put, = 1. ThusR, = 1, R, = r{*, R = r{'r; ', and so on. By[(5) this
implies

J -1 -1
. — 1 . .
lag ! < (H RZ) (1 I ) |Trace(AA)| = Rjj}l\Trace(/\]A)L
i=1

T

SinceR; > Ry > ... > R,,,1, we may encompass all cases by taking= R;ﬁl.

This completes the proof. O

Let 7, be any irreducible admissible representatiorGaf, (F,). Let¢, : Wr —
GL,(C) the parametrization of, given by the local Langlands correspondence ([4], [5],
[12]), wherelV ;. is the Weil-Deligne group. The compositigp- p is then the parametriza-
tion of an irreducible admissible representation, ) of GLy (F,). We may form the tensor
productp(r) = ®,p(m,) over all places of F'. The result is an irreducible admissible rep-
resentation ofzLy (A). An automorphic representatidhof GLy (A) is calledisobaricif
IT = Ind 0, ®- - -®0y, for cuspidal representationsof GL,,, (A), wheren; +- - -+n; = N.
Langlands functoriality predicts thatr) is automorphic.

We shall call an automorphic (respectively, isobaric) espntationl” = ©,II? of
GLy(A) aweakp-automorphic (respectively, -isobaric) lifif a cuspidal representation
T = ®,m, of GL,(A) if there exists a finite sef,. of places, including the finite places
at whichm, is ramified, such thdil? ~ p(x,) for all v ¢ S;. The lift is said to bestrongif
S, can be taken independentof

Using our Propositiof] 5 and additional assumptions on tigtence of certain weak
isobaric lifts, the Luo-Rudnick-Sarnak [14] bounds

o (p, )] < Npt/2= (D7 (6)
valid for all primesp and1 < ¢ < n, can be dramatically improved.
COROLLARY 6. Let 7w be a cuspidal automorphic representation®f.,,(A). Put

m = |n/2]. Assume that there exists a wegkn?-isobaric lift and A’-isobaric lifts of
forall 2 < j < m. There exists &, > 0 such that

Np—1/4+6n < lax(p,i)] < Np1/4—6n
for 1 <¢ < nand almost all primes.

Proof: Using the trivial inequalityTrace(A)|* < |Trace(sym?A)| + |Trace(A%A)],
Propositiorf b gives

max|a (p,7)|* < [Trace(sym? A, (p))| + Z | Trace(A? A (p))] ()
j=2
for all p such thatr, is unramified. Lep : GL,,(C) — GL4(C) be a polynomial represen-
tation andll = II(p) a weakp-isobaric lift of 7. LetIl = Ind 07 ® - - - ® o}, With o; a cusp
form onGLg, (A) andd; + - - - + di, = d. We have



ZTI'&CG ’ Zd Np1/2 (d +1)— < del/Q (d?+1)"1

=1

| Tracep(A

forallp ¢ S, by the Luo-Rudnick-Sarnak bounds (6). Witk= max{deg(sym?), deg(A™)}
we apply this upper bound to each summand on the right haed$ifl) to get

max|a (v, )[* < Np!/> (407

Corollary[$ then follows from the unitarity of. O
3 Global estimates

We construct a Dirichlet series which will be the focus of attention for the rest of
this paper. Letr be a cuspidal representation®@f.,,(A). Define

L(s,n, |max|?) := Z A(n, 7, |max|*)Nn~* := H Zmaxmﬂ(p,i)\% Np"~.
n

p r>0

Let 7" be a finite set of primes such that T impliesm, is unramified. Denote bythe
(square-free) ideal which is the product of all prime§inwrite

Lr(s, 7, |max|?) HZmaX\aﬂ(p, )PNp "¢ Z A(n, 7, |max|*)Nn (8)

pit r=0 (mH)=1
and

LT (s, 7, |max|?) HZmaxmﬂ(p, i)[*Np~"*. 9

pjt >0

The following proposition is a consequence of Proposifj@m8 the Luo-Rudnick-Sarnak
bounds [B). The full strength of the boundlk (6) is actuallyus®d until the calculations
involving ramified primes in Propositidh 9.

PROPOSITION7. Letw be a cuspidal representation 6fL,,(A). Then

Ly(s, m, |max|?) < Z Nn~° Z A(n, T x )N "H Z IA(n, 7w, A7)|Nn~°

(n,t)=1 J=2 (nt)=1

uniformly onRe(s) = ¢ > o0 > 1. Theb sign in the above sums indicates a restriction to
square-free integral ideals.



Proof: From thep-th factor of L1 (s, w, |max|?) we may extract a linear term to ob-
tain

D AW, [max|*)Np~" = (14 A(p, 7, [max|*)Np~*) > " A(p*", 7, [max|*)Np~>"*.

>0 >0

The bounds\(p, 7, jmax|?) < Np, guaranteed to hold by](6), are strong enough to show
convergence of the above geometric series to the right a/&.ghall need the full strength
of the bounds[{6) to tredt’ (s, 7, |max/|?) in Propositior{P.) Thus

Ly(s, m, |max|”) < [ [(1+ A(p, 7, [max|*)Np~)
ptt
uniformly onRe(s) = o > gy > 1. By Propositiori b,

m

Ap, 7, [max|”) < T+ Ap,m x 7) + > [A@p, 7w, A7) for  pit

j=2
Applying this majorization gives

m

1+ A(p, 7, [max|*)Np™? < 1+ Np~7 + A(p, 7 x 7)Np~7 + Z |A(p, 7, A7) Np~

j=2
< @+Np )+ AP 7 xANe ) [ @+ A7, A)Np™).
2<j<m
Taking the product over ajl{ t we obtain the proposition. O

COROLLARY 8. Let 7 be a cuspidal representation 6fL,,(A). If L(s,m, A?) con-
verges absolutely to the right of 1 for &ll< j < |n/2], thenL(s, 7, |max|*) converges to
the right of 1.

Whenn = 2 or 3, the conditions of Corollar} 8 are empty, so the conclusiaomati-
cally holds. Whem = 4 or 5 the sole condition is that(s, 7, A?) be absolutely convergent
to the right of 1. Fom = 4, this property is proven by Kim in [9, Proposition 6.2]. Thus
L(s, 7, |max|?) converges to the right of 1 for anyon GL,, for n < 4.

When applied to Dirichlet series which arise naturally ie theory of automorphic
forms, Corollary[B gives no new information. For to deduce #bsolute convergence
to the right of 1 of L(s, 7, A?) from that of L(s, 7, |max|?) is just to repeat one of the
hypotheses from which we derived the latter fact. The saméeasaid forL (s, 7, sym?).
At this point, the loss of information in passing frohts, 7, |max|?) to eitherL(s, 7, A?)
or L(s,m,sym?) is just too great. The true strength of Proposifibn 7 willgametly be seen
to lie in questions regarding uniformity in the analytic dotor ofr.



3.1 Gaining uniformity

Denote the local parameters ofat the infinite place by . (v, 1), 1
q(m) be the conductor of and define the analytic conductor to 6&r)
where

<1 < n. Let
= (1) Ao ()

= T T+ etw)

For a pair of cusp forms;, m, on GL,,, (A) andGL,,, (A) we define the analytic conductor
using the parameters at infinity present in the gamma faofdtse completed.-function.
That is, for an infiinite place,

niy n2

L (S T X 7T2U _HHFF” 5+M7T1><7T2(U727]))

=1 j=1

for complex numberg.., «, (v, 7, j). Above we have used the standard notafigis) =
7/?T(s/2) andl'c(s) = 2(27)~*I'(s). When the infinite place is unramified for eithet
andz’ we have{ i . (v,i,7)} = {p=(v,7) + p (v, j) }. We define the analytic conductor
of L(s,m X m) to beC(m X m) = q(m X m)Aoo(m X m) Whereg(m x my) is the
conductor appearing in the functional equationfgs, m; x m5) and

ny ng

Moo 7T1><7TQ HHH +‘M7r1><7r2 U7Z7]>|>

v=00 =1 j=1

The definitions ofC'(7) andC(m; x ) were first made by lwaniec and Sarnak in [7]. By
the work of Bushnell and Henniart [1(m; x m) < g(m1)™2¢q(m2)"™ . It can also be shown
that)\oo(m X 7T2) Ky no )\OO<7T1)N2)\OO<7T2)N1. Thus

C(m1 X T3) Ky gy C(m)"C ()™ (10)

Definition. Let f(s, ) be a Dirichlet series associated withwhich converges ab-
solutely to the right of 1. We say thdt(s, ) satisfies the convexity bound at= 1 if
f(s,m) = O(C(m)°) for everye > 0 and allRe(s) > 1. When f(s, ) has a functional
equation and nice analytic properties which allow for aefipolation to the left of 1, we
drop the reference to any particular point and say simply tha =) satisfies thetandard
convexity bound

Our goal is to show thak (s, 7, |max|?) satisfies the convexity bound at= 1. Uni-
form estimates in the conductor for a Dirichlet series aneegally derived from a func-
tional equation in which the conductor appears. UnfortelyakL (s, 7, jmax|?) satisfies
no such functional equation. Propositidn 7 will allow us titain uniform estimates for

L(s, 7, |max|?) from those forL(s, = x 7) andL(s, Al x Aim) where2 < j < [n/2].

10



PROPOSITION9. Letw be a cuspidal representation 6fL,,(A). If A7 is strongly
automorphic isobaric fo2 < j < |n/2], thenL(s, 7, jmax|?) = O(C(7)?) onRe(s) > 1
for someA > 0.

Proof: Forj e {2,...,[n/2]}, letNVm =0;,8---Hoj,, be the decomposition of
N7 into an isobaric sum of cusp formag; onGL,,, .. Then

Lis,Nrx Nr) = [ L(s.05i % 07)- (11)
1§i1,i2§éj
The convergence di(s, 0;,;, x 0,,,) to the right of 1 along with its functional equation [8]
imply, through the Phragmen-Lindelof convexity principieat

L(S7 O’jﬂ'l X %) = O<C(O-]77fl X %)Bj’il’lé)

onRe(s) > 1 for someB;;, ;, > 0. By (10) and[(I]1) we therefore have
L(s, Nw x Nim) = 3 A, N x Ai) = O(C ()5 (12)
n
onRe(s) > 1 where

Bj= Y (nji+15)Bji
1<in,i2 <,
Similarly let B; > 0 be such thaf.(s,m x 7) = O(C(7)?') onRe(s) > 1.
Denote byll¥) the strong exterioj power lift of 7. Denote byS; the set of finite

primes outside of Whiclﬁ[éj) ~ Nmy. LetT be the union of all thé&; and the set of primes
at whichr is ramified. As before, denote lbyhe product of all primes ifi. We note that
Nt < C(m).

To boundLy(s, 7w, |max|?) (defined in [B)) polynomially irC'() to the right of 1 we
first note that for square-free idealg \(n, 7, A7)| < 1+ |[A(n, 7, AV)]> = 1+ A(n, AVt X
Nim). Secondly, Rudnick and Sarnak [17, Appendix] have showhttiecoefficients of
L(s, 1T x ﬁ), wherell is any isobaric form ori:L,,, are non-negative. We may therefore
remove the restriction of being square-free and relatipeiye tot. Thus

b
> A, AN <Y (14 An,m, A x AJT)) N
(nH)=1 n
An appeal to Propositiof] 7 anfl{12) gives(s, 7, [max|*) = (C(n)”) whereB = 3~ B;
andj runs throught, ..., [n/2].

We now treatl” (s, r, [max|?) (defined in [P)). Let = d(n) = (n*+1)"!. Using the
local bounds][{6) we have

L*(1, 7, |max|?) := Zmax|oz7r(p,i)|2’"Np_’" < Z Np~2? = 1+ cNp™,

r>0 r>0
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for some constant > 0 depending only od. ThusL*(1, 7, jmax|?) < 1+Np~° for primes
p such thatNp > @ '. We have

LT(1 2 1+Np %) < Nn—% < Nt!? 1-0
(1, 7, [max|”) < IT c+Mm )< M« < C(m)

Pt Nn<Nt
Np>c6 Tt
With A = B + 1 — §, we have proved the proposition. O

Once we have polynomial control o s, 7, |max/|?) to the right of 1 we can use a
bootstrapping technique of Iwaniec [6] to whittle down thx@enent to be as small as we
like. We now see the fruit of not having applied this techeigtraightaway td.(s, = x ),
say, as in Molteni [16]: the complete multiplicativity ofetcoefficients\(n, 7, |max|?)
allows us to do without any further restriction on the sizeha local roots. That is, no
improvement on the Luo-Rudnick-Sarnak bour{ds (6), alresey in the proofs of Propo-
sition [T and Propositiof] 9, will be necessary. In fact, thiéowaing proposition could
be applied to any Dirichlet series with completely muligpliive non-negative coefficients
with polynomial control in the conductor to the right of 1.

We note that Propositiof$ 9 ahd 10 combine to give Thedtem 1.

PROPOSITION 10. Let 7w be a cuspidal representation 6fL,,(A). Assume that the
function L(s, w, jmax|?) converges oRe(s) > 1. If there exists a constamt > 0 such
that L(s, 7, [max|?) = O(C(mw)*) onRe(s) > 1 thenL(s, 7, |max|?) satisfies the convexity
bound ats = 1.

Proof: For convenience, put(n) = A(n, 7, |max|?) andC = C(7). SetS(X) =

> xn<x A(n). Then the polynomial control and the positivity of the cagéints imply that
for everyo > 1

S(X)< X7 > AmNa ™ < X7 Am)Nn ™7 < CAX°, (13)
Nn<Xx n

By the complete multiplicativity of the(n) we have

SX)PP= > AmAm = > Amn)= D A@r)r(r),

Nm,Nn<X Nm,Nn<x Nr<X?2
wherer(r) is the number of divisors of. Applying the boundr(r) <. (Nr)¢ and [1B)
we getS(X)? <. CAX?+<, Upon taking the square root we ha¥eX) <. CA/2 X1+,
lterating this stepV/ times, we obtair§(X) <., CA/?" X'+, For anye > 0, we may
take M > (log A —loge)/ log 2 to obtain

S(X) < C°X Ite, (14)

Let Nn ~ M denote the diadic intervall < Nn < 2M. Using (I#) along with the
positivity of the coefficients we conclude that, for any 0 ando > 1+2¢, L(o, 7, |max|¥)
is

12



D7) AwNeT < Y M US(2M) < > ok <

M=2k Nn~M M=2k ’ k>0
k>0 E>0
This finishes the proof. O

Theorenf]L has now been proven. Note that even for lathe hypothesis that all’ ,
2 < j < |n/2], be automorphic is not necessarily stronger than the dondit, (p, i) <
Np'/4 on the local roots. Corollary 6 states that only when theseriex power lifts are
combined with thesymmetric squaréft do the hypothetical bound$](1) follow. And yet
the strength of the conclusion of Theorgm 1 is much stroriger the convexity bound for
only L(s,m x m).

3.2 Proof of Corollanp

When Theorenfi]1 is combined with the (strong) automorphy“af for = on GL,, a
fact proved in [9, Theorem 5.3.1], we obtain the followingatary.

COROLLARY [. Letm; be cuspidal representations 6fL,,,(A) wheren; < 4 for
i =1,2. ThenL(s,m; x m,), as well asL(s, 7;, A%) and L(s, 7;, sym?) for i = 1, 2, satisfy
the standard convexity bound.

Proof: For any integer > 0 and prime ideap we have

A", 7 x 7) < N (r,n) max|og(p, )],

whereN (r,n) is the number of monomials in variables of degree. The same bound
holds for\(y", 7, A2) and A(p", 7, sym?). We can compute that/(r, n) < 4™ for some
A(n) > 0. Theorem[]1 therefore gives the convexity bound for eacli.@f m; x 7;),
L(s,m;, A*), andL(s, m;, sym?).

We deduce the convexity bound fbfs, m; x 7o) from that of L(s, m; x ;) fori = 1, 2.
To do so, we avail ourselves of the notation and terminoldgyi@cdonald’s treatise [15].
For integers: > 1 andr > 0, let P, (r) be the set of partitions of of length no greater
thann. Let s, denote the Schur function associated to a partidorAssumen; > ns.
If no < ny then definen,,, (p,7) = 0 for all ny < i < ny. Putn = n; and seto,, (p) =
(r, (0, 1), ..., an(p,n)). For primesp unramified for bothr; andn, and integers > 0
the coefficients\(p", m; x m,) are defined by

T (= omi)am (o i)Np ™)™t = > AW, m x m)Np "™

1<iy,i2<n r>0

It is then a standard identity in the theory of symmetric tiots that

AW, X m) = D sa(am ()sa(am (p)-

AEPR (1)
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Applying the Cauchy-Schwartz inequality to this, we obtify”, 7 x )| < A(p", 11 X
7)Y N(pm, Ty x To)Y/2. A similiar inequality can be proven for ramified primes. Whe
extended to ali this gives

Z A(n, 7 X 7o)

)\(n, 7T X ,7?1)1/2 )\(n, o X 7?2)1/2
< E
n® o

no/2 /2 < L(s,m X 7)) L(s,my X 7o),

n

the last inequality again by Cauchy-Schwartz. The corpil@mediately follows. O
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