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A general framework for simulation of fractional fields

Serge Cohen∗, Céline Lacaux†, Michel Ledoux‡

18th October 2006

Abstract

Besides fractional Brownian motion most non-Gaussian fractional fields are obtained by in-
tegration of deterministic kernels with respect to a random infinitely divisible measure. In this
paper, generalized shot noise series are used to obtain approximations of most of these fractional
fields, including linear and harmonizable fractional stable fields. Almost sure and Lr-norm rates
of convergence, relying on asymptotic developments of the deterministic kernels, are presented
as a consequence of an approximation result concerning series of symmetric random variables.
When the control measure is infinite, normal approximation has to be used as a complement. The
general framework is illustrated by simulations of classical fractional fields.

1 Introduction

Irregular phenomena appear in various fields of scientific research: fluid mechanics, image processing
and financial mathematics for example. Experts in those fields often ask mathematicians to develop
models both easy to use and relevant for their applications. In this perspective, fractional fields are
very often used to model irregular phenomena. Among the huge literature devoted to the topic, one
can refer the reader to [6] for a recent overview of fractional fields for applications.

One of the simplest model is the fractional Brownian motion introduced in [9] and further de-
veloped in [13]. Simulation of fractional Brownian motion is now both theoretically and practically
well understood (see [2] for a survey on this problem). Many other fractionals fields with heavy
tailed marginals have been proposed for applications, see Chapter 7 in [21] for an introduction to
fractional stable processes. More recently other processes that are neither Gaussian nor stable have
been proposed to model Internet traffic (cf. [27, 5]). The common feature for many of these fields,
see also [3, 4, 10], is the fact that they are obtained by a stochastic integration of a deterministic
kernel with respect to some random measure. In terms of models, we can think that the probabilistic
structure of the irregular phenomena (light or heavy tails for instance) is implemented in the random
measure and the correlation structure is built in the deterministic kernel. Engineers will have to try
many kernels and random measures before finding the more appropriate one for their applications.
Therefore, they need a common framework to simulate fractional fields to make many attempts.

In the literature, there exist articles for simulation of the fractional fields that are non Gaussian.
In [7] a wavelet expansion is used to approximate harmonizable and well-balanced type of fractional
stable processes. For the linear fractional stable processes the fast Fourier transform is the main tool
for simulation in [23, 28]. One can also quote a recent work [14], where another integral representation
of the linear fractional stable processes is used to obtain simulation of the sample paths. Even though,
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all these processes are stable, they have different distributions and for each one a specific method
is used. Concerning non stable processes, generalized shot noise series introduced for simulation of
Lévy processes in [18, 19, 20] were used for simulation of the sample paths of real harmonizable
multifractional fields in [11]. One of the advantages of this method is the fact that it can be applied
to fractional fields that are neither with stationary increments nor self-similar. Moreover, it is
straightforward to apply this technique to the simulation of fields indexed by multidimensional spaces.
In this article, our main goal is to show how this method can be applied to most of the fractional
fields.

Let us describe how one can obtain an algorithm of simulation when an integral representation
of the fractional field is known. In particular, symmetric α-stable random fields can be represented
as stochastic integrals (see [21]). We will be interested in the simulation of stochastic integrals of the
form

Xf (x) =

∫

Rd

f(x, ξ) Λ(dξ), x ∈ Rd,

with Λ an infinitely divisible random measure.
Basically, one has to transform the random measure Λ by a sum of weighted Dirac masses at

random points at the arrival times of a standard Poisson process. After the transformation, the
integrals are series which may be simulated by properly truncating the number of terms.

We also would like to stress that we have obtained rates of convergence for the truncating series.
More precisely, almost sure rates of convergence are given both for each marginal of the field, and
uniformly if the field is simulated on a compact set. The almost sure convergence is related to
asymptotic developments of the deterministic kernel in the integral representation of the field. Let
us also emphasize Theorem 2.1 which is an important tool to reach rates of convergence for series
of symmetric random variables under moment assumptions. This theorem may have interest of its
own and is needed in the heavy tail cases. Rates of convergence in Lr-norm with explicit constant
are further obtained.

When the control measure of Λ has infinite mass, a technical complication arises. Following [1, 11],
one part of Xf will then be approximated by a Gaussian field and the error due to this approximation
will be given in terms of Berry-Esseen bounds. The other part will be represented as a series.

In Section 2, rates of almost sure convergence for shot noise series are studied. Section 3 is
devoted to some basic facts concerning stochastic integrals with respect to random measures. Then,
convergence and rates of convergence of the generalized shot noise series are given in Section 4.
Section 5 gives an approximation of the stochastic integrals when the control measure has infinite
mass and establishes Berry-Esseen bounds. Examples, that include most of the classical fractional
fields, are given in Section 6, illustrated by simulations. Section 7 is devoted to the case of complex
random measures, which are important for harmonizable fields. The proofs of Theorems 2.1 and 2.2
is postponed to the Appendix.

2 Rate of almost sure convergence for shot noise series

In this section, we first establish the main tools to reach rates of convergence of the approximation
proposed in Section 4. The two following theorems study rates of convergence for series of symmetric
random variables. In particular, they can be applied to

Sγ
N =

N∑

n=1

T−1/γ
n Xn, (1)

where 0 < γ < 2 and Tn is the nth arrival time of a Poisson process with intensity 1. Let us recall
that if (Xn)n≥1 is independent of (Tn)n≥1, the shot noise series (1) converges almost surely to a stable
random variable with index γ as soon as (Xn), n ≥ 1, are independent and identically distributed
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(i.i.d) Lγ-symmetric random variables, see for instance [12, 21]. Under a stronger integrability as-
sumption, a rate of almost sure convergence is given by Theorem 2.1. Theorem 2.2 gives a rate of
absolute almost sure convergence.

Theorem 2.1. Let (Xn)n≥1 be a sequence of i.i.d. symmetric random variables. Assume that
(Xn)n≥1 is independent of (Tn)n≥1 and of a sequence (Yn)n≥1 which satisfies

|Yn| ≤ CT−1/γ
n (2)

for some finite constants C > 0 and γ ∈ (0, 2). Furthermore, assume E(|Xn|r) < +∞ for some
r > γ. Then, for every ε ∈ (0, 1/γ − 1/(r ∧ 2)), almost surely,

sup
N≥1

N ε

∣∣∣∣∣

+∞∑

n=N+1

YnXn

∣∣∣∣∣ < +∞.

Proof. See the Appendix.

The Theorem 2.1 will give us a rate of almost sure convergence of our approximation by generalized
shot noise series (see Section 4). In this paper, we are also interested in the uniform convergence of
our approximation when the field Xf is simulated on a compact set. The next theorem will be the
main tool to establish this uniform convergence and obtain a rate of uniform convergence.

Theorem 2.2. Let (Xn)n≥1 be a sequence of i.i.d random variables and γ ∈ (0, 1). Assume that
(Xn)n≥1 is independent of (Tn)n≥1 and that E(|Xn|r) < +∞ for some r > γ. Then, for every
ε ∈ (0, 1/γ − 1/(r ∧ 1)), almost surely,

sup
N≥1

N ε
+∞∑

n=N+1

T−1/γ
n |Xn| < +∞.

Proof. See the Appendix.

3 Stochastic integrals with respect to Poisson random measure

In this section, we first recall some classical facts concerning stochastic integrals with respect to
Poisson random measures (see [17] for more details). Let N(dξ, dv) be a Poisson random measure on
Rd ×R with intensity n(dξ, dv) = dξν(dv). Assume that the non-vanishing σ-finite measure ν(dv) is
a symmetric measure such that ∫

R

(
|v|2 ∧ 1

)
ν(dv) < +∞, (3)

where a ∧ b = min (a, b). In particular, ν(dv) may not have a finite second order moment. Under
the assumption (3), which is weaker than the assumptions done in [4], we can study in the same
framework fractional stable fields and the fields introduced in [4] (see Examples 3.1 and 3.2). Simi-
larly, in Section 7, the control measure satisfies a weaker assumption than the one done in [3, 10, 11],
which introduces a common framework for harmonizable fractional stable fields and harmonizable
multifractional Lévy motions.

The stochastic integral
∫

Rd×R

ϕ(ξ, v)
[
N(dξ, dv) − (1 ∨ |ϕ(ξ, v)|)−1 n(dξ, dv)

]
,

where a ∨ b = max (a, b), is defined if and only if

∫

Rd×R

(
|ϕ(ξ, v)|2 ∧ 1

)
n(dξ, dv) < +∞, see for

instance Lemma 12.13 page 236 in [8].
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Then, we can consider a random measure Λ(dξ) on Rd defined by

∫

Rd

g(ξ) Λ(dξ) =

∫

Rd×R

g(ξ)v
(
N(dξ, dv) − (|g(ξ)v| ∨ 1)−1 n(dξ, dv)

)
(4)

for every g : Rd → R such that

∫

Rd×R

|g(ξ)v|2 ∧ 1 n(dξ, dv) < +∞. We have that

E

[
exp

(
i

∫

Rd

g(ξ) Λ(dξ)

)]
=exp

[∫

Rd×R

[
exp(ig(ξ)v) − 1 − ig(ξ)v1|g(ξ)v|≤1

]
dξ ν(dv)

]
, (5)

see for instance [8]. Therefore Λ is an infinitely divisible random measure.

As explained below (see Examples 3.1 and 3.2), Lévy random measures and stable random mea-
sures are examples of such infinitely divisible random measures represented by a Poisson random
measure owing to (4). Here are some illustrations.

Example 3.1. Let ν(dv) be a symmetric measure such that

∫

Rd

|v|2 ν(dv) < +∞.

Then, for every g ∈ L2
(
Rd

)
, (4) can be rewritten as

∫

Rd

g(ξ) Λ(dξ) =

∫

Rd×R

g(ξ)v (N(dξ, dv) − n(dξ, dv)).

If the symmetric measure ν(dv) satisfies the assumptions done in [4], i.e. if

∀p ≥ 2,

∫

R

|v|p ν(dv) < +∞,

Λ(dξ) is a Lévy random measure, without Brownian component, represented by the Poisson random
measure N(dξ, dv) in the sense of [4]. Under the above assumptions, the field (XH(x))x∈Rd , defined by

XH(x) =

∫

Rd

(
‖x − ξ‖H−d/2 − ‖ξ‖H−d/2

)
Λ(dξ)

is a moving average fractional Lévy motion, in short MAFLM, with index H (0 < H < 1, H 6= d/2).

Example 3.2. In the case where

ν(dv) =
dv

|v|1+α

with 0 < α < 2, the random measure Λ(dξ), defined by (4), is a symmetric α-stable random measure
in the sense of [21]. Then, for instance,

XH(x) = D(α)−1/α
∫

Rd

(
‖x − ξ‖H−d/α − ‖ξ‖H−d/α

)
Λ(dξ), x ∈ Rd,

with

D(α) =

∫

R

1 − cos (r)

|r|1+α dr, (6)

is a moving average fractional stable motion, in short MAFSM, with index H (0 < H < 1, H 6= d/α).
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In the following, we will be interested in the simulation of stochastic integrals of the form

Xf (x) =

∫

Rd

f(x, ξ) Λ(dξ), x ∈ Rd, (7)

where Λ(dξ) is defined by (4) and f : Rd × Rd → R is such that for every x ∈ Rd,

∫

Rd×R

(
|f(x, ξ)v|2 ∧ 1

)
n(dξ, dv) < +∞. (8)

To analyze these stochastic integrals, we represent them as series (known as shot noise series) for
which we carefully study the rates of convergence.

4 Generalized Shot Noise Series

An overview of representations of infinitely divisible laws as series is given in [20, 19] and the field
Xf is an infinitely divisible field. Such representation of RHMLMs, fields introduced in [10], has
been studied in [11]. As in the case of RHMLMs, the infinitely divisible field Xf can be represented
as a generalized shot noise series as soon as the control measure ν(dv) has finite mass. Hence, in this
section,

ν(R) < +∞. (9)

Let us recall that ν(dv) is a non-vanishing measure, i.e. ν(R) 6= 0.

Let us now introduce some notation that will be used throughout the paper.
Notation Let (Vn)n≥1 and (Un)n≥1 be independent sequences of random variables. We assume that
(Un, Vn)n≥1 is independent of (Tn)n≥1.

• (Vn)n≥1 is a sequence of i.i.d. random variables with common law ν(dv)/ν(R).

• (Un)n≥1 is a sequence of i.i.d. random variables such that U1 is uniformly distributed on the

unit sphere Sd−1 of the Euclidean space Rd.

• cd is the volume of the unit ball of Rd.

The following statement is the main series representation we will be using in our investigation.

Proposition 4.1. Assume that (8) is fulfilled. Then, for every x ∈ Rd, the series

Y f (x) =
+∞∑

n=1

f

(
x,

(
Tn

cd ν(R)

)1/d

Un

)
Vn (10)

converges almost surely. Furthermore, {Xf (x) : x ∈ Rd} (d)
= {Y f (x) : x ∈ Rd}.

Remark 4.2. In the framework of RHMLMs, [11] directly establishes the almost convergence of
the shot noise series in the space of continuous functions endowed with the topology of uniform
convergence on compact sets. Such result assumes the continuity of the deterministic kernel f and
in our framework, this kernel function may be discontinuous. Nevertheless, under assumptions on
the asymptotics expansion of f as ‖ξ‖ tends to infinity, (10) also converges almost surely on each
compact set. Such result, stated in Proposition 4.6, will be deduced from the Theorem 2.2. Note
that we will also give a rate of uniform convergence.
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Proof. Let p be an integer, p ≥ 1, (u1, · · · , up) ∈ Rp and (x1, · · · , xp) ∈
(
Rd

)p
. We consider the Borel

measurable map
H : ]0, +∞[×D −→ R

(r, ṽ) 7−→
p∑

i=1

ujf

(
xj ,

(
r

cdν(R)

)1/d

u

)
v,

Then, define a measure Q on the Borel σ-field B(R) by

∀B ∈ B(R), Q(B) =

∫ +∞

0

∫

D
1B\{0}(H(r, ṽ)) λ(dṽ) dr,

where λ is the law of Ṽn = (Un, Vn). Hence, Q is the push-forward of λ(dṽ)dr by H and
∫

R

|y|2 ∧ 1 Q(dy) =

∫

]0,+∞[×D
H2(r, ṽ) ∧ 1 dr λ(dṽ).

Then, proceeding as in the proof of Proposition 3.1 in [11], i.e. using the change of variable ρ =

(r/(cdν(R)))1/d and polar coordinates, one obtains that

∫

R

|y|2 ∧ 1 Q(dy) =

∫

Rd×R

[(
p∑

i=1

ujf
2(xj , ξ) v2

)
∧ 1

]
n(dξ, dv) < +∞.

Then, Q is a Lévy measure on R. Therefore, according to Theorem 2.4 in [19], the sequence

N∑

n=1

H
(
Tn, Ṽn

)
− A(TN ),

where for s ≥ 0,

A(s) =

∫ s

0

∫

D
H(r, ṽ)1|H(r,ṽ)|≤1 λ(dṽ) dr,

converges almost surely as N → +∞. Moreover, since ν is a finite and symmetric measure, by
definition of H and of the measure λ(dṽ), A(s) = 0 for every s ≥ 0. Therefore, (taking p = 1), for
every x,

Y f (x) =
+∞∑

n=1

f

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn

converges almost surely. Furthermore, due to Theorem 2.4 in [19], we have that

E

[
exp

(
i

p∑

i=1

uiY
f (xi)

)]
= exp

[∫

R

(
exp(iy) − 1 − iy1|y|≤1

)
Q(dy)

]

By definition of Q and symmetry of ν(dv), one easily sees that {Xf (x) : x ∈ Rd} (d)
= {Y f (x) : x ∈ Rd}.

The proof of Proposition 4.1 is then complete.

On the basis of Proposition 4.1, Y f , which is equal in law to Xf , is approximated by

Y f
N (x) =

N∑

n=1

f

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn, x ∈ Rd. (11)

We now explain in a few words how the rate of convergence of Y f
N to Y f can be studied. Firstly,

let us recall the following classical result for Poisson arrival times:

lim
n→+∞

Tn

n
= 1 almost surely. (12)
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Hence, the asymptotics of (11) depends on (Vn)n≥1 and on the asymptotics of f(x, ξ) as ‖ξ‖ tends

to infinity. Under an assumption on this asymptotics, the rate of convergence of Y f
N will be deduced

from the rate of convergence of some series of the kind of Sγ
N defined by (1).

Let us first study the almost sure and Lr errors for each fix x.

Theorem 4.3. Let x ∈ Rd. Assume that

∀ξ 6= 0, |f(x, ξ)| ≤ C

‖ξ‖β
, (13)

where β > d/2 and C > 0. Furthermore, assume there exists r ∈ (d/β, 2] such that E(|V1|r) < +∞

1. Then, for every ε ∈ (0, β/d − 1/r), almost surely,

sup
N≥1

N ε
∣∣∣Y f (x) − Y f

N (x)
∣∣∣ < +∞.

2. Moreover, for every integer N > rβ/d,

E

(∣∣∣Y f
N (x) − Y f (x)

∣∣∣
r)

≤ C(r, β)
D(N, r, β)

N rβ/d−1
, (14)

where

D(N, r, β) =
Γ(N + 1 − rβ/d) (N + 1)rβ/d

Γ(N + 1)
(15)

and

C(r, β) =
dCr(cdν(R))rβ/d

E(|V1|r)
rβ − d

. (16)

Remark 4.4. Remark that limN→+∞ D(N, r, β) = 1 by the Stirling formula. Hence, Proposition 4.3

gives a rate of convergence in Lr for the series Y f
N . Furthermore, (14) allows us to control the error

of approximation in simulation.

Remark 4.5. Assume that (13) is only fulfilled for ‖ξ‖ ≥ A. Then, let

g(x, ξ) = f(x, ξ)1‖ξ‖≥A

and remark that
Y f = Y g + Y f−g, (17)

where Y h is associated with h by (10). Hence, since g satisfies the assumptions of Proposition 4.3,
an almost sure or Lr error may be obtained. Furthermore, in view of (12),

Y f−g(x) =
+∞∑

n=1

(f − g)

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn

is, almost surely, a finite sum since for n large enough, Tn > Adcdν(R). This remark is used for
MAFSMs or MAFLMs in Section 6.

Let us now prove Theorem 4.3.
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Proof of Theorem 4.3. In the following,

ξn =

(
Tn

cdν(R)

)1/d

Un.

1. Proof of part 1: Rate of Almost Sure Convergence

In view of (13),

|f(x, ξn)| ≤ C(cdν(R))β/d

T
β/d
n

. (18)

Then, by applying Theorem 2.1 with Xn = Vn and Yn = f(x, ξn),

sup
N≥1

N ε
∣∣∣Y f (x) − Y f

N (x)
∣∣∣ < +∞ almost surely

for every ε ∈ (0, β/d − 1/r).

2. Proof of part 2: L
r-error

Since Vn, n ∈ N\{0}, are i.i.d. symmetric random variables, by the Jensen inequality, applied
for r ∈ (0, 2],

E

(∣∣∣∣∣

P∑

n=N+1

f(x, ξn)Vn

∣∣∣∣∣

r)
≤ E




(
P∑

n=N+1

f2(x, ξn)V 2
n

)r/2

.

Furthermore, since (a + b)r/2 ≤ ar/2 + br/2 (r ∈ (0, 2]) for every a, b ≥ 0,

E

(∣∣∣∣∣

P∑

n=N+1

f(x, ξn)Vn

∣∣∣∣∣

r)
≤ E(|V1|r)

P∑

n=N+1

E(|f(x, ξn)|r)

≤ Cr(cdν(R))rβ/d
E(|V1|r)

P∑

n=N+1

E

(
T−rβ/d

n

)

≤ Cr(cdν(R))rβ/d
E(|V1|r)

P∑

n=N+1

Γ(n − rβ/d)

Γ(n)
.

Therefore,

E

(∣∣∣∣∣

P∑

n=N+1

f(x, ξn)Vn

∣∣∣∣∣

r)
≤ Cr(cdν(R))rβ/d

E(|V1|r) sup
n≥N

D(n, r, β)
+∞∑

n=N+1

1

nrβ/d

where D(n, r, β) is defined by (15). According to the proof of Proposition 3.2 in [11],

sup
n≥N

D(n, r, β) = D(N, r, β)

and then

E

(∣∣∣∣∣

P∑

n=N+1

f(x, ξn)Vn

∣∣∣∣∣

r)
≤ dCr(cdν(R))rβ/d

E(|V1|r)D(N, r, β)

(rβ − d)N rβ/d−1

since r > d/β. Then, by the Fatou lemma,

E

(∣∣∣∣∣

+∞∑

n=N+1

f(x, ξn)Vn

∣∣∣∣∣

r)
≤ dCr(cdν(R))rβ/d

E(|V1|r)D(N, r, β)

(rβ − d)N rβ/d−1
.

The proof of Theorem 4.3 is complete.
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Actually, if f admits an expansion, roughly speaking uniform in x, as ‖ξ‖ tends to infinity, the

next theorem gives a rate of uniform convergence in x for Y f
N .

Theorem 4.6. Let K ⊂ Rd be a compact set, p ≥ 1 and (βi)1≤i≤p be a non-decreasing sequence.
such that β1 > d/2 and βp > d. Assume that for every x ∈ K and ξ 6= 0,

∣∣∣∣∣∣
f(x, ξ) −

p−1∑

j=1

aj(x)bj(ξ/‖ξ‖)
‖ξ‖βj

∣∣∣∣∣∣
≤ bp(ξ/‖ξ‖)

‖ξ‖βp
(19)

where aj, j = 1, . . . , p − 1, are real-valued continuous functions. Furthermore, assume that there
exists r ∈ (d/β1, 2] such that E(|Vn|r) < +∞ and E(|bj(Un)|r) < +∞ for j = 1, . . . , p. Then for
every ε ∈ (0, min (β1/d − 1/r, βp/d − 1/(1 ∧ r))),

sup
N≥1

N ε sup
x∈K

∣∣∣Y f (x) − Y f
N (x)

∣∣∣ < +∞ almost surely.

Remark 4.7. In (19), the non-radial (or anisotropic) part of the asymptotic expansion of f is given
by the functions bj.

Proof of Theorem 4.6. We have

∣∣∣Y f (x) − Y f
N (x)

∣∣∣ ≤
p−1∑

j=1

|aj(x)|
∣∣∣∣∣

+∞∑

n=N+1

(
Tn

cdν(R)

)−βj/d

bj(Un)Vn

∣∣∣∣∣

+
+∞∑

n=N+1

(
Tn

cdν(R)

)−βp/d

|bp(Un)Vn|.

Note that (bj(Un)Vn)n≥1 are i.i.d. symmetric random variables such that E(|bj(Un)Vn|r) < +∞.
Hence, since 0 < d/βj < r ≤ 2, by Theorem 2.1, for every ε ∈ (0, βj/d − 1/r),

sup
N≥1

N ε

∣∣∣∣∣

+∞∑

n=N+1

T
−βj/d
n bj(Un)Vn

∣∣∣∣∣ < +∞ almost surely.

In addition, since E(|bp(Un)Vn|r) < +∞ and d/βp < 1, by Theorem 2.2, for every ε ∈ (0, βp/d −
1/(1 ∧ r)),

sup
N≥1

N ε
+∞∑

n=N+1

T
−βp/d
n |bp(Un)Vn| < +∞ almost surely,

which ends the proof since aj , j = 1, . . . , p − 1, are continuous and thus bounded on the compact
set K.

5 Normal Approximation

When the assumption (9) is not fulfilled, Section 4 cannot be directly applied. In this case, the
simulation of Xf is not only based on a series expansion but also on a normal approximation.
Actually, following [1, 11], we will split the field Xf into two fields Xf

ε,1 and Xf
ε,2. It leads to a

decomposition of Λ into two random measures Λε,1 and Λε,2 such that the control measure of Λε,2

satisfies the assumption (9). As a consequence of Section 4, Xf
ε,2 can be represented as a series.

This section is thus devoted to the simulation of the first part Xf
ε,1 that will be handled by normal

approximation of the Berry-Esseen type.
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Suppose now that
ν(R) = +∞, (20)

which is the case for MAFSMs. Then let ε > 0 and let us split

Xf = Xf
ε,1 + Xf

ε,2

into two random fields where

Xf
ε,1(x) =

∫

Rd×R

f(x, ξ)v1|v|<ε

(
N(dξ, dv) − (|f(x, ξ)v| ∨ 1)−1 n(dξ, dv)

)
(21)

and

Xf
ε,2(x) =

∫

Rd×R

f(x, ξ)v1|v|≥ε

(
N(dξ, dv) − (|f(x, ξ)v| ∨ 1)−1 n(dξ, dv)

)
. (22)

Consider the two independent Poisson random measures

Nε,1(dξ, dv) = 1|v|<ε N(dξ, dv) and Nε,2(dξ, dv) = 1|v|≥ε N(dξ, dv).

Let Λε,i (i = 1, 2) be the infinitely divisible random measure associated with Nε,i by (4). Remark

that Xf
ε,1 and Xf

ε,2 are independent and that

Xf
ε,i(x) =

∫

Rd

f(x, ξ) Λε,i(dξ), i = 1, 2.

In addition, the control measure νε,2(dv) = 1|v|≥ε ν(dv) of Λε,2 is finite and symmetric. Therefore Xf
ε,2

can be simulated as a generalized shot noise series (see Section 4). It remains to properly approxi-

mate Xf
ε,1. To this task, notice that the control measure νε,1(dv) = 1|v|<ε ν(dv) of Λε,1 has moments

of every order greater than 2. Hence, Λε,1 is a Lévy random measure in the sense of [4].
Set

σ(ε) =

(∫ ε

−ε
v2 ν(dv)

)1/2

. (23)

Proposition 5.1. Assume that for each x ∈ Rd, f(x, ·) ∈ L2
(
Rd

)
and limε→0+

σ(ε)
ε = +∞. Then

lim
ε→0+

(
Xf

ε,1(x)

σ(ε)

)

x∈Rd

(d)
=

(
W f (x)

)
x∈Rd

, (24)

where, with W (dξ) a real Brownian random measure,

W f (x) =

∫

Rd

f(x, ξ)W (dξ) (25)

and where the limit is understood in the sense of finite dimensional distributions.

Proof. Let r ≥ 1, u = (x1, . . . , xr) ∈
(
Rd

)r
and y = (y1, . . . , yr) ∈ Rr. Then

E

[
exp

(
i

r∑

k=1

yk

Xf
ε,1(xk)

σ(ε)

)]
= exp (Ψε(x, y))

with

Ψε(x, y) =

∫

Rd×R

(
exp

(
ig(ξ, x, y)v

σ(ε)

)
− 1 − ig(ξ, x, y)v

σ(ε)
1|g(ξ,x,y)v|≤σ(ε)

)
dξ νε,1(dv)

10



and g(ξ, x, y) =
r∑

k=1

ykf(xk, ξ). Then, by the Fubini theorem,

Ψε(x, y) =

∫

Rd

Iε(g(ξ, x, y)) dξ,

where for every a ∈ R Iε(a) =

∫

R

(
e
i av

σ(ε) − 1 − i
av

σ(ε)
1|av|<σ(ε)

)
1|v|<ε ν(dv). Since ν(dv) is a symmet-

ric Lévy measure,

Iε(a) =

∫

R

(
e
i av

σ(ε) − 1 − i
av

σ(ε)

)
1|v|<ε ν(dv).

As lim
ε→0+

σ(ε)/ε = +∞, according to [1], lim
ε→0+

Iε(a) = −a2

2
. Since moreover |Iε(a)| ≤ a2

2 , for every

a ∈ R, a dominated convergence argument yields

lim
ε→0+

Ψε(x, y) = −1

2

∫

Rd

∣∣∣∣∣

r∑

k=1

ykf(xk, ξ)

∣∣∣∣∣

2

dξ = −1

2
Var

(
r∑

k=1

ykW
f (xk)

)
.

The proof is thus complete.

As in the case of RHMLMs, an estimate in terms of Berry-Esseen bounds on the rate of conver-
gence stated in Proposition 5.1 may be given. The assumption of the following theorem only ensures
the existence of the moment of order (2 + δ) for Xf

ε,1(x).

Theorem 5.2. Let x ∈ Rd and assume that

f(x, ·) ∈ L2+δ
(
Rd

)
(26)

for some δ ∈ (0, 1]. Then E

(∣∣∣Xf
ε,1(x)

∣∣∣
2+δ

)
< +∞ and

sup
u∈R

∣∣∣P
(
Xf

ε,1(x) ≤ u
)
− P

(
σ(ε)W f (x) ≤ u

)∣∣∣ ≤ A(x, δ)
m2+δ

2+δ(ε)

σ2+δ(ε)

where W f is defined by (25) in Proposition 5.1, m2+δ
2+δ(ε) =

∫ ε
−ε|v|

2+δ ν(dv) and

A(x, δ) =

Aδ

∫

Rd

|f(x, ξ)|2+δ dξ

3

(
π

∫

Rd

|f(x, ξ)|2 dξ

)(2+δ)/2

with

Aδ =

{
0.7975 if δ = 1

53.9018 if 0 < δ < 1.

Remark 5.3. Assume that f satisfies assumptions (8) and (26). Then, for every x, f(x, ·) ∈ L2
(
Rd

)

and E

(
Xε,1(x)2

)
< +∞.

Proof. This proof is based on a generalization of Lemma 4.1 in [11].

Let µ be the distribution of the infinitely divisible variable Xf
ε,1(x). The Lévy Q measure of µ

is then the push-forward of nε,1(dξ, dv) = dξνε,1(dv) by the map (ξ, v) 7→ f(x, ξ)v. Hence, for every
γ > 0, ∫

R

|y|γQ(dy) = mγ
γ(ε)

∫

R

|f(x, ξ)|γ dξ

11



where mγ
γ(ε) =

∫ ε
−ε|v|

γ ν(dv). Note that m2
2(ε) = σ2(ε). Then, since f(x, ·) ∈ L2+δ

(
Rd

)
,

∫

R

|y|2+δQ(dy) < +∞.

Therefore, according to Theorem 25.3 in [22],
∫

R

|y|2+δµ(dy) < +∞ i.e. E

(
|Xε,1(x)|2+δ

)
< +∞.

As in the proof of Lemma 4.1 in [11], we then consider a Lévy process (Z(t))t≥0 such that

Z(1)
(d)
= Xε,1(x). For each fixed n ∈ N\{0},

Z(1) =

n∑

k=1

(
Z

(
k + 1

n

)
− Z

(
k

n

))

where Yk,n = Z
(

k+1
n

)
− Z

(
k
n

)
, 1 ≤ k ≤ n, are i.i.d real-valued centered random variables. Further-

more,

E

(
|Yk,n|2

)
=

E

(
|Z(1)|2

)

n
=

σ2(ε)

∫

R

|f(x, ξ)|2 dξ

n

and since Z(1) ∈ L2+δ, Yk,n ∈ L2+δ. Therefore, according to [16], there exists a constant Aδ such
that for every n ∈ N\{0},

sup
t∈R

∣∣∣∣∣∣∣∣
P




Z(1)√
E

(
|Z(1)|2

) ≤ t


 − P(W ≤ t)

∣∣∣∣∣∣∣∣
≤

nAδE

(∣∣Z
(

1
n

)∣∣2+δ
)

E

(
|Z(1)|2

)1+δ/2

where W is a normal random variable with mean 0 and variance 1. When δ = 1, the preceding
inequality is the classical Berry-Esseen inequality and we can take A1 = 0.7975. In [16], on find that
Aδ = max(8/3, 64A1 + 1 + 14/(3

√
2π)) = 53.9018. Furthermore, it is straightforward that

sup
t∈R

∣∣∣∣∣∣∣∣
P




Z(1)√
E

(
|Z(1)|2

) ≤ t


 − P(W ≤ t)

∣∣∣∣∣∣∣∣
= sup

u∈R

∣∣∣P(Xε,1(x) ≤ u) − P

(
σ(ε)W f (x) ≤ u

)∣∣∣.

According to [20],

lim
n→+∞

nE

(∣∣∣∣Z
(

1

n

)∣∣∣∣
2+δ

)
=

∫

R

|y|2+δQ(dy),

which concludes the proof.

We now summarize the approximation scheme based on the preceding splitting. First we approx-
imate Xf

ε,1 by the Gaussian field σ(ε)W f . According to Section 4, an approximation of Xf
ε,2 may be

given by

Y f
ε,N,2(x) =

N∑

n=1

f

(
x,

(
Tn

cd νε,2(R)

)1/d

Un

)
Vε,n, x ∈ Rd,

where (Vε,n)n is a sequence of i.i.d. random variables with common law νε,2(dv)/νε,2(R). Note

that Tn, Un and Vε,n are independent. Since Xf
ε,1 and Xf

ε,2 are independent, W f is assumed to be
independent of (Tn, Un, Vε,n). As a result, in the case where ν(R) = +∞, under the assumptions of
Proposition 5.1, an approximation of Xf is

Y f
ε,N (x) = σ(ε)W f (x) +

N∑

n=1

f

(
x,

(
Tn

cd νε,2(R)

)1/d

Un

)
Vε,n, x ∈ Rd.
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6 Examples

This section illustrates with various examples the range of application of the preceding results. In
all the following examples, K ⊂ Rd is a compact set and (13) is only fulfilled for ‖ξ‖ ≥ A. Then, as
noticed in Remark 4.5, we may split

Y f
N = Y g

N + Y f−g
N ,

with g(x, ξ) = f(x, ξ)1‖ξ‖≥A. Since, Y g
N is in fact a finite sum (almost surely), the rate of convergence

described below is actually the rate of convergence of Y f−g
N .

6.1 Moving Average Fractional Lévy Motions

Let H ∈ (0, 1) such that H 6= d/2. Suppose that

fH,2(x, ξ) = ‖x − ξ‖H−d/2 − ‖ξ‖H−d/2

and that for every p ≥ 2,
∫

R
|v|p ν(dv) < +∞. Then, XH,2 = XfH,2 is a MAFLM in the sense of [4].

6.1.1 Case of finite control measures

An approximation, in law, of the MAFLM XH is given by

Y
fH,2

N (x) =
N∑

n=1




∥∥∥∥∥x −
(

Tn

cdν(R)

)1/d

Un

∥∥∥∥∥

H−d/2

−
(

Tn

cdν(R)

)H/d−1/2

Vn.

Let A = maxK ‖y‖ + 1, x ∈ K and ‖ξ‖ ≥ A. The mean value inequality leads to

|fH,2(x, ξ)| ≤
∣∣∣∣H − d

2

∣∣∣∣(A − 1) sup
0<θ<1

‖ξ − θx‖H−d/2−1.

Remark that ‖ξ − θx‖ ≥ ‖ξ‖ − ‖x‖ ≥ ‖ξ‖/A. Therefore, since H − d/2 − 1 < 0, for every x ∈ K, for
‖ξ‖ ≥ A,

|fH,2(x, ξ)| ≤ C

‖ξ‖1−H+d/2
(27)

with C = |H − d/2|(A − 1)A1−H+d/2.
Let β1 = 1−H +d/2 and gH,2(x, ξ) = fH,2(x, ξ)1‖ξ‖≥maxK ‖y‖+1. Note that β1 > d/2 since 1 > H.

Then, the assumptions of Theorem 4.3 are satisfied with r = 2 and

E

(∣∣Y gH,2

N (x) − Y gH,2(x)
∣∣2

)
≤ C(2, β1)D(N, 2, β1)

N2(1−H)/d

where C(2, β1) and D(N, 2, β1) are defined by (16) and (15). Therefore, the mean square error
converges at the rate N (1−H)/d.

We now focus on the uniform convergence of Y gH,2 . For every integer q ≥ 1, by a Taylor expansion,
one can prove that for every x ∈ K and for ‖ξ‖ ≥ A,

∣∣∣∣∣∣
fH,2(x, ξ) −

q−1∑

j=1

‖ξ‖H−j−d/2dj(x, ξ/‖ξ‖)

∣∣∣∣∣∣
≤ Bq,A,H‖ξ‖H−d/2−q, (28)

for some positive constant Bq,A,H and where the d′js are polynomial functions in xi and ui, i =
1 . . . d, j = 1 . . . d. Since the dj ’s are polynomial functions, one can easily see that gH,2 satisfies the
assumption (19) taking β1 = 1 − H + d/2 and βp = q − H + d/2. Since (28) holds for every integer
q ≥ 1, by Theorem 4.6, Y

gH,2

N converges uniformly at the rate N ε for every ε ∈ (0, (1 − H)/d).
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Figure 1: Examples of MAFLMs

Let us now present one example (see Figure 1) taking ν(dv) = (δ−1 + δ1)/2. In this exam-
ple, we first simulate a realization of the random variables (Tn, Un, Vn). Then, for these values

of (Tn, Un, Vn)1≤n≤N , we evaluate Y
fH,2

N for H = 0.3 and H = 0.7. We observe that the trajectory
regularity does not depend on the value of H. Actually, one can see that the derivatives of Y

gH,2

N at
each order converge uniformly on each compact set. Therefore, Y gH,2 has C∞ sample paths almost
surely. As a consequence, the sample paths of Y fH,2 are C∞ except at points ξn = (Tn/cdν(R))1/dUn.

At these points, the behavior depends on H: while when H < d/2, Y
fH,2

N is not defined, when

H > d/2 the pointwise Hölder exponent of Y
fH,2

N is given by H − d/2. In Figure 1, we observe that
the sample paths are smooth on [0, 1] except at two points.

6.1.2 Case of infinite control measures

In this example,

ν(dv) =
1|v|≤1 dv

|v|1+α with 0 < α < 2.

Let (Vε,n)n≥1 be a sequence of i.i.d variables with common law

α1ε<|v|<1 dv

2(ε−α − 1)|v|1+α .

Moreover, let BH be a standard fractional Brownian motion (in short FBM) with index H and assume
that BH , (Un)n≥1, (Tn)n≥1 and (Vε,n)n≥1 are independent. An approximation of the MAFLM XH is
thus given by

Y
fH,2

ε,N (x)=
N∑

n=1




∥∥∥∥∥x −
(

Tn

cdνε,2(R)

)1/d

Un

∥∥∥∥∥

H−d/2

−
(

Tn

cdνε,2(R)

)H/d−1/2

Vε,n+σ(ε)W fH,2(x), (29)

where

W fH,2(·) =

∫

Rd

fH,2(·, ξ)W (dξ)
(d)
= CH,dBH(·)

with

CH,d =

(∫

Rd

|fH,2(e1, ξ)|2 dξ

)1/2

and e1 = (1, 0, . . . , 0). Actually, by a Fourier transform argument

CH,d =
2H−2|d − 2H|Γ(H/2 + d/4)

Γ(d/4 + 1 − H/2)

(∫

Rd

∣∣e−ie1·λ − 1
∣∣2

‖λ‖2H+d
dλ

)1/2

.
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As a result, due to [21] for d = 1 and to [11] for d ≥ 2,

CH,d =
2H−2|d − 2H|Γ(H/2 + d/4)

Γ(d/4 + 1 − H/2)

(
π(d+1)/2Γ(H + 1/2)

HΓ(2H) sin (πH)Γ(H + d/2)

)1/2

. (30)

Since H > 0, there exists δ ∈ (0, 1] such that H > d/2 − d/(2 + δ), which implies that fH,2(x, ·) ∈
L2+δ(Rd). Then, by Theorem 5.2, in terms of Berry-Esseen bounds, the rate of convergence of the

error due to the approximation of Xf
ε,1(x) is of the order

δ(ε) =
(2 − α)1+δ/2εαδ/2

(2 + δ − α)2δ/2
.

Except at points ξn = (Tn/cdνε,2(R))1/dUn, the trajectory regularity of Y
fH,2

ε,N is given by the

trajectory regularity of W fH,2 . Between two points ξn, the pointwise Hölder exponent of Y
fH,2

ε,N is

equal to H. When H > d/2, the trajectories of Y
fH,2

ε,N are thus H ′-Hölder on each compact set for
every H ′ < H − d/2. Following [4], this is exactly what we expect for the trajectory regularity of a
MAFLM XH associated to an infinite control measure. Figure 2 yields illustration of these facts in
the case where H = 0.8, α = 1 and for the preceding control measure.
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Figure 2: Example of MAFLM with index H = 0.8

6.2 Moving Average Fractional Stable Motions

In this example,

ν(dv) =
dv

|v|1+α with 0 < α < 2, (31)

and
fH,α(x, ξ) = D(α)−1/α

(
‖x − ξ‖H−d/α − ‖ξ‖H−d/α

)
,

with 0 < H < 1 and H 6= d/α and where D(α) is defined by (6). Note that

D(α) =





Γ(2 − α)|cos (πα/2)|
α|α − 1| if α 6= 1

π

2
if α = 1.

(32)

Here σ2(ε) = 2ε2−α/(2 − α) and νε,2(R) = 2/(αεα). The approximation of the MAFSM is given by
formula (29), replacing d/2 by d/α in the summation and with

W fH,α(·) =

∫

Rd

fH,α(·, ξ)W (dξ)
(d)
= D(α)−1/αCH+d/2−d/α,dBH+d/2−d/α(·).

More precisely, as previously, BH+d/2−d/α is a standard FBM with index H + d/2 − d/α and
CH+d/2−d/α,d is defined by (30). Furthermore, νε,2(dv) = 1|v|>ε ν(dv) and (Vε,n)n≥1, is a sequence
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of i.i.d variables with common law νε,2(dv)/νε,2(R). Let us recall that the sequences BH , (Un)n≥1,

(Tn)n≥1 and (Vε,n)n≥1 are independent. Thus, the approximation of the MAFSM XH,α = XfH,α is
given by

Y
fH,α

ε,N (x) = D(α)−1/α
N∑

n=1




∥∥∥∥∥x −
(

Tn

cdνε,2(R)

)1/d

Un

∥∥∥∥∥

H−d/α

−
(

Tn

cdνε,2(R)

)H/d−1/α

Vε,n+σ(ε)W fH,α(x).

However, this approximation only holds if fH,α(x, ·) ∈ L2
(
Rd

)
, i.e. the FBM BH+d/2−d/α is defined,

that is if 1 > H > d/α − d/2.
Observe that the asymptotic expansion of fH,α is given by (28), replacing d/2 by d/α. Then,

let gH,α(x, ξ) = fH,α(x, ξ)1‖ξ‖≥maxK ‖y‖+1 and note that Y
fH,α

ε,N = Y
gH,α

ε,N,2 + Y
fH,α−gH,α

ε,N,2 + σ(ε)W fH,α(x)
with

Y h
ε,N,2(x) = D(α)−1/α

N∑

n=1

h

(
x,

Tn

cdνε,2(R)

)
Vε,N .

As noticed in Remark 4.5, Y
fH,α−gH,α

ε,N,2 is a finite sum. In addition, gH,α satisfies the assumptions of
Theorem 4.3 for every r < α. In this case therefore,

E

(∣∣∣Y gH,α

ε,N,2(x) − Y
gH,α

ε,2 (x)
∣∣∣
r)

≤ C(r, β)D(N, r, β)

N r(1/d+1/α−H/d)−1
,

where β = 1 + d/α − H. Furthermore, by Theorem 4.6, Y
gH,α

ε,N,2 converges uniformly at the rate N ε

for every ε ∈ (0, (1 − H)/d).
Finally, when H > d/α − d/2, there exists δ ∈ (0, 1] such that H > d/α − d/(2 + δ). Then,

E

(∣∣∣Xf
ε,1(x)

∣∣∣
2+δ

)
< +∞ and as in the case of MAFLMs, in terms of Berry-Esseen bounds, the rate

of convergence of the error due to the approximation of Xf
ε,1(x) is of the order

δ(ε) =
(2 − α)1+δ/2εαδ/2

(2 + δ − α)2δ/2
.

Except at points ξn = (Tn/cdνε,2(R))1/dUn, the pointwise Hölder exponent of Y
fH,α

ε,N,2 is given by the

W fH,α ’s one and thus is equal to H − d/α + d/2. When H > d/α, on each compact set, Y
fH,α

ε,N has
H ′-Hölder sample paths for every H ′ < H − d/α. Figure 3 presents a realization of a MAFSM when
α = 1.5 and H = 0.7.
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Figure 3: Example of MAFSM with index H = 0.7

6.3 Linear Fractional Stable Motions

Here d = 1 and we use the notation of Section 6.2. In particular, ν(dv) is given by (31). In this
example, the kernel function is

f(x, ξ) = D(α)−1/α
(
(x − ξ)

H−1/α
+ − (−ξ)

H−1/α
+

)
,
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where (a)+ = a ∨ 0, D(α) is given by (32), H ∈ (0, 1), H 6= 1/α (with the convention 0H−1/α = 0).
Hence, LH,α = Xf is a linear fractional stable motion with index H (see [21] for more details on this
process). Furthermore, we may approximate LH,α in distribution by

Y f
ε,N (x) = D(α)−1/α

N∑

n=1

((
x − TnUn

2νε,2(R)

)H−1/α

+

−
( −TnUn

2νε,2(R)

)H−1/α

+

)
Vε,n + σ(ε)W f (x),

where W f is defined by (25). As previously, W f is independent of ((Un, Tn, Vε,n))n≥1. Moreover,

W f (·) =

∫

Rd

f(·, ξ)W (dξ)
(d)
= D(α)−1/αC̃HBH+1/2−1/α

where BH+1/2−1/α is a FBM with index H + 1/2 − 1/α and

C̃H =

(∫

R

(
(x − ξ)

H−1/α
+ − (−ξ)

H−1/α
+

)2
dξ

)1/2

= Γ(H + 1/2)

√
sin ((H − 1/α)π)Γ(1 − 2H + 2/α)

2π(H + 1/2 − 1/α)(H − 1/α)

(33)

according to Lemma 4.1 in [25]. Obviously, this approximation only holds when 1 > H > 1/α− 1/2.
Furthermore, let us observe that

f(x, ξ) =

{
0 if ξ > maxK |y|
fH,α(x, ξ) if ξ < −maxK |y|.

As a consequence, we obtain the same estimates for the almost sure, the Lr errors (r < α) and the
rate of convergence in terms of Berry-Esseen bounds as in the case of MAFSMs (see Section 6.2).

Figure 4 presents two realizations of LFSMs for α = 1.5. As noticed in [23], when H = 0.2, we
observe spikes which take place at points ξn. Actually, since H = 0.2 < 1/α, when x tends to a point

ξn, Y f
ε,N (x) tends to infinity, which explains that spikes appear. When H = 0.7 > 1/α, as in the case

of MAFSMs, the sample paths of the approximation are H ′-Hölder on each compact set for every
H ′ < H − 1/α.
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Figure 4: Examples of LFSMs

6.4 Log-Fractional Stable Motion

Let d = 1 and 1 < α < 2 and assume that ν(dv) is given by (31). Furthermore, (Vε,n)n≥1 and σ(ε)
are defined as in Section 6.2. Remark that here (Un)n≥1 is a sequence of i.i.d symmetric Bernoulli
random variables. Then, let

f(x, ξ) = D(α)−1/α(ln |x − ξ| − ln |ξ|).
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Hence, Xf is a log-fractional stable motion and its approximation in law is given by

Y f
ε,N (x) = D(α)−1/α

N∑

n=1

(
ln

∣∣∣∣x − TnUn

2νε,2(R)

∣∣∣∣ − ln

(
Tn

2νε,2(R)

))
Vε,n + σ(ε)W f (x),

where

W f (x) = D(α)−1/α
∫

R

(ln |x − ξ| − ln |ξ|)W (dξ)

is independent of ((Un, Tn, Vε,n))n≥1. Note that W f (d)
= D(α)−1/αCB1/2 where B1/2 is a standard

Brownian motion and

C =

∫

R

(ln |1 − ξ| − ln |ξ|)2 dξ.

Furthermore, by a Fourier transform argument, one proves that [21]

C =

(
π

2

∫

R

∣∣e−iλ − 1
∣∣2

|λ|2
dλ

)1/2

= π.

As previously, the rate of almost sure convergence can be studied. In particular, if

g(x, ξ) = f(x, ξ)1|ξ|≥maxK |y|+1,

Y g
ε,N,2 converges uniformly on K at least at the rate N ε for every ε ∈ (0, 1 − 1/α). Furthermore,

the Lr-error can be controlled and decreases in N1−1/r for every r < α. Let us notice that Xf is a
self-similar field with index H = 1/α. Thus, we obtain the same rate of convergence for log-fractional
stable motion and MAFSMs. Furthermore, since f(x, ·) ∈ L3(R), Theorem 5.2 gives the same rate
of convergence in terms of Berry-Esseen bounds as in the cases of MAFSMs or MAFLMs (taking
δ = 1).

Figure 5 presents a trajectory of a log-fractional stable motion for α = 1.5. Note that except at
points ξn = TnUn/(2νε,2(R)), the sample paths are locally H ′-Hölder for every H ′ < 1/2: actually

the regularity of the trajectories is given by the Brownian part. At points ξn, Y f
ε,N is not defined,

which explains that spikes appear in Figure 5.
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Figure 5: Example of log-fractional stable motion

6.5 Linear Multifractional Stable Motion

So far, the examples are fractional fields. However, our framework also contains multifractional fields.
Let us now give one example. This example is defined replacing in the kernel of a LFSM the index H
by h(x).

Here d = 1 and ν(dv) is given by (31). Then, assume that the kernel function is defined by

f(x, ξ) = (x − ξ)
h(x)−1/α
+ − (−ξ)

h(x)−1/α
+
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where h : R → (0, 1). The process Xf is a linear multifractional stable motion in the sense of [26, 24].
The approximation of Xf is then given by

Y f
ε,N (x) = D(α)−1/α

N∑

n=1

((
x − TnUn

2νε,2(R)

)h(x)−1/α

+

−
( −TnUn

2νε,2(R)

)h(x)−1/α

+

)
Vε,n + σ(ε)W f (x),

where W f is defined by (25). As previously, W f is independent of ((Un, Tn, Vε,n))n≥1. Moreover,

W f (·) =

∫

Rd

f(·, ξ)W (dξ)
(d)
= D(α)−1/αC̃h(x)Bh+1/2−1/α

where Bh+1/2−1/α is a standard multifractional Brownian motion in the sense of [15] with multi-

fractional function h + 1/2 − 1/α and C̃h(x) is given by (33). This approximation only holds when
1 > h(x) > 1/α − 1/2.

As in the case of LFSM, we can observe that

f(x, ξ) =

{
0 if ‖ξ‖ > maxK |y|

fh(x),α(x, ξ) if ‖ξ‖ < −max |y|.

Therefore, for a fixed x, we obtain the same estimates for the almost sure, the Lr errors (r < α) and
the rate of convergence in terms of Berry-Esseen bounds as in the case of LFSM (see Section 6.3) or
MAFSMs (see Section 6.2), replacing H by h(x). In particular, for a fixed x, the almost sure error
converges at the rate N ε for every ε ∈ (0, (1 − h(x))/d).

Figure 6 presents some trajectories of linear multifractional stable motions for α = 1.5.
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Figure 6: Examples of linear multifractional stable motion

7 Extension to complex random measure

Thanks to arguments used in Section 4 and 5, the results obtained in the case of RHMLMs in [11]
can be extended to a larger class of infinitely divisible fields, in particular to the complex case. More
precisely, let N(dξ, dz) be a Poisson random measure on Rd × C with intensity n(dξ, dz) = dξν(dz).
Assume that the σ-finite measure ν(dz) satisfies

∫

C

(
|z|2 ∧ 1

)
ν(dz) < +∞.

Furthermore, the control measure ν(dz) is assumed to be rotationally invariant, i.e.

P (ν(dz)) = dθ νρ(dρ), (34)

where dθ is the uniform measure on [0, 2π) and P
(
ρeiθ

)
= (θ, ρ) ∈ [0, 2π) × R+

∗ .

19



Then, following the definition of complex Lévy random measure (see [3]), we can consider a
complex random measure Λ(dξ) on Rd defined by

∫

Rd

g(ξ) Λ(dξ) =

∫

Rd×C

(g(ξ)z + g(−ξ)z)
(
N(dξ, dz) − (|g(ξ)z + g(−ξ)z| ∨ 1)−1 n(dξ, dz)

)
(35)

for every g : Rd → C such that

∫

Rd×C

(
|g(ξ)z|2 ∧ 1

)
dξν(dz) < +∞.

Hence, following the arguments used in [11] in the case of RHFLMs, analogous results to those of
Sections 4 and 5 can be obtained and a way to simulate

Xf (x) =

∫

Rd

f(x, ξ) Λ(dξ).

can be proposed. However, in this part, we will just focus on the case where

νρ(dρ) =
1ρ>0 dρ

ρ1+α
, α ∈ (0, 2),

and the kernel function is

fH,α(x, ξ) =

(
2α+1πD(α)

)−1/α(
e−ix·ξ − 1

)

‖ξ‖H+d/α

with D(α) given by (32). In this case,

XH,α(x) =

∫

Rd

fH,α(x, ξ) Λ(dξ), x ∈ Rd,

is a real harmonizable fractional stable motion with index H ∈ (0, 1), i.e.

{XH,α(x), x ∈ Rd} (d)
= {SH,α(x), x ∈ Rd}

where

SH(x) = ℜ
(∫

Rd

fH,α(x, ξ)Mα(dξ)

)

with Mα(dξ) a complex isotropic α-stable random measure with control measure the Lebesgue mea-
sure in the sense of [21].

Furthermore, in the case we are interested in, ν(C) = +∞. As we know, we have to split in this

case the random field XH,α = X
fH,α

ε,1 + X
fH,α

ε,2 into two random fields where

X
fH,α

ε,1 (x)=2

∫

Rd×C

ℜ(fH,α(x, ξ)z)1|z|<ε

(
N(dξ, dz)−(|2ℜ(fH,α(x, ξ)z)| ∨ 1)−1 n(dξ, dz)

)
(36)

and

X
fH,α

ε,2 (x)=2

∫

Rd×C

ℜ(fH,α(x, ξ)z)1|z|≥ε

(
N(dξ, dz) − (|2ℜ(fH,α(x, ξ)z)| ∨ 1)−1 n(dξ, dz)

)
. (37)

As previously, X
fH,α

ε,1 and X
fH,α

ε,2 can be simulated independently. Furthermore,

Xf
ε,2(x) =

∫

Rd

fH,α(x, ξ) Λε,2(dξ), x ∈ Rd,

where the complex random measure Λε,2 is associated by (35) to a Poisson random measure Nε,2 whose

control measure νε,2(dz) = 1|z|≥ε ν(dz) is finite. Therefore, Xf
ε,2 can be simulated as a generalized

shot noise series. More precisely, let (Zε,n)n≥1 be a sequence of i.i.d. random variables with common
law νε,2(dz)/νε,2(C). Moreover, (Zε,n)n≥1, (Tn)n≥1 and (Un)n≥1 are independent. Then, as in the

case of RHMLMs, a series expansion of Xf
ε,2 can be given and this series converges in the space of

continuous functions endowed with the topology of the uniform convergence on compact sets.
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Proposition 7.1. For every x ∈ Rd,

Y
fH,α

ε,N (x) = 2
N∑

n=1

ℜ
(

fH,α

(
x,

(
Tn

cd ν(C)

)1/d

Un

)
Zε,n

)
(38)

converges almost surely to Y
fH,α
ε (x) as N → +∞. Furthermore, Y

fH,α

ε,N converges uniformly on each
compact set almost surely and

{XfH,α

ε,2 (x) : x ∈ Rd} (d)
= {Y fH,α

ε (x) : x ∈ Rd}.

Proof. The arguments of proof of Proposition 4.1 lead to the almost sure convergence of Y
fH,α

ε,N (x)

for each fixed x. They also give the equality of the finite dimensional marginals of X
fH,α

ε,2 and Y
fH,α
ε .

In order to obtain the uniform convergence, one may follow the proof of Proposition 3.1 in [11].

Due to the rotational invariance of Zε,n and to Theorem 4.3, a rate of almost sure convergence

for Y
fH,α

ε,N (x) can be given and the Lr-error can be controlled.

Proposition 7.2. Let x ∈ Rd.

1. Then, for every ε ∈ (0, H/d), almost surely,

sup
N≥1

N ε
∣∣∣Y fH,α

ε (x) − Y
fH,α

ε,N (x)
∣∣∣ < +∞.

2. Moreover, for every r < α and every integer N > r(1/α + H/d),

E

(∣∣∣Y fH,α

ε,N (x) − Y
fH,α
ε (x)

∣∣∣
r)

≤ C(r)
D(N, r, H + d/α)

N r/α+rH/d−1
, (39)

where D(N, r, β) is defined by (15) and

C(r) =

(
21−απD(α)

)−r/α
d(cdν(R))rH/d+r/α

E(|ℜ(V1)|r)
rH − d + rd/α

.

Proof. Since (Zε,n)n≥1 is a sequence of i.i.d. with common law invariant by rotation,

Y
fH,α

ε,N (x)
(d)
= 2

N∑

n=1

∣∣∣∣∣fH,α

(
x,

(
Tn

cd ν(C)

)1/d

Un

)∣∣∣∣∣ℜ(Zε,n).

Hence, taking Vn = ℜ(Zε,n), C = 21−1/α(πD(α))−1/α and β = H + d/α, the proof of Theorem 4.3
leads to the conclusion.

Finally, the next proposition gives the expected approximation of Xε,1. Let

σ(ε) =

(∫ ε

0
ρ2 νρ(dρ)

)1/2

=

√
2ε2−α

2 − α
. (40)

Proposition 7.3. Assume that 0 < H + d/α − d/2 < 1 then

lim
ε→0+

(
Xε,1(x)

σ(ε)

)

x∈Rd

(d)
=

(
AH+d/α−d/2BH+d/α−d/2(x)

)
x∈Rd ,

where the convergence is in distribution on the space of continuous functions endowed with the topology
of uniform convergence on compact sets, BH+d/α−d/2 is a standard FBM with index H + d/α − d/2
and for u ∈ (0, 1)

Au =
(
2α+1πD(α)

)−1/α

(
4 π(d+3)/2 Γ(u + 1/2)

u Γ(2u) sin (πu) Γ(u + d/2)

)1/2

. (41)
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Remark 7.4. In Proposition 7.3, 0 < H + d/α − d/2 < 1 means that fH,α(x, ·) ∈ L2
(
Rd

)
for every

x ∈ Rd.

Proof. Actually

Xf
ε,1(x) =

∫

Rd

fH,α(x, ξ) Λε,1(dξ), x ∈ Rd,

where the complex random measure Λε,1 is associated by (35) with a Poisson random measure Nε,1

whose control measure νε,1(dz) = 1|z|<ε ν(dz). Also, for every p ≥ 2,
∫

C

|z|p νε,1(dz) < +∞

and then
(
2α+1πD(α)

)1/α
Xf

ε,1(x) is a RHFLM (real harmonizable fractional Lévy motion) since

fH,α(x, ·) ∈ L2
(
Rd

)
for every x ∈ Rd. Then, Proposition 4.1 in [11] yields the conclusion.

As a consequence, as soon as the assumptions of Proposition 7.3 are fulfilled, we may approximate
the RHFSM XH,α by

Yε,N (x) = 2
N∑

n=1

ℜ
(

fH;α

(
x,

(
Tn

cd ν(C)

)1/d

Un

)
Zε,n

)
+ σ(ε)AH+d/α−d/2BH+d/α−d/2(x), x ∈ Rd,

where BH+d/α−d/2, Tn, Un and Zε,n are independent.
Figure 7 exhibits some examples of trajectories of RHFSMs for α = 1.5.
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Figure 7: Examples of RHFSMs

Appendix

A Proof of Theorem 2.1

Since 0 ≤ r∧ 2 ≤ r and E(|X1|r) < +∞, we also have that E

(
|X1|r∧2

)
< +∞. Then, we can assume

that r ≤ 2.

Set RN =
+∞∑

n=N+1

YnXn and r = r ∧ 2 ∈ (0, 2). Then, let us fix M > 0 and set

ΩM =

{
sup
n≥1

n−1/r|Xn| ≤ M

}
.

Hence for any ε > 0,

P
(
ΩM ∩

{
|RN | ≥ N−ε

})
≤ P

(∣∣∣∣∣

+∞∑

n=N+1

YnWn

∣∣∣∣∣ ≥ N−ε

)
,
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where Wn = Xn1|Xn|≤Mn1/r . Since Xn, n ≥ 1, are i.i.d. and symmetric, (Wn)n≥1 is a sequence
of independent symmetric random variables. Then, since (Yn)n≥1 satisfies the assumption (2) and
is independent of (Wn)n≥1, by the contraction principle for symmetric random variables sequences,
see [12] page 95,

P
(
ΩM ∩

{
|RN | ≥ N−ε

})
≤ 2P

(
C

∣∣∣∣∣

+∞∑

n=N+1

T−1/γ
n Wn

∣∣∣∣∣ ≥ N−ε

)
.

Hence,

P
(
ΩM ∩

{
|RN | ≥ N−ε

})
≤ 2P

(
sup

n≥N+1

n

Tn
≥ 10

)
+ 2AN (42)

where

AN = P

({
sup

n≥N+1

n

Tn
< 10

}
∩

{
C

∣∣∣∣∣

+∞∑

n=N+1

T−1/γ
n Wn

∣∣∣∣∣ ≥ N−ε

})
.

Step 1

P

(
sup

n≥N+1

n

Tn
≥ 10

)
≤

+∞∑

n=N+1

P(Tn ≤ n/10) ≤
+∞∑

n=N+1

nn

10nn!
.

Hence, by the Stirling formula,

P

(
sup

n≥N+1

n

Tn
≥ 10

)
≤ C1 exp (−C2N), (43)

with C1 > 0 and C2 > 0.

Step 2 By the assumptions of independence, (Tn)n≥1 and (Wn)n≥1 are independent. Therefore, by
the contraction principle for symmetric random variables sequences,

AN ≤ 2P

(
C

∣∣∣∣∣

+∞∑

n=N+1

n−1/γWn

∣∣∣∣∣ ≥ 10−1/γN−ε

)
.

Furthermore, by independence and symmetry,

AN ≤ 4P

(
C

+∞∑

n=N+1

n−1/γWn ≥ 10−1/γN−ε

)

≤ 4 exp

(
−10−1/γλN−ε

C

)
+∞∏

n=N+1

E

(
exp

(
λn−1/γWn

))
,

where λ > 0. Moreover, since Wn is a symmetric random variable,

E

(
exp

(
λn−1/γWn

))
= 1 +

+∞∑

j=1

λ2j

(2j)!
n−2j/γE

(
W 2j

n

)
.

Then let a = 1/γ − 1/r and n ≥ N + 1. Note that for j ≥ 1, 2j ≥ r and

E
(
W 2j

n

)
≤ E(|X1|r)

(
Mn1/r

)2j−r
.

Therefore,

E
(
exp

(
λn−1/γWn

))
≤ 1 +

E(|X1|
r)λ2M2−r exp (λ2M2n−2a)

2n1+2a

≤ exp

(
E(|X1|

r)λ2M2−r exp (λ2M2N−2a)
2n1+2a

)
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As a consequence, taking λ = 101/γNa, there exist C3 > 0 and C4 > 0, which do not depend on N ,
such that

AN ≤ C3 exp
(
−C4N

a−ε
)
. (44)

Step 3 In view of (42), (43) and (44), for every M > 0 and every ε ∈ (0, 1/γ − 1/r),

+∞∑

N=1

P
(
ΩM ∩

{
|RN | ≥ N−ε

})
< +∞.

Hence, by the Borel Cantelli lemma, for almost all ω ∈ ΩM ,

sup
N≥1

N ε|RN | < +∞.

Furthermore, since Xn ∈ Lr,

lim
M→+∞

P(ΩM ) = lim
M→+∞

P

(
sup
n≥1

|Xn|n−1/r ≤ M

)
= 1.

Then, for every ε ∈ (0, 1/γ − 1/r), almost surely,

sup
N≥1

N ε|RN | < +∞,

which concludes the proof.

B Proof of Theorem 2.2

It is a simple modification of the proof of Theorem 2.1.

Let M > 0, ΩM =

{
sup
n≥1

∣∣∣n−1/rXn

∣∣∣ ≤ M

}
, Wn = Xn1|Xn|≤n1/rM and

RN =
+∞∑

n=N+1

T−1/γ
n |Xn|.

As in proof of Theorem 2.1,

P
(
ΩM ∩

{
|RN | ≥ N−ε

})
≤ P

(
sup

n≥N+1

n

Tn
≥ 10

)
+ AN (45)

where

AN = P

({
sup

n≥N+1

n

Tn
< 10

}
∩

{
+∞∑

n=N+1

T−1/γ
n |Wn| ≥ N−ε

})
.

Remark now that the contraction principle used in the proof of Theorem 2.1 can not be applied since
|Wn| is not a symmetric random variable. However, since |Wn| ≥ 0,

AN ≤ P

(
+∞∑

n=N+1

n−1/γ |Wn| ≥ 10−1/γN−ε

)

≤ exp
(
−10−1/γλN−ε

) +∞∏

n=N+1

E

(
exp

(
λn−1/γ |Wn|

))
,
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where λ > 0. Furthermore,

E

(
exp

(
λn−1/γ |Wn|

))
= 1 +

+∞∑

j=1

λj

j!
n−j/γE

(
|Wn|j

)

≤ 1 + E(|X1|r)
+∞∑

j=1

λj

j!
n−j/γ

(
Mn1/r

)j−r
since r ≤ 1

≤ exp
(
E(|X1|r)λn−1−aM1−r exp (λMN−a)

)
,

where a = 1/γ − 1/r and n ≥ N + 1. Hence, choosing λ = 101/γNa, there exists C, which does not
depend on N , such that

AN ≤ C exp
(
−Na−ε

)
.

Consequently, the arguments used in step 3 of the proof of Theorem 2.1 lead to the conclusion.
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Lévy motions. Bernoulli, 8(1):97–115, 2002.

[4] A. Benassi, S. Cohen, and J. Istas. On roughness indices for fractional fields. Bernoulli,
10(2):357–373, 2004.

[5] S. Cohen and M. S. Taqqu. Small and large scale behavior of the Poissonized telecom process.
Methodol. Comput. Appl. Probab., 6(4):363–379, 2004.
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Lévy processes, pages 401–415. Birkhäuser Boston, Boston, MA, 2001.
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