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Level set method with topologial derivativesin shape optimizationPiotr FULMANSKI†, Antoine LAURAIN‡, Jean-François SCHEID‡, JanSOKO�OWSKI‡
† Universiti of �ód¹, Faulty of MathematisBanaha 22, 90-232 �ód¹, Poland,fulmanp�imul.math.uni.lodz.pl
‡ Institut Elie Cartan UMR 7502, Nany-Université, CNRS, INRIA, B.P. 239,54506 Vandoeuvre-lès-Nany Cedex, Frane,antoine.laurain�ien.u-nany.fr,jean-franois.sheid�ien-u.nany.fr,sokolows@ien.u-nany.frAbstrat. A lass of shape optimization problems is solved numerially by the levelset method ombined with the topologial derivatives for topology optimization. A-tually, the topology variations are introdued on the basis of asymptoti analysis, byan evaluation of extremal points (loal maxima for the spei� problem) of the so-alled topologial derivatives introdued by Sokolowski and Zohowski [24℄ for elliptiboundary value problems. Topologial derivatives are given for energy funtionals oflinear boundary value problems. We present results, inluding numerial examples,whih on�rm that the appliation of topologial derivatives in the framework of thelevel set method really improves the e�ieny of the method. Examples show, thatthe level set method ombined with the asymptoti analysis, is robust for the shapeoptimization problems, and it allows to identify the better solution ompared to thepure level set method exlusively based on the boundary variation tehnique.Key Words. Shape optimization, level set method, topologial derivative, optimaldesign.1. IntrodutionShape optimization for ellipti equations is an important branh of alulus of variations, withnumerous appliations in strutural mehanis and to solution of inverse problems. The existeneof solutions for shape optimization problems an be assured under mild onditions, e.g. underthe so-alled Moso onvergene of the Sobolev spaes assoiated with the minimizing sequeneof geometrial domains, however optimality onditions require more regularity of boundaries ofadmissible domains. Reently, a partiular attention is paid to numerial methods whih duringthe optimization proess allow for the topology hanges of geometrial domains. One of theandidates for suh framework is the level set funtion whih models the domain evolution andan be determined by solving appropriate Hamilton-Jaobi equations. However, by its nature, theobtained level set funtion dereases the number of onneted omponents of resulting geometrialdomains during the optimization proess. To improve the performane of the method based on thelevel set funtion, asymptoti analysis is employed, and loation of additional holes in geometrial1



domains is determined by analysis of the so-alled topologial derivatives of shape funtionalsunder study. In the paper we desribe in details suh a ombination, used already in literature,and provide some examples whih show that the method is robust, in partiular improves theoptimal value of the shape funtional obtained as a result of omputations. For the onvenieneof the reader we present as well the elements of mathematial analysis inluding asymptotianalysis of spei� boundary value problems with respet to small parameter whih modelssingular perturbations of geometrial domains. Suh analysis is required for determination oftopologial derivatives.The numerial method for shape and topology optimization of an energy funtional is pre-sented in the paper. The method ombines the shape gradient tehnique and the asymptotianalysis for maximization of an energy funtional for ellipti equations. The level set methodis used for the evolution of geometrial domains with the moving boundaries determined fromthe shape sensitivity analysis of the energy shape funtional, the topology hanges are perfor-med in addition by analysis of the topologial derivatives. It is still an open problem to devisehow the ombination of boundary variations and singular perturbations of geometrial domainsenters in a general framework of shape optimization. One possibility is given by the so-alledself-adjoint extensions of di�erential operators, where the small hole is approximated by singularperturbation of the oe�ients of di�erential operator. We refer the reader to [18℄, [11℄, [14℄, [16℄,[17℄, for some results in this diretion. We onsider only steady state boundary value problems,however the same results an be obtained for the evolution problems desribed by paraboli andhyperboli pde's.The Hamilton-Jaobi nonlinear hyperboli equation models the evolution of the level setfuntion. The normal speed of the moving boundaries are determined from the shape gradientsobtained for the energy funtional [29℄. Sine the shape gradients serve as the oe�ients for thehyperboli equation, the standard assumption is to assume that the shape gradients are given byrestrition to the moving boundaries of given funtions de�ned in whole geometrial domains,whih is unfortunately very restritive assumption, however it is satis�ed in our ase.During the numerial proess, the topology hanges are de�ned by analysis of the loalmaxima of topologial derivatives for the energy funtional. In this way, small holes an beinluded into the atual geometrial domain with the enters at the points determined by maxi-mization of the topologial derivatives. We injet only one hole at eah etap of the method,however the asymptoti analysis furnish the information whih allows for the injetion of a �nitenumber of holes, if neessary and it turns out to be useful. The size of the holes an be determi-ned by the seond order topologial derivatives and this tehnique is not employed in the presentpaper.The paper is selfontained, thus, in appendix we provide also some tehnial results whihare used in order to determine the topologial derivatives. To this end the domain deompositiontehnique is applied and the proof of the asymptoti expansion for the related Steklov-Poinaréoperator is given. Suh an approah for evaluation of topologial derivatives for energy typefuntionals is proposed e.g., in [12℄ and [27℄.Finally, we present a list of referenes on the derivation and appliation of the asymptotianalysis in shape optimization. Singular perturbations of domains in the framework of shape op-timization are studied by many authors, inluding [1℄, [9℄, [10℄, [13℄, [14℄, [15℄, [16℄, [17℄, [18℄, [19℄,[24℄, [25℄, [26℄. The onstrution of the asymptoti expansion for the Steklov-Poinaré operatoris given in [28℄. Numerial results for shape and topology optimization are presented in setion 9.2. The linear problemWe present the numerial method for a salar ellipti boundary value problems, and forthe energy type shape funtional. For suh problem we an provide omplete analysis on shapedi�erentiation and asymptoti expansions of solutions with respet to small parameter whihmeasures the singular perturbations of geometrial domain. For the sake of simpliity we restrit2



ourselves to two spatial dimensions, and to the holes in the form of a irle. In suh a ase byFourier analysis we an obtain the expliit solutions for auxiliary problems in rings. Otherwise,for any spatial dimensions and arbitrary shape of holes the analysis is based on the fundamentalsolutions for di�erential operators and an be performed in the same way, we refer the reader e.g.,to [18℄ for a general approah to the derivation of topologial derivatives for ellipti boundaryvalue problems in arbitrary spatial dimensions.To begin with, we introdue the model problem. Let U and V be two bounded open subsetsof R2 suh that V ⊂⊂ U . For any open set ω ⊂ R2, we denote by #ω the number of onnetedomponents of ω and we onsider the set of admissible domains
Ok = {Ω = U \ ω; ω open set, ω ⊂ V,#ω ≤ k}. (1)For any Ω ∈ Ok, k ≥ 1, the boundary of Ω an be splitted into ∂Ω = ΓN ∪∂U with ΓN = ∂ω. Theboundary ∂U is also denoted by ΓD. The boundary ΓN reeives Neumann boundary onditions,while we have Dirihlet onditions on ΓD. Let us point out that the open set ω is not neessarilyany onneted set as illustrated in Figure 1.
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∂U = ΓDFig. 1 � An admissible domain ΩFor f ∈ C∞(U), let us onsider the following problem






−∆u + u = f in Ω,
u = 0 on ΓD,

∂nu = 0 on ΓN ,
(2)where n is the unit outwards normal vetor to ∂Ω, and ∂n stands for the normal derivative on

∂Ω. In addition, let us onsider the energy funtional depending on the solution u to (2) :
E(Ω, u) :=

1

2

∫

Ω

(

|∇u|2 + u2
)

dx −
∫

Ω
fu dx = −1

2

∫

Ω

(

|∇u|2 + u2
)

dx = −1

2

∫

Ω
fu dx, (3)and let us introdue the regularized shape funtional

J(Ω) := E(Ω, u) + λA(Ω) − µPc(Ω)2, (4)with A(Ω) and Pc(Ω) de�ned by
A(Ω) := |Ω|, (5)
Pc(Ω) := max(0, ℓ(∂Ω) − c). (6)In the above de�nitions, |Ω| denotes the Lebesgue measure of Ω in R2 and ℓ(∂Ω) is the 1-dimensional measure of ∂Ω. Constants λ and µ are positive and allow us to take into aount3



the area and perimeter onstraints respetively. The onstant c is also positive and orrespondsto a shifted perimeter funtional, i.e. beyond c, the perimeter onstraint beomes ative.For any �xed integer k ≥ 1, let us onsider the following shape optimization problem
max{J(Ω) : Ω ∈ Ok}. (7)Sine the exterior boundary of Ω is �xed one for all and equals to ∂U , the domains Ωsatisfying (7) are atually determined by their moving boundaries ΓN .In the following three setions, we perform the mathematial analysis of problem (7). We showthat problem (7) is well posed in the sense that there exists an optimal domain, furthermore,the optimal shape an be haraterized by appropriate neessary optimality onditions. For agiven topology of an optimal domain there are two di�erent sort of optimality onditions. Onthe moving boundaries, the shape gradients an be evaluated and the optimality onditions saythat the optimal value of the ost annot be improved by admissible boundary variations. Onthe other hand, the sign of topologial derivatives is �xed inside of the geometrial domain, insuh a way that any reation of a small hole annot improve the value of the ost. The seondondition is very strong, it seems, therefore it is a very di�ult task to �nd an optimal domainwhih satis�es suh a ondition.Atually, we study the existene of an optimal domain in setion 3, and then the shapesensitivity in setion 4, the topologial derivatives of the funtional J are obtained in setion5. The onstrution of a level set representation is based on the shape derivatives of J , as it isdesribed in setion 6. This formulation provides a pratial way to inrease the values of theshape funtional J . The appearane of new holes is not possible with the only use of the levelset method based on the shape derivatives. Therefore, an appliation of topologial derivativeallows us to reate new holes in order to inrease the values of J .3. Existene of an optimal domainIt an be showed that there exists a domain Ω, solution of (7). We make use of a result fromBuur and Varhon [3℄ and [4℄ for the Neumann boundary onditions on the holes. Similar resultfor the Dirihlet boundary onditions in two spatial dimensions is given by Sverak [30℄. With afew hanges in the proof of this result, we an apply the results from [3℄ and [4℄ to our problem.It is possible without any additional di�ulty sine the boundary ΓD is �xed. Thus, we obtainthe following theoremTheorem 1 Let Ωi = U \ ωi be a sequene of open sets suh that the number of onnetedomponents of ωi is uniformly bounded. If ωi onverges in the sense of the Hausdor� metri to

ω, then the solution ui of the Neumann problem






−∆ui + ui = f in Ωi,
ui = 0 on ∂U.

∂nui = 0 on ∂ωi.
(8)onverges to the solution u of problem (8) on Ω if and only if |Ωi| → |Ω|. (All funtions areimpliitely extended to zero by setting ui = 0 in ωi and u = 0 in ω and the onvergene takesplae in L2(U)).Now it is possible to prove the existene of an optimal domain.Theorem 2 For any k ≥ 0, Problem (7) admits at least one solution Ω ∈ Ok.Proof. Let {Ωi}, i = 0, 1, 2, · · · , be a maximizing sequene for Problem (7). There exists asubsequene still denoted by Ωi suh that Ωi → Ω for i → +∞, in the sense of Hausdor� metri.In what follows, suh a onvergene is denoted by Ωi

H−→ Ω. For the de�nition of Hausdor�4



onvergene, see [8℄.It is shown in [8℄ that the number of onneted omponents of Ωc is bounded and we alsohave by taking the limit
ℓ(∂Ω) ≤ lim inf

i
ℓ(∂Ωi). (9)Thus ℓ(∂Ω) < ∞ sine we maximize J(Ω) and thus Pc(Ω) is bounded. Using the notion of densityperimeter introdued in [2℄, it is well known that the Hausdor� onvergene of Ωi to Ω impliesonvergene in the sense of harateristi funtions :

Ωi
H−→ Ω =⇒ χΩi

L1(U)−→ χΩ. (10)As a onsequene, we get for i → +∞, the onvergene of Lebesgue measures
|Ωi| → |Ω|. (11)To onlude, we have to prove the onvergene of E(Ωi, ui) = −1

2

∫

Ωi
fui. Moreover, we have

∣

∣

∣

∣

∫

Ωi

fui −
∫

Ω
fu

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

U
fuiχΩi

−
∫

U
fuχΩ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

U
fui(χΩi

− χΩ) +

∫

U
fχΩ(ui − u)

∣

∣

∣

∣

≤ ‖ui‖2‖f(χΩi
− χΩ)‖2 + ‖fχΩ‖2‖ui − u‖2,where ‖.‖2 is the norm in L2(U). Aording to Theorem 1, we have

‖ui‖2 → ‖u‖2 and ‖ui − u‖2 → 0. (12)Furthermore,
‖f(χΩi

− χΩ)‖2 → 0 (13)thanks to the onvergene in the sense of harateristi funtions of χΩi
to χΩ. Thus, we get

E(Ωi) → E(Ω). (14)Finally, ombining onvergenes (14), (11) and (9), we obtain the inequality
J(Ω) ≥ lim sup

i
J(Ωi). (15)Thus, Ω is a solution to problem (7). �Remark 1 In order to use the shape derivatives, we need the domains with smooth boundaries.The solutions of (7) are not neessarily smooth. From now on, we assume the existene of anoptimal domain for (7) whih in addition, is smooth enough.4. Shape derivativesLevel set method requires the knowledge of shape gradients for the funtional to be maximi-zed. Let Ω be a su�iently regular domain. The variational formulation of (2) is given by

u ∈ H1
ΓD

(Ω) :

∫

Ω
〈∇u,∇w〉 dx +

∫

Ω
uw dx =

∫

Ω
fw dx ∀w ∈ H1

ΓD
(Ω) , (16)where H1

ΓD
(Ω) =

{

v ∈ H1(Ω) | v = 0 on ΓD

}. 5



We desribe the onstrution of regular perurbations of Ω, whih is used to obtain the shapegradients for shape funtionals [5℄,[29℄. Let ξ be a vetor �eld of lass Ck with ompat supportin U . We put |ξ| = ‖ξ‖Ck(U ;R2). Let us onsider the transformation Fξ = I + ξ and de�ne
Ωξ = Fξ(Ω). We assume that |ξ| is small enough, so that Fξ is a Ck-di�eomorphism. As aonsequene, there exists a unique solution uξ ∈ H1

ΓD
(Ωξ) to the variational equation in variabledomain Ωξ,

∫

Ωξ

〈∇uξ,∇v〉 dx +

∫

Ωξ

uξv dx =

∫

Ωξ

fv dx ∀v ∈ H1
ΓD

(Ωξ). (17)We are going to show that the energy funtional E(Ω, u) is di�erentiable with respet to thedomain and we ompute its shape derivative dE(Ω, ξ) de�ned for any diretion ζ = ξ/|ξ| of theunit norm |ζ| = 1 by
dE(Ω, ξ) := lim

t→0

E(Ωξ, u
ξ) − E(Ω, u)

t
,where t = |ξ|, and for the sake of simpliity, in the notation we write ξ instead of ζ.We need to transform (17) on the �xed domain Ω. To this end, we denote uξ the transportedfuntion de�ned by the omposition

uξ = uξ ◦ Fξ ∈ H1
ΓD

(Ω). (18)Using the hange of variable in (17), we obtain the variational equation satis�ed by uξ :
∫

Ω
〈(DF T

ξ )−1∇uξ, (DF T
ξ )−1∇w〉qξ dx +

∫

Ω
uξwqξ dx =

∫

Ω
fξwqξ dx ∀w ∈ H1

ΓD
(Ω), (19)where fξ = f ◦ Fξ . In the above formulation, DFξ is the Jaobian matrix of the transformation

Fξ and qξ stands for the determinant of the Jaobian. More preisely, we have
DFξ = I + Dξ, (20)

qξ = detDFξ = 1 + divξ + detDξ. (21)It is shown in [6℄ that uξ admits the following Taylor expansion
uξ = u + u1(ξ) + ũ(ξ), (22)where the material derivative u1(ξ) is the unique solution of the variational equation

∫

Ω
〈∇u1(ξ),∇w〉dx =

∫

Ω
〈A(ξ)−1)∇u,∇w〉dx +

∫

Ω
g(ξ)w dx

−
∫

Ω

(

uw div(ξ) + u1w
)

dx ∀w ∈ H1
ΓD

(Ω). (23)The matrix A(ξ) and the funtion g(ξ) are given by
A(ξ) = Dξ + DξT − (divξ)I,

g(ξ) = div(fξ).Expansion (22) holds true with the estimates (see [6℄)
‖uξ − u‖H1

ΓD
(Ω) ≤ c|ξ|, (24)

‖ũ(ξ)‖H1

ΓD
(Ω) = ‖uξ − u − u1(ξ)‖H1

ΓD
(Ω) ≤ c|ξ|2. (25)

6



Making use of the hange of variables (18) in the expression E(Ωξ, u
ξ) = −1

2

∫

Ωξ

(

|∇uξ|2 + (uξ)2
)

dxtogether with the estimates (24) and (25), we obtain that E is di�erentiable with respet to thedomain and its �rst order shape derivative is given by
dE(Ω; ξ) = −

∫

Ω
〈∇u,∇u1(ξ)〉 dx +

1

2

∫

Ω
〈A(ξ)∇u,∇u〉 dx (26)

−
∫

Ω
uu1(ξ) dx − 1

2

∫

Ω
u2div(ξ) dx.Now, hoosing w = u in the variational identity (23), we obtain

∫

Ω
〈∇u,∇u1(ξ)〉dx =

∫

Ω
〈A(ξ)∇u,∇u〉dx +

∫

Ω
g(ξ)u dx −

∫

Ω

(

u2div(ξ) + u1(ξ)u
)

dx. (27)In view of (27), we an get rid of u1(ξ) in (26) :
dE(Ω; ξ) = −1

2

∫

Ω
〈A(ξ)∇u,∇u〉 dx −

∫

Ω
g(ξ)u dx +

1

2

∫

Ω
u2div(ξ) dx. (28)Starting from this expression, we an obtain a more useful expression for the shape derivative.First of all, we turn to the �rst integral term in the right hand side of (28). We have

1

2

∫

Ω
〈A(ξ)∇u,∇u〉 dx =

∫

Ω
〈Dξ∇u,∇u〉 dx − 1

2

∫

Ω
|∇u|2div(ξ) dx

=

∫

Ω
〈∇(〈ξ,∇u〉),∇u〉 dx −

∫

Ω
〈D2u ξ,∇u〉 dx − 1

2

∫

Ω
|∇u|2div(ξ) dx

= −
∫

Ω
∆u〈ξ,∇u〉 dx +

∫

∂Ω
〈ξ,∇u〉〈∇u, n〉 dσ −

∫

Ω
〈D2u ξ,∇u〉 dx.

= −1

2

∫

Ω
|∇u|2div(ξ) dx.Sine −∆u = f − u in Ω, equation (28) beomes

dE(Ω; ξ) = −
∫

Ω
f〈ξ,∇u〉 dx −

∫

Ω
div(fξ)u dx

+

∫

Ω
〈D2u ξ,∇u〉 dx +

1

2

∫

Ω
|∇u|2div(ξ) dx

+

∫

Ω
u〈ξ,∇u〉 dx +

1

2

∫

Ω
u2div(ξ) dx

−
∫

∂Ω
〈ξ,∇u〉〈∇u, n〉 dσ.Finally we obtain

dE(Ω; ξ) =

∫

Ω
div(

1

2
|∇u|2ξ +

1

2
u2ξ − fξu

)

dx −
∫

∂Ω
〈ξ,∇u〉〈∇u, n〉 dσ. (29)Sine 〈∇u, n〉 = 0 on ΓN and ξ has ompat support in U , we have

dE(Ω; ξ) =

∫

ΓN

(

1

2
|∇u|2 +

1

2
u2 − fu

)

〈ξ, n〉 dσ. (30)Moreover, the shape derivatives of A(Ω) and Pc(Ω) are given by
dA(Ω; ξ) =

∫

ΓN

〈ξ, n〉 dσ, (31)
dPc(Ω; ξ) = 1{ℓ(∂Ω)=c} max

(

0,

∫

ΓN

H〈ξ, n〉 dσ

)

+ 1{Pc(Ω)>0}

∫

ΓN

H〈ξ, n〉 dσ, (32)
dPc(Ω; ξ)2 = 2Pc(Ω)

∫

ΓN

H〈ξ, n〉 dσ, (33)7



where H is the urvature of ΓN . Thus, the shape derivative dJ(Ω; ξ) of J(Ω) is given by
dJ(Ω; ξ) =

∫

ΓN

(

1

2
|∇u|2 +

1

2
u2 − fu + λ − 2µPc(Ω)H

)

〈ξ, n〉 dσ (34)5. Topologial derivativeFor the sake of simpliity, we assume in this setion that Ω = U (i.e. ΓN = ∅). Let us nowonsider the perforated domain Ωρ = U \ Bρ where Bρ is the ball of radius ρ, entered at apoint x0 ∈ U and with boundary Γρ = ∂Bρ. In order to study the topologial derivative of thefuntional J for the linear problem (2), we need to ompute the asymptoti expansion of theenergy (see (3))
E(Ωρ, uρ) = −1

2

∫

Ω

(

|∇uρ|2 + u2
ρ

)

dx,where uρ is the solution of the linear problem






−∆uρ + uρ = f in Ωρ,
uρ = 0 on ∂U = ΓD,

∂nuρ = 0 on Γρ.
(35)In order to study the topologial derivative, we used the so-alled trunated domain tehnique(see [27℄, [12℄). We only present the main sketh of the method used to ompute the asymptotiexpansion of J and we refer to the appendix for a omplete proof of the results. We turn to thetrunated domain tehnique by onsidering the domain

ΩR = U \ BR, (36)where BR is the ball of radius R > ρ, entered at x0. We also de�ne the ring C(R, ρ) suh that
Ωρ = ΩR ∪ ΓR ∪ C(R, ρ) where ΓR denotes the boundary of the ball BR i.e. ΓR = ∂BR. (seeFigure 2).PSfrag replaements

ρ
x0

R

BR

ΩR

ΓR

C(R, ρ)

UFig. 2 � The trunated domain tehnique.Then we onsider the following trunated problem










−∆uR
ρ + uR

ρ = f in ΩR,

uR
ρ = 0 on ∂U,

−∂nyρ + ∂nuR
ρ = Aρ(u

R
ρ ) on ΓR.

(37)In the above problem, Aρ is the Stekov-Poinaré operator de�ned for any v ∈ H
1

2 (ΓR) by
Aρ(v) = ∂nwρ, (38)8



where wρ = wρ(v) is the unique solution of the problem






−∆wρ + wρ = 0 in C(R, ρ),
wρ = v on ΓR,

∂nwρ = 0 on Γρ.
(39)Finally, the funtion yρ appearing in problem (37) is the solution of the following problem







−∆yρ + yρ = f|C(R,ρ) in C(R, ρ),

yρ = 0 on ΓR,
∂nyρ = 0 on Γρ.

(40)Then, it an be easily shown that
uR

ρ = uρ|ΩR
and uρ|C(R,ρ) = wρ(u

R
ρ ) + yρ. (41)In order to obtain the topologial derivative of J , we have to perform an expansion of theenergy funtional E(Ωρ, uρ) = −1

2

∫

Ωρ

(

|∇uρ|2 + u2
ρ

)

dx with respet to the radius ρ. Using thedomain trunation, we an split the integral in two parts, and we obtain
E(Ωρ, uρ) = E(ΩR, uR

ρ ) − 1

2
E(1)

ρ (uR
ρ ) +

1

2
E(2)

ρ (f) (42)where
E(ΩR, uR

ρ ) = −1

2

∫

ΩR

(

|∇uR
ρ |2 + (uR

ρ )2
)

dx (43)and
E(1)

ρ (uR
ρ ) =

∫

C(R,ρ)

(

|∇wρ|2 + w2
ρ

)

dx with wρ = wρ(u
R
ρ ), (44)

E(2)
ρ (f) = −

∫

C(R,ρ)

(

|∇yρ|2 + y2
ρ

)

dx. (45)Studying problems (37), (39) and (40), we an obtain asymptoti expansion of (43), (44) and(45) respetively whih lead to the following expansion for the energy (see the appendix)
E(Ωρ, uρ) = E(Ω, u) −

(

u(x0)
2

2
+ |∇u(x0)|2 − f(x0)u(x0)

)

πρ2 + o(ρ2). (46)Now, using the expansions
A(Ωρ) = A(Ω) − πρ2, (47)

Pc(Ωρ)
2 = Pc(Ω)2 + 4πPc(Ω)ρ + o(ρ2), (48)we obtain the following asymptoti expansion for J :

J(Ωρ) = J(Ω) + h(ρ)TΩ(x0) + o(h(ρ)), (49)with
h(ρ) =

{

πρ2 if Pc(Ω) = 0,

πρ if Pc(Ω) > 0.
(50)The topologial derivative TΩ(x0) of the funtional J at point x0 ∈ Ω is given by

• TΩ(x0) = −|∇u(x0)|2 − 1
2u(x0)

2 + f(x0)u(x0) − λ, if Pc(Ω) = 0,

• TΩ(x0) = −4µPc(Ω), if Pc(Ω) > 0.
(51)9
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φ>0

U

φ>0
n

n

n

Fig. 3 � The level set representation of the domain.6. The level set formulation6.1. The Hamilton-Jaobi equationIn the level set method, a domain and its boundary are represented as level sets of a ontinuousfuntion φ. We refer to [20℄,[21℄,[23℄ for a omplete desription of the level set formulation of frontspropagating models. We give a brief desription of the level set formulation for the evolution of adomain Ω ⊂ U ⊂ R2 under a given veloity �eld ξ. Let us onsider the domain Ωt = (I + tξ)(Ω),
t ∈ R+, with a smooth vetor �eld ξ ompatly supported in U . For t ≥ 0, the domain Ωt andits boundary are de�ned by a funtion φ = φ(x, y, t), (x, y) ∈ U , suh that

Ωt = {(x, y) ∈ U, φ(x, y, t) < 0} and ∂Ωt = {(x, y) ∈ U, φ(x, y, t) = 0}. (52)The boundary ∂Ωt is the zero level urve of the funtion φ(·, t) (see Fig. 3).We onsider the position (x(t), y(t)) of a partile on a (given) level urve of φ(·, t) movingwith veloity ξ = (x′(t), y′(t)). Then, we have φ(x(t), y(t), t) = constant, for all t ≥ 0. Bydi�erentiating with respet to t, we obtain the following transport equation
φt + ξ · ∇φ = 0 in U × R+. (53)The normal unit vetors n to the level sets of φ are given by n = ∇φ/|∇φ|. This leads to theHamilton-Jaobi equation
φt + ξn|∇φ| = 0 in U × R+ (54)where ξn is the normal omponent of the veloity i.e. ξn = 〈ξ, n〉. We also have to hooseinitial data and boundary onditions with the Hamilton-Jaobi equation (54). The initial data

φ(x, y, 0) = φ0(x, y) is hosen as the signed distane funtion to the initial boundary ∂Ω0 = ∂Ωi.e.
φ0(x, y) = ± dist((x, y), ∂Ω0) for (x, y) ∈ U, (55)with the minus sign (resp. plus sign) if the point x is inside (resp. outside) the initial domain

Ω0 = Ω. Finally, we hoose homogeneous Neumann boundary ondition on the boundary ∂U ofthe whole domain :
∂nφ = 0 on ∂U × R+. (56)

10



6.2. Normal veloity for the level set equationReall that the shape derivative dJ(Ω; ξ) assoiated to the veloity �eld ξ is given by (34).We loally (that is under small perturbations of the domain) require that dJ(Ω; ξ) > 0. Thisleads to the following hoie for the normal omponent ξn = 〈ξ, n〉 of the veloity :
ξn =

1

2
|∇u|2 +

1

2
u2 − uf + λ − 2µPc(Ω)H on ΓN . (57)If the veloity �eld ξ satis�es (57), we learly have dJ(Ω; ξ) > 0 and then J(Ωt) > J(Ω) for tsmall enough.Aording to (57), the normal omponent of the veloity is only imposed along the boundary

ΓN . But in order to solve the Hamilton-Jaobi equation (54), we need a veloity �eld de�ned inthe whole domain U . We write
ξn = Vn − 2µPc(Ω)H on ΓN , (58)with

Vn =
1

2
|∇u|2 +

1

2
u2 − uf + λ on ΓN . (59)The urvature H is diretly linked to the level set funtion φ by the formula

H = div( ∇φ

|∇φ|

)

. (60)So, the urvature term is de�ned in the whole domain U and the only normal veloity part Vngiven by (59) has to be extended o� the boundary ΓN . If Vext denotes the extension of Vn to thewhole domain U , the Hamilton-Jaobi beomes
φt +

(

Vext − 2µPc(Ω)div( ∇φ

|∇φ|

))

|∇φ| = 0 in U × R+. (61)The onstrution of the extension Vext of Vn to the whole domain U is explained in Setion8.7. The shape optimization algorithmNow, we desribe the general shape optimization algorithm.First step : initial domainWe start to hoose an initial domain Ω0 and we ompute the solution of (2) in Ω0 by the use ofthe pieewise linear �nite element method. Then, the topologial derivative TΩ0(x) is omputedfor all x ∈ Ω0, aording to (51).Seond step : topologial hange by reating a holeThe topologial derivative allows us to �nd the plae where a hole should be reated in thedomain Ω0 in order to inrease the energy funtional J . We �nd the point x0 ∈ Ω0 suh that
TΩ0(x0) = maxx∈Ω0 TΩ0(x). If TΩ0(x0) > 0 then a irular hole ωρ of radius ρ > 0 and entered at
x0 is reated. Then we denote by Ω0

ρ the domain with the new hole ωρ. Homogeneous Neumannondition is imposed on the boundary of the new hole. Remark that the radius of this hole shouldbe as small as possible, depending on the spae step of the mesh.Third step : shape evolutionWe turn to the evolution of the domain Ω0
ρ with the appliation of the shape derivative in thelevel set formulation. We have to ompute the solution φ to the Hamilton-Jaobi equation (61)where the initial φ is taken to be the signed distane funtion to the domain Ω0

ρ. We perform11



the new omputation of the solution of (2) in Ω0
ρ and then we ompute the normal veloity Vnon the internal boundary part ΓN of ∂Ω0

ρ aording to (59). The level set equation (61) requireto extend the normal veloity Vn to the whole domain U . This is done by solving a transportequation. The next setion ontains an explaination how to exatly proeed to onstrut theextended veloity. Only few iterations of the Hamilton-Jaobi equation are performed.One we have omputed the level set funtion, we an determine the new domain Ω1. Thenwe go bak top the �rst step of the algorithm with Ω1 in plae of Ω0. We stop when onvergeneof the domain is reahed that is when the geometrial domain does not hange anymore.8. Numerial method for the level set equationIn this setion, we present the numerial method used to solve the Hamilton-Jaobi equation(61). We also desribe the method used for omputing the extension Vext of the normal veloityto the entire domain U .8.1. Disretization of the level set equationWe hoose U = (0, 1) × (0, 1) and we de�ne the mesh grid of U by introduing the nodes
Pij with oordinates (i∆x, j∆y). The parameters ∆x and ∆y are the steps disretization in the
x and y diretions, respetively. We denote by tk = k∆t the disrete time for k ∈ N, where
∆t is the time step. An approximation φk

ij ≃ φ(Pij , t
k) is omputed with a time expliit �nitedi�erenes sheme due to Osher and Sethian [21℄,[23℄,[20℄. This sheme is based on an upwindsheme for the �rst order part (Vn|∇φ|) of the Hamilton-Jaobi equation. For the seond orderpart with the urvature term (H|∇φ|), entered �nite di�erenes are used. More preisely, thissheme reads as

φk+1
ij = φk

ij − ∆t g(D−
x φk

ij ,D
+
x φk

ij ,D
−
y φk

ij ,D
+
y φk

ij) (62)where
D−

x φij =
φij − φi−1,j

∆x
, D+

x φij =
φi+1,j − φij

∆x
(63)are the bakward and forward approximations of the x-derivatives of φ at Pij . Similar expressionshold for the approximations D−

y and D+
y of the y-derivatives. The numerial �ux is given by

g(D−
x φij ,D

+
x φij ,D

−
y φij,D

+
y φij) = g

(1)
ij + g

(2)
ij . (64)The numerial �ux part g

(1)
ij omes from the disretization of the �rst order part Vn|∇φ| ofthe Hamilton-Jaobi equation and is given by

g
(1)
ij = max (Vext(Pij), 0) G+ + min (Vext(Pij), 0) G− (65)with

G+ =
[

max(D−
x φij , 0)

2 + min(D+
x φij, 0)

2 + max(D−
y φij , 0)

2 + min(D+
y φij, 0)

2
]1/2

G− =
[

min(D−
x φij, 0)

2 + max(D+
x φij, 0)

2 + min(D−
y φij, 0)

2 + max(D+
y φij, 0)

2
]1/2and Vext(Pij) is the extended normal veloity at point Pij (see the next paragraph for the om-putation of Vext).The numerial �ux part g

(2)
ij in (64) omes from the entered �nite di�erenes approximationof the seond order term of the Hamilton-Jaobi equation i.e.

g
(2)
ij ≃ −2µPc(Ω)H |∇φ|(Pij) = −2µPc(Ω)div( ∇φ

|∇φ|

)

|∇φ|(Pij). (66)12



The upwind part of the sheme orresponding to the disretization of the �rst order term ofthe Hamilton-Jaobi equation requires the following stability ondition of CFL type :
(max

U
|Vext|) ∆t

min(∆x,∆y)
≤ 1

2
√

2
. (67)Moreover, sine we use a entered �nite di�erenes sheme for the seond order term involvingthe urvature, the following stability ondition of Fourier type has also to be satis�ed :

4µPc(Ω)
∆t

min(∆x2,∆y2)
≤ 1. (68)8.2. Extended normal veloityAs already mentioned, the normal veloity Vn de�ned by (59) has to be extended to the wholedomain U in order to solve the Hamilton-Jaobi equation (61). A natural way to extend Vn o�the boundary ΓN is to seek a funtion whih is onstant along the urve normal to ΓN . Thissuggests to solve at time t, the following equation for q, up to the stationary state (see [20℄, [22℄)

qτ + S(φ)
∇φ

|∇φ| · ∇q = 0 in U × R+ (69)
q(x, y, 0) = p(x, y, t), (x, y) ∈ U (70)where p equals to Vn given by (59) on the boundary ΓN and 0 elsewhere. The funtion S is anapproximation of the sign funtion, de�ned by

S(d) =
d

√

d2 + |∇d|2ε2
with ε = min(∆x,∆y). (71)Another hoies are possible for the approximate sign funtion (see [22℄ for details). The extendednormal veloity Vext is given by the stationary state reahed by the solution q of (69),(70) as thetime τ goes to +∞.At eah iteration k of the sheme (62)�(66), we ompute the extended normal veloity as theapproximate stationary solution of (69),(70). We ompute qm

ij ≃ q(Pij , t
m) from the followingupwind disretization of (69) :

qm+1
ij = qm

ij − ∆τ
[

max(sijn
x
ij, 0)D−

x qm
ij + min(sijn

x
ij, 0)D+

x qm
ij

+ max(sijn
y
ij, 0)D−

y qm
ij + min(sijn

y
ij, 0)D+

y qm
ij

]

,
(72)where sij = S(φm

ij ) and ∆τ is a time step suh that tm = m∆τ . We use entral di�erenes toompute the approximation nij of the unit normal vetor n = (nx, ny) = (∂xφ/|∇φ|, ∂yφ/|∇φ|)at node Pij . The initial value q0 is equal to Vn on the grid points with a distane to the interfaeless than min(∆x,∆y) and equals zero elsewhere.8.3. Reinitialization to a distane funtionFor numerial auray, the solution of the level set equation (54) shouldn't be neither toosteep nor to �at. This is the ase if φ is the distane funtion sine we have in that ase |∇φ| = 1.But even if we start with a distane funtion for the initial data φ0, the solution φ of the levelset equation (54) does not remain a distane funtion. We perform a reinitialization of φ at time
t by solving the solution ϕ = ϕ(x, y, τ) of the following equation, up to the stationary state (see[22℄)

ϕτ + S(φ)(|∇ϕ| − 1) = 0 in U × R+, (73)
ϕ(x, y, 0) = φ(x, y, t), (x, y) ∈ U. (74)The funtion S is the approximate sign funtion given by (71).13



9. Numerial resultsIn all the numerial tests, we hoose U = (0, 1) × (0, 1). In the �rst example (see Figure 4),the topologial derivative is used to reate holes. In this example, the Hamilton-Jaobi equationis solved on a 51 × 51 grid. The data are
f(x, y) = 10 sin2(4πx), for (x, y) ∈ U = (0, 1) × (0, 1),
λ = 0.5, µ = 0,and the initial domain Ω0 is the entire domain U i.e. there is no hole in the initial domain. Wedenote by Ω1 the optimal domain obtained in this �rst example. The value of the funtional Jin Ω1 is

J(Ω1) = 0.282319.In the seond example (see Figure 5), the topologial derivative is not used but only the shapegradient is used for omparison with the previous alulation. In that ase, it is therefore neessaryto start with a domain with a lot of holes in order to �nd a domain with a proper topology. Inthis example, the initial domain is a square with 21 regular holes (see Figure 5) and the data f , λand µ are the same as in the �rst example.. In addition, the Hamilton-Jaobi equation is solvedon a 101 × 101 grid. In the seond example, the algorithm onverges to a loal maximum whihis lower than the one obtained by using the topologial derivative (the �rst example). Indeed, ifwe denote by Ω2 the optimal domain for this seond example, we get
J(Ω2) = 0.2640695 < J(Ω1) = 0.282319.Thus Ω1 allows an inrease of 6.5% for the value of the funtional J ompared to Ω2. Notie thateven without topologial derivative, the number of onneted omponents of the omplementaryset of Ω an inrease as an be seen on Figure 5. This is not due to the reation of a hole but dueto the splitting of a onneted omponent into two onneted omponents. This is an unusualsituation, whih should be related to another onept of topologial derivative, alled the externaltopologial derivative (see [19℄).Additional tests have been performed with f(x, y) = 10x + y. In numerial tests depited onFigure 6 and Figure 7, there is no perimeter onstraint (µ = 0). We hoose λ = 1 on Figure6 and λ = 1.7 on Figure 7. Small or big osillations may our, depending on the value of theweight λ of the volume onstraint. On Figure 6 (with λ = 1), small osillations our whereas bigosillations are observed on Figure 7 (with λ = 1.7). It means that we have no optimal solutionfor the optimization problem sine the perimeter goes to in�nity. Finally, Figure 8 shows thesmoothing e�et of the perimeter onstraint for the same soure funtion. In this last example,we have hosen λ = 1.7 and µ = 0.4.10. Appendix : The topologial derivative with Neumann onditions on the holeWe present the results whih are used in Setion 5 in order to determine the topologialderivative of the energy funtional. The asymptoti expansion of the energy is obtained witha domain deomposition tehnique proposed in [27℄, [12℄. This tehnique an be desribed inthe following way. The atual domain is divided into two parts Ωρ = ΩR ∪ ΓR ∪ C(R, ρ) (seeFigure 2). In the ring C(R, ρ) the singular perturbation of the domain is loated, the movingpart of its boundary Γρ for ρ > 0 is the small parameter. On the other part of its boundary ΓRthe Steklov-Poinaré operator is de�ned and the asymptotis of the operator are determined infuntion of the parameter ρ. The seond domain ΩR of the deomposition depends only on theparameter ρ > 0 by the nonloal boundary onditions presribed in terms of the Steklov-Poinaréoperator Aρ, so we have the regular perturbation of the boundary onditions for the boundaryvalue problem in ΩR. 14



Fig. 4 � Shape optimization with topologial derivative. The initial domain is without any holes(f(x, y) = 10 sin2(4πx), λ = 0.5, µ = 0).
15



Fig. 5 � Shape optimization without the topologial derivative. The initial domain is omposedof 21 holes (f(x, y) = 10 sin2(4πx), λ = 0.5, µ = 0).
16



Fig. 6 � Small osillations without any perimeter onstraint (f(x, y) = 10x + y, λ = 1, µ = 0).Optimal value : J(Ω) = 0.598434
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Fig. 7 � Strong osillations without any perimeter onstraint (f(x, y) = 10x+y, λ = 1.7, µ = 0).Optimal value : J(Ω) = 1.190227
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Fig. 8 � Smoothing e�et of the perimeter onstraint (f = 10x + y, λ = 1.7, µ = 0.4). Optimalvalue : J(Ω) = 1.185849
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Now we give in the next subsetions, the asymptoti expansions of the energy terms E
(1)
ρ (v),

E
(2)
ρ (f) and E(Ωρ, uρ) appearing in relations (42),(43). For the sake of simpliity, we assume inwhat follows that x0 = 0.10.1. Asymptoti expansion of E

(1)
ρ (v)For any funtion v in H

1

2 (ΓR), let us onsider the unique solution wρ = wρ(v) of the followingproblem (see (39))






−∆wρ + wρ = 0 in C(R, ρ),
wρ = v on ΓR,

∂nwρ = 0 on Γρ.
(75)The Steklov-Poinaré operator Aρ is de�ned by

Aρ : H
1

2 (ΓR) → H− 1

2 (ΓR)
v 7→ ∂nwρ

(76)We an deompose v ∈ H
1

2 (ΓR) in the form of Fourier series with the polar oordinates (r, θ) atthe origin :
v(θ) =

1

2
a0 +

∞
∑

k=1

(ak sin(kθ) + bk cos(kθ))and the oe�ients satisfy :
∞

∑

k=1

√

1 + k2(a2
k + b2

k) ≤ M,where M is a onstant depending only on R. This implies two important properties :
∞

∑

k=1

(a2
k + b2

k) ≤ M,
∞

∑

k=1

k(a2
k + b2

k) ≤ M. (77)We are interested in the asymptoti expansion with respet to ρ of the energy term
E(1)

ρ (v) =

∫

C(R,ρ)

(

|∇wρ|2 + w2
ρ

)

dx (78)where wρ = wρ(v) is the solution of (75). We de�ne the energy funtional
E(1)(v) =

∫

BR

(

|∇w|2 + w2
)

dx, (79)where w is the solution of
{

−∆w + w = 0 in BR,
w = v on ΓR.

(80)We have the following expansion result for the energy E
(1)
ρ (v). For the proof, we refer to [11℄or [7℄.Theorem 3 There exists a onstant M > 0 independant of ρ suh that

E(1)
ρ (v) = E(1)(v) −

(

π(a2
1 + b2

1)

2I1(R)2
+

πa2
0

4I0(R)2

)

ρ2 + o(ρ2),uniformly on bounded subsets of H1(ΩR). The funtions Ik for k ≥ 0, are Bessel funtions of�rst kind de�ned by Ik(r) =

∞
∑

m=0

(

r
2

)k+2m

m!(k + m)!
. 20



10.2. Asymptoti expansion of E
(2)
ρ (f)We are now interested in the expansion with respet to ρ of the energy term

E(2)
ρ (f) = −

∫

C(R,ρ)

(

|∇yρ|2 + y2
ρ

)

dx (81)where yρ is the solution of the following problem (see (40)) :






−∆yρ + yρ = f|C(R,ρ) in C(R, ρ)

yρ = 0 on ΓR

∂nyρ = 0 on Γρ

(82)with f ∈ C∞(R2). We also need to de�ne the energy term (orresponding to ρ = 0 in (81) and(82))
E(2)(f) = −

∫

BR

(

|∇y|2 + y2
)

dx, (83)where y is the solution of
{

−∆y + y = f|BR
in BR,

y = 0 on ΓR.
(84)In order to get the asymptoti expansion of E2

ρ(f), we need to study the funtion
f|C(R,ρ) 7→ ∂nyρ|ΓR

= gρ.We would like to obtain an expansion of gρ with respet to ρ. To this end, we make use of theFourier expansion of f :
f(r, θ) =

1

2
ã0(r) +

∞
∑

k=1

(ãk(r) sin(kθ) + b̃k(r) cos(kθ)).We have the following theorem (we refer to [11℄ or [7℄ for the proof) :Theorem 4 The funtion gρ admits the expansion
gρ = g0 −

(

ha
0(R) − ã0(0)

4RI0(R)

)

ρ2 −
(

ha
1(R)

2RI1(R)
sin θ +

hb
1(R)

2RI1(R)
cos θ

)

ρ2 + o(ρ2). (85)where ha
i (R), i = 0, 1 are de�ned by

ha
i (R) = −Ki(R)

Ii(R)

∫ R

0
tãi(t)Ii(t)dt +

∫ R

0
tãi(t)Ki(t)dt (86)and hb

1(R) is obtained from ha
1(R) by substituing b̃1 to ã1 in (86). In (86), Ki are Bessel funtionsof seond kind [31℄.From the previous result, we an dedue the asymptoti expansion for E2

ρ(f) (see [11℄,[7℄) :Theorem 5 There exists a positive onstant M independant of ρ suh that
E(2)

ρ (f) = E(2)(f) − πha
0(R)2

4
ρ2 − π(ha

1(R)2 + hb
1(R)2)

2
ρ2 + o(ρ2).
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10.3. Asymptoti expansion of E(Ωρ, uρ)Reall that the energy term Eρ = E(Ωρ, uρ) is given by (see (42)) :
Eρ = −1

2

∫

ΩR

(

|∇uR
ρ |2 + (uR

ρ )2
)

dx − 1

2
E(1)

ρ (v) +
1

2
E(2)

ρ (f),where uR
ρ is the solution of (37). Using Theorem 3 and Theorem 5, we obtain

Eρ − E0 =

∫

ΓR

Aρ(u
R
ρ )uR

0 dσ −
∫

ΓR

A0(u
R
ρ )uR

0 dσ

−π(ha
0(R)2 − 2ã0(0)h

a
0(R))

8
ρ2 − π(ha

1(R)2 + hb
1(R)2)

4
ρ2dσ (87)

+

(

π(a2
1 + b2

1)

4I1(R)2
+

πa2
0

8I0(R)2

)

ρ2 +

∫

ΓR

uR
0 ∂n(yρ − y0) dσ + o(ρ2).It an be proved that

uR
ρ − uR

0 = o(ρ2), ∂n(uR
ρ − uR

0 ) = o(ρ2), (88)and we dedue that
∫

ΓR

Aρ(u
R
ρ )uR

0 dσ −
∫

ΓR

A0(u
R
ρ )uR

0 dσ =

∫

ΓR

(Aρ − A0)(u
R
0 )uR

0 dσ + o(ρ2)

=

∫

ΓR

w(uR
0 )∂nzρ(u

R
0 ) dσ + o(ρ2)

= − πa2
0

4I0(R)2
ρ2 − π(a2

1 + b2
1)

2I1(R)2
ρ2 + o(ρ2).Finally, we an alulate the last term of (87), thanks to Theorem 3 :

∫

ΓR

uR
0 ∂n(yρ − y0) dσ =

∫

ΓR

uR
0 (gρ − g0) dσ

= −π

(

a0(R)ha
0(R) − ã0(0)a0(R)

4I0(R)
+

a1h
a
1(R)

2I1(R)

)

ρ2

−π

(

b1h
b
1(R)

2I1(R)

)

ρ2 + o(ρ2).With the previous expansions and notiing that ã0(0) = 2f(0), we obtain following expansionresult for the energy E(Ωρ, uρ) :Theorem 6 There exists a positive onstant M independant of ρ suh that
E(Ωρ, uρ) = E(Ω, u) −

[

a0(R)2

8I0(R)2
+

ha
0(R)2

8
+

a0(R)ha
0(R)

4I0(R)

]

πρ2 (89)
−

[

a1(R)2 + b1(R)2

4I1(R)2
+

a1(R)ha
1(R)

2I1(R)
+

b1(R)hb
1(R)

2I1(R)

]

πρ2

−
[

ha
1(R)2

4
+

hb
1(R)2

4
− f(0)a0(R)

2I0(R)
− f(0)ha

0(R)

2

]

πρ2 + o(ρ2).The oe�ients a0, a1 and b1 are given by
a0(R) =

1

π

∫ 2π

0
u(R, θ) dθ, a1(R) =

1

π

∫ 2π

0
u(R, θ) sin θ dθ, b1(R) =

1

π

∫ 2π

0
u(R, θ) cos θ dθ.The funtions ha

i (R), i = 0, 1 are de�ned in (86).22



All the quantities between brakets in the asymptoti development (89) do not depend on R. Itan easily be shown that
u(0) =

a0(R)

2I0(R)
+

ha
0(R)

2and then
u(0)2

2
=

a0(R)2

8I0(R)2
+

ha
0(R)2

8
+

a0(R)ha
0(R)

4I0(R)
.Moreover, we have

|∇u(0)|2 =
a1(R)2 + b1(R)2

4I1(R)2
+

a1(R)ha
1(R)

2I1(R)
+

b1(R)hb
1(R)

2I1(R)
+

ha
1(R)2

4
+

hb
1(R)2

4
.Then, we dedue a di�erent expression of the previous asymptoti expansion, whih leads atuallyto the usual expression for the topologial derivative

E(Ωρ, uρ) = E(Ω, u) +

[

−u(0)2

2
− |∇u(0)|2 + f(0)u(0)

]

πρ2 + o(ρ2).Let us mention that for i = 0, 1

lim
R→0

ha
i (R) = 0, lim

R→0
hb

1(R) = 0.Thus, formula (89) gives an expression of the topologial derivative whih requires the knowledgeof u along the boundary ΓR. This an be interesting from a numerial point of view. In partiular,it is possible to alulate a1(R) and b1(R) without diretly omputing the gradient of solution
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