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y.frAbstra
t. A 
lass of shape optimization problems is solved numeri
ally by the levelset method 
ombined with the topologi
al derivatives for topology optimization. A
-tually, the topology variations are introdu
ed on the basis of asymptoti
 analysis, byan evaluation of extremal points (lo
al maxima for the spe
i�
 problem) of the so-
alled topologi
al derivatives introdu
ed by Sokolowski and Zo
howski [24℄ for ellipti
boundary value problems. Topologi
al derivatives are given for energy fun
tionals oflinear boundary value problems. We present results, in
luding numeri
al examples,whi
h 
on�rm that the appli
ation of topologi
al derivatives in the framework of thelevel set method really improves the e�
ien
y of the method. Examples show, thatthe level set method 
ombined with the asymptoti
 analysis, is robust for the shapeoptimization problems, and it allows to identify the better solution 
ompared to thepure level set method ex
lusively based on the boundary variation te
hnique.Key Words. Shape optimization, level set method, topologi
al derivative, optimaldesign.1. Introdu
tionShape optimization for ellipti
 equations is an important bran
h of 
al
ulus of variations, withnumerous appli
ations in stru
tural me
hani
s and to solution of inverse problems. The existen
eof solutions for shape optimization problems 
an be assured under mild 
onditions, e.g. underthe so-
alled Mos
o 
onvergen
e of the Sobolev spa
es asso
iated with the minimizing sequen
eof geometri
al domains, however optimality 
onditions require more regularity of boundaries ofadmissible domains. Re
ently, a parti
ular attention is paid to numeri
al methods whi
h duringthe optimization pro
ess allow for the topology 
hanges of geometri
al domains. One of the
andidates for su
h framework is the level set fun
tion whi
h models the domain evolution and
an be determined by solving appropriate Hamilton-Ja
obi equations. However, by its nature, theobtained level set fun
tion de
reases the number of 
onne
ted 
omponents of resulting geometri
aldomains during the optimization pro
ess. To improve the performan
e of the method based on thelevel set fun
tion, asymptoti
 analysis is employed, and lo
ation of additional holes in geometri
al1



domains is determined by analysis of the so-
alled topologi
al derivatives of shape fun
tionalsunder study. In the paper we des
ribe in details su
h a 
ombination, used already in literature,and provide some examples whi
h show that the method is robust, in parti
ular improves theoptimal value of the shape fun
tional obtained as a result of 
omputations. For the 
onvenien
eof the reader we present as well the elements of mathemati
al analysis in
luding asymptoti
analysis of spe
i�
 boundary value problems with respe
t to small parameter whi
h modelssingular perturbations of geometri
al domains. Su
h analysis is required for determination oftopologi
al derivatives.The numeri
al method for shape and topology optimization of an energy fun
tional is pre-sented in the paper. The method 
ombines the shape gradient te
hnique and the asymptoti
analysis for maximization of an energy fun
tional for ellipti
 equations. The level set methodis used for the evolution of geometri
al domains with the moving boundaries determined fromthe shape sensitivity analysis of the energy shape fun
tional, the topology 
hanges are perfor-med in addition by analysis of the topologi
al derivatives. It is still an open problem to devisehow the 
ombination of boundary variations and singular perturbations of geometri
al domainsenters in a general framework of shape optimization. One possibility is given by the so-
alledself-adjoint extensions of di�erential operators, where the small hole is approximated by singularperturbation of the 
oe�
ients of di�erential operator. We refer the reader to [18℄, [11℄, [14℄, [16℄,[17℄, for some results in this dire
tion. We 
onsider only steady state boundary value problems,however the same results 
an be obtained for the evolution problems des
ribed by paraboli
 andhyperboli
 pde's.The Hamilton-Ja
obi nonlinear hyperboli
 equation models the evolution of the level setfun
tion. The normal speed of the moving boundaries are determined from the shape gradientsobtained for the energy fun
tional [29℄. Sin
e the shape gradients serve as the 
oe�
ients for thehyperboli
 equation, the standard assumption is to assume that the shape gradients are given byrestri
tion to the moving boundaries of given fun
tions de�ned in whole geometri
al domains,whi
h is unfortunately very restri
tive assumption, however it is satis�ed in our 
ase.During the numeri
al pro
ess, the topology 
hanges are de�ned by analysis of the lo
almaxima of topologi
al derivatives for the energy fun
tional. In this way, small holes 
an bein
luded into the a
tual geometri
al domain with the 
enters at the points determined by maxi-mization of the topologi
al derivatives. We inje
t only one hole at ea
h etap of the method,however the asymptoti
 analysis furnish the information whi
h allows for the inje
tion of a �nitenumber of holes, if ne
essary and it turns out to be useful. The size of the holes 
an be determi-ned by the se
ond order topologi
al derivatives and this te
hnique is not employed in the presentpaper.The paper is self
ontained, thus, in appendix we provide also some te
hni
al results whi
hare used in order to determine the topologi
al derivatives. To this end the domain de
ompositionte
hnique is applied and the proof of the asymptoti
 expansion for the related Steklov-Poin
aréoperator is given. Su
h an approa
h for evaluation of topologi
al derivatives for energy typefun
tionals is proposed e.g., in [12℄ and [27℄.Finally, we present a list of referen
es on the derivation and appli
ation of the asymptoti
analysis in shape optimization. Singular perturbations of domains in the framework of shape op-timization are studied by many authors, in
luding [1℄, [9℄, [10℄, [13℄, [14℄, [15℄, [16℄, [17℄, [18℄, [19℄,[24℄, [25℄, [26℄. The 
onstru
tion of the asymptoti
 expansion for the Steklov-Poin
aré operatoris given in [28℄. Numeri
al results for shape and topology optimization are presented in se
tion 9.2. The linear problemWe present the numeri
al method for a s
alar ellipti
 boundary value problems, and forthe energy type shape fun
tional. For su
h problem we 
an provide 
omplete analysis on shapedi�erentiation and asymptoti
 expansions of solutions with respe
t to small parameter whi
hmeasures the singular perturbations of geometri
al domain. For the sake of simpli
ity we restri
t2



ourselves to two spatial dimensions, and to the holes in the form of a 
ir
le. In su
h a 
ase byFourier analysis we 
an obtain the expli
it solutions for auxiliary problems in rings. Otherwise,for any spatial dimensions and arbitrary shape of holes the analysis is based on the fundamentalsolutions for di�erential operators and 
an be performed in the same way, we refer the reader e.g.,to [18℄ for a general approa
h to the derivation of topologi
al derivatives for ellipti
 boundaryvalue problems in arbitrary spatial dimensions.To begin with, we introdu
e the model problem. Let U and V be two bounded open subsetsof R2 su
h that V ⊂⊂ U . For any open set ω ⊂ R2, we denote by #ω the number of 
onne
ted
omponents of ω and we 
onsider the set of admissible domains
Ok = {Ω = U \ ω; ω open set, ω ⊂ V,#ω ≤ k}. (1)For any Ω ∈ Ok, k ≥ 1, the boundary of Ω 
an be splitted into ∂Ω = ΓN ∪∂U with ΓN = ∂ω. Theboundary ∂U is also denoted by ΓD. The boundary ΓN re
eives Neumann boundary 
onditions,while we have Diri
hlet 
onditions on ΓD. Let us point out that the open set ω is not ne
essarilyany 
onne
ted set as illustrated in Figure 1.

PSfrag repla
ements
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∂U = ΓDFig. 1 � An admissible domain ΩFor f ∈ C∞(U), let us 
onsider the following problem






−∆u + u = f in Ω,
u = 0 on ΓD,

∂nu = 0 on ΓN ,
(2)where n is the unit outwards normal ve
tor to ∂Ω, and ∂n stands for the normal derivative on

∂Ω. In addition, let us 
onsider the energy fun
tional depending on the solution u to (2) :
E(Ω, u) :=

1

2

∫

Ω

(

|∇u|2 + u2
)

dx −
∫

Ω
fu dx = −1

2

∫

Ω

(

|∇u|2 + u2
)

dx = −1

2

∫

Ω
fu dx, (3)and let us introdu
e the regularized shape fun
tional

J(Ω) := E(Ω, u) + λA(Ω) − µPc(Ω)2, (4)with A(Ω) and Pc(Ω) de�ned by
A(Ω) := |Ω|, (5)
Pc(Ω) := max(0, ℓ(∂Ω) − c). (6)In the above de�nitions, |Ω| denotes the Lebesgue measure of Ω in R2 and ℓ(∂Ω) is the 1-dimensional measure of ∂Ω. Constants λ and µ are positive and allow us to take into a

ount3



the area and perimeter 
onstraints respe
tively. The 
onstant c is also positive and 
orrespondsto a shifted perimeter fun
tional, i.e. beyond c, the perimeter 
onstraint be
omes a
tive.For any �xed integer k ≥ 1, let us 
onsider the following shape optimization problem
max{J(Ω) : Ω ∈ Ok}. (7)Sin
e the exterior boundary of Ω is �xed on
e for all and equals to ∂U , the domains Ωsatisfying (7) are a
tually determined by their moving boundaries ΓN .In the following three se
tions, we perform the mathemati
al analysis of problem (7). We showthat problem (7) is well posed in the sense that there exists an optimal domain, furthermore,the optimal shape 
an be 
hara
terized by appropriate ne
essary optimality 
onditions. For agiven topology of an optimal domain there are two di�erent sort of optimality 
onditions. Onthe moving boundaries, the shape gradients 
an be evaluated and the optimality 
onditions saythat the optimal value of the 
ost 
annot be improved by admissible boundary variations. Onthe other hand, the sign of topologi
al derivatives is �xed inside of the geometri
al domain, insu
h a way that any 
reation of a small hole 
annot improve the value of the 
ost. The se
ond
ondition is very strong, it seems, therefore it is a very di�
ult task to �nd an optimal domainwhi
h satis�es su
h a 
ondition.A
tually, we study the existen
e of an optimal domain in se
tion 3, and then the shapesensitivity in se
tion 4, the topologi
al derivatives of the fun
tional J are obtained in se
tion5. The 
onstru
tion of a level set representation is based on the shape derivatives of J , as it isdes
ribed in se
tion 6. This formulation provides a pra
ti
al way to in
rease the values of theshape fun
tional J . The appearan
e of new holes is not possible with the only use of the levelset method based on the shape derivatives. Therefore, an appli
ation of topologi
al derivativeallows us to 
reate new holes in order to in
rease the values of J .3. Existen
e of an optimal domainIt 
an be showed that there exists a domain Ω, solution of (7). We make use of a result fromBu
ur and Var
hon [3℄ and [4℄ for the Neumann boundary 
onditions on the holes. Similar resultfor the Diri
hlet boundary 
onditions in two spatial dimensions is given by Sverak [30℄. With afew 
hanges in the proof of this result, we 
an apply the results from [3℄ and [4℄ to our problem.It is possible without any additional di�
ulty sin
e the boundary ΓD is �xed. Thus, we obtainthe following theoremTheorem 1 Let Ωi = U \ ωi be a sequen
e of open sets su
h that the number of 
onne
ted
omponents of ωi is uniformly bounded. If ωi 
onverges in the sense of the Hausdor� metri
 to

ω, then the solution ui of the Neumann problem






−∆ui + ui = f in Ωi,
ui = 0 on ∂U.

∂nui = 0 on ∂ωi.
(8)
onverges to the solution u of problem (8) on Ω if and only if |Ωi| → |Ω|. (All fun
tions areimpli
itely extended to zero by setting ui = 0 in ωi and u = 0 in ω and the 
onvergen
e takespla
e in L2(U)).Now it is possible to prove the existen
e of an optimal domain.Theorem 2 For any k ≥ 0, Problem (7) admits at least one solution Ω ∈ Ok.Proof. Let {Ωi}, i = 0, 1, 2, · · · , be a maximizing sequen
e for Problem (7). There exists asubsequen
e still denoted by Ωi su
h that Ωi → Ω for i → +∞, in the sense of Hausdor� metri
.In what follows, su
h a 
onvergen
e is denoted by Ωi

H−→ Ω. For the de�nition of Hausdor�4




onvergen
e, see [8℄.It is shown in [8℄ that the number of 
onne
ted 
omponents of Ωc is bounded and we alsohave by taking the limit
ℓ(∂Ω) ≤ lim inf

i
ℓ(∂Ωi). (9)Thus ℓ(∂Ω) < ∞ sin
e we maximize J(Ω) and thus Pc(Ω) is bounded. Using the notion of densityperimeter introdu
ed in [2℄, it is well known that the Hausdor� 
onvergen
e of Ωi to Ω implies
onvergen
e in the sense of 
hara
teristi
 fun
tions :

Ωi
H−→ Ω =⇒ χΩi

L1(U)−→ χΩ. (10)As a 
onsequen
e, we get for i → +∞, the 
onvergen
e of Lebesgue measures
|Ωi| → |Ω|. (11)To 
on
lude, we have to prove the 
onvergen
e of E(Ωi, ui) = −1

2

∫

Ωi
fui. Moreover, we have

∣

∣

∣

∣

∫

Ωi

fui −
∫

Ω
fu

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

U
fuiχΩi

−
∫

U
fuχΩ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

U
fui(χΩi

− χΩ) +

∫

U
fχΩ(ui − u)

∣

∣

∣

∣

≤ ‖ui‖2‖f(χΩi
− χΩ)‖2 + ‖fχΩ‖2‖ui − u‖2,where ‖.‖2 is the norm in L2(U). A

ording to Theorem 1, we have

‖ui‖2 → ‖u‖2 and ‖ui − u‖2 → 0. (12)Furthermore,
‖f(χΩi

− χΩ)‖2 → 0 (13)thanks to the 
onvergen
e in the sense of 
hara
teristi
 fun
tions of χΩi
to χΩ. Thus, we get

E(Ωi) → E(Ω). (14)Finally, 
ombining 
onvergen
es (14), (11) and (9), we obtain the inequality
J(Ω) ≥ lim sup

i
J(Ωi). (15)Thus, Ω is a solution to problem (7). �Remark 1 In order to use the shape derivatives, we need the domains with smooth boundaries.The solutions of (7) are not ne
essarily smooth. From now on, we assume the existen
e of anoptimal domain for (7) whi
h in addition, is smooth enough.4. Shape derivativesLevel set method requires the knowledge of shape gradients for the fun
tional to be maximi-zed. Let Ω be a su�
iently regular domain. The variational formulation of (2) is given by

u ∈ H1
ΓD

(Ω) :

∫

Ω
〈∇u,∇w〉 dx +

∫

Ω
uw dx =

∫

Ω
fw dx ∀w ∈ H1

ΓD
(Ω) , (16)where H1

ΓD
(Ω) =

{

v ∈ H1(Ω) | v = 0 on ΓD

}. 5



We des
ribe the 
onstru
tion of regular perurbations of Ω, whi
h is used to obtain the shapegradients for shape fun
tionals [5℄,[29℄. Let ξ be a ve
tor �eld of 
lass Ck with 
ompa
t supportin U . We put |ξ| = ‖ξ‖Ck(U ;R2). Let us 
onsider the transformation Fξ = I + ξ and de�ne
Ωξ = Fξ(Ω). We assume that |ξ| is small enough, so that Fξ is a Ck-di�eomorphism. As a
onsequen
e, there exists a unique solution uξ ∈ H1

ΓD
(Ωξ) to the variational equation in variabledomain Ωξ,

∫

Ωξ

〈∇uξ,∇v〉 dx +

∫

Ωξ

uξv dx =

∫

Ωξ

fv dx ∀v ∈ H1
ΓD

(Ωξ). (17)We are going to show that the energy fun
tional E(Ω, u) is di�erentiable with respe
t to thedomain and we 
ompute its shape derivative dE(Ω, ξ) de�ned for any dire
tion ζ = ξ/|ξ| of theunit norm |ζ| = 1 by
dE(Ω, ξ) := lim

t→0

E(Ωξ, u
ξ) − E(Ω, u)

t
,where t = |ξ|, and for the sake of simpli
ity, in the notation we write ξ instead of ζ.We need to transform (17) on the �xed domain Ω. To this end, we denote uξ the transportedfun
tion de�ned by the 
omposition

uξ = uξ ◦ Fξ ∈ H1
ΓD

(Ω). (18)Using the 
hange of variable in (17), we obtain the variational equation satis�ed by uξ :
∫

Ω
〈(DF T

ξ )−1∇uξ, (DF T
ξ )−1∇w〉qξ dx +

∫

Ω
uξwqξ dx =

∫

Ω
fξwqξ dx ∀w ∈ H1

ΓD
(Ω), (19)where fξ = f ◦ Fξ . In the above formulation, DFξ is the Ja
obian matrix of the transformation

Fξ and qξ stands for the determinant of the Ja
obian. More pre
isely, we have
DFξ = I + Dξ, (20)

qξ = detDFξ = 1 + divξ + detDξ. (21)It is shown in [6℄ that uξ admits the following Taylor expansion
uξ = u + u1(ξ) + ũ(ξ), (22)where the material derivative u1(ξ) is the unique solution of the variational equation

∫

Ω
〈∇u1(ξ),∇w〉dx =

∫

Ω
〈A(ξ)−1)∇u,∇w〉dx +

∫

Ω
g(ξ)w dx

−
∫

Ω

(

uw div(ξ) + u1w
)

dx ∀w ∈ H1
ΓD

(Ω). (23)The matrix A(ξ) and the fun
tion g(ξ) are given by
A(ξ) = Dξ + DξT − (divξ)I,

g(ξ) = div(fξ).Expansion (22) holds true with the estimates (see [6℄)
‖uξ − u‖H1

ΓD
(Ω) ≤ c|ξ|, (24)

‖ũ(ξ)‖H1

ΓD
(Ω) = ‖uξ − u − u1(ξ)‖H1

ΓD
(Ω) ≤ c|ξ|2. (25)

6



Making use of the 
hange of variables (18) in the expression E(Ωξ, u
ξ) = −1

2

∫

Ωξ

(

|∇uξ|2 + (uξ)2
)

dxtogether with the estimates (24) and (25), we obtain that E is di�erentiable with respe
t to thedomain and its �rst order shape derivative is given by
dE(Ω; ξ) = −

∫

Ω
〈∇u,∇u1(ξ)〉 dx +

1

2

∫

Ω
〈A(ξ)∇u,∇u〉 dx (26)

−
∫

Ω
uu1(ξ) dx − 1

2

∫

Ω
u2div(ξ) dx.Now, 
hoosing w = u in the variational identity (23), we obtain

∫

Ω
〈∇u,∇u1(ξ)〉dx =

∫

Ω
〈A(ξ)∇u,∇u〉dx +

∫

Ω
g(ξ)u dx −

∫

Ω

(

u2div(ξ) + u1(ξ)u
)

dx. (27)In view of (27), we 
an get rid of u1(ξ) in (26) :
dE(Ω; ξ) = −1

2

∫

Ω
〈A(ξ)∇u,∇u〉 dx −

∫

Ω
g(ξ)u dx +

1

2

∫

Ω
u2div(ξ) dx. (28)Starting from this expression, we 
an obtain a more useful expression for the shape derivative.First of all, we turn to the �rst integral term in the right hand side of (28). We have

1

2

∫

Ω
〈A(ξ)∇u,∇u〉 dx =

∫

Ω
〈Dξ∇u,∇u〉 dx − 1

2

∫

Ω
|∇u|2div(ξ) dx

=

∫

Ω
〈∇(〈ξ,∇u〉),∇u〉 dx −

∫

Ω
〈D2u ξ,∇u〉 dx − 1

2

∫

Ω
|∇u|2div(ξ) dx

= −
∫

Ω
∆u〈ξ,∇u〉 dx +

∫

∂Ω
〈ξ,∇u〉〈∇u, n〉 dσ −

∫

Ω
〈D2u ξ,∇u〉 dx.

= −1

2

∫

Ω
|∇u|2div(ξ) dx.Sin
e −∆u = f − u in Ω, equation (28) be
omes

dE(Ω; ξ) = −
∫

Ω
f〈ξ,∇u〉 dx −

∫

Ω
div(fξ)u dx

+

∫

Ω
〈D2u ξ,∇u〉 dx +

1

2

∫

Ω
|∇u|2div(ξ) dx

+

∫

Ω
u〈ξ,∇u〉 dx +

1

2

∫

Ω
u2div(ξ) dx

−
∫

∂Ω
〈ξ,∇u〉〈∇u, n〉 dσ.Finally we obtain

dE(Ω; ξ) =

∫

Ω
div(

1

2
|∇u|2ξ +

1

2
u2ξ − fξu

)

dx −
∫

∂Ω
〈ξ,∇u〉〈∇u, n〉 dσ. (29)Sin
e 〈∇u, n〉 = 0 on ΓN and ξ has 
ompa
t support in U , we have

dE(Ω; ξ) =

∫

ΓN

(

1

2
|∇u|2 +

1

2
u2 − fu

)

〈ξ, n〉 dσ. (30)Moreover, the shape derivatives of A(Ω) and Pc(Ω) are given by
dA(Ω; ξ) =

∫

ΓN

〈ξ, n〉 dσ, (31)
dPc(Ω; ξ) = 1{ℓ(∂Ω)=c} max

(

0,

∫

ΓN

H〈ξ, n〉 dσ

)

+ 1{Pc(Ω)>0}

∫

ΓN

H〈ξ, n〉 dσ, (32)
dPc(Ω; ξ)2 = 2Pc(Ω)

∫

ΓN

H〈ξ, n〉 dσ, (33)7



where H is the 
urvature of ΓN . Thus, the shape derivative dJ(Ω; ξ) of J(Ω) is given by
dJ(Ω; ξ) =

∫

ΓN

(

1

2
|∇u|2 +

1

2
u2 − fu + λ − 2µPc(Ω)H

)

〈ξ, n〉 dσ (34)5. Topologi
al derivativeFor the sake of simpli
ity, we assume in this se
tion that Ω = U (i.e. ΓN = ∅). Let us now
onsider the perforated domain Ωρ = U \ Bρ where Bρ is the ball of radius ρ, 
entered at apoint x0 ∈ U and with boundary Γρ = ∂Bρ. In order to study the topologi
al derivative of thefun
tional J for the linear problem (2), we need to 
ompute the asymptoti
 expansion of theenergy (see (3))
E(Ωρ, uρ) = −1

2

∫

Ω

(

|∇uρ|2 + u2
ρ

)

dx,where uρ is the solution of the linear problem






−∆uρ + uρ = f in Ωρ,
uρ = 0 on ∂U = ΓD,

∂nuρ = 0 on Γρ.
(35)In order to study the topologi
al derivative, we used the so-
alled trun
ated domain te
hnique(see [27℄, [12℄). We only present the main sket
h of the method used to 
ompute the asymptoti
expansion of J and we refer to the appendix for a 
omplete proof of the results. We turn to thetrun
ated domain te
hnique by 
onsidering the domain

ΩR = U \ BR, (36)where BR is the ball of radius R > ρ, 
entered at x0. We also de�ne the ring C(R, ρ) su
h that
Ωρ = ΩR ∪ ΓR ∪ C(R, ρ) where ΓR denotes the boundary of the ball BR i.e. ΓR = ∂BR. (seeFigure 2).PSfrag repla
ements

ρ
x0

R

BR

ΩR

ΓR

C(R, ρ)

UFig. 2 � The trun
ated domain te
hnique.Then we 
onsider the following trun
ated problem










−∆uR
ρ + uR

ρ = f in ΩR,

uR
ρ = 0 on ∂U,

−∂nyρ + ∂nuR
ρ = Aρ(u

R
ρ ) on ΓR.

(37)In the above problem, Aρ is the Stekov-Poin
aré operator de�ned for any v ∈ H
1

2 (ΓR) by
Aρ(v) = ∂nwρ, (38)8



where wρ = wρ(v) is the unique solution of the problem






−∆wρ + wρ = 0 in C(R, ρ),
wρ = v on ΓR,

∂nwρ = 0 on Γρ.
(39)Finally, the fun
tion yρ appearing in problem (37) is the solution of the following problem







−∆yρ + yρ = f|C(R,ρ) in C(R, ρ),

yρ = 0 on ΓR,
∂nyρ = 0 on Γρ.

(40)Then, it 
an be easily shown that
uR

ρ = uρ|ΩR
and uρ|C(R,ρ) = wρ(u

R
ρ ) + yρ. (41)In order to obtain the topologi
al derivative of J , we have to perform an expansion of theenergy fun
tional E(Ωρ, uρ) = −1

2

∫

Ωρ

(

|∇uρ|2 + u2
ρ

)

dx with respe
t to the radius ρ. Using thedomain trun
ation, we 
an split the integral in two parts, and we obtain
E(Ωρ, uρ) = E(ΩR, uR

ρ ) − 1

2
E(1)

ρ (uR
ρ ) +

1

2
E(2)

ρ (f) (42)where
E(ΩR, uR

ρ ) = −1

2

∫

ΩR

(

|∇uR
ρ |2 + (uR

ρ )2
)

dx (43)and
E(1)

ρ (uR
ρ ) =

∫

C(R,ρ)

(

|∇wρ|2 + w2
ρ

)

dx with wρ = wρ(u
R
ρ ), (44)

E(2)
ρ (f) = −

∫

C(R,ρ)

(

|∇yρ|2 + y2
ρ

)

dx. (45)Studying problems (37), (39) and (40), we 
an obtain asymptoti
 expansion of (43), (44) and(45) respe
tively whi
h lead to the following expansion for the energy (see the appendix)
E(Ωρ, uρ) = E(Ω, u) −

(

u(x0)
2

2
+ |∇u(x0)|2 − f(x0)u(x0)

)

πρ2 + o(ρ2). (46)Now, using the expansions
A(Ωρ) = A(Ω) − πρ2, (47)

Pc(Ωρ)
2 = Pc(Ω)2 + 4πPc(Ω)ρ + o(ρ2), (48)we obtain the following asymptoti
 expansion for J :

J(Ωρ) = J(Ω) + h(ρ)TΩ(x0) + o(h(ρ)), (49)with
h(ρ) =

{

πρ2 if Pc(Ω) = 0,

πρ if Pc(Ω) > 0.
(50)The topologi
al derivative TΩ(x0) of the fun
tional J at point x0 ∈ Ω is given by

• TΩ(x0) = −|∇u(x0)|2 − 1
2u(x0)

2 + f(x0)u(x0) − λ, if Pc(Ω) = 0,

• TΩ(x0) = −4µPc(Ω), if Pc(Ω) > 0.
(51)9



φ=0

Ωt ={φ<0}

φ=0φ=0
φ>0

φ>0

U

φ>0
n

n

n

Fig. 3 � The level set representation of the domain.6. The level set formulation6.1. The Hamilton-Ja
obi equationIn the level set method, a domain and its boundary are represented as level sets of a 
ontinuousfun
tion φ. We refer to [20℄,[21℄,[23℄ for a 
omplete des
ription of the level set formulation of frontspropagating models. We give a brief des
ription of the level set formulation for the evolution of adomain Ω ⊂ U ⊂ R2 under a given velo
ity �eld ξ. Let us 
onsider the domain Ωt = (I + tξ)(Ω),
t ∈ R+, with a smooth ve
tor �eld ξ 
ompa
tly supported in U . For t ≥ 0, the domain Ωt andits boundary are de�ned by a fun
tion φ = φ(x, y, t), (x, y) ∈ U , su
h that

Ωt = {(x, y) ∈ U, φ(x, y, t) < 0} and ∂Ωt = {(x, y) ∈ U, φ(x, y, t) = 0}. (52)The boundary ∂Ωt is the zero level 
urve of the fun
tion φ(·, t) (see Fig. 3).We 
onsider the position (x(t), y(t)) of a parti
le on a (given) level 
urve of φ(·, t) movingwith velo
ity ξ = (x′(t), y′(t)). Then, we have φ(x(t), y(t), t) = constant, for all t ≥ 0. Bydi�erentiating with respe
t to t, we obtain the following transport equation
φt + ξ · ∇φ = 0 in U × R+. (53)The normal unit ve
tors n to the level sets of φ are given by n = ∇φ/|∇φ|. This leads to theHamilton-Ja
obi equation
φt + ξn|∇φ| = 0 in U × R+ (54)where ξn is the normal 
omponent of the velo
ity i.e. ξn = 〈ξ, n〉. We also have to 
hooseinitial data and boundary 
onditions with the Hamilton-Ja
obi equation (54). The initial data

φ(x, y, 0) = φ0(x, y) is 
hosen as the signed distan
e fun
tion to the initial boundary ∂Ω0 = ∂Ωi.e.
φ0(x, y) = ± dist((x, y), ∂Ω0) for (x, y) ∈ U, (55)with the minus sign (resp. plus sign) if the point x is inside (resp. outside) the initial domain

Ω0 = Ω. Finally, we 
hoose homogeneous Neumann boundary 
ondition on the boundary ∂U ofthe whole domain :
∂nφ = 0 on ∂U × R+. (56)

10



6.2. Normal velo
ity for the level set equationRe
all that the shape derivative dJ(Ω; ξ) asso
iated to the velo
ity �eld ξ is given by (34).We lo
ally (that is under small perturbations of the domain) require that dJ(Ω; ξ) > 0. Thisleads to the following 
hoi
e for the normal 
omponent ξn = 〈ξ, n〉 of the velo
ity :
ξn =

1

2
|∇u|2 +

1

2
u2 − uf + λ − 2µPc(Ω)H on ΓN . (57)If the velo
ity �eld ξ satis�es (57), we 
learly have dJ(Ω; ξ) > 0 and then J(Ωt) > J(Ω) for tsmall enough.A

ording to (57), the normal 
omponent of the velo
ity is only imposed along the boundary

ΓN . But in order to solve the Hamilton-Ja
obi equation (54), we need a velo
ity �eld de�ned inthe whole domain U . We write
ξn = Vn − 2µPc(Ω)H on ΓN , (58)with

Vn =
1

2
|∇u|2 +

1

2
u2 − uf + λ on ΓN . (59)The 
urvature H is dire
tly linked to the level set fun
tion φ by the formula

H = div( ∇φ

|∇φ|

)

. (60)So, the 
urvature term is de�ned in the whole domain U and the only normal velo
ity part Vngiven by (59) has to be extended o� the boundary ΓN . If Vext denotes the extension of Vn to thewhole domain U , the Hamilton-Ja
obi be
omes
φt +

(

Vext − 2µPc(Ω)div( ∇φ

|∇φ|

))

|∇φ| = 0 in U × R+. (61)The 
onstru
tion of the extension Vext of Vn to the whole domain U is explained in Se
tion8.7. The shape optimization algorithmNow, we des
ribe the general shape optimization algorithm.First step : initial domainWe start to 
hoose an initial domain Ω0 and we 
ompute the solution of (2) in Ω0 by the use ofthe pie
ewise linear �nite element method. Then, the topologi
al derivative TΩ0(x) is 
omputedfor all x ∈ Ω0, a

ording to (51).Se
ond step : topologi
al 
hange by 
reating a holeThe topologi
al derivative allows us to �nd the pla
e where a hole should be 
reated in thedomain Ω0 in order to in
rease the energy fun
tional J . We �nd the point x0 ∈ Ω0 su
h that
TΩ0(x0) = maxx∈Ω0 TΩ0(x). If TΩ0(x0) > 0 then a 
ir
ular hole ωρ of radius ρ > 0 and 
entered at
x0 is 
reated. Then we denote by Ω0

ρ the domain with the new hole ωρ. Homogeneous Neumann
ondition is imposed on the boundary of the new hole. Remark that the radius of this hole shouldbe as small as possible, depending on the spa
e step of the mesh.Third step : shape evolutionWe turn to the evolution of the domain Ω0
ρ with the appli
ation of the shape derivative in thelevel set formulation. We have to 
ompute the solution φ to the Hamilton-Ja
obi equation (61)where the initial φ is taken to be the signed distan
e fun
tion to the domain Ω0

ρ. We perform11



the new 
omputation of the solution of (2) in Ω0
ρ and then we 
ompute the normal velo
ity Vnon the internal boundary part ΓN of ∂Ω0

ρ a

ording to (59). The level set equation (61) requireto extend the normal velo
ity Vn to the whole domain U . This is done by solving a transportequation. The next se
tion 
ontains an explaination how to exa
tly pro
eed to 
onstru
t theextended velo
ity. Only few iterations of the Hamilton-Ja
obi equation are performed.On
e we have 
omputed the level set fun
tion, we 
an determine the new domain Ω1. Thenwe go ba
k top the �rst step of the algorithm with Ω1 in pla
e of Ω0. We stop when 
onvergen
eof the domain is rea
hed that is when the geometri
al domain does not 
hange anymore.8. Numeri
al method for the level set equationIn this se
tion, we present the numeri
al method used to solve the Hamilton-Ja
obi equation(61). We also des
ribe the method used for 
omputing the extension Vext of the normal velo
ityto the entire domain U .8.1. Dis
retization of the level set equationWe 
hoose U = (0, 1) × (0, 1) and we de�ne the mesh grid of U by introdu
ing the nodes
Pij with 
oordinates (i∆x, j∆y). The parameters ∆x and ∆y are the steps dis
retization in the
x and y dire
tions, respe
tively. We denote by tk = k∆t the dis
rete time for k ∈ N, where
∆t is the time step. An approximation φk

ij ≃ φ(Pij , t
k) is 
omputed with a time expli
it �nitedi�eren
es s
heme due to Osher and Sethian [21℄,[23℄,[20℄. This s
heme is based on an upwinds
heme for the �rst order part (Vn|∇φ|) of the Hamilton-Ja
obi equation. For the se
ond orderpart with the 
urvature term (H|∇φ|), 
entered �nite di�eren
es are used. More pre
isely, thiss
heme reads as

φk+1
ij = φk

ij − ∆t g(D−
x φk

ij ,D
+
x φk

ij ,D
−
y φk

ij ,D
+
y φk

ij) (62)where
D−

x φij =
φij − φi−1,j

∆x
, D+

x φij =
φi+1,j − φij

∆x
(63)are the ba
kward and forward approximations of the x-derivatives of φ at Pij . Similar expressionshold for the approximations D−

y and D+
y of the y-derivatives. The numeri
al �ux is given by

g(D−
x φij ,D

+
x φij ,D

−
y φij,D

+
y φij) = g

(1)
ij + g

(2)
ij . (64)The numeri
al �ux part g

(1)
ij 
omes from the dis
retization of the �rst order part Vn|∇φ| ofthe Hamilton-Ja
obi equation and is given by

g
(1)
ij = max (Vext(Pij), 0) G+ + min (Vext(Pij), 0) G− (65)with

G+ =
[

max(D−
x φij , 0)

2 + min(D+
x φij, 0)

2 + max(D−
y φij , 0)

2 + min(D+
y φij, 0)

2
]1/2

G− =
[

min(D−
x φij, 0)

2 + max(D+
x φij, 0)

2 + min(D−
y φij, 0)

2 + max(D+
y φij, 0)

2
]1/2and Vext(Pij) is the extended normal velo
ity at point Pij (see the next paragraph for the 
om-putation of Vext).The numeri
al �ux part g

(2)
ij in (64) 
omes from the 
entered �nite di�eren
es approximationof the se
ond order term of the Hamilton-Ja
obi equation i.e.

g
(2)
ij ≃ −2µPc(Ω)H |∇φ|(Pij) = −2µPc(Ω)div( ∇φ

|∇φ|

)

|∇φ|(Pij). (66)12



The upwind part of the s
heme 
orresponding to the dis
retization of the �rst order term ofthe Hamilton-Ja
obi equation requires the following stability 
ondition of CFL type :
(max

U
|Vext|) ∆t

min(∆x,∆y)
≤ 1

2
√

2
. (67)Moreover, sin
e we use a 
entered �nite di�eren
es s
heme for the se
ond order term involvingthe 
urvature, the following stability 
ondition of Fourier type has also to be satis�ed :

4µPc(Ω)
∆t

min(∆x2,∆y2)
≤ 1. (68)8.2. Extended normal velo
ityAs already mentioned, the normal velo
ity Vn de�ned by (59) has to be extended to the wholedomain U in order to solve the Hamilton-Ja
obi equation (61). A natural way to extend Vn o�the boundary ΓN is to seek a fun
tion whi
h is 
onstant along the 
urve normal to ΓN . Thissuggests to solve at time t, the following equation for q, up to the stationary state (see [20℄, [22℄)

qτ + S(φ)
∇φ

|∇φ| · ∇q = 0 in U × R+ (69)
q(x, y, 0) = p(x, y, t), (x, y) ∈ U (70)where p equals to Vn given by (59) on the boundary ΓN and 0 elsewhere. The fun
tion S is anapproximation of the sign fun
tion, de�ned by

S(d) =
d

√

d2 + |∇d|2ε2
with ε = min(∆x,∆y). (71)Another 
hoi
es are possible for the approximate sign fun
tion (see [22℄ for details). The extendednormal velo
ity Vext is given by the stationary state rea
hed by the solution q of (69),(70) as thetime τ goes to +∞.At ea
h iteration k of the s
heme (62)�(66), we 
ompute the extended normal velo
ity as theapproximate stationary solution of (69),(70). We 
ompute qm

ij ≃ q(Pij , t
m) from the followingupwind dis
retization of (69) :

qm+1
ij = qm

ij − ∆τ
[

max(sijn
x
ij, 0)D−

x qm
ij + min(sijn

x
ij, 0)D+

x qm
ij

+ max(sijn
y
ij, 0)D−

y qm
ij + min(sijn

y
ij, 0)D+

y qm
ij

]

,
(72)where sij = S(φm

ij ) and ∆τ is a time step su
h that tm = m∆τ . We use 
entral di�eren
es to
ompute the approximation nij of the unit normal ve
tor n = (nx, ny) = (∂xφ/|∇φ|, ∂yφ/|∇φ|)at node Pij . The initial value q0 is equal to Vn on the grid points with a distan
e to the interfa
eless than min(∆x,∆y) and equals zero elsewhere.8.3. Reinitialization to a distan
e fun
tionFor numeri
al a

ura
y, the solution of the level set equation (54) shouldn't be neither toosteep nor to �at. This is the 
ase if φ is the distan
e fun
tion sin
e we have in that 
ase |∇φ| = 1.But even if we start with a distan
e fun
tion for the initial data φ0, the solution φ of the levelset equation (54) does not remain a distan
e fun
tion. We perform a reinitialization of φ at time
t by solving the solution ϕ = ϕ(x, y, τ) of the following equation, up to the stationary state (see[22℄)

ϕτ + S(φ)(|∇ϕ| − 1) = 0 in U × R+, (73)
ϕ(x, y, 0) = φ(x, y, t), (x, y) ∈ U. (74)The fun
tion S is the approximate sign fun
tion given by (71).13



9. Numeri
al resultsIn all the numeri
al tests, we 
hoose U = (0, 1) × (0, 1). In the �rst example (see Figure 4),the topologi
al derivative is used to 
reate holes. In this example, the Hamilton-Ja
obi equationis solved on a 51 × 51 grid. The data are
f(x, y) = 10 sin2(4πx), for (x, y) ∈ U = (0, 1) × (0, 1),
λ = 0.5, µ = 0,and the initial domain Ω0 is the entire domain U i.e. there is no hole in the initial domain. Wedenote by Ω1 the optimal domain obtained in this �rst example. The value of the fun
tional Jin Ω1 is

J(Ω1) = 0.282319.In the se
ond example (see Figure 5), the topologi
al derivative is not used but only the shapegradient is used for 
omparison with the previous 
al
ulation. In that 
ase, it is therefore ne
essaryto start with a domain with a lot of holes in order to �nd a domain with a proper topology. Inthis example, the initial domain is a square with 21 regular holes (see Figure 5) and the data f , λand µ are the same as in the �rst example.. In addition, the Hamilton-Ja
obi equation is solvedon a 101 × 101 grid. In the se
ond example, the algorithm 
onverges to a lo
al maximum whi
his lower than the one obtained by using the topologi
al derivative (the �rst example). Indeed, ifwe denote by Ω2 the optimal domain for this se
ond example, we get
J(Ω2) = 0.2640695 < J(Ω1) = 0.282319.Thus Ω1 allows an in
rease of 6.5% for the value of the fun
tional J 
ompared to Ω2. Noti
e thateven without topologi
al derivative, the number of 
onne
ted 
omponents of the 
omplementaryset of Ω 
an in
rease as 
an be seen on Figure 5. This is not due to the 
reation of a hole but dueto the splitting of a 
onne
ted 
omponent into two 
onne
ted 
omponents. This is an unusualsituation, whi
h should be related to another 
on
ept of topologi
al derivative, 
alled the externaltopologi
al derivative (see [19℄).Additional tests have been performed with f(x, y) = 10x + y. In numeri
al tests depi
ted onFigure 6 and Figure 7, there is no perimeter 
onstraint (µ = 0). We 
hoose λ = 1 on Figure6 and λ = 1.7 on Figure 7. Small or big os
illations may o

ur, depending on the value of theweight λ of the volume 
onstraint. On Figure 6 (with λ = 1), small os
illations o

ur whereas bigos
illations are observed on Figure 7 (with λ = 1.7). It means that we have no optimal solutionfor the optimization problem sin
e the perimeter goes to in�nity. Finally, Figure 8 shows thesmoothing e�e
t of the perimeter 
onstraint for the same sour
e fun
tion. In this last example,we have 
hosen λ = 1.7 and µ = 0.4.10. Appendix : The topologi
al derivative with Neumann 
onditions on the holeWe present the results whi
h are used in Se
tion 5 in order to determine the topologi
alderivative of the energy fun
tional. The asymptoti
 expansion of the energy is obtained witha domain de
omposition te
hnique proposed in [27℄, [12℄. This te
hnique 
an be des
ribed inthe following way. The a
tual domain is divided into two parts Ωρ = ΩR ∪ ΓR ∪ C(R, ρ) (seeFigure 2). In the ring C(R, ρ) the singular perturbation of the domain is lo
ated, the movingpart of its boundary Γρ for ρ > 0 is the small parameter. On the other part of its boundary ΓRthe Steklov-Poin
aré operator is de�ned and the asymptoti
s of the operator are determined infun
tion of the parameter ρ. The se
ond domain ΩR of the de
omposition depends only on theparameter ρ > 0 by the nonlo
al boundary 
onditions pres
ribed in terms of the Steklov-Poin
aréoperator Aρ, so we have the regular perturbation of the boundary 
onditions for the boundaryvalue problem in ΩR. 14



Fig. 4 � Shape optimization with topologi
al derivative. The initial domain is without any holes(f(x, y) = 10 sin2(4πx), λ = 0.5, µ = 0).
15



Fig. 5 � Shape optimization without the topologi
al derivative. The initial domain is 
omposedof 21 holes (f(x, y) = 10 sin2(4πx), λ = 0.5, µ = 0).
16



Fig. 6 � Small os
illations without any perimeter 
onstraint (f(x, y) = 10x + y, λ = 1, µ = 0).Optimal value : J(Ω) = 0.598434
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Fig. 7 � Strong os
illations without any perimeter 
onstraint (f(x, y) = 10x+y, λ = 1.7, µ = 0).Optimal value : J(Ω) = 1.190227
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Fig. 8 � Smoothing e�e
t of the perimeter 
onstraint (f = 10x + y, λ = 1.7, µ = 0.4). Optimalvalue : J(Ω) = 1.185849
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Now we give in the next subse
tions, the asymptoti
 expansions of the energy terms E
(1)
ρ (v),

E
(2)
ρ (f) and E(Ωρ, uρ) appearing in relations (42),(43). For the sake of simpli
ity, we assume inwhat follows that x0 = 0.10.1. Asymptoti
 expansion of E

(1)
ρ (v)For any fun
tion v in H

1

2 (ΓR), let us 
onsider the unique solution wρ = wρ(v) of the followingproblem (see (39))






−∆wρ + wρ = 0 in C(R, ρ),
wρ = v on ΓR,

∂nwρ = 0 on Γρ.
(75)The Steklov-Poin
aré operator Aρ is de�ned by

Aρ : H
1

2 (ΓR) → H− 1

2 (ΓR)
v 7→ ∂nwρ

(76)We 
an de
ompose v ∈ H
1

2 (ΓR) in the form of Fourier series with the polar 
oordinates (r, θ) atthe origin :
v(θ) =

1

2
a0 +

∞
∑

k=1

(ak sin(kθ) + bk cos(kθ))and the 
oe�
ients satisfy :
∞

∑

k=1

√

1 + k2(a2
k + b2

k) ≤ M,where M is a 
onstant depending only on R. This implies two important properties :
∞

∑

k=1

(a2
k + b2

k) ≤ M,
∞

∑

k=1

k(a2
k + b2

k) ≤ M. (77)We are interested in the asymptoti
 expansion with respe
t to ρ of the energy term
E(1)

ρ (v) =

∫

C(R,ρ)

(

|∇wρ|2 + w2
ρ

)

dx (78)where wρ = wρ(v) is the solution of (75). We de�ne the energy fun
tional
E(1)(v) =

∫

BR

(

|∇w|2 + w2
)

dx, (79)where w is the solution of
{

−∆w + w = 0 in BR,
w = v on ΓR.

(80)We have the following expansion result for the energy E
(1)
ρ (v). For the proof, we refer to [11℄or [7℄.Theorem 3 There exists a 
onstant M > 0 independant of ρ su
h that

E(1)
ρ (v) = E(1)(v) −

(

π(a2
1 + b2

1)

2I1(R)2
+

πa2
0

4I0(R)2

)

ρ2 + o(ρ2),uniformly on bounded subsets of H1(ΩR). The fun
tions Ik for k ≥ 0, are Bessel fun
tions of�rst kind de�ned by Ik(r) =

∞
∑

m=0

(

r
2

)k+2m

m!(k + m)!
. 20



10.2. Asymptoti
 expansion of E
(2)
ρ (f)We are now interested in the expansion with respe
t to ρ of the energy term

E(2)
ρ (f) = −

∫

C(R,ρ)

(

|∇yρ|2 + y2
ρ

)

dx (81)where yρ is the solution of the following problem (see (40)) :






−∆yρ + yρ = f|C(R,ρ) in C(R, ρ)

yρ = 0 on ΓR

∂nyρ = 0 on Γρ

(82)with f ∈ C∞(R2). We also need to de�ne the energy term (
orresponding to ρ = 0 in (81) and(82))
E(2)(f) = −

∫

BR

(

|∇y|2 + y2
)

dx, (83)where y is the solution of
{

−∆y + y = f|BR
in BR,

y = 0 on ΓR.
(84)In order to get the asymptoti
 expansion of E2

ρ(f), we need to study the fun
tion
f|C(R,ρ) 7→ ∂nyρ|ΓR

= gρ.We would like to obtain an expansion of gρ with respe
t to ρ. To this end, we make use of theFourier expansion of f :
f(r, θ) =

1

2
ã0(r) +

∞
∑

k=1

(ãk(r) sin(kθ) + b̃k(r) cos(kθ)).We have the following theorem (we refer to [11℄ or [7℄ for the proof) :Theorem 4 The fun
tion gρ admits the expansion
gρ = g0 −

(

ha
0(R) − ã0(0)

4RI0(R)

)

ρ2 −
(

ha
1(R)

2RI1(R)
sin θ +

hb
1(R)

2RI1(R)
cos θ

)

ρ2 + o(ρ2). (85)where ha
i (R), i = 0, 1 are de�ned by

ha
i (R) = −Ki(R)

Ii(R)

∫ R

0
tãi(t)Ii(t)dt +

∫ R

0
tãi(t)Ki(t)dt (86)and hb

1(R) is obtained from ha
1(R) by substituing b̃1 to ã1 in (86). In (86), Ki are Bessel fun
tionsof se
ond kind [31℄.From the previous result, we 
an dedu
e the asymptoti
 expansion for E2

ρ(f) (see [11℄,[7℄) :Theorem 5 There exists a positive 
onstant M independant of ρ su
h that
E(2)

ρ (f) = E(2)(f) − πha
0(R)2

4
ρ2 − π(ha

1(R)2 + hb
1(R)2)

2
ρ2 + o(ρ2).
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10.3. Asymptoti
 expansion of E(Ωρ, uρ)Re
all that the energy term Eρ = E(Ωρ, uρ) is given by (see (42)) :
Eρ = −1

2

∫

ΩR

(

|∇uR
ρ |2 + (uR

ρ )2
)

dx − 1

2
E(1)

ρ (v) +
1

2
E(2)

ρ (f),where uR
ρ is the solution of (37). Using Theorem 3 and Theorem 5, we obtain

Eρ − E0 =

∫

ΓR

Aρ(u
R
ρ )uR

0 dσ −
∫

ΓR

A0(u
R
ρ )uR

0 dσ

−π(ha
0(R)2 − 2ã0(0)h

a
0(R))

8
ρ2 − π(ha

1(R)2 + hb
1(R)2)

4
ρ2dσ (87)

+

(

π(a2
1 + b2

1)

4I1(R)2
+

πa2
0

8I0(R)2

)

ρ2 +

∫

ΓR

uR
0 ∂n(yρ − y0) dσ + o(ρ2).It 
an be proved that

uR
ρ − uR

0 = o(ρ2), ∂n(uR
ρ − uR

0 ) = o(ρ2), (88)and we dedu
e that
∫

ΓR

Aρ(u
R
ρ )uR

0 dσ −
∫

ΓR

A0(u
R
ρ )uR

0 dσ =

∫

ΓR

(Aρ − A0)(u
R
0 )uR

0 dσ + o(ρ2)

=

∫

ΓR

w(uR
0 )∂nzρ(u

R
0 ) dσ + o(ρ2)

= − πa2
0

4I0(R)2
ρ2 − π(a2

1 + b2
1)

2I1(R)2
ρ2 + o(ρ2).Finally, we 
an 
al
ulate the last term of (87), thanks to Theorem 3 :

∫

ΓR

uR
0 ∂n(yρ − y0) dσ =

∫

ΓR

uR
0 (gρ − g0) dσ

= −π

(

a0(R)ha
0(R) − ã0(0)a0(R)

4I0(R)
+

a1h
a
1(R)

2I1(R)

)

ρ2

−π

(

b1h
b
1(R)

2I1(R)

)

ρ2 + o(ρ2).With the previous expansions and noti
ing that ã0(0) = 2f(0), we obtain following expansionresult for the energy E(Ωρ, uρ) :Theorem 6 There exists a positive 
onstant M independant of ρ su
h that
E(Ωρ, uρ) = E(Ω, u) −

[

a0(R)2

8I0(R)2
+

ha
0(R)2

8
+

a0(R)ha
0(R)

4I0(R)

]

πρ2 (89)
−

[

a1(R)2 + b1(R)2

4I1(R)2
+

a1(R)ha
1(R)

2I1(R)
+

b1(R)hb
1(R)

2I1(R)

]

πρ2

−
[

ha
1(R)2

4
+

hb
1(R)2

4
− f(0)a0(R)

2I0(R)
− f(0)ha

0(R)

2

]

πρ2 + o(ρ2).The 
oe�
ients a0, a1 and b1 are given by
a0(R) =

1

π

∫ 2π

0
u(R, θ) dθ, a1(R) =

1

π

∫ 2π

0
u(R, θ) sin θ dθ, b1(R) =

1

π

∫ 2π

0
u(R, θ) cos θ dθ.The fun
tions ha

i (R), i = 0, 1 are de�ned in (86).22



All the quantities between bra
kets in the asymptoti
 development (89) do not depend on R. It
an easily be shown that
u(0) =

a0(R)

2I0(R)
+

ha
0(R)

2and then
u(0)2

2
=

a0(R)2

8I0(R)2
+

ha
0(R)2

8
+

a0(R)ha
0(R)

4I0(R)
.Moreover, we have

|∇u(0)|2 =
a1(R)2 + b1(R)2

4I1(R)2
+

a1(R)ha
1(R)

2I1(R)
+

b1(R)hb
1(R)

2I1(R)
+

ha
1(R)2

4
+

hb
1(R)2

4
.Then, we dedu
e a di�erent expression of the previous asymptoti
 expansion, whi
h leads a
tuallyto the usual expression for the topologi
al derivative

E(Ωρ, uρ) = E(Ω, u) +

[

−u(0)2

2
− |∇u(0)|2 + f(0)u(0)

]

πρ2 + o(ρ2).Let us mention that for i = 0, 1

lim
R→0

ha
i (R) = 0, lim

R→0
hb

1(R) = 0.Thus, formula (89) gives an expression of the topologi
al derivative whi
h requires the knowledgeof u along the boundary ΓR. This 
an be interesting from a numeri
al point of view. In parti
ular,it is possible to 
al
ulate a1(R) and b1(R) without dire
tly 
omputing the gradient of solution
u.REFERENCES1. G. Allaire, F. De Gournay, F. Jouve, A.M. Toader, Stru
tural optimization usingtopologi
al and shape sensitivity via a level set method, Control and 
yberneti
s (2005).2. D. Bu
ur, Contr�le par rapport au domaine dans les E.D.P., Thèse de do
torat de l'é
oledes mines de Paris, 1995.3. D. Bu
ur, N. Var
hon, Boundary variation for a Neumann problem, Ann. S
uolaNorm.Sup.Pisa Cl.S
i., 4 29 (2000), 807-821.4. D. Bu
ur, N. Var
hon, A duality approa
h for the boundary variation of Neumann pro-blems, SIAM J. Math Anal. Vol. 34 (2002), No.2,pp. 460-4775. M.C. Delfour, J.-P. Zolesio, Shapes and Geometries, Advan
es in Design and Control.So
iety for Industrial and Applied Mathemati
s (SIAM), Philadelphia, PA, 2001.6. G. Fremiot, Stru
ture de la semi-dérivée eulérienne dans le 
as de domaines �ssurés etquelques appli
ations, PhD Thesis of University Henri Poin
aré-Nan
y 1, 2000.7. P. Fulmanski, A. Laurain, J.-F. S
heid, J. Sokoªowski, A level set method in shapeand topology optimization for variational inequalities, Les prépubli
ations de l'Institut ÉlieCartan No. 32/2006.8. A. Henrot, M. Pierre, Variation et optimisation de formes : une analyse géométrique, No48 de Mathématiques et Appli
ations, Springer , 2005.9. L. Ja
kowska, J. Sokoªowski, A. �o
howski, A. Henrot, On numeri
al solution ofshape inverse problems, Computational Optimization and Appli
ations, Vol. 23, no. 2, 2002,pp. 231�255. 23



10. A. L. Ja
kowska, J. Sokoªowski, A. �o
howski, Topologi
al optimization and inverseproblems, Computer Assisted Me
hani
s and Engineering S
ien
es, Vol. 10, no. 2, 2003, pp.163�176.11. A. Laurain, singularly perturbed domains in shape optimization, phD. Thesis, 2006, Uni-versité de Nan
y.12. M. Masmoudi, The topologi
al asymptoti
, in : H ;Kawarada, J.Periaux (Eds.), Computa-tionnal Methods for Control Appli
ations, International Series GAKUTO, 2002.13. V. Maz'ya, S.A. Nazarov, B. Plamenevskij, Asymptoti
 theory of ellipti
 boundaryvalue problems in singularly perturbed domains, Vol. 1 and 2 Basel : Birkhäuser Verlag, 2000,435 p.14. S.A. Nazarov, Asymptoti
 
onditions at a point, self adjoint extensions of operators, andthe method of mat
hed asymptoti
 expansions, Ameri
an Mathemati
al So
iety Translations(2), Vol. 198, 1999, pp. 77�125.15. S.A. Nazarov, A.S. Slutskij, J. Sokolowski, Topologi
al derivative of the energy fun
-tional due to formation of a thin ligament on a spatial body, Les prépubli
ations de l'InstitutÉlie Cartan No. 14/2004.16. S.A. Nazarov, J. Sokolowski, Self adjoint extensions of di�erential operators in ap-pli
ation to shape optimization, Comptes Rendus Mé
anique, Volume 331, Issue 10, O
tober2003, 667-672.17. S.A. Nazarov, J. Sokolowski, Selfadjoint extensions for elasti
ity system in appli
ationto shape optimization, to appear in Bulletin of the Polish A
ademy of S
ien
es � Mathemati
s.18. S.A. Nazarov, J. Sokoªowski, Asymptoti
 analysis of shape fun
tionals, Journal deMathématiques pures et appliquées, 82(2003), 125-196.19. S.A. Nazarov, J. Sokolowski, The topologi
al derivative of the Diri
hlet integral dueto formation of a thin ligament, Siberian Math. J. Mar
h - April 2004, Volume 45, Issue 2,341-355.20. S. Osher, R. Fedkiw, Level set methods and dynami
 impli
it surfa
es, Springer, 2004.21. S. Osher, J. Sethian, Fronts propagating with 
urvature-dependant speed : algorithrmsbased on Hamilton-Ja
obi formulation, J. Comp. Phys. 79, pp. 12-49, 1988.22. D. Peng, B. Merriman, S. Osher, H. Zhao, M. Kang, A PDE-based fast lo
al levelset method, J. Comp. Phys. 155, pp. 410-438 (1999).23. J. Sethian, Level set methods, Cambridge University Press, 1996.24. J. Sokoªowski, A. �o
howski, On the topologi
al derivative in shape optimization, SIAMJournal on Control and Optimization, 37, Number 4 (1999), pp. 1251�1272.25. J. Sokoªowski, A. �o
howski, Topologi
al derivatives of shape fun
tionals for elasti
itysystems, Me
hani
s of Stru
tures and Ma
hines 29(2001), pp. 333-351.26. J. Sokoªowski, A. �o
howski, Optimality 
onditions for simultaneous topology andshape optimization, SIAM Journal on Control and Optimization, Vol. 42, no. 4 , 2003, pp.1198�1221.27. J. Sokoªowski, A. �o
howski, Topologi
al derivatives for 
onta
t problems, Numer.Math. 102 (2005), no. 1, 145�179.28. J. Sokoªowski, A. �o
howski, Topologi
al derivatives for obsta
le problems, Les prépu-bli
ations de l'Institut Élie Cartan No. 12/2005.29. J. Sokolowski, J.-P. Zolesio, Introdu
tion to shape optimization, vol. 16 of SpringerSeries in Computationnal Mathemati
s, Springer Verlag,Berlin, 1992.30. V. Sverak, On optimal shape design, J.Math.Pures Appl., 72-6 (1993), 537-551.31. G.N. Watson, Theory of Bessel fun
tions Cambridge : The University Press , 1944.24


