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Abstract. A class of shape optimization problems is solved numerically by the level

set method combined with the topological derivatives for topology optimization. Ac-
tually, the topology variations are introduced on the basis of asymptotic analysis, by
an evaluation of extremal points (local maxima for the specific problem) of the so-
called topological derivatives introduced by Sokolowski and Zochowski [24] for elliptic
boundary value problems. Topological derivatives are given for energy functionals of
linear boundary value problems. We present results, including numerical examples,
which confirm that the application of topological derivatives in the framework of the
level set method really improves the efficiency of the method. Examples show, that
the level set method combined with the asymptotic analysis, is robust for the shape
optimization problems, and it allows to identify the better solution compared to the
pure level set method exclusively based on the boundary variation technique.

Key Words. Shape optimization, level set method, topological derivative, optimal
design.

1. Introduction

Shape optimization for elliptic equations is an important branch of calculus of variations, with
numerous applications in structural mechanics and to solution of inverse problems. The existence
of solutions for shape optimization problems can be assured under mild conditions, e.g. under
the so-called Mosco convergence of the Sobolev spaces associated with the minimizing sequence
of geometrical domains, however optimality conditions require more regularity of boundaries of
admissible domains. Recently, a particular attention is paid to numerical methods which during
the optimization process allow for the topology changes of geometrical domains. One of the
candidates for such framework is the level set function which models the domain evolution and
can be determined by solving appropriate Hamilton-Jacobi equations. However, by its nature, the
obtained level set function decreases the number of connected components of resulting geometrical
domains during the optimization process. To improve the performance of the method based on the
level set function, asymptotic analysis is employed, and location of additional holes in geometrical



domains is determined by analysis of the so-called topological derivatives of shape functionals
under study. In the paper we describe in details such a combination, used already in literature,
and provide some examples which show that the method is robust, in particular improves the
optimal value of the shape functional obtained as a result of computations. For the convenience
of the reader we present as well the elements of mathematical analysis including asymptotic
analysis of specific boundary value problems with respect to small parameter which models
singular perturbations of geometrical domains. Such analysis is required for determination of
topological derivatives.

The numerical method for shape and topology optimization of an energy functional is pre-
sented in the paper. The method combines the shape gradient technique and the asymptotic
analysis for maximization of an energy functional for elliptic equations. The level set method
is used for the evolution of geometrical domains with the moving boundaries determined from
the shape sensitivity analysis of the energy shape functional, the topology changes are perfor-
med in addition by analysis of the topological derivatives. It is still an open problem to devise
how the combination of boundary variations and singular perturbations of geometrical domains
enters in a general framework of shape optimization. One possibility is given by the so-called
self-adjoint extensions of differential operators, where the small hole is approximated by singular
perturbation of the coefficients of differential operator. We refer the reader to [18], [11], [14], [16],
[17], for some results in this direction. We consider only steady state boundary value problems,
however the same results can be obtained for the evolution problems described by parabolic and
hyperbolic pde’s.

The Hamilton-Jacobi nonlinear hyperbolic equation models the evolution of the level set
function. The normal speed of the moving boundaries are determined from the shape gradients
obtained for the energy functional [29]. Since the shape gradients serve as the coefficients for the
hyperbolic equation, the standard assumption is to assume that the shape gradients are given by
restriction to the moving boundaries of given functions defined in whole geometrical domains,
which is unfortunately very restrictive assumption, however it is satisfied in our case.

During the numerical process, the topology changes are defined by analysis of the local
maxima, of topological derivatives for the energy functional. In this way, small holes can be
included into the actual geometrical domain with the centers at the points determined by maxi-
mization of the topological derivatives. We inject only one hole at each etap of the method,
however the asymptotic analysis furnish the information which allows for the injection of a finite
number of holes, if necessary and it turns out to be useful. The size of the holes can be determi-
ned by the second order topological derivatives and this technique is not employed in the present
paper.

The paper is selfcontained, thus, in appendix we provide also some technical results which
are used in order to determine the topological derivatives. To this end the domain decomposition
technique is applied and the proof of the asymptotic expansion for the related Steklov-Poincaré
operator is given. Such an approach for evaluation of topological derivatives for energy type
functionals is proposed e.g., in [12] and [27].

Finally, we present a list of references on the derivation and application of the asymptotic
analysis in shape optimization. Singular perturbations of domains in the framework of shape op-
timization are studied by many authors, including [1], [9], [10], [13], [14], [15], [16], [17], [18], [19],
[24], [25], [26]. The construction of the asymptotic expansion for the Steklov-Poincaré operator
is given in [28]. Numerical results for shape and topology optimization are presented in section 9.

2. The linear problem

We present the numerical method for a scalar elliptic boundary value problems, and for
the energy type shape functional. For such problem we can provide complete analysis on shape
differentiation and asymptotic expansions of solutions with respect to small parameter which
measures the singular perturbations of geometrical domain. For the sake of simplicity we restrict



ourselves to two spatial dimensions, and to the holes in the form of a circle. In such a case by
Fourier analysis we can obtain the explicit solutions for auxiliary problems in rings. Otherwise,
for any spatial dimensions and arbitrary shape of holes the analysis is based on the fundamental
solutions for differential operators and can be performed in the same way, we refer the reader e.g.,
to [18] for a general approach to the derivation of topological derivatives for elliptic boundary
value problems in arbitrary spatial dimensions.

To begin with, we introduce the model problem. Let U and V' be two bounded open subsets
of R? such that V cc U. For any open set w C R?, we denote by #@ the number of connected
components of w and we consider the set of admissible domains

Or={Q=U\w; wopen set, wCV,#w < k}. (1)

For any 2 € O, k > 1, the boundary of 2 can be splitted into 9Q = I'yUIU with I'y = 0w. The
boundary QU is also denoted by I'p. The boundary I' 5 receives Neumann boundary conditions,
while we have Dirichlet conditions on I'p. Let us point out that the open set w is not necessarily
any connected set as illustrated in Figure 1.

I'n

oUu =Tp

FiG. 1 — An admissible domain 2
For f € C(U), let us consider the following problem

—Au+u = f in Q,
u = 0 on [Ip, (2)
Opu = 0 on Iy,

where n is the unit outwards normal vector to 02, and 9, stands for the normal derivative on
0. In addition, let us consider the energy functional depending on the solution u to (2) :

EQu) = ; / (IVul® + u?) dz — / fudx = —%/ (IVul? + u?) dz = ——/ fudx, (
and let us introduce the regularized shape functional
J(9) = B(Q,u) + AA(Q) — pP(2)”, (4)
with A(Q) and P.(€Q) defined by
AQ) = 19, (5)
P.(Q) := max(0,£(0) — c). (6)

In the above definitions, |Q| denotes the Lebesgue measure of Q in R? and £(99) is the 1-
dimensional measure of 0€2. Constants A and p are positive and allow us to take into account



the area and perimeter constraints respectively. The constant c is also positive and corresponds
to a shifted perimeter functional, i.e. beyond ¢, the perimeter constraint becomes active.

For any fixed integer k > 1, let us consider the following shape optimization problem
max{J(Q): Q € Or}. (7)

Since the exterior boundary of Q is fixed once for all and equals to U, the domains (2
satisfying (7) are actually determined by their moving boundaries T'y.

In the following three sections, we perform the mathematical analysis of problem (7). We show
that problem (7) is well posed in the sense that there exists an optimal domain, furthermore,
the optimal shape can be characterized by appropriate necessary optimality conditions. For a
given topology of an optimal domain there are two different sort of optimality conditions. On
the moving boundaries, the shape gradients can be evaluated and the optimality conditions say
that the optimal value of the cost cannot be improved by admissible boundary variations. On
the other hand, the sign of topological derivatives is fixed inside of the geometrical domain, in
such a way that any creation of a small hole cannot improve the value of the cost. The second
condition is very strong, it seems, therefore it is a very difficult task to find an optimal domain
which satisfies such a condition.

Actually, we study the existence of an optimal domain in section 3, and then the shape
sensitivity in section 4, the topological derivatives of the functional J are obtained in section
5. The construction of a level set representation is based on the shape derivatives of .J, as it is
described in section 6. This formulation provides a practical way to increase the values of the
shape functional J. The appearance of new holes is not possible with the only use of the level
set method based on the shape derivatives. Therefore, an application of topological derivative
allows us to create new holes in order to increase the values of J.

3. Existence of an optimal domain

It can be showed that there exists a domain €2, solution of (7). We make use of a result from
Bucur and Varchon [3]| and [4] for the Neumann boundary conditions on the holes. Similar result
for the Dirichlet boundary conditions in two spatial dimensions is given by Sverak [30]. With a
few changes in the proof of this result, we can apply the results from [3| and [4] to our problem.
It is possible without any additional difficulty since the boundary I'p is fixed. Thus, we obtain
the following theorem

Theorem 1 Let Q; = U \ w; be a sequence of open sets such that the number of connected
components of w; is uniformly bounded. If W; converges in the sense of the Hausdorff metric to
w, then the solution u; of the Neumann problem

—Aui+u; = f in Y,
u; = 0 ondU. (8)
Oy = 0 on Jw;.

converges to the solution u of problem (8) on Q if and only if || — |Q|. (All functions are
implicitely extended to zero by setting u; = 0 in w; and v = 0 in w and the convergence takes

place in L*(U)).
Now it is possible to prove the existence of an optimal domain.
Theorem 2 For any k > 0, Problem (7) admits at least one solution Q € Oy.

Proof. Let {Q;}, i=0,1,2,---, be a maximizing sequence for Problem (7). There exists a
subsequence still denoted by €2; such that ; — € for i — +00, in the sense of Hausdorff metric.

In what follows, such a convergence is denoted by €; 2. Q. For the definition of Hausdorff



convergence, see [8].

It is shown in [8] that the number of connected components of Q¢ is bounded and we also
have by taking the limit
2(09) < liminf £(05Y;). 9)

Thus £(92) < oo since we maximize J(£2) and thus P.(Q2) is bounded. Using the notion of density
perimeter introduced in [2], it is well known that the Hausdorff convergence of €; to Q implies
convergence in the sense of characteristic functions :

1
Qi i 0= XQ; Li])) XQ- (10)

As a consequence, we get for i — +00, the convergence of Lebesgue measures
€2 — [€]. (11)

To conclude, we have to prove the convergence of E(€;,u;) = —% le fu;. Moreover, we have

/Qifui_/ﬂfu = '/Ufuz‘XQi—/UquQ

/[]fui(XQi—XQ)+/l]fXQ(Ui_u)

A

< uillallf (e = xe)llo + [ xallllue — ully,

where ||, is the norm in L?(U). According to Theorem 1, we have
[uilly = llully  and  lu = ully — 0. (12)

Furthermore,
1f (xa, —xa)ll, = 0 (13)

thanks to the convergence in the sense of characteristic functions of xq, to xq. Thus, we get
E(Q;) — E(Q). (14)
Finally, combining convergences (14), (11) and (9), we obtain the inequality

J(92) > limsup J(£2;). (15)

(2

Thus, €2 is a solution to problem (7). [

Remark 1 In order to use the shape derivatives, we need the domains with smooth boundaries.
The solutions of (7) are not necessarily smooth. From now on, we assume the existence of an
optimal domain for (7) which in addition, is smooth enough.

4. Shape derivatives

Level set method requires the knowledge of shape gradients for the functional to be maximi-
zed. Let Q be a sufficiently regular domain. The variational formulation of (2) is given by

u € HILD(Q) : /

(Vu, Vw) dx + /
9)

uwdr = / fwdx Yw € H%D(Q) , (16)
Q Q

where Hf. (Q)={ve H'(Q) |v=00nTp}.



We describe the construction of regular perurbations of {2, which is used to obtain the shape
gradients for shape functionals [5],[29]. Let & be a vector field of class C* with compact support
in U. We put [§| = [[§]|ck;re)- Let us consider the transformation F¢e = I + £ and define
Q¢ = F¢(). We assume that |¢| is small enough, so that F¢ is a C*-diffeomorphism. As a
consequence, there exists a unique solution ué € HllD (£2¢) to the variational equation in variable
domain €,

/ (Vus, Vo) dx —i—/ ubv dr = fvdx Y € H%D(Qg). (17)

3 3 3
We are going to show that the energy functional E(,u) is differentiable with respect to the
domain and we compute its shape derivative dE(,&) defined for any direction ¢ = £/[¢| of the
unit norm || =1 by
E(Q¢,u®) — E(Q,u)
n ;

where ¢t = ||, and for the sake of simplicity, in the notation we write £ instead of (.

We need to transform (17) on the fixed domain €. To this end, we denote u¢ the transported
function defined by the composition

dE(Q,€) = lim

ue = ut o Fy € H (Q). (18)

Using the change of variable in (17), we obtain the variational equation satisfied by u :

/Q((DFg)IVu§,(DF5T)1Vw>q§dx+/gu§wq§dx:/Qfgwckdx VwGH%D(Q), (19)

where fe = f o F¢. In the above formulation, DFy is the Jacobian matrix of the transformation
F¢ and g¢ stands for the determinant of the Jacobian. More precisely, we have

DF. = I+ Dt (20)
qg¢ = det DFe =1+ div{ 4 det DE. (21)

It is shown in [6] that ug admits the following Taylor expansion
ue = u+u' (&) + (), (22)

where the material derivative u!(¢) is the unique solution of the variational equation

[ ©.vuie = [ (a©)uVuyde + [ g@puwds

Q
—/ (uw div(€) + ulw) dz Yw € H%D (Q). (23)
Q
The matrix A(£) and the function g(&) are given by
A(§) = D€ + DET — (divé),

9(&) = div(f&).
Expansion (22) holds true with the estimates (see [6])

lue =l @ <, (24
clef. (25)

IN

1)l @) = llue —u = v Ol @)



Making use of the change of variables (18) in the expression E(Q¢, uf) = —1 Q (|IVus? + (uf)?) da
together with the estimates (24) and (25), we obtain that E is differentiable with respect to the
domain and its first order shape derivative is given by

dE(Q;¢) = — /Q (Vu, Vu1(£)>dm+% /Q (A(6)Vu, Vu) dz (26)

— 1 —1 2div
/Quu (&) dx 2/Qud (&) dx.

Now, choosing w = u in the variational identity (23), we obtain

/ (Vu, Vul(&))dx = / (A(&)Vu, Vuydz + | g(&udx — / (w?div(§) +u (E)u) dz.  (27)
Q

Q Q Q
In view of (27), we can get rid of u!(¢) in (26) :

AB(Q: €) = _% /Q (A(E) Vi, V) da — /

Q

g(&)udz +%/ uldiv(€) da. (28)

Q

Starting from this expression, we can obtain a more useful expression for the shape derivative.
First of all, we turn to the first integral term in the right hand side of (28). We have

L /Q (A(6)Vu, Vu)dr = /Q (DEVU, Vu) dw—% /Q |Vu|?div(€) dz

2
= U u) dr — 2y m x—l ul?div x
= /Q<V(<§,v )), V) d /Q<D £, Vu)d Q/Q\V "div(¢) d
= — u u)axr u u,n)do — 2u u)ax.
- /QA (&,Vu)d +/BQ(§,V Y (Vu,n)d /Q<D §,Vu)d
= —%/Q|Vu|2div(§)dm.

Since —Au = f — u in 2, equation (28) becomes

dE(Q;¢) = —/Qf<g,vu>dx—/ﬂdiv(fg)udx
+/Q<D2u§,vu> dz+%/ﬂ|Vu|2div(§) dz
+/Qu<§, Vu) dm—l—%/ﬂuZdiv(g) da
- /6 (60} (V) do

Finally we obtain

1 1
dE(€) = / div | =|Vul%€ + Zu?¢ — féu dx—/ (&, Vu)(Vu,n) do. (29)
Q 2 2 o9
Since (Vu,n) =0 on 'y and £ has compact support in U, we have
1 1
dE(Q;€) = / <—|Vu|2 + —u? — fu> (&,n) do. (30)
re \2 2
Moreover, the shape derivatives of A(2) and P.(2) are given by
@ = [ (eno (31)
'y
dP.(;€) = Ly aa)=c) max (0, g H{E,n) dO’) + 1{PC(Q)>O}/F H(E n)do,  (32)
N N
dP(Q;€)? = 2P.(Q) | H(¢ n)do, (33)
'y



where H is the curvature of I'y. Thus, the shape derivative dJ(€;&) of J(2) is given by

w1059 = |

[ (;w T e 2uPc(Q)H> (€.n) do (34)

5. Topological derivative

For the sake of simplicity, we assume in this section that Q@ = U (i.e. Ty = ). Let us now
consider the perforated domain Q, = U \ Fp where B, is the ball of radius p, centered at a
point zg € U and with boundary I', = 0B,. In order to study the topological derivative of the
functional J for the linear problem (2), we need to compute the asymptotic expansion of the
energy (see (3))

1
E(Qp,up) = —3 /Q (IVu,* + u3) dz,
where u, is the solution of the linear problem

—Au, +u, = f in Q,,
u, =0 on U =T'p, (35)

Opu, =0 on I
In order to study the topological derivative, we used the so-called truncated domain technique
(see [27], [12]). We only present the main sketch of the method used to compute the asymptotic

expansion of J and we refer to the appendix for a complete proof of the results. We turn to the
truncated domain technique by considering the domain

Qr = U \ Bg, (36)

where Bp is the ball of radius R > p, centered at xy. We also define the ring C'(R, p) such that
Q, = QrUTRUC(R,p) where I'r denotes the boundary of the ball By i.e. 'r = 0Bg. (see
Figure 2).

g
C(R,p)
i
pVA
Qg

U

Fi1G. 2 — The truncated domain technique.

Then we consider the following truncated problem

—Au]p% + u]p% =f in Qg,
uf =0 on JU, (37)
—Onyp + anuf = Ap(uf) on I'p.

In the above problem, A, is the Stekov-Poincaré operator defined for any v € H%(I‘R) by

Ap(v) = dyw), (38)



where w, = w,(v) is the unique solution of the problem

—Aw,+w, = 0 in C(R,p),
w, = v on IR, (39)
Ohw, = 0 on I,

Finally, the function y, appearing in problem (37) is the solution of the following problem

Ay, typ, = flowe n C(R,p),

Yp = 0 on I'p, (40)
Oy, = 0 on I'.
Then, it can be easily shown that
uf =Upjo, and  Upjc(r,p) = wp(uf) + Yp- (41)

In order to obtain the topological derivative of J, we have to perform an expansion of the
energy functional E(,,u,) = —1 fﬂp (IVu,|® + u2) dx with respect to the radius p. Using the
domain truncation, we can split the integral in two parts, and we obtain

1 1
B(p,) = B, uf) — LED(f) + LB (1) (42)

where 1
(@, uf) = 5 /Q (IVulP? + (uf)?) da (43)

R
and
EM @l = /C(Rp) (IVw,|* + w2) dz  with  w, = w,(uld), (44)
BAG) = = [ (Tl ) da (45)
C(R,p)

Studying problems (37), (39) and (40), we can obtain asymptotic expansion of (43), (44) and
(45) respectively which lead to the following expansion for the energy (see the appendix)

_ _ (wz0)® 2 _ 2 2
E(Q,,u,) = E(Q,u) 5 T |Vu(zo)|* — f(xo)u(zo) ) mp° + o(p?). (46)

Now, using the expansions

AQ) = A®) - (47)
PC(QP)2 = P.(Q)* +47P(Q)p + o(p?), (48)

we obtain the following asymptotic expansion for J :

J(Q2p) = J() + h(p)Ta(zo) + o(h(p)), (49)
with mp? if P.(Q) =0,
io={ 7 £
wp if P.(Q) > 0.
The topological derivative 7g(x) of the functional J at point xy € Q is given by
o Ta(xo) = —|Vu(xo)|* = gu(xo)® + f(zo)u(xo) — A, if P() =0, (51)

o To(wo) = —4uP.(R2), if P.(R2) > 0.



F1G. 3 — The level set representation of the domain.

6. The level set formulation

6.1. The Hamilton-Jacobi equation

In the level set method, a domain and its boundary are represented as level sets of a continuous
function ¢. We refer to [20],[21],[23] for a complete description of the level set formulation of fronts
propagating models. We give a brief description of the level set formulation for the evolution of a
domain Q C U C R? under a given velocity field £. Let us consider the domain Q; = (I +t£)(€2),
t € R*, with a smooth vector field ¢ compactly supported in U. For ¢ > 0, the domain €; and
its boundary are defined by a function ¢ = ¢(z,y,t), (z,y) € U, such that

O ={(z,y) €U, ¢(x,y,t) <0} and 09 ={(z,y) €U, ¢(x,y,t) = 0}. (52)

The boundary 9§ is the zero level curve of the function ¢(-,t) (see Fig. 3).

We consider the position (z(t),y(t)) of a particle on a (given) level curve of ¢(-,¢) moving
with velocity & = (2/(¢),y'(t)). Then, we have ¢(z(t),y(t),t) = constant, for all ¢ > 0. By
differentiating with respect to ¢, we obtain the following transport equation

¢ +€E-Vo=0 inUxR". (53)

The normal unit vectors n to the level sets of ¢ are given by n = V¢/|V¢|. This leads to the
Hamilton-Jacobi equation
b1+ &alVO| =0 in U xR (54)

where &, is the normal component of the velocity ie. &, = ({,n). We also have to choose
initial data and boundary conditions with the Hamilton-Jacobi equation (54). The initial data
o(x,y,0) = ¢o(x,y) is chosen as the signed distance function to the initial boundary 99y = 02
i.e.

¢0(x’y) == dlSt((x’y)aaQO) for (x’y) € Ua (55)
with the minus sign (resp. plus sign) if the point x is inside (resp. outside) the initial domain
Qo = Q. Finally, we choose homogeneous Neumann boundary condition on the boundary U of

the whole domain :
Onp=0 on OU xR™. (56)

10



6.2. Normal velocity for the level set equation

Recall that the shape derivative dJ(£2;¢) associated to the velocity field £ is given by (34).
We locally (that is under small perturbations of the domain) require that dJ(;&) > 0. This
leads to the following choice for the normal component &, = (£, n) of the velocity :

1 1
& = 5IVul? + Su? —uf + A= 2uP(Q)H on Ty. (57)

If the velocity field & satisfies (57), we clearly have dJ(;&) > 0 and then J(Q;) > J(Q) for ¢
small enough.

According to (57), the normal component of the velocity is only imposed along the boundary
I'y. But in order to solve the Hamilton-Jacobi equation (54), we need a velocity field defined in
the whole domain U. We write

&n=Vn —2uP.(Q)H on Ty, (58)

with ) )
Vn:§|Vu|2+§u2—uf+)\ on Ty. (59)

The curvature H is directly linked to the level set function ¢ by the formula

H = div (%) . (60)

So, the curvature term is defined in the whole domain U and the only normal velocity part V,,
given by (59) has to be extended off the boundary I'y. If Vit denotes the extension of V,, to the
whole domain U, the Hamilton-Jacobi becomes

be + (vext — 9uP.(Q) div <%>> Vé|=0 inU xR (61)

The construction of the extension Viy of Vj, to the whole domain U is explained in Section

7. The shape optimization algorithm

Now, we describe the general shape optimization algorithm.

First step : initial domain

We start to choose an initial domain Q° and we compute the solution of (2) in Q° by the use of
the piecewise linear finite element method. Then, the topological derivative 7qo(z) is computed
for all z € Q) according to (51).

Second step : topological change by creating a hole

The topological derivative allows us to find the place where a hole should be created in the
domain QP in order to increase the energy functional J. We find the point o € Q° such that
Too(x0) = max,cqo Too(x). If Tgo(zg) > 0 then a circular hole w, of radius p > 0 and centered at
x¢ is created. Then we denote by Qg the domain with the new hole w,. Homogeneous Neumann
condition is imposed on the boundary of the new hole. Remark that the radius of this hole should
be as small as possible, depending on the space step of the mesh.

Third step : shape evolution

We turn to the evolution of the domain Qg with the application of the shape derivative in the
level set formulation. We have to compute the solution ¢ to the Hamilton-Jacobi equation (61)
where the initial ¢ is taken to be the signed distance function to the domain Qg. We perform

11



the new computation of the solution of (2) in Qg and then we compute the normal velocity V,
on the internal boundary part I'y of 8(22 according to (59). The level set equation (61) require
to extend the normal velocity V,, to the whole domain U. This is done by solving a transport
equation. The next section contains an explaination how to exactly proceed to construct the
extended velocity. Only few iterations of the Hamilton-Jacobi equation are performed.

Once we have computed the level set function, we can determine the new domain Q. Then
we go back top the first step of the algorithm with Q! in place of Q°. We stop when convergence
of the domain is reached that is when the geometrical domain does not change anymore.

8. Numerical method for the level set equation

In this section, we present the numerical method used to solve the Hamilton-Jacobi equation
(61). We also describe the method used for computing the extension Vey of the normal velocity
to the entire domain U.

8.1. Discretization of the level set equation

We choose U = (0,1) x (0,1) and we define the mesh grid of U by introducing the nodes
P;; with coordinates (iAxz, jAy). The parameters Az and Ay are the steps discretization in the
x and y directions, respectively. We denote by t* = kAt the discrete time for k& € N, where
At is the time step. An approximation gbfj ~ gb(Pij,tk) is computed with a time explicit finite
differences scheme due to Osher and Sethian [21],[23],]20]. This scheme is based on an upwind
scheme for the first order part (V,|V¢|) of the Hamilton-Jacobi equation. For the second order
part with the curvature term (H|V¢|), centered finite differences are used. More precisely, this
scheme reads as

ol = ol — At g(D; o, D ¢ly, Dy 0, D o) (62)
where 5 ! ) )
D i = iy — Pi-1j Dty = i+1,5 — Pij
T ¢ J A(L’ ) T ¢ J A(L’ (63)

are the backward and forward approximations of the z-derivatives of ¢ at F;;. Similar expressions
hold for the approximations D, and D; of the y-derivatives. The numerical flux is given by

. - 1 2
9(DZ ¢ij, Dy ¢ij, Dy dij, Dyf ¢ij) = ng) + ng)- (64)
The numerical flux part gi(;) comes from the discretization of the first order part V,,|V¢| of
the Hamilton-Jacobi equation and is given by

g = max (Vext(P;),0) G + min Vet (P;),0) G~ (65)
with
1/2
Gt = [max(D;@], 0)2 + min(Digbij, 0)2 + max(DbeU, 0)2 + min(Dngij, 0)2} /
1/2
G = {min(D;gbij, 0)? + max(DJ ¢;;,0)? + min(D, ¢ij, 0)2 + max (D} ¢ij, 0)2}

and Vext(P;5) is the extended normal velocity at point Pj; (see the next paragraph for the com-
putation of Vo).

The numerical flux part gg) in (64) comes from the centered finite differences approximation

of the second order term of the Hamilton-Jacobi equation i.e.

o2 = P H|VH|(Py) = —2uPu(Q) div (%) Vl(Py). (66)
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The upwind part of the scheme corresponding to the discretization of the first order term of
the Hamilton-Jacobi equation requires the following stability condition of CFL type :
At < 1
min(Az, Ay) — 22
Moreover, since we use a centered finite differences scheme for the second order term involving
the curvature, the following stability condition of Fourier type has also to be satisfied :

At
4uP.(Q)———————— < 1.
2 )min(AxQ,Ayz) - (68)

(max | Vexi (67

8.2. Extended normal velocity

As already mentioned, the normal velocity V;, defined by (59) has to be extended to the whole
domain U in order to solve the Hamilton-Jacobi equation (61). A natural way to extend V;, off
the boundary I'y is to seek a function which is constant along the curve normal to I'. This
suggests to solve at time ¢, the following equation for ¢, up to the stationary state (see [20], [22])

g+ S(¢ )|§Z| Vg = 0 in UxR' (69)
q(z,y,0) = p(z,y,t), (v,y)eU (70)

where p equals to V,, given by (59) on the boundary I'y and 0 elsewhere. The function S is an
approximation of the sign function, defined by

d
S(d) = ——
VA2 +|Vd|%e?
Another choices are possible for the approximate sign function (see [22] for details). The extended
normal velocity Veyt is given by the stationary state reached by the solution ¢ of (69),(70) as the
time 7 goes to +o0.

with € = min(Az, Ay). (71)

At each iteration k of the scheme (62)-(66), we compute the extended normal velocity as the
approximate stationary solution of (69),(70). We compute q; ~ q(Pi;,t™) from the following
upwind discretization of (69) :

qffrl = qjj — At| max(sing;,0) Dy i} + min(s;nf;, 0) D*qm

i i)

(72)

—i—max(s”nU,O)D a4y —i—mln(s”nU,O) D+qm ]7

where s;; = S(¢]7) and A7 is a time step such that ™ = mA7. We use central differences to
compute the approximation n;; of the unit normal vector n = (n*,n¥) = (0,¢/|V¢|, 0y0/|Ve|)
at node P;;. The initial value q° is equal to Vj, on the grid points with a distance to the interface
less than min(Az, Ay) and equals zero elsewhere.

8.3. Reinitialization to a distance function

For numerical accuracy, the solution of the level set equation (54) shouldn’t be neither too
steep nor to flat. This is the case if ¢ is the distance function since we have in that case |[V¢| = 1.
But even if we start with a distance function for the initial data ¢g, the solution ¢ of the level
set equation (54) does not remain a distance function. We perform a reinitialization of ¢ at time
t by solving the solution ¢ = ¢(x,y, ) of the following equation, up to the stationary state (see
122])

pr+8(@)(IVpl 1) = 0 inUxR", (73)
(p(.%',y,O) - (ﬁ(.%',g/,t), (xay) el (74)

The function S is the approximate sign function given by (71).
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9. Numerical results

In all the numerical tests, we choose U = (0,1) x (0,1). In the first example (see Figure 4),
the topological derivative is used to create holes. In this example, the Hamilton-Jacobi equation
is solved on a 51 x 51 grid. The data are

f(z,y) = 10sin?(4nx), for (z,y) € U = (0,1) x (0,1),
A=05, p=0,

and the initial domain g is the entire domain U i.e. there is no hole in the initial domain. We
denote by §2; the optimal domain obtained in this first example. The value of the functional J
in Ql is
J(Q1) = 0.282319.

In the second example (see Figure 5), the topological derivative is not used but only the shape
gradient is used for comparison with the previous calculation. In that case, it is therefore necessary
to start with a domain with a lot of holes in order to find a domain with a proper topology. In
this example, the initial domain is a square with 21 regular holes (see Figure 5) and the data f, A
and p are the same as in the first example.. In addition, the Hamilton-Jacobi equation is solved
on a 101 x 101 grid. In the second example, the algorithm converges to a local maximum which
is lower than the one obtained by using the topological derivative (the first example). Indeed, if
we denote by (2o the optimal domain for this second example, we get

J(92) = 0.2640695 < J(Q1) = 0.282319.

Thus €, allows an increase of 6.5% for the value of the functional J compared to 5. Notice that
even without topological derivative, the number of connected components of the complementary
set of {2 can increase as can be seen on Figure 5. This is not due to the creation of a hole but due
to the splitting of a connected component into two connected components. This is an unusual
situation, which should be related to another concept of topological derivative, called the external
topological derivative (see [19]).

Additional tests have been performed with f(z,y) = 10z 4+ y. In numerical tests depicted on
Figure 6 and Figure 7, there is no perimeter constraint (4 = 0). We choose A = 1 on Figure
6 and A = 1.7 on Figure 7. Small or big oscillations may occur, depending on the value of the
weight A of the volume constraint. On Figure 6 (with A = 1), small oscillations occur whereas big
oscillations are observed on Figure 7 (with A = 1.7). It means that we have no optimal solution
for the optimization problem since the perimeter goes to infinity. Finally, Figure 8 shows the
smoothing effect of the perimeter constraint for the same source function. In this last example,
we have chosen A = 1.7 and p = 0.4.

10. Appendix : The topological derivative with Neumann conditions on the hole

We present the results which are used in Section 5 in order to determine the topological
derivative of the energy functional. The asymptotic expansion of the energy is obtained with
a domain decomposition technique proposed in [27], [12]. This technique can be described in
the following way. The actual domain is divided into two parts 2, = Qr UT'g U C(R, p) (see
Figure 2). In the ring C(R, p) the singular perturbation of the domain is located, the moving
part of its boundary I', for p > 0 is the small parameter. On the other part of its boundary I'r
the Steklov-Poincaré operator is defined and the asymptotics of the operator are determined in
function of the parameter p. The second domain Qg of the decomposition depends only on the
parameter p > 0 by the nonlocal boundary conditions prescribed in terms of the Steklov-Poincaré
operator A,, so we have the regular perturbation of the boundary conditions for the boundary
value problem in Qp.

14



10 iterations 20 iterations

[=)
[=)
n
=2
kS
o
[
o
o

110 iterations 130 iterations

331 iterations Functional J (optimal value: 0.282319)

03

o 50 100 150 200 250 300

F1G. 4 — Shape optimization with topological derivative. The initial domain is without any holes
(f(z,y) = 10sin?(47z), A =0.5, p=0).
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Initial domain 10 iterations

35 iterations 60 iterations

331 iterations Functional J (optimal value: 0.2640695)

0.3

o 5O 100 150 200 250 300

F1G. 5 — Shape optimization without the topological derivative. The initial domain is composed
of 21 holes (f(x,y) = 10sin?(47rx), A = 0.5, u = 0).
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5 iterations

30 iterations

70 iterations

130 iterations

176 iterations
08

F1G. 6 — Small oscillations without any perimeter constraint (f(z,y) =10z +y, A =1, u=0).

Optimal value : J(02) = 0.598434

17

Functional I (optimal value: 0.598434)

80 100 120 140 180
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5 iterations 30 iterations

65 iterations 100 iterations

143 iterations Functional J (optimal value: 1.190227)

F1a. 7 - Strong oscillations without any perimeter constraint (f(z,y) = 10z+y, A = 1.7, u =0).
Optimal value : J(2) = 1.190227
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5 iterations 30 iterations

65 iterations 100 iterations

143 iterations Functional J (optimal value: 1.185849)

1.19

1.185

1.18

1175

117

1.185

1.185

1.15

1.145
50 100

F1G. 8 — Smoothing effect of the perimeter constraint (f = 10z +y, A = 1.7, = 0.4). Optimal
value : J(§2) = 1.185849
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Now we give in the next subsections, the asymptotic expansions of the energy terms E,(,l)(v),

E,()z)(f) and E(€,,u,) appearing in relations (42),(43). For the sake of simplicity, we assume in
what follows that zg = 0.

10.1. Asymptotic expansion of E(l)( )

For any function v in H: (I'r), let us consider the unique solution w, = w,(v) of the following
problem (see (39))
—Aw,+w, = 0 in C(R,p),
w, = v on Ig, (75)
Ohw, = 0 on I,

The Steklov-Poincaré operator A, is defined by

A,: H2(Tg) — H 2(Tg)

76
v — Onpw, (76)

We can decompose v € H%(FR) in the form of Fourier series with the polar coordinates (r,0) at
the origin :

v(f) = %ao + Z(ak sin(k6) + by cos(k0))
k=1

and the coefficients satisfy :

> V14 E(a} + ;) < M,
k=1

where M is a constant depending only on R. This implies two important properties :

ST+ <M, Y k(ad +b3) < M. (77)
k=1 k=1

We are interested in the asymptotic expansion with respect to p of the energy term
EW () = / (IVaw,|? + w?) da (78)
(R.p)
where w, = w,(v) is the solution of (75). We define the energy functional

E(l)(v):/ (1Vwf? + w?) de, (79)
Br

where w is the solution of
{ —Aw+w = 0 in Bpg,

w = v on Ip. (80)

We have the following expansion result for the energy E,gl)(v). For the proof, we refer to [11]
or [7].

Theorem 3 There exists a constant M > 0 independant of p such that

w(a? + b? a2
El(})(v) = E(l)(v) - < éli(;)b;) + 41&%)2) 102 + O(P2),

uniformly on bounded subsets of H'(Qg). The functions I, for k > 0, are Bessel functions of
00 r\ k+2m

. < _(5)

first kind defined by Ij(r) = mZ:O pT——IE
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10.2. Asymptotic expansion of E,@(f)
We are now interested in the expansion with respect to p of the energy term
B == [ (Vi) do (s1)
C(R,p)
where y, is the solution of the following problem (see (40)) :
Ay, +y, = fiewp in C(R,p)

Yy = 0 on I'p (82)
Ohypy = 0 on I,

with f € C*°(R?). We also need to define the energy term (corresponding to p = 0 in (81) and
(82))

B =~ [ (VyP+4?)da (53)
Br
where y is the solution of
—Ay+y = fipy in Bg,
{ y = 0 on I'p. (84)

In order to get the asymptotic expansion of Eg(f), we need to study the function

fiewp = nYpirp = 9p-

We would like to obtain an expansion of g, with respect to p. To this end, we make use of the
Fourier expansion of f :

f(?“ 0 _|_ Z Sln k@ +bk( )cos(k@)).
k=1

We have the following theorem (we refer to [11] or [7] for the proof) :

Theorem 4 The function g, admits the expansion

_ hi(R) — ao(0) h(R) . he(R)
== (Finim )~ (s ™ g <) o 6

where h{(R), 1 = 0,1 are defined by

K;(R)
L;(R)

he(R) = — /O O L (0t + /0 K (1)t (86)

and h8(R) is obtained from h%(R) by substituing by to ai in (86). In (86), K; are Bessel functions
of second kind [31].
From the previous result, we can deduce the asymptotic expansion for E5(f) (see [11],[7]) :

Theorem 5 There exists a positive constant M independant of p such that

WhgiR)sz B W(hcf(R)t*‘ hlf(R)Q)pz +o(p?).

EP(f)=E®(f) -
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10.3. Asymptotic expansion of E(Q,,u,)
Recall that the energy term E, = E(,,u,) is given by (see (42)) :

_ 1 R|2 R\2 L a [
Bp= 5 [ (Tl + @f) de - 5E00) + 3ER (D)
where uf is the solution of (37). Using Theorem 3 and Theorem 5, we obtain
/ Ay uo do — Ap(u )uo do
T'r
—9 0)he ho 2 hb 2
hg(R)? 8@0( ) O(R))pz _ m(hi(R) J 1(R) )pzda (87)

m(at +b}) mag 2 / R 2
On(yp —yo) d -
( 411 (R)? * s, (R)Z) " + L (Yp — yo) do + o(p?)

It can be proved that
uy —uff = o(p®),  Ouluy —uf) = o(p?), (88)
and we deduce that

Ap(u}p%)u(l;“2 do — Ao(uf)ué% do = /F (A, — Ag)(uf)ult do + o(p?)
R

I'r T'r
= [ w0zl do+ of?)
R

2 2 2
___may o mag+by) o 2
= “Ime”  en@e P o)

Finally, we can calculate the last term of (87), thanks to Theorem 3 :

| dionw,-wyde = [ ufig, - gm)ao
I'r Cgr
. <a0(R)h8(R) — ao(0)ao(R) n alh‘f(R)> 2

41o(R) 211 (R)

b
- <621?11((R]%))> P2+0(P2)-

With the previous expansions and noticing that ag(0) = 2f(0), we obtain following expansion
result for the energy E(2,,u,) :

Theorem 6 There exists a positive constant M independant of p such that

a 2 a 2 a a
E@py) = B(u) — gy + B Wl )
_[ 1(R)? +b1(R)2+a1(R)h‘f(R)+ 1(R)B(R )}W
41, (R)? 21 (R) 211( )
a(p)2 b(p)2 a a
[ e 08

The coefficients ag, a1 and by are given by

2T 2T 2T
ao(R) = © / W(R,0)d0, a1(R) =~ / W(R,0)sin0df, bi(R) =~ / u(R, 0) cos 0 df.
0 0 0

T T

The functions h}(R), i = 0,1 are defined in (86).
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All the quantities between brackets in the asymptotic development (89) do not depend on R. It

can easily be shown that
ao(R) | hG(R)

w0 =5nm
and then
u(0)* _ ao(R)* | h§(R)* | ao(R)h§(R)
2 8IH(R)? 8 4Iy(R)
Moreover, we have
Cai(R?+b0i1(R)? | ai(R)RY(R)  bi(R)AE(R)  hi(R)?  hi(R)?
[Vu(0)* = = 411(R)12 + 1211(}13) 1211(}13) et

Then, we deduce a different expression of the previous asymptotic expansion, which leads actually
to the usual expression for the topological derivative

u(0)*

E(Qp7up):E(Q7u)+ o

= [Vu(0)* + £(0)u(0)| 7p* + o(p?).

Let us mention that for ¢ =0, 1

. . b

11%1310 hi(R) =0, Il%lin() hi(R) = 0.
Thus, formula (89) gives an expression of the topological derivative which requires the knowledge
of u along the boundary I'g. This can be interesting from a numerical point of view. In particular,
it is possible to calculate a(R) and by (R) without directly computing the gradient of solution
u.
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