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REPRESENTATIONS ADMITTING TWO PAIRS OF

SUPPLEMENTARY INVARIANT SPACES

LIONEL BÉRARD BERGERY AND TOM KRANTZ

Abstract. We examine the lattice generated by two pairs of supple-
mentary subvectorspaces of a finite-dimensional vectorspace by inter-
section and sum, with the aim of applying the results to the study of
representations admitting two pairs of supplementary invariant spaces,
or one pair and a reflexive form. We show that such a representation is a
direct sum of three canonical subrepresentations which we characterize.
We then focus on holonomy representations with the same property.

1. Introduction

A famous paper of Gelfand and Ponomarev [GP] classifies the systems
on four subvectorspaces of a finite-dimensional vector space. We focus on
the systems of two pairs of supplementary spaces and explore the lattice
generated by sum and intersection starting from the four spaces. The aim
is to apply the results to lattices of stable spaces of finite-dimensional rep-
resentations and in particular of holonomy representations of torsion free
connections preserving a reflexive form.

2. Lattice generated by two pairs of supplementary spaces

We suppose throughout the paper that K is a commutative field of car-
acteristic different from 2.

2.1. Definitions. We call decomposition of a finite-dimensional K-vector
space E into 2 direct sums a quintuplet V = (E, V1, V2,W1,W2) where
V1, V2,W1 and W2 are four sub-vectorspaces of the finite-dimensional vector
space E verifying V1 ⊕ V2 = W1 ⊕ W2 = E.

Example 1. In particular if E carries a non-degenerate reflexive struc-
ture(i.e. for us a non-degenerate symmetric or antisymmetric bilinear form)
and if E = V1 ⊕ V2 then (E, V1, V2, V

⊥
1 , V ⊥

2 ) is a decomposition of E into 2
direct sums.

Associated to a decomposition of a finite-dimensional K-vector space E
into 2 direct sums V = (E, V1, V2,W1,W2) is a dual decomposition into two
direct sums: V∗ = (E∗,W ′

1,W
′
2, V

′
1 , V

′
2), with X ′ := {u ∈ E∗ u(X) = 0 }.

If E = E1 ⊕ E2 is a direct sum, let pE2

E1
be the projection on E1 parallely

to E2. To simplify notations lets write pi for the projection on Vi parallely
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2 LIONEL BÉRARD BERGERY AND TOM KRANTZ

to Vτ(i) and qi the projection on Wi parallely to Wτ(i). We define the map

θV : E → E by θV = pW2

W1
◦ pV2

V1
− pV2

V1
◦ pW2

W1
. To simplify notations we write θ

for θV if it is clear which V we mean.
It is easy to verify:

Lemma 1. θ = pW2

W1
◦ pV2

V1
− pV2

V1
◦ pW2

W1
= pW1

W2
◦ pV1

V2
− pV1

V2
◦ pW1

W2
= pV1

V2
◦ pW2

W1
−

pW2

W1
◦ pV1

V2
= pV2

V1
◦ pW1

W2
− pW1

W2
◦ pV2

V1

We have also:

Lemma 2. θ(Vi) ⊂ Vτ(i) and θ(Wi) ⊂ Wτ(i)

Lemma 3. If V∗ is the dual system of V then θV∗ = (θV)∗

Proof. We have:

(θV)∗ = (pW2

W1
◦ pV2

V1
− pV2

V1
◦ pW2

W1
)∗

= (pW2

W1
◦ pV2

V1
)∗ − (pV2

V1
◦ pW2

W1
)∗

= (pV2

V1
)∗ ◦ (pW2

W1
)∗ − (pW2

W1
)∗ ◦ (pV2

V1
)∗

= p
V ′

1

V ′

2

◦ p
W ′

1

W ′

2

− p
W ′

1

W ′

2

◦ p
V ′

1

V ′

2

= θV∗

¤

2.2. Canonical decomposition of E.

Definition 1. Let us define a sequence of subvectorspaces of E: F (0) :=
{0}, F (n + 1) :=

∑

i,j((F (n) + Vi) ∩ (F (n) + Wj)) for n ≥ 0.

(F (n))n is an increasing sequence of subvectorspaces of the finite-
dimensional vector space E and necessarily stationary Let us write F or
F (∞) the space

∑

n F (n). F is the smallest fixpoint of the increasing map-
ping X 7→

∑

i,j((X +Vi)∩(X +Wj)), and F is the smallest common fixpoint

of the four increasing mappings X 7→ (X + Vi) ∩ (X + Wj) for i, j ∈ {1, 2}.

Lemma 4. F (1) =
⊕

i,j Vi ∩ Wj

Proof. By definition we have F (1) =
∑

i,j Vi ∩Wj , and it is easy to see that
the sum is necessarily direct. ¤

Definition 2. Let us define a sequence of subvectorspaces of E: F̃ (0) := E

F̃ (n + 1) :=
⋂

i,j((F̃ (n) ∩ Vi) + (F̃ (n) ∩ Wj)) for n ≥ 0.

(F̃ (n))n if a decreasing sequence of subvectorspaces of the finite-

dimensional vector-space E and so stationary. LetF̃ (∞) or simply F̃ be

the space
⋂

n F̃ (n). F̃ is the biggest fixpoint of the decreasing mapping

X 7→
⋂

i,j((X ∩ Vi) + (X ∩ Wj)), and F̃ is the biggest common fixpoint of

the four decreasing mappings X 7→ (X ∩ Vi) + (X ∩ Wj), for i, j ∈ {1, 2}.

Proposition 5. For every non-negative integer n

(1) ker θn = F (n)

(2) imθn = F̃ (n)
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Proof. (1) Let us show first that ker θ = F (1) = V1 ∩ W1 + V1 ∩ W2 +
V2 ∩W1 +V2 ∩W2. If x ∈ Vi ∩Wj , θ(x) = (−1)i+j((pi ◦ qj)(x)− (qj ◦
pi)(x)) = (−1)i+j(x − x) = 0. As θ is linear, θ(F (1)) = 0.

Inversely if θ(x) = 0, we have (q1 ◦ p1 − p1 ◦ q1)(x) = 0 and so
(q1 ◦ p1)(x) = (p1 ◦ q1)(x). We have (q1 ◦ p1)(x) ∈ V1 ∩W1. Similarly
(qj ◦ pi)(x) = (pi ◦ qj)(x) an so (qj ◦ pi)(x) ∈ Vi ∩ Wj . We deduce
x = q1(x) + q2(x) =

∑

i,j(qj ◦ pi)(x) ∈
∑

i,j Vi ∩ Wj = F (1).

Let us show F (n) ⊂ ker θn. For n = 0 it is clear. If n = k + 1,
suppose ker θk = F (k). Let x ∈ F (n) =

∑

i,j((F (k) + Vi) ∩ (F (k) +

Wj)). x can be written x11+x22+x12+x21 with xij ∈ ((F (k)+Vi)∩
(F (k) + Wj)). xij = yij + zij = tij + uij with yij , tij ∈ F (k), zij ∈ Vi

and uij ∈ Wj . We have be induction hypothesis θk(yij) = 0 and

θk(tij) = 0. Be iterated application of lemma 2 we have θk(zij) ∈

Vτk(i) et θk(uij) ∈ Wτk(i). As a consequence θk(xij) ∈ Vτk(i) ∩Wτk(i)

and so θk(x) ∈ F (1) = ker θ, giving: θk+1(x) = 0.
Let us show ker θn ⊂ F (n). For n = 0, ker θ0 = {0} = F (0). For

n = k +1, suppose ker θk ⊂ F (k). Let x be such that θn(x) = 0. We
have then θk(θ(x)) = 0. By induction hypothesis θ(x) ∈ F (k). So
(qj ◦ pi)(x)− (pi ◦ qj)(x) ∈ F (k) and as a consequence: (qj ◦ pi)(x) ∈
(F (k) + Vi). As (qj ◦ pi)(x) ∈ Wj , (qj ◦ pi)(x) ∈ (F (k) + Vi) ∩ Wj ⊂
(F (k)+Vi)∩(F (k)+Wj). Finally x =

∑

i,j(qj◦pi)(x) ∈
∑

i,j((F (k)+

Vi) ∩ (F (k) + Wj)) = F (n).

(2) To show that imθn = F̃ (n), we will use duality1:
In finite dimension it is easy to show by induction that for every

n, (FV(n))′ = F̃V∗(n) and (F̃V(n))′ = FV∗(n).

So we have: (F̃V(n))′′ = (FV∗(n))′ = (ker θn
V∗)′ = (ker(θ∗V)n)′ =

(ker(θn
V)∗)′ = (imθn

V)′′. By injectivity in finite dimension of ′′ we

have imθn
V = F̃V(n).

¤

Proposition 6. (1) ∀n, F (n + 1) = θ−1(F (n)),

(2) ∀n, F̃ (n + 1) = θ(F̃ (n)).

Proof. We have: F (n + 1) = ker(θn+1) = θ−1(ker(θn)) = θ−1(F (n)) et

θ(F̃ (n)) = θ(im(θn)) = θ(F̃ (n)). ¤

From the first point one can deduce: ∀n, θ(F (n + 1)) ⊂ F (n).
We recall without proof the following well known result:

Proposition 7. If E is a finite-dimensional vector space and Ψ an en-
domorphism of E then the two subspaces of E: EN =

∑

n ker(Ψn) and
EI =

⋂

n im(Ψn) are stable by Ψ and we have E = EN ⊕EI . Moreover ΨEN

is nilpotent and ΨEI
is inversible.

The result applied to E and the endomorphism θ gives us for F :=
∑

n F (n) and F̃ :=
⋂

n F̃ (n): E = F ⊕ F̃ . Moreover F and F̃ are sta-
bles by θ and θF is nilpotent and θF̃ is inversible.

1We use the following lemma which is easy to show: For Ψ ∈ L(E, F ), kerΨ∗ = (imΨ)′

and imΨ∗ = (kerΨ)′.
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We say that the subspace V of E is homogeneouswith respect to the sum
E1 + E2, where E1 and E2 are subvectorspaces of E if: V ∩ (E1 + E2) =
(V ∩E1)+(V ∩E2). Similarly we say that V is cohomogeneous with respect
to the intersection E1 ∩ E2, if: V + (E1 ∩ E2) = (V + E1) ∩ (V + E2).

Proposition 8. (1) (F̃ ∩ V1) ⊕ (F̃ ∩ V2) = F̃

(2) (F̃ ∩ W1) ⊕ (F̃ ∩ W2) = F̃

(3) ∀i, j, (F̃ ∩ Vi) ⊕ (F̃ ∩ Wj) = F̃

Proof. Let us start by the proof of point 3. We have: Vi∩Wj ⊂ F (1), which

gives us (F̃ ∩Vi)∩(F̃ ∩Wj) ⊂ F̃ ∩F (1) = {0}. From F̃ = (F̃ ∩Vi)+(F̃ ∩Wj)

we deduce then F̃ = (F̃ ∩ Vi) ⊕ (F̃ ∩ Wj).

Let us note ni = dim(F̃ ∩ Vi) and mj := dim(F̃ ∩ Wj). Point 3 implies

then that ni + mj = dim F̃ (*). This gives us n1 = n2 and m1 = m2.

As V1 ∩V2 = {0}, (F̃ ∩V1)∩ (F̃ ∩V2) = {0}. As (F̃ ∩V1)⊕ (F̃ ∩V2) ⊂ F̃ ,

we have: 2n1 = n1 + n2 ≤ dim F̃ . (**) Similarly (F̃ ∩ W1) ⊕ (F̃ ∩ W2) ⊂ F̃

et 2m1 = m1 + m2 ≤ dim F̃ . (***)

From (*),(**) and (***) follows that 2ni = 2mj = dim F̃ and that (F̃ ∩

V1) ⊕ (F̃ ∩ V2) = F̃ and (F̃ ∩ W1) ⊕ (F̃ ∩ W2) = F̃ . ¤

We can refine the two first points of the proposition as follows:

Proposition 9. For every non negative integer n we have:

(1) (F̃ (n) ∩ V1) ⊕ (F̃ (n) ∩ V2) = F̃ (n)

(2) (F̃ (n) ∩ W1) ⊕ (F̃ (n) ∩ W2) = F̃ (n)

Proof. We will just prove the first point, the proof of the second point being
similar.

By induction on n: For n = 0 we have effectively: F̃ (0) = E = V1 ⊕ V2.

Suppose the the result true for n. Evidently we have the inclusion: (F̃ (n +

1) ∩ V1) ⊕ (F̃ (n + 1) ∩ V2) ⊂ F̃ (n + 1). Let a ∈ F̃ (n + 1). We can write

a = x + y with x ∈ V1 and y ∈ V2. Let us show then x, y ∈ F̃ (n + 1).

As a ∈ F̃ (n+1) ⊂ F̃ (n) and F̃ (n) is homogeneous with respect to V1⊕V2

we have: x, y ∈ F̃ (n).

By definition of F̃ (n+1), a we can write a = xij +yij with xij ∈ F̃ (n)∩Vi

and yij ∈ F̃ (n) ∩ Wj . We deduce that x is an element of F̃ (n + 1) =
⋂

i,j((F̃ (n)∩Vi)+ (F̃ (n)∩Wj)) by writing: x = x+0 = x+0 = (x21 − y)+

y21 = (x22 − y) + y22. A similar reflection shows that y ∈ F̃ (n + 1). ¤

We will see in the following that one can decompose canonically F (n).
Let’s write e = id{1,2} and τ = (12) the elements of the group S2 of the

permutations of the set {1, 2}. We will write for i = 1, 2, ī := τ(i). For
σ ∈ S2, we write σ̄ the element of S2 such that {σ, σ̄} = S2.

Definition 3. Let Fσ(0) = 0 and Fσ(n + 1) =
∑

i((Fσ(n) + Vi) ∩ (Fσ(n) +
Wσ(i))).

One can see that (Fσ(n))n is an increasing sequence of subvectorspaces of
E, and so finally stationary (as E is finite-dimensional). Let’s write Fσ(∞)
or simply Fσ the space

∑

n Fσ(n) i.e. the maximal element of this sequence.
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Let’s remark on the other hand that lemma 4 implies that Fe(1) = (V1 ∩
W1)⊕ (V2 ∩W2), Fτ (1) = (V1 ∩W2)⊕ (V1 ∩W2) and F (1) = Fe(1)⊕Fτ (1).

Proposition 10. ∀n, θ(Fσ(n + 1)) ⊂ Fσ(n).

Proof. By induction: It is true for n = 0. Suppose its true up to order n.
Let x ∈ Fσ(n+1), y ∈ V1, z ∈ Fσ(n+1), t ∈ V2, x

′ ∈ Fσ(n+1), y′ ∈ W1, z
′ ∈

Fσ(n + 1), t′ ∈ W2, such that x + y = x′ + y′ et z + t = z′ + t′.
Let us show that θ(x + y + z + t) ∈ Fσ(n + 1). Let us recall first that

θ(Vi) ⊂ Vτ(i) and θ(Wj) ⊂ Wτ(j). We have consequently: θ(x) + θ(y) =
θ(x′) + θ(y′) ∈ (Fσ(n) + V2) ∩ (Fσ(n) + Wσ(2)) and θ(z) + θ(t) = θ(z′) +
θ(t′) ∈ (Fσ(n) + V1) ∩ (Fσ(n) + Wσ(1)). This gives us θ(x + y + z + t) =
θ(x) + θ(y) + θ(z) + θ(t) ∈ Fσ(n + 1). ¤

We will need the following lemma:

Lemma 11. Let A0, A, B0, B be four subvectorspaces of E such that A0 ⊂ A
et B0 ⊂ B. We have then

(A + B0) ∩ (A0 + B) = A0 + B0 + (A ∩ B).

Proof. The inclusion ”⊃” is clear, as every A + B0, A0 + B contains every
A0, B0, A ∩ B.

For the inclusion ”⊂” let x ∈ A, y0 ∈ B0, x0 ∈ A0, y ∈ B such that
x + y0 = x0 + y. One deduces x − x0 = y − y0 ∈ A ∩ B. So x + y0 =
x0 + y0 + (x − x0) ∈ A0 + B0 + (A ∩ B). ¤

Proposition 12. (1) Fσ(n) is cohomogeneous with respect to the direct
sum V1 ⊕ V2 or equivalently (Fσ(n) + V1) ∩ (Fσ(n) + V2) = Fσ(n).

(2) Fσ(n) is cohomogeneous with respect to the direct sum W1 ⊕ W2 or
equivalently (Fσ(n) + W1) ∩ (Fσ(n) + W2) = Fσ(n).

Proof. We will prove the first point, the proof for the second being similar.
By induction: For n = 0 its clear. Suppose the résult true at the order n.

It is evident that Fσ(n) ⊂ (Fσ(n) + V1) ∩ (Fσ(n) + V2).
Let’s prove the other inclusion: We have:

Fσ(n + 1) + V1 =
∑

i

((Fσ(n) + Vi) ∩ (Fσ(n) + Wσ(i))) + V1

⊂ Fσ(n) + V1
︸ ︷︷ ︸

A

+(Fσ(n) + V2) ∩ (Fσ(n) + Wσ(2))
︸ ︷︷ ︸

B0

.

Similarly

Fσ(n + 1) + V2 ⊂ (Fσ(n) + V1) ∩ (Fσ(n) + Wσ(1))
︸ ︷︷ ︸

A0

+Fσ(n) + V2
︸ ︷︷ ︸

B

.

By application of lemma 11 and the induction hypothesis we obtain:

(Fσ(n + 1) + V1) ∩ (Fσ(n + 1) + V2) ⊂ Fσ(n + 1) + (Fσ(n) + V1) ∩ (Fσ(n) + V2)
ind. hyp.

⊂ Fσ(n + 1) + Fσ(n)

⊂ Fσ(n + 1).

¤
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Proposition 13. ∀n, Fσ(n) ∩ Fσ̄(1) = {0}.

Proof. Let’s make the proof for σ = e, the case σ = τ being analoguous.
By induction: It is true up to order n = 0. Suppose it is true up to

order n: Let x ∈ Fe(n), y ∈ V1, z ∈ Fe(n), t ∈ V2, x
′ ∈ Fe(n), y′ ∈ W1, z

′ ∈
Fe(n), t′ ∈ W2, γ ∈ V1∩W2, δ ∈ V2∩W1 such that x+y = x′+y′, z+t = z′+t′

and (x + y) + (z + t) = γ + δ ∈ Fe(n + 1) ∩ Fτ (1).
On has then x + (y − γ) ∈ Fe(n) + V1,−(z + (t − δ)) ∈ Fe(n) + V2, et

x + (y − γ) = −(z + (t − δ)). By application of proposition 12 one obtains
y − γ ∈ Fe(n) and t − δ ∈ Fe(n). One deduces: x + y = (x + (y − γ)) + γ ∈
Fe(n) + (V1 ∩ W2) and also z + t = (z + (t − δ)) + δ ∈ Fe(n) + (V2 ∩ W1).
Analoguously one proves that x′+y′ = (x′+(y′−δ))+δ ∈ Fσ(n)+(V2∩W1)
and z′ + t′ = (z′ + (t′ − γ)) + γ ∈ Fσ(n) + (V1 ∩ W2). By a new application
of proposition 12 (possible by the fact that V1 ∩W2 ⊂ V1 and V2 ∩W1 ⊂ V2)
one obtains that x+y = x′+y′ ∈ Fe(n) and similarly z + t = z′+ t′ ∈ Fe(n).
So (x + y) + (z + t) ∈ Fe(n) ∩ Fτ (1). By induction hypothesis one has so
(x + y) + (z + t) = 0. ¤

Corollary 14. If n ≥ 1 then Fσ(n) ∩ F (1) = Fσ(1)

Proof. It is clear that Fσ(1) ⊂ Fσ(n) ∩ F (1). For the other inclusion, lets
remark first: Fσ(n)∩F (1) = Fσ(n)∩ (Fσ(1)⊕Fσ̄(1)). Let x = a+b ∈ Fσ(n)
with a ∈ Fσ(1) and b ∈ Fσ̄(1). x−a = b ∈ Fσ(n)∩Fσ̄(1) = {0}. So we have
x ∈ Fσ(1). ¤

Proposition 15. Fe(n) ∩ Fτ (n) = {0}

Proof. By induction: It is true for n = 0. Suppose its true up to order n. Let
x ∈ Fe(n + 1)∩Fτ (n + 1), one deduces then θ(x) ∈ θ(Fe(n + 1))∩ θ(Fτ (n +

1))
prop. 10

⊂ Fe(n) ∩ Fτ (n) = {0}. From this we obtain x ∈ F (1) ∩ Fe(n) ∩

Fτ (n) = (F (1) ∩ Fe(n)) ∩ (F (1) ∩ Fτ (n))
corr. 14

= Fe(1) ∩ Fτ (1) = {0}. ¤

Proposition 16. ∀n, Fe(n) ⊕ Fτ (n) = F (n)

Let’s start by proving two lemma:

Lemma 17. ∀i, n, Fσ(n) ⊂ Vi + Wσ̄(i)

Proof. Let’s give the proof for σ = τ . The proof is essentially the same in
the case σ = e.

By induction on n: For n = 0 we have Fτ (0) = {0} ⊂ Vi + Wi. Suppose
the result true up to order n. (Fτ (n) + Vi) ∩ (Fτ (n) + Wī) ⊂ Fτ (n) + Vi

and (Fτ (n) + Vī) ∩ (Fτ (n) + Wi) ⊂ Fτ (n) + Wi. By summation of the two
inclusions one obtains Fτ (n + 1) ⊂ Fτ (n) + Vi + Fτ (n) + Wi. The latter is
included in Vi + Wi by induction hypothesis. ¤

Lemma 18. ∀n, i, j, Vi+Wj is homogeneous with respect to the (direct) sum
Fe(n) + Fτ (n).

Proof. Let’s make the proof for i = j = 1, the proof being similar in the
other cases.

The inclusion (V1 + W1) ∩ Fe(n) + (V1 + W1) ∩ Fτ (n) ⊂ (V1 + W1) ∩
(Fe(n)+Fτ (n)) being trivial, let us show the other inclusion: Let α ∈ Fe(n),
β ∈ Fτ (n) with α+β ∈ V1+W1. By the inclusion Fτ (n) ⊂ V1+W1 obtained
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by the preceding lemma one has: β ∈ Fτ (n)∩(V1 +W1). As α+β ∈ V1 +W1

and β ∈ V1 + W1 one has α = (α + β) − β ∈ Fe(n) ∩ (V1 + W1). ¤

Proof. proposition 16: By induction on n. For n = 0 it is evident. Suppose
the result proved up to order n.

Let us recall that F (n + 1) = ker θn+1. Let x ∈ F (n + 1). By induction
hypothesis there exists α ∈ Fe(n), β ∈ Fτ (n) such that θ(x) = α + β. Set
vij = (pi ◦ qj)(x) and wij = (qj ◦ pi)(x). Let us remark that vij ∈ Vi and
wij ∈ Wj . Recall that wij = θ(x) + vij = α + β + vij . So one has more
precisely wij ∈ (Fe(n)+Fτ (n)+Vi)∩Wj . As in the proof of proposition 5 let
us remark that x =

∑

i,j wij . If one proves that wij ∈ Fe(n + 1) + Fτ (n + 1)
the proposition is proved.

As α + β = −vij + wij ∈ (Fe(n) ⊕ Fτ (n)) ∩ (Vi + Wj) one can apply
lemma 18 in order to obtain that αij ∈ Vi, α

′
ij ∈ Wj such that α = αij + α′

ij

and βij ∈ Vi, β
′
ij ∈ Wj such that β = βij + β′

ij . One has: α′
ij = α − αij ∈

(Fe(n)+Vi)∩Wj ⊂ Fe(n+1) and β′
ij = β−βij ∈ (Fτ (n)+Vi)∩Wj ⊂ Fτ (n+1).

On the other hand Wj ∋ wij − α′
ij − β′

ij = αij + (vij + βij) ∈ Fe(n) + Vi

donc wij − α′
ij − β′

ij ∈ (Fe(n) + Vi) ∩ Wj ⊂ Fe(n + 1). Finally wij =

(wij − α′
ij − β′

ij) + α′
ij + β′

ij ∈ Fe(n + 1) + Fτ (n + 1), and so x =
∑

i,j wij ∈

Fe(n + 1) + Fτ (n + 1). ¤

Proposition 19. (1) Fσ(n) is homogeneous with respect to the sum V1⊕
V2, equivalently Fσ(n) = (Fσ(n) ∩ V1) ⊕ (Fσ(n) ∩ V2).

(2) Fσ(n) is homogeneous with respect to the sum W1⊕W2, equivalently
Fσ(n) = (Fσ(n) ∩ W1) ⊕ (Fσ(n) ∩ W2)

Proof. Let us prove the first point. The proof of the socond is similar. Let
x ∈ Fσ(n), x = y + z with y ∈ V1 and z ∈ V2. We have then y = x − z ∈

V1 ∩ (Fσ(n) + V2) ⊂ (Fσ(n) + V1) ∩ (Fσ(n) + V2)
Prop. 12

= Fσ(n). From
this y ∈ Fσ(n) ∩ V1. In the same way z ∈ Fσ(n) ∩ V2. As a conclusion
Fσ(n) = (Fσ(n) ∩ V1) ⊕ (Fσ(n) ∩ V2). ¤

Proposition 20. ∀n, (Fσ(n) ∩ Vi) ⊕ (Fσ(n) ∩ Wσ̄(i)) = Fσ(n)

Proof. We have from proposition 13 (Fσ(n) ∩ Vi) ∩ (Fσ(n) ∩ Wσ̄(i)) = {0}.
Let us write ni := dimFσ(n)∩Vi and mj := dimFσ(n)∩Wj . We have from
the preceding remark that ni + mσ̄(i) ≤ dimFσ(n) (*). From proposition 19
one has n1 + n2 = dimFσ(n) and m1 + m2 = dimFσ(n). By summing the
two equalities it is necessary that (*) is an equality and so (Fσ(n) ∩ Vi) ⊕
(Fσ(n) ∩ Wσ̄(i)) = Fσ(n). ¤

Proposition 21. If A, B subvectorspaces of E are homogeneous with respect
to the sum ⊕i∈IFi = E then A+B and A∩B are homogeneous with respect
to the sum ⊕i∈IFi.

Proof. ”A + B”: Equivalently one has:
⊕

i(Fi ∩ (A + B)) ⊂ A + B. Let us
show the other inclusion. Let x ∈ A + B = (

⊕

i(Fi ∩ A)) + (
⊕

i(Fi ∩ B)).
So one has x =

∑

i xi +
∑

i x
′
i with xi ∈ Fi ∩ A andx′

i ∈ Fi ∩ B. By writing
x =

∑

i(xi + x′
i) one sees that x ∈

⊕

i(Fi ∩ (A + B)).
”A ∩ B”: Evidently one has:

⊕

i(Fi ∩ (A ∩ B)) ⊂ A ∩ B. For the other
inclusion let x ∈ A ∩ B = (

⊕

i(Fi ∩ A)) ∩ (
⊕

i(Fi ∩ B)), x =
∑

i xi =
∑

i x
′
i
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with xi ∈ Fi ∩ A and x′
i ∈ Fi ∩ B. By unicity of the decomposition of x

with respect to the direct sum
⊕

i Fi it is clear that ∀i, xi = x′
i and so that

x ∈
⊕

i(Fi ∩ (A ∩ B)). ¤

Proposition 22. For every element V of the lattice generated by V1, V2,
W1 and W2 one has: V = (V ∩ Fe) ⊕ (V ∩ Fτ ) ⊕ (V ∩ F̃ )

Proof. Due to proposition 21 it is enough to prove that V1, V2, W1 and W2

are homogeneous with respect to the sum: E = Fe ⊕ Fτ ⊕ F̃ .
Let us prove for this purpose the lemma:

Lemma 23. Let E, Ej et Fi be vector spaces. If E = E1 ⊕E2 with ∀i, Fi =
(Fi ∩ E1) ⊕ (Fi ∩ E2), then Ej ∩ ⊕iFi = ⊕i(Ej ∩ Fi) for j = 1, 2.

Proof. ⊕iFi = ⊕i(Fi ∩ (E1 ⊕ E2)) = ⊕i((Fi ∩ E1) ⊕ (Fi ∩ E2)) = ⊕i(Fi ∩
E1) ⊕ ⊕i(Fi ∩ E2). But ⊕i(Fi ∩ Ej) ⊂ (⊕iFi) ∩ Ej . As ((⊕iFi) ∩ E1) ⊕
((⊕iFi) ∩ E2) ⊂ ⊕Fi, the inclusions in this proof are necessarily equalities.
So ⊕i(Fi ∩ Ej) = (⊕iFi) ∩ Ej . ¤

end of proof of proposition 22: By applying the lemma for ∀i, Ei = Vi

(respectively ∀i, Ei = Wi) proposition 19 and proposition 8 show that V1,
V2, W1 and W2 are homogeneous with respect to the sum decomposition:
E = Fe ⊕ Fτ ⊕ F̃ . ¤

2.3. Reflexive case. Suppose that E, V1, V2 are finite-dimensional vec-
torspaces such that E = V1⊕V2 and suppose that E carries a non degenerate
reflexive form a. We have seen that (E, V1, V2, V

⊥
1 , V ⊥

2 ) is a decomposition

of E into two direct sums. Suppose F (n), F , Fσ(n), Fσ, F̃ (n) and F̃ defiend
as before.

Let’s prove the following proposition:

Proposition 24.

F = Fe ⊕
⊥ Fτ ⊕⊥ F̃

Proof. For σ ∈ S2 let F̃σ(0) := E and F̃σ(n + 1) :=
⋂

i((F̃σ(n) ∩ Vi) +

(F̃σ(n) ∩ Wσ(i))). The sequence F̃σ(n) is decreasing and so stationary in

finite dimensions. Note F̃σ :=
⋂

n F̃σ(n).

By induction it is easy to see that2 ∀n,∀σ ∈ S2, Fσ(n)⊥ = F̃σ(n).

By writing the definition of F̃ (n) and F̃σ(n) it is easy to see by induction

that ∀n,∀σ, F̃ (n) ⊂ F̃σ(n), from which we obtain ∀σ, F̃ ⊂ F̃σ.
In order to finish the proof lets show the following lemma:

Lemma 25. For σ ∈ S2 we have: ∀n, Fσ̄ ⊂ F̃σ(n)

Proof. By induction on n: It is clear for n = 0. For n+1 we have: F̃σ(n+1) =
⋂

i((F̃σ(n)∩Vi)+(F̃σ(n)∩Wσ(i))) ⊂
⋂

i((Fσ̄∩Vi)+(Fσ̄∩Wσ(i))) by induction
hypothesis. The latter expression is equal to Fσ̄ by proposition 20. ¤

end of the proof of proposition 24: As dim(Fσ) + dim(F̃σ) = dim(E) =

dim(Fσ)+dim(Fσ̄)+dim(F̃ ) (because Fσ and F̃σ are orthogonal, respectively

by proposition 22) we have dim(F̃σ) = dim(Fσ̄) + dim(F̃ ). By the inclusion

Fσ̄ ⊕ F̃ ⊂ F̃σ we must have Fσ̄ ⊕ F̃ = F̃σ. ¤

2By using again the fact that (A + B)⊥ = A⊥
∩ B⊥ and (A ∩ B)⊥ = A⊥ + B⊥ for A

and B subvectorspaces of E
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2.4. Sublattice ”with 5 direct sums”. It is known that the lattice gen-
erated by the three subvectorspaces of E: U, V, W such that E = U ⊕ W =
V ⊕ W has the following structure:

E

��
��

��
��

��
�

??
??

??
??

??
?

U+V

��
��

��
��

��
�

??
??

??
??

??
?

(U∩V )+W

��
��

��
��

��
�

??
??

??
??

??
?

U

??
??

??
??

??
? V (U∩V )+(W∩(U+V ))

��
��

��
��

��
�

??
??

??
??

??
?

W

��
��

��
��

��
�

(U∩V )

??
??

??
??

??
?

(U+V )∩W

��
��

��
��

��
�

{0}

The construction applies to the lattice T generated by the 4 subspaces of
E, V1, V2, W1, W2 such that E = V1 ⊕V2 = W1 ⊕W2 = V1 ⊕W2 = W1 ⊕V2,
in the following way:

We can choose for (U, V,W ) the triple (V1,W1, V2) or (V1,W1,W2). Note
that then in the first case: T1 := (V1 ∩ W1) + (V2 ∩ (V1 + W1)) and in the
second: U1 := (V1 ∩ W1) + (W2 ∩ (V1 + W1)).

The interval [V1 ∩ W1, V1 + W1] is a sub-lattice T ′ of T which contains is
particular the elements V ′

1 := V1/(V1 ∩ W1), W ′
1 := W1/(V1 ∩ W1), T ′

1 :=
T1/(V1 ∩ W1) et U ′

1 := V1/(V1 ∩ W1) verifying:

V ′
1 ⊕ W ′

1 = V ′
1 ⊕ T ′

1 = V ′
1 ⊕ U ′

1 = W ′ ⊕ T ′
1 = W ′

1 ⊕ U ′
1

On the other hand it is possible that T ′
1 ∩U ′

1 6= {0} (as well as T ′
1 + U ′

1 6=
(V1 + W1)/(V1 ∩ W1)).

Note is particular that T ′ contains two sublattices of type M3: The one
constructed on the elements {{0}, E, V ′

1 ,W
′
1, T

′
1} and the one given by the

elements {{0}, E, V ′
1 ,W

′
1, U

′
1}.

The data of T ′
1 is equivalent to the data of an isomorphism i of V ′

1 onto
W ′

1, and the data of U ′
1 of a second isomorphism j of V ′

1 onto W ′
1. the

conjugation class in Gl(V ′
1) of j−1 ◦ i is then an invariant of the lattice. We

can compare this result to the operators that Gelfand and Ponomarev used
in their paper [GP].

2.5. Example. In this paragraph we are going to study the structure of
the lattice generated by four finite-dimensional vector spaces V1, V2,W1,W2

such that E = V1 ⊕ V2 = W1 ⊕ W2 = V1 ⊕ W2 = W1 ⊕ V2 supposing that
θ2
V = 0 for V = (E, V1, V2,W1,W2).

Lemma 26. On a: (V1 + W1) ∩ V2 = (V1 + W1) ∩ W2 ⊂ V2 ∩ W2 et (V2 +
W2) ∩ V1 = (V2 + W2) ∩ W1 ⊂ V1 ∩ W1
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Proof. It is clear that (V1 + W1) ∩ V2 ⊂ (V1 + W1) ∩ (V2 + W2) = imθ ⊂
ker θ = (V1∩W1)⊕(V2∩W2). From which one can see that (V1 +W1)∩V2 ⊂
ker θ ∩ V2 = V2 ∩ W2. So (V1 + W1) ∩ V2 ⊂ (V1 + W1) ∩ W2 and similarly
(V1 +W1)∩W2 ⊂ (V1 +W1)∩V2, which proves the first assertion. The proof
of the second one is similar. ¤

Note X0 = {0}, X1 = (V2 + W2) ∩ V1, X2 = V1 ∩ W1, X3 = V1 et Y0 =
{0}, Y1 = (V1 + W1) ∩ V2, Y2 = V2 ∩ W2, Y3 = V2.

As X0 ⊂ X1 ⊂ X2 ⊂ X3 = V1 and Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 = V2 and
V1 ∩ V2 = {0}, it is easy to see that the lattice T0 generated by the Xi

and the Yj for i, j = 0, 1, 2, 3 is precisely the set {Xi ⊕ Yj i, j = 0, 1, 2, 3},
ordered by inclusion.

It is easy to verify that Xi ⊕ Yj = (Xi ⊕ V2)∩ (V1 ⊕ Yj) and so the lattice
T0 can be written as well:

Note X ′
i = Xi ⊕ V2 et Y ′

j = V1 ⊕ Yj . We have then: X ′
0 = V2, X ′

1 =

((V2 + W2) ∩ V1) + V2, X ′
2 = (V1 ∩ W1) + V2, and X ′

3 = V1 + V2.
Let’s verify: X ′

1 = V2 + W2. It is clear that X ′
2 ⊂ V2 + W2 inversely if

x ∈ V2 and y ∈ W2, x+y can be written uniquely a+b with a ∈ V1 and b ∈ V2,
so a = ((x−b)+y)+ b ∈ (V2 +W2)∩V1 and so a+b ∈ ((V2 +W2)∩V1)+V2.
So X ′

1 = V2 + W2.
We have as well: Y ′

0 = V1, Y ′
1 = V1 + W1, Y ′

2 = (V2 ∩ W2) + V1, et
Y ′

3 = V1 + V2.
The underlying set of the lattice T0 is so: {X ′

i ∩ Y ′
j i, j = 0, 1, 2, 3}.

We are going to prove that T = T0 ∪ {W1,W2} is a lattice. Let us verify
that T is stable by intersection and sum.

Verify that (Xi ⊕ Yj) + W1 ∈ T : If j = 0 and i = 0, 1, 2 it is clear that
(Xi⊕Yj)+W1 = W1 ∈ T . If j = 0 and i = 3, (Xi⊕Yj)+W1 = V1+W1 ∈ T .
If j ≥ 1, (Xi ⊕ Yj) + W1 = (Y1 + W1 + Xi + Yj). By a similar argument to
the one which allowed us to have before: ((V2 + W2) ∩ V1) + V2 = V2 + W2,
one can prove Y1 + W1 = ((V1 + W1) ∩ V2) + W1 = V1 + W1 ∈ T0, and so
Y1 + W1 + Xi + Yj ∈ T0 ⊂ T .

By using the second representation of T0 we can show for every i and j,
(X ′

i∩Y ′
j )∩W1 ∈ T . The only delicate point is to verify that ((V1∩W1)+V2)∩

W1 = V1 ∩W1. Let’s do it: It is clear that V1 ∩W1 ⊂ ((V1 ∩W1)+V2)∩W1,
inversely let x ∈ V1 ∩ W1, y ∈ V2 and z ∈ W1 such that x + y = z. We have
then: y = z − x ∈ V2 ∩ W1 = {0}, and so z = x ∈ V1 ∩ W1.

In conclusion we can state:

Theorem 27. The structure of the lattice generated by the four finite-
dimensional vector spaces V1, V2,W1,W2 such that E = V1⊕V2 = W1⊕W2 =
V1 ⊕ W2 = W1 ⊕ V2 and supposing that θ2

V = 0 for V = (E, V1, V2,W1, W2)
is given by the following diagram:
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E

��
��

��
��

�

??
??

??
??

?

��
��

��
��

��

??
??

??
??

??

��
��

��
��

��

??
??

??
??

??

��
��

��
��

�

??
??

??
??

??

��
��

��
��

��

??
??

??
??

??

��
��

��
��

��

??
??

??
??

?

V1

??
??

??
??

?
W1

��
��

��
��

��

??
??

??
??

??

��
��

��
��

��

??
??

??
??

??
W2 V2

��
��

��
��

�

??
??

??
??

??

��
��

��
��

��

??
??

??
??

??

��
��

��
��

��

??
??

??
??

?

��
��

��
��

�

0

3. Application to representation theory

3.1. Preliminaries.

3.1.1. General case. We will note gl(V1, V2, W1,W2) the set of a ∈ gl(E)
such that aVi ⊂ Vi et aWj ⊂ Wj . It is easy to see that gl(V1, V2,W1,W2) is
a sub Lie-algebra of gl(E). Let g be a sub Lie-algebra of gl(V1, V2,W1, W2).
We have for all A,B subvectorspaces of E such that gA ⊂ A et gB ⊂ B:
g(A+B) ⊂ (A+B) et g(A∩B) ⊂ (A∩B). So we have, as g leaves invariant
V1, V2,W1 et W2, g leaves invariant every element of the lattice generated
from V1, V2,W1 et W2 by intersection and sum.

It is easy to see that the projections p
Vj

Vi
and p

Wj

Wi
commute to the action

of g: ∀a ∈ g, ap
Vj

Vi
= p

Vj

Vi
a and ap

Wj

Wi
= p

Wj

Wi
a. So every element of the

associative unitary algebra A generated by the p
Vj

Vi
and the p

Wj

Wi
commutes

to every a ∈ g. As an example θ = [pW2

W1
, pV2

V1
] commutes to every a ∈ g.

Lemma 28. The data of two supplementary vectorspaces V1 et V2 stable for
the action of a linear Lie algebra g is equivalent to the data of an endomor-
phisme L commuting with the action of g, verifying L2 = I. V1 et V2 are
then the proper subspaces of L associated to the eigenvalues 1 and −1.

Proof. In fact it is easy to see that the endomorphism L = pV2

V1
− pV1

V2
is of

square identity and commutes to the action of g. Inversely if an endomor-
phism L is such that L2 = I and commutes to the action of g, it admits the
proper values 1 and/or −1. The corresponding eigenspaces are supplemen-
tary and stable for the action of g. ¤

3.1.2. Reflexive case. We recall that in the reflexive case we suppose that
there exists a non degenerate reflexive form 〈·, ·〉 such that ∀a ∈ g, ∀x, y ∈ E,
we have: 〈ax, y〉 + 〈x, ay〉 = 0.
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Recall as well that if V is a subspace of E which is g-invariant then V ⊥

is invariant as well. We suppose here that W1 = V ⊥
1 , W2 = V ⊥

2 . These two
spaces are supplementary and invariant.

Lemma 29. Let L∗ be the adjoint with respect to a reflexive form of the
endomorphisme L = pV2

V1
− pV1

V2
which commutes to the action of g and is

such that L2 = I. Then L∗ is of square identity, commutes to the action of
g and one has:

L∗ = p
V ⊥

1

V ⊥

2

− p
V ⊥

2

V ⊥

1

Proof. Let’s note L′ := p
V ⊥

1

V ⊥

2

−p
V ⊥

2

V ⊥

1

and let us show that ∀v, w ∈ E, 〈Lv,w〉 =

〈v, L′w〉,
We write for x ∈ V1, x

′ ∈ V2, y ∈ V ⊥
1 , y′ ∈ V ⊥

2 ,

〈L(x + x′), y + y′〉 = 〈x − x′, y + y′〉

= 〈x, y′〉 − 〈x′, y〉

= 〈x + x′,−y + y′〉

= 〈x + x′, L′(y + y′)〉

As a consequence L∗ = L′. ¤

Let’s remark that L = −L∗ for L = pV2

V1
−pV1

V2
is equivalent to have V1 = V ⊥

1

and V2 = V ⊥
2 . It is the same to impose 〈Lx,Ly〉 = −〈x, y〉 for x, y ∈ E i.e.

L is antihermitian with respect to the reflexive form.
The data of L ∈ End(E) such that L2 = Id and of a reflexive form for

which L is antihermitian is also called a paraKähler structure.

We recall that the reflexive representation g ⊂ gl(E) is called weakly
irreducible if any invariant subspace V ⊂ E is either {0}, E, or is degenerate
i.e. V ∩ V ⊥ 6= {0}.

As we saw in paragraph 2.3, if W1 = V ⊥
1 and W2 = V ⊥

2 , we have in the
weakly irreducible case and if V1 et V2 are different from {0} necessarily

E = Fe. In fact if two of the three spaces Fe, Fτ , F̃ are non trivial then
E is not weakly irreducible. The more in the case E = Fτ or E = F̃ , the
fact that E = V1 ⊕V ⊥

1 would imply that if E is non trivial, E is not weakly
irreducible.

Proposition 30. In the case the respresentation E = V1 ⊕ V2 is weakly
irreducible and if V1 and V2 are different from {0}, V2 identifies (as a rep-
resentation) to the dual V ∗

1 of V1.

Proof. It identifies by the map

V2 → V ∗
1

v′ 7→ (w 7→ 〈v′, w〉)

which is injective by the fact that V1 ∩ V ⊥
2 = {0} and surjective for

dimension reasons. In fact we have V1 ⊕ V ⊥
2 = V1 ⊕ V2 implies that

dim(V2) = dim(V ⊥
2 ). From this we obtain dim(V2) = 1

2dim(E) and simi-

larly dim(V1) = dim(E) − 1
2dim(E) = 1

2dim(E). As dim(V ∗
1 ) = dim(V1),

we have: dim(V ∗
1 ) = dim(V2). ¤
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3.2. Main result. The following result could be formulated thanks to a
suggestion of Martin Olbrich. He communicated to us a direct proof of
the result 32, which we had established for pseudo-riemannian holonomy
algebras only.

Theorem 31. If E is a representation admitting two decompositions into
supplementary subrepresentations E = V1 ⊕ V2 = W1 ⊕ W2, then, noting
E(L,λ) the generalized eigenspace associated to the eigenvalue λ for the op-
erator L, we have:

(i) Fe = E(L,−1) ⊕ E(L,1) as a representation for the invariant operator

L = pV2

V1
− pW1

W2
. The more we have V1 ∩ W1 ⊂ E(L,1) and V2 ∩ W2 ⊂

E(L,−1)

(ii) Fτ = E(L′,−1) ⊕ E(L′,1) as a representation for the invariant operator

L′ = pV2

V1
− pW2

W1
. The more we have V1 ∩ W2 ⊂ E(L′,1) et V2 ∩ W1 ⊂

E(L′,−1)

When E is in addition reflexive and Wj = V ⊥
j , then

(i) L is anti-selfadjoint with respect to the reflexive form, E(L,−1) and
E(L,1) are totally isotropic and their direct sum is non degenerate.

(ii) L′ is selfadjoint with respect to the reflexive form, E(L′,−1) and E(L′,1)

are non degenerate and orthogonal.

Proof. It follows from the fact that the spaces Fe, Fτ and F̃ are homoge-
neous, that L = pV2

V1
−pW1

W2
(and similarly L′ = pV2

V1
−pW2

W1
) is an endomorphism

of each of these spaces.
For σ = e or τ note Pσ(X) = Πλ∈Λσ

Pnλ

σ,λ(X) the minimal polynomial of L

restricted to Fσ and similarly P̃ (X) = Πλ∈Λ̃P̃nλ

λ (X) the minimal polynomial

of L restricted to F̃ .
Fσ decomposes into the generalized eigenspaces Fσ(L,λ) := ker(Pnλ

σ,λ(LFσ).

and F̃ decomposes into the generalized eigenspaces F̃(L,λ) := ker(P̃nλ

λ (LF̃ ).

Let’s make the convention that Pσ,λ(X) = X + λ and P̃λ(X) = X + λ for
λ = 0,−1, 1.

It is immediate that: V1 ∩ W1 ⊂ Fe,(L,1) and V2 ∩ W2 ⊂ Fe,(L,−1).
It is easy to verify from the definitions that θL = −Lθ. On deduces that

θ maps Fσ(L,λ) into Fσ(L,λ′) with Pσ,λ′(X) = ±Pσ,λ(−X).

Similarly θ maps F̃(L,λ) into F̃(L,λ′) with P̃λ′(X) = ±P̃λ(−X).

Let x ∈ Fe(L,λ) and let n be the smallest integer such that θn+1(x) = 0,
which exists from the fact that θ is nilpotent on Fe. θn(x) ∈ ker(θ) ⊂
V1 ∩ W1 ⊕ V2 ∩ W2 ⊂ Fe(L,1) ⊕ Fe(L,−1). As a consequence λ = ±1 and
Fe = Fe(L,1) ⊕ Fe(L,−1)

An analoguous argument gives Fτ = Fτ (L,0).

Finally let us show that λ = 0, 1,−1 6∈ Λ̃. Suppose the contrary. It exists
then an eigenvector x in F̃ associated to the eigenvalue λ. L(x) = pV2

V1
(x) −

pW1

W2
(x) = λx implies in the three cases a contradiction with proposition 8.

It follows that Fe = E(L,−1)⊕E(L,1), as E(L,λ) = Fe(L,λ)⊕Fτ (L,λ)⊕ F̃(L,λ).
The same arguments show mutatis mutandis that Fτ = Fτ (L′,1)⊕Fτ (L′,−1),

V1 ∩ W2 ⊂ Fτ (L′,1), V2 ∩ W1 ⊂ Fτ (L′,−1), and Fe = Fe(L′,0).
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It follows similarly Fτ = E(L′,−1) ⊕ E(L′,1).
The generalized eigenspaces appearing in the proof are invariant by the

fact that for any polynomial Q, Q(L) commutes to the action of the repre-
sentation and so kerQ(L) (and also imQ(L)) is invariant.

In the reflexive case we have: L = −L∗. As a consequence E(L,−1) is
orthogonal to any E(L,λ) for λ 6= 1 and E(L,1) is orthogonal to any E(L,λ) for
λ 6= −1. This follows from the relation

〈Pλ(L)nλ ·, ·〉 = 〈·, Pλ(L∗)nλ ·〉 = 〈·, Pλ(−L)nλ ·〉,

and from the fact that Pλ(L)nλ is an isomorphism of E(L,µ) for µ 6= λ.(kernel
lemma)

So E(L,−1), and E(L,−1) are totally isotropic, E(L,−1)⊕E(L,1) is orthogonal
to all other generalized eigenspaces and non degenerate.

One obtains similarly that L′ = L′∗. E(L′,λ) is orthogonal to any E(L′,µ)

for µ 6= λ. In particular E(L′,λ) is non degenerate and E(L′,−1) is orthogonal
to E(L′,1). ¤

Let us remark that in the weakly irreducible case, the existence of a de-
composition of E into two a direct sum of two degenerate subrepresentations
implies that E = Fe.

Theorem 32. If E is a weakly irreducible representation preserving the
non degenerate reflexive form 〈·, ·〉 and admitting a decomposition into a
direct sum of degenerate subrepresentations E = V1 ⊕V2, then E = E(L,1) ⊕

E(L,−1) with L := p − p∗. We have: V1 ∩ V ⊥
1 ⊂ E(L,1) and V2 ∩ V ⊥

2 ⊂
E(L,−1). In addition E(L,1) et E(L,−1) are totally isotropic and their sum is
non degenerate.

Proposition 33. If E = E1 ⊕ E2 is a representation preserving the non
degenerate reflexive form 〈·, ·〉, and E1 and E2 are totally isotropic, then E2

identifies to E∗
1 .

Proof. As in proposition 30 the map

E2 → E∗
1

v′ 7→ (w 7→ 〈v′, w〉)

which is injective because E2 ∩ E⊥
1 = {0} and surjective for dimension

reasons. ¤

Lemma 34. If the representation E admits three subrepresentation F1, F2

and F3, such that E = F1 ⊕ F2 = F2 ⊕ F3 = F1 ⊕ F3, alors E = F1 ⊗ K
2

where K
2 is the trivial representation.

Proof. Let’s note p the projection on F1 parallely to F2 restricted to F3.
p is an isomorphism of F3 onto F1 and commutes with the action of the
representation. As a consequence E = F1 ⊕ F1 = F1 ⊗ K

2. ¤

Proposition 35. If E is a representation admitting two decompositions into
supplementary subrepresentations E = V1 ⊕ V2 = W1 ⊕ W2, F̃ identifies to
V ⊗ K

2 where V = F̃ ∩ V1 and K
2 is the trivial representation.

Proof. In fact we have F̃ = F̃∩V1⊕F̃∩V2 = F̃∩V1⊕F̃∩W1 = F̃∩V2⊕F̃∩W1.
We are in the situation described by the preceding lemma.

¤
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To summarize we have:

Theorem 36. If E is a representation preserving the non degenerate re-
flexive form 〈·, ·〉 and the direct sum decomposition E = V1 ⊕ V2, then

(i) E = Fe ⊕
⊥ Fτ ⊕⊥ F̃ ,

(ii) Fe = F+
e ⊕ (F+

e )∗ for a totally isotropic representation F+
e ,

(iii) Fτ = F+
τ ⊕⊥ F−

τ for a non degenerate representation F+
τ ,

(iv) F̃ = F̃0 ⊗ K
2 for a non degenerate representation F̃0 and K

2 being the
trivial representation.

4. Application to holonomy

A particular case of the preceding is when g is a holonomy algebra. We
call formal curvature tensor an element R of (E∗ ∧E∗)⊗E∗ ⊗E such that
for all x, y, z ∈ E we have: R(x, y)z + R(y, z)x + R(z, x)y = 0 (first Bianchi
identity). We will suppose the that there is a finite set of formal curvature
tensors {R1, R2, . . . , Rm} such that g is the linear Lie algebra generated by
the Ri(x, y) ∈ End(E) for i = 1 . . .m and x, y ∈ E. We will call such an
algebra Berger algebra. For a holonomy algebra this situation is given by the
Ambrose-Singer theorem which relates the curvature tensor of a connected
manifold equipped with a torsion-free connection to its holonomy algebra in
a point of the manifold. In the following we will write R one of the formal
curvature tensors R1, R2, . . . , Rm.

Definition 4. If R is a formal curvature tensor and g ⊂ gl(E) a Berger
algebra, we say that R matches g, if ∀x, y ∈ E, R(x, y) ∈ g.

4.1. General case.

Lemma 37. If g ⊂ gl(E) is a Berger algebra admitting the invariant spaces
F1, F2, . . . , Fr with E = F1 ⊕ F2 ⊕ · · · ⊕ Fr, and if R is a formal curvature
tensor which matches g, then ∀i, j, k, k 6∈ {i, j} ⇒ ∀x ∈ Fi, y ∈ Fj , z ∈
Fk, R(x, y)z = 0.

Proof. Suppose x, y, z as in the statement. Then by the identity

R(x, y)z + R(y, z)x + R(z, x)y = 0

and by the fact that R(y, z)x ∈ Fi, R(z, x)y ∈ Fj and R(x, y)z ∈ Fk it is
clear from (Fi + Fj) ∩ Fk = {0} that R(x, y)z = 0. ¤

Definition 5. We will say that the representation g ⊂ gl(E) admitting the
invariant spaces Fi with E = F1 ⊕F2 ⊕· · ·⊕Fr decomposes into an exterior
product along the decomposition E = F1 ⊕ F2 ⊕ · · · ⊕ Fr if for any a ∈ g,
∀i, aFi

∈ g.

Proposition 38. If g ⊂ gl(E) is a Berger algebra and preserves V1, V2,
W1 and W2 such that E = V1 ⊕ V2 = W1 ⊕ W2 then E decomposes into an
exterior product along the decomposition F ⊕ F̃ . If in addition g preserves
the reflexive form 〈·, ·〉 and if W1 = V ⊥

1 and W2 = V ⊥
2 , then E decomposes

into an exterior product along the decomposition Fe ⊕ Fτ ⊕ F̃ .

Proof. For the first affirmation, this results from the preceding lemma and
from the fact that F̃ is of type F̃0 ⊗R

2 ≃ F̃0 ⊕ F̃0. In the reflexive case Fe is
of type F+

e ⊕ (F+
e )∗ from which by a similar argument one can deduce the

second affirmation. ¤
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4.2. Metric case. In the metric case the invariant non degenerate reflexive
form 〈·, ·〉 is supposed to be bilinear symmetric and K = R.

It is well known that from the invariance of 〈·, ·〉, the first Bianchi identity
and from the antisymmetry in the two first arguments of R, one can deduce

∀x, y, z, t ∈ E, 〈R(x, y)z, t〉 = 〈R(z, t)x, y〉, (∗)

for any formal curvature tensor R matching the algebra.

Lemma 39. If the algebra g is Berger, preserves two supplementary spaces
V1 et V2 and a non degenerate symmetric bilinear form 〈·, ·〉, and if for V =
(E, V1, V2, V

⊥
1 , V ⊥

2 ) E = Fe, then one has for any formal curvature tensor
R matching g and x, y ∈ V1, R(x, y) = 0 and for x′, y′ ∈ V2, R(x′, y′) = 0.

Proof. From the first Bianchi identity one has ∀z′ ∈ V2, R(x, y)z′ +
R(y, z′)x + R(z′, x)y = 0. We have: R(x, y)z′ ∈ V2, R(y, z′)x ∈ V1 and
R(z′, x)y ∈ V1 by invariance of V1 and V2 under the action of R(x, y) ∈ g

(respectively R(y, z′) ∈ g, R(z′, x) ∈ g. As V1 and V2 form a direct sum, one
has: R(x, y)z′ = 0.

Let’s show us further ∀z ∈ V1, R(x, y)z = 0. Let t′ ∈ V2. 〈R(x, y)z, t′〉 =
−〈z,R(x, y)t′〉 = 0, by the preceding argument. So from R(x, y)z ∈ V1, it is
clear that R(x, y)z ∈ V1 ∩ V ⊥

2 = {0} (in Fe).
As a conclusion for x, y ∈ V1, R(x, y) = 0. Similarly for x′, y′ ∈

V2, R(x′, y′) = 0. ¤

Theorem 40. If the algebra g ⊂ gl(E) is Berger, preserves the the two
supplementary spaces V1 and V2 and a non degenerate symmetric bilinear
form 〈·, ·〉, for V = (E, V1, V2, V

⊥
1 , V ⊥

2 ), one has: gE ⊂ ker θV and gimθV =
{0}.

Proof. By theorem 36 one has the decomposition into subrepresentations
E = (F+

e ⊕ (F+
e )∗)⊕⊥ F+

τ ⊕⊥ F−
τ ⊕⊥ (F̃0 ⊗R

2) with F+
e (and (F+

e )∗ totally

isotropic, F+
τ , F−

τ and F̃0 non degenerate
For R a formal curvature tensor matching g, as R(x, y) = 0 for x ⊥ y (by

(*)), g is generated by the R(x, y) for (x, y) ∈ F+
e × (F+

e )∗, (respectively
(x, y) ∈ F+

τ ×F+
τ , resp. (x, y) ∈ F−

τ ×F−
τ ). R(x, y) acts only on F+

e ⊕(F+
e )∗

(respectively F+
τ , resp. F−

τ ).
For (x, y) ∈ F+

e × (F+
e )∗, z ∈ V1 ∩ Fe, t ∈ V1 ∩ Fe, one has 〈R(x, y)z, t〉 =

〈R(z, t)x, y〉 = 0, and similarly for (x, y) ∈ F+
e × (F+

e )∗, z ∈ V2 ∩ Fe, t ∈
V2∩Fe, one has 〈R(x, y)z, t〉 = 0. So we obtain: gFe ⊂ V1∩V ⊥

1 ⊕V2∩V ⊥
2 ⊂

ker(θV).
Recall that θ maps W1 into W2 and W2 into W1.
For (x, y) ∈ F+

τ × F+
τ , z ∈ F+

τ , t ∈ F−
τ , one has: 〈θ(R(x, y)z), t〉 =

〈R(x, y)z, θ(t)〉 = 〈R(z, θ(t))x, y〉 = 0 because z ⊥ θ(t). So θ(R(x, y)F+
τ ) ⊂

F−
τ ∩ (F−

τ )⊥ = {0}. Similarly for (x, y) ∈ F−
τ ×F−

τ , θ(R(x, y)F−
τ ) = {0}, so

gFτ ⊂ ker(θV).
gE ⊂ ker(θV) follows from the preceding observations. As θ commutes

with every element of g, we will have as well: gimθ = gθ(E) ⊂ θgE =
{0}. ¤

Corollary 41. Let E be a metric indecomposable reprsentation preserv-
ing the decomposition E = V1 ⊕ V2 with V1 or V2 degenerate. For V =
(E, V1, V2, V

⊥
1 , V ⊥

2 ), one has: θ2
V = 0.
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Proof. Recall that in the metric indecomposable case with E = V1 ⊕ V2

where V1 or V2 is degenerate, one has E = Fe. Suppose θ2
V is non zero. In

this case one cas choose a non trivial supplementary space A of ker θ∩ imθ in
imθ. A is also a supplementary space of ker θ in ker θ+imθ. Let us choose a
supplementary space B of ker θ+imθ in E. One has: Because A ⊂ imθ, there
exists A′ subset of E such that A = θA′. For a ∈ g, aA = aθA′ = θaA′ = {0}
by the preceding theorem because aA′ ⊂ gE. So A is invariant for the action
of g. ker θ + B is a supplementary space of A, which is also invariant by g,
because g(ker θ+B) ⊂ ker θ ⊂ ker θ+B. So we obtain a new decomposition
of E into two g-invariant spaces A and ker θ + B. the action of g on A is
trivial. So the action of g decomposes into an exterior product along the
decomposition A ⊕ (ker θ + B), in contradiction to what we supposed. ¤
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