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Computational Crystal Plasticity : From Single Crystal to Homogenized
Polycrystals

G. Cailletaud, O. Diard, F. Feyel, S. Forest

Jurgen Olschewski zum Géchtnis

Crystal plasticity models for single crystals at large defation are shown. An extension to the computation of
polycrystals is also proposed. The scale transition ruleumerically identified on polycrystal computations, and
is valid for any type of loading. All these models are impleted in a finite element code, which has a sequential
and a parallel version. Parallel processing makes CPU timasonable, even for 3D meshes involving a large
number of internal variables (more than 1000) at each Gawéstp

Together with a presentation of the numerical tools, thegsaghows several applications, a study of the crack tip
strain fields in single crystals, of zinc coating on a stedlsitate, specimen computation involving a large number
of grains in each Gauss point. Finally, polycrystalline aggptes are generated, and numerically tested. The effect
of grain boundary damage, opening and sliding is investdat

1 Introduction

Continuum crystal plasticity encompasses a large classwfwrde—spread models accounting for the anisotropic
deformation of metal single crystals. Its roots are to bentbin the works of Taylor, but the complete finite
deformation framework is due to the successive contribgtif Bilby, Kroner, Teodosiu, Rice and finally Man-
del (1973). It is the appropriate framework to simulate thfodmation of single crystal specimens under complex
loading conditions (tension, shear, torsion, channelatie), but also single crystal components like turbine éad
in jet engines (Forest et al. (1996)). Crystal plasticity b& used also to derive the behavior of metal polycrys-
tals from the behavior of individual grains. Such models rmoe/ available at two levels. The most predictive
version consists in considering sets of interacting graiitis a sufficient description of the transgranular behavior
(Mika and Dawson (1998); Staroselsky and Anand (1998); 8atbal. (2001b); Bdhlke and Bertram (2001)).
This delivers three classes of information : the overalpoese of the considered material volume that may be
close to the wanted effective behavior of the polycrysha,mean stress and strain for grains having similar crys-
tal orientations, and, finally, the complete heterogenetress/strain distribution inside individual grains. The
results are obtained through considerable computatidfat.e That is why simplified homogenization models
accounting only for the two first previous information levalre useful. The estimations provided by the Taylor
or self—consistent schemes can capture the initial anshstraluced anisotropy of polycrystal behavior from the
knowledge of single crystal behavior and material textusctibed by the orientation distribution function (see
references quoted in Cailletaud et al. (2003)). Such matelsow very efficient regarding computation time and
quality of prediction, so that they can be used for indubkfriaposes like prediction of texture evolution in metal
forming. They can even be included in finite element simatati(Beaudoin et al. (1993); Cailletaud and Pilvin
(1994)).

The aim of the present work is to illustrate the panel of cotaponal crystal plasticity models that are now
available to describe accurately material behavior ragffiom single crystal specimens to polycrystalline metals
and alloys. The gain in using such an approach instead dfitnaadl purely phenomenological constitutive theories
is emphasized. The computational cost of the use of suchadethill be shown to be now attractive enough to
compete with more standard design methods. This has to aedeio the development of new computational
techniques, involving parallel computations, which areciglly competitive for this class of models. A short
presentation of the used methods will be given. One alsoded new advances that push forward the limitations
of the classical approach : accounting for size effects,atpnand specific grain boundary behavior, etc.
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The present work is divided into four main parts. In the firsepthe continuum crystal plasticity framework
is introduced, starting from a representation of dislaratlistribution inside the single crystal volume element.
Finite element (FE) computations of stress/strain fielde@track tip in single crystals are shown as an example.
The second one deals with the computation of multicrystaliggregates. Multicrystals are said here to contain
a rather small number of grains, so that the specimen or tmpopent they belong to can be completely meshed
with the real grain orientations. The approach is applieddticrystalline metal coating. The topic of the next part
is a discussion of the various scales in an aggregate; aifedplniform field model involving an explicit scale
transition rule is presented. An application in an FE codshmwvn. The last part concentrates on polycrystalline
aggregates, i.e. computational models of a representatiuene element (RVE), often artificially generated, to
represent bulk polycrystalline metals. Local responsea granular and intragranular level are analyzed. They
demonstrate that grain boundaries play a critical role énphlycrystal behavior. This is the reason why a last type
of modeling, including an explicit mesh of the grain bounesis finally proposed.

2 Single Crystal Plasticity
2.1 Generalized vs. Classical Crystal Plasticity

Continuum crystal plasticity theory aims at establishingpatinuum mechanical framework accounting for the
result of complex dislocation glide, multiplication anddraction processes at work in plastically deformed met-
als. Kroner (1969) proposed to retain the following stet#d information out of the intricate entanglement of

dislocations contained in a single crystal material volgieenent :

o the dislocation density tensarrepresents the ensemble average of the tensor productdittbeation line
and Burgers vectors. It is the basic variable of the contimtiveory of disclocations and can be directly
related to the densities of so—callgeometrically necessary dislocatiop$ introduced by Ashby (1971).

e the scalar dislocation densipy denotes the total length of dislocation lines containedgivan volume. It
is the basic measure in physical metallurgy and is respta&iba large part of material hardening.

The classical crystal plasticity framework settled by Main@973) and further developed and summarized by
Asaro (1983) and Cuitifio and Ortiz (1993), take only theoselcdislocation density measure into account. It has
proved to be a well-suited tool to describe homogeneouslayidlg heterogeneous deformation and hardening of
single crystals under complex loading conditions. It isdaben the definition of crystallographic directors and the
introduction of a unique so—called isoclinic intermediatafiguration for which the orientation of the directors
coincides with the initial one :

N
F=EP. PPI=3 ymon (1)
S=

where the deformation gradient s the elastic and plastic deformation tensors Erend P respectively. The
amount of plastic slip on each slip systesiis denoted by®. The vectorsn® andn® represent the slip direction and
normal to the slip plane respectively. In the present wonkiseoplastic framework is adopted, together with the
classical Schmid law to trigger plastic glide :

[T — 5| —r®

m= (TN = i) @

wheret®, r® andx® denote the resolved shear stress, the isotropic and kirehzatening variables, respectively.
The isotropic hardening variable is the thermodynamicalda@associated with an internal variable which usually
is more or less directly related to the dislocation derssjife Identifications and applications of such constitutive
equations can be found in Méric et al. (1991); Forest etl&96) and Cailletaud et al. (2003).

As acknowledged by Mandel (1973) and Sidoroff (1975), thevjmus classical formulation is a simplified version
of a more general model that should incorporate at leastthedtslocation density measures introduced at the
beginning of this Section. Indeed, such generalized foatrs of crystal plasticity have been proposed for
instance by Fleck and Hutchinson (1997) and Forest et a8 )L #According to the latter framework, the rotation
of the crystal directors is regarded as an actual degreeeefifim of the material point independent from its
displacement. This leads to the identification of the diated crystal with a Cosserat continuum. The kinematics
of Cosserat crystal plasticity is illustrated by Fig. 1. Tgradient of the lattice rotation tensor is called the lattic
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Figure 1: Kinematics of Cosserat single crystal plasticity

torsion—curvature tensdr, the plastic part of which directly influences the harderofthe material. This can be
seen in the following generalized non—linear isotropicdeaing rule

N
r°=ro+Q Y h*'(1—exp(—byiyy) + Hlck® (3)
r=1

The two first terms are the initial critical resolved sheaest and subsequent non-linear hardening including
the interaction matribh™ between the slip systems. The last term is a (for simplidingar extra hardening
contribution due to the curvatute® of slip planes (Forest et al. (2000); Kubin and Mortensen (2003)). The
constitutive characteristic length represents the spatial resolution chosen for the contincnystal plasticity
model, below which heterogeneous fields will not be distisiyed.

2.2 Application to Stress/Strain Fields at a Crack Tip in Sirgle Crystals

When the hardening effect attributed to lattice curvatane lose neglected (for large grains under slow strain gra-
dients for example), Fig. 1 reduces to the classical pictfifdandel’s multiplicative plasticity. The rotational
degrees of freedom reduce to hidden variables. In contedte curvature effects can play a significant role in
the presence of severe strain gradients like those enaedntear the crack tip in a single crystal. Fig. 2 shows the
plastic strain field at a crack tip in elastic ideally—pla$tCC single crystal under plane strain conditions accordin
to classical crystal plasticityH{ = 0). The crack plane coincides with the (001) crystal plare:the crack prop-
agation direction is [110]. Three intense deformation lsaceh be seen intersecting at the crack tip, as expected
from Rice’s analysis of the problem (Rice (1987)). The ailegraphic nature of each band differs depending on
its orientation with respect to the crystal. The lateraldsare intense slip bands in which slip lines are parallel to
the band. In contrast, the vertical band is callddri band because the slip lines inside are perpenticular to the
band (Forest et al. (2001)). Lattice rotation develops atlthe boundaries of kink bands, which leads to strong
lattice curvature at the band boundaries. The applicati@osserat or strain gradient plasticity can therefore lead
to strain fields at the crack tip different from the classig@kure. In particular, Fig. 3 shows that parameter
controls the intensity of the vertical kink band in the presel computation. For very high values of the extra
hardening parameter, which means a high resistance of thexiaido lattice curvature, the band can even disap-
pear (Fig. 4). Comparisons between such calculations gperiemental results on CT specimens of single crystal
nickel base superalloys will be given in a forthcoming paodition.

3 Computation of Multicrystalline Samples

The previous continuum framework, even if restricted tacigssical formulation, has proved to be very efficient
and accurate enough to describe stress/strain fields inrdefbsingle crystals under various complex loading
conditions (see the references quoted in Cailletaud e2@03)). That is the reason why it has been repeatedly
used to model material samples containing a finite numbenadfig that are called here multicrystalline specimens.
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Figure 2: Equivalent plastic strain field at a (001)[110]akrdip according to classical crystal plasticity. The
location of the crack is indicated by the bold line.
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Figure 3: Amount of equivalent plastic slip along a half [#rclose to the crack tip for three different values of the
Cosserat extra—hardening parameéter
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Figure 4: Equivalent plastic strain field at a (001)[110kr&ip according to Cosserat crystal plasticity £ 1000
MPa, deformed geometry showing the crack tip opening).
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3.1 Coarse Grain Specimens : Simulations vs. Strain/Latte Rotation Fields Measurements

The strong development of experimental field measuremeiftods in the last ten years makes it possible to
perform accurate comparisons between extensive expetairamd numerical results (Ziebs et al. (1996)). The
range of validity of continuum crystal plasticity has beestéd on recrystallized metal specimens containing a
small number of large grains. Electron Back Scatter Ditirac(EBSD) can be used to identify the orientation of
all grains. Precise finite element meshes can be designkih¢pat all sides of the sample, provided that there
is no more than 1 or 2 grains within its thickness. Three tygfdaformation can be determined experimentally
during the deformation of the sample, usually in tensione: Ittitice rotation field deduced from EBSD analysis
at different stages of straining, in—plane strain field gshre fiducial micro—grid technique, and elastic strain field
based on X-ray analysis. The two first types of measuremenst garied out by Delaire et al. (2000) in copper
multicrystalline specimens. They reveal the outstandinigjty of continuum crystal plasticity to account for
the development of non—homogeneous deformation insidagyessociated with strain incompatibility between
neighbouring grains. Precise lattice rotation measurésreme also possible using synchrotron radiation, as done
by Eberl et al. (2002) for instance. The intensity of suchhh@aakes it possible to distinguish the lattice rotation
induced by straining from the initial mosaicity, i.e. shoahge fluctuations of crystal orientation, which always
exists in large grains. Itis not clear up to now which roleittigal mosaicity plays on the subsequent deformation
of crystals, and whether FE calculations are able to talsanid account.

3.2 Metal Coatings

Metal coatings are examples of multicrystalline microstuues with high industrial impact. Zinc coatings on
galvanized steel sheets for instance are used in the aut@nodustry. The thickness of the coating studied
by Parisot et al. (2001) is 1m, whereas the in—plane grain size is of the order of @®0 This means that
the coating contains only one grain within the thicknessl tnat the microstructure is completely defined by a
2D EBSD map. Zinc has a hexagonal crystallographic stractlihe active slip systems are mainly basal and
pyramidalll,, as determined by Parisot et al. (2001). Due to the solidifingrocess, the grains have preferred
orientations, as the-axis of the hexagonal unit cell is close to the vector notm#ie steel sheet. Fig. 5(a) shows
a finite element map of 34 zinc grains on a steel substratethéaromputations performed for the present work,
a recrystallized coating is considered so that the in—pigai size is reduced to about gfh. The objective of
this computation is to analyze the strain gradient that mewelbp from the interface to the free surface during
tensile testing in the plane. The analysis made for the chparake grains (30m) revealed that no gradient
exists in the thickness except very close to the grain bauesiaas shown by Parisot et al. (2001). The situation
becomes very different when the in—plane grain size is clséhe thickness. Fig. 5(b) and (c) give the maps
of equivalent plastic strain due to basal slip, which is th&inly activated slip system family. It can be seen
that plastic deformation close to the steel/coating iategfis significantly more homogeneous than at the free
surface. The deformation near the interface is dictatechbyguasi-homogeneous deformation of the substrate.
In contrast, plastic strain incompatibility from grain toeain induced by different crystal orientations results in
strongly heterogeneous plastic slip fields close to thedteface and grain boundaries.

Another important constraining effect due to the substnatebeen reported by Parisot et al. (2001). The plastic
behavior of zinc single crystals is highly anisotropic. articular, when the coated sample is strained in direction
x1 for instance, the lateral contraction ratio is usually sty different from—0.5 in the zinc grains, depending on
its special orientation. For some very specific orientatidetailed in Parisot et al. (2001), this ratio is even close
to zero. In contrast, the steel substrate behaves almdstpseally. As a consequence, in tension aloagthe
substrate prescribes a lateral deformation of abeyt /2 to the individual grains of the coating. This results in
strong biaxial stresses in the zinc grains. That is why pydahfil, slip systems and even twinning, which have
higher critical resolved shear stresses than basal slipregs are systematically observed in coatings with pancake
grains. Another consequence of this multiaxial stres® statide grains is investigated here. When the lateral
expansion ratio is larger thanl/2, the lateral stressy, becomes strongly compressive. If a small crack exists
or develops at the substrate/coating interface, the fifgt@ent computations of Fig. 6 show that a local buckling
can occur due to lateral compressive stresses. This is ébfmsause for spalling phenomena observed during the
stamping of galvanized steel sheets.
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Figure 5: (a) Finite element mesh of 34 grains in a zinc cgatim a steel substrate; basal plastic slip distribution
(b) in the coating near the interface and (c) on the free sarfor a tensile test in directioq up to 1.5 % overall
tensile strain (the thick lines coincide with grain boundsy.
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Figure 6: Buckling phenomenon in one grain of a zinc coatingacsteel substrate : (a) Finite element mesh
showing an initial crack at the substrate/coating intexfdl) plastic slip contour map and deformed state during a
tensile test along a direction normal to the figure planaiisin %).

4 Homogenized Polycrystal Models
4.1 Levels of Heterogenities and Modeling Strategies in a Ba@rystal

Starting from the macroscopic scale (level 1), where a nurobgrains are considered, several levels can be
considered in polycrystal modeling. The mechanical staemeah of these levels will be characterized by a stress
tensor, a strain tensor, and eventually a series of intearébles. Additional variables can also be introduced to
model scale transition.

Let us assume first that each grain has a uniform chemical esitiqgm and crystal lattice. Level (2) would
correspond to the level of a so—called “phase”. In uniforrdfieodels applied to polycrystal modeling, a phase
is nothing but the result of the average of all the grainsingugimilar crystal orientations. So stress and strain
tensors are the result of an average of all the occurenchssairientation. Note that, since the neighboors of each
real grains are different, the averaged quantities in eaaim gresent a certain scatter, related to the local stress
redistribution. One could denote the level of each "readligias (2’). Uniform field models will consider phase (2)
level, so that a scale transition rule will link macroscogti@ss and strain with stresses and strains in each phase.

Level (3) classically correspondsto the local field, whigpresents intragranular stress and strain variationseThe
variations are captured only in an FE modeling of the delaitéecrostructure, and result from the local application
of the equilibrium equations. Averaging level (3) variabie a given grain provides a level (2") response for this
grain, and averaging all the (2’) values in the RVE leads &dl¢vel (2) variables.

On the other hand, polycrystals can also be multiphase raltgferrite—austenite, austenite—ferrite—perlite—
martensite in steels, for instance). As a rule of thumb, fhyer@ximated physical model chosen to represent
the microstructure must take into account the strongestrbgénities in the material. Here, the contrast between
the properties is larger between austenite to martensitelibtween two composite grains having a different ori-
entation. Since the main reason for having heterogenitifsa RVE is now the nature and the local composition
of the material, the most reasonable micro-macro approdthamsider an N-phase modeling. A phase will then
be defined for each component, disregarding crystal otientaAs a consequence level (2) stress will be defined
in austenite, ferrite, etc, and the scale transition rulestart from the macro level to directly reach these phases.
Usual criteria like von Mises’s will be used in each phase.

The preceding approach can also be revisited, in order touatdor the grain level. The solution is to consider
two scale transitions, one from the RVE to the grain leved, ghains being represented by their orientation, and
the second inside each grain, to get the average stressraimdst each intragranular phase. Depending on the
morphology of the phase and the statistical analysis of igtelnltion, the most efficient transition rule can be the
self-consistent, Mori-Tanaka’s, or any other possibilych attempts have been made for instance for modeling
o-B Titanium alloys (Feaugas et al. (1996)), or martensitielstéCherkaoui et al. (2000)).
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4.2 Identification of Scale Transition Rules

Homogenized polycrystal models are available to estinfaertean stress—strain in the phases of the polycrystal
in the case of elastoplastic, purely viscoplastic and elast@viscoplastic grain behavior, for instance according
to self—consistent schemes (Molinari (1999)). They arallgiased on simplified morphological assumptions
like that of an inclusion embedded in an infinite matrix conda with a specific pointwise linearization scheme
of the non-linear response of the material. A typical fornswéh a transition law, common to several simplified
homogenization schemes, is the following

o¥=2+u

VoS

B-p) @
B=3 1%, B’ P9 Delgp? ©
[¢]

where non-linear accommodation variabB¥shave been introduced by their evolution rules accordingad-C
letaud (1992) and Pilvin (1996). Elastic ithropy of theigsawith shear modulugis assumed for simplicity, and
'sgg is a norm of the mean plastic strain rate in each phase. THetmrolaw (5) contains a paramet@rwhich can

be calibrated so that the estimated mean sw@ss as close as possible to the mean response of the corrésgond
grains within the polycrystalline aggregate computed k&finite element method. Note that for the valve- 0

the model coincides with Kroner’'s elastoplastic self-gistent scheme. In the case of FCC polycrystals, this single

parameter is enough to get a reliable estimation of the behafthe polycrystal (Cailletaud et al. (2003)).

The formulation of this simplified homogenized polycrystaddel, presented here within the small perturbation
framework, ends up with the standard crystal plasticitysitoitive equations for each crystal orientation subjected
to the stresg9. Finally, the overall increment of plastic deformation is

EP =5 9P (6)
g

wheref9 denotes the volume fraction of grains with orientation eltsg.

This rule can then be extended for more complex cases:

- for time dependent responses, a recovery term can be u#ieel @oncentration rule;

- for more anisotropic local responses like for HCP crysetsensions of the evolution rule (tensorial shape instead
of a scalar form) or enhancement of the number of accomnutasiriables may be necessary;

- for the description of ratchetting effect, a combinatidimear and non—linear terms can be introduced infthe
evolution.

The implementation of such a model in an FE code is not toccdiffisince it has the same structure as classical
inelastic models. The only difference is the large numbemntdrnal variables (with isotropic and kinematic
hardening, the number of variables for each phase is tweauimber of slip systems). Ofidensor is also stored

for each phase, that makéaN + 6) x G, with N the number of systems per grain aBdhe number of grains
introduced to represent the texture. The final numbéRié+ 6) x G+ 7 after adding the macroscopic elastic
strain and the macroscopic accumulated viscoplastist@ the other hand, the integration scheme is the same.
For the small perturbation case, the equations set is baith the strain partition equation and the evolution of
the internal variables. The local system can be solved byplicé Runge-Kutta integration, with automatic time
step, or with a Newton method, if the number of variables itoo high (typically less than 500). The next section
shows an example of such a computation.

4.3 Application to Structural Computations

Some elements concerning the computational techniqueeported now, then an example is given. A standard
finite element code where the unknowns are the incremendl miisplacements contains two major stages :

e aglobal stage knowing the consistent tangent operator at each integratint, it consists in an assembly
to form the stiffness matrix of the problem. An incremenia¢hr problem has to be solved which involves
this stiffness matrix. Clearly this stage contains a caypbetween all points of the structure; hence it is
called aglobal stage Note also that this global problem is onlyiear one.
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e alocal stage the non-linear constitutive equation sets have to beiated in time to give an estimate of
the stress at each integration point (and also to computothigistent tangent operator). These consitutitive
equations (as those presented in section 4.2) are usuaihlinear in time. However they remain local in
space; this stage may then be seen as a high number of srfexikdtfal systems to be solved independently.

The Need for Parallel Computations

The increasing complexity of mechanical models affecté bmtal and global stages : the global stage becomes
more and more complex as soon as the number of degrees offnrérdreases to capture fine geometrical aspects
of the structures. The local stage is also affected by tluieesse (because the number of integration points is tied
to the number of degrees of freedom), and also by the inecrg@simplexity of constitutive equations.

The local stage is naturally parallel, since the integratibthe constitutive equations can be performed indepen-
dently from the knowledge of the mechanical state of neiginiggGauss points. Attributing groups of elements
to a different processor is then a natural and very efficiectinique, specially for models with a large number of
internal variables. Amdhal’s rule recalls that the gain IALCtime for a parallel computation strongly depends
on the percentage of parallel operations in the code. Itdn thecessary to also consider the global stage in the
parallel processing.

Domain decomposition methods (DD) are a very good class ¢fiads to overcome these bottlenecks. In this
Section we briefly present the FETI method, a specific DD nwththe reader may refer to Roux and Farhat
(1994) and Feyel (1998) for an extensive description.

Let Q be the mesh of the structure afigl a partition inN subdomains of2 : Q =Y, Q;. Let B, be the trace

operator which gives the restriction on the boundary of a fédfined inQ;. The FETI method deals with a

condensed interface problem, involving boundary forcesheninterfaces. These forces (it is a "dual* method)

are estimated using an iterative method that makes theagmplent jumps across subdomains vanish. Solving the

global linear problem is indeed similar to solving the fellag subdomains problems simultaneously:
K§ = E o { }giqi = 57 +.7\i, local equilibril_Jm _of subdomaing; . )
- ¥iB,di = 0, displacement continuity across subdomains

Depending on the domain decomposition, it can happen titticdocal systems are singular. It means that to
these subdomains not enough Dirichlet boundary condigoaspplied and solid rigid body motions are free. A
projected conjugate gradient method is then used involtfiege rigid body motions, which are determined using
the kernel oK. This projection operation is indeed a small problem to Iheesbon the whole structure considering
all domains as solid blocks subjected only to rigid body i This provides the extensibility of the method.

An object—oriented finite element code called “ZSet” hasnbhgerallelized using this method (Feyel (1998)). A
major advantage of DD methods is that they automaticallyensot only the parallelization of the global stage,
but also of the local one (a single domain “handles” only titegration points of its domain).

FE Computation with a Large Number of Internal Variables

Polycrystal models have been used in the past in FE codesdicptexture evolution. Authors often use Taylor’s
assumption as a scale transition rule, so that the numéripéémentation is straightforward: the global strain rate
is just applied to a collection of grains. This assumptiomagonger valid for complex and/or cyclic loading paths.
In this Section, we show numerical computations usingmodel, calibrated to model the cyclic hardening of
specimens under non proportional 3D loading. Calloch (1@@Yeloped a triaxial specimen, which was tested
on theAstrée 3D servohydraulic machine in LMT Cachan. This specimen wasrdral cube undergoing 3D
loadings; it allows to study the additional hardening otsediin materials like copper or austenitic stainless steels
and described by a strain memory effect and indicators mieastine non—proportional character of loading paths
in constitutive equations.

Due to the complex shape of the specimen used in 3D expesnedtdescribed by Calloch (1997), mechanical

fields are not homogeneous, even if the design is such thaetiteal cube undergoes uniform fields: the attaching
part of the specimen still plays an important role in the alldsehavior. Also, due to the relative dimensions of

138



Figure 7: View of the mesh showing the domain decompositompérallel computing.

the cube with respect to the specimen, neither strain gaamyesxtensometers can be used to get the real loading
conditions prescribed to the central part. FE computatimashen needed to analyze the test results.

The polycristalline model is a good candidate for these adatfpns. A detailed description of the results can be
found in Feyel et al. (1997). Seven years ago, CPU time wagtalme week. With a simple PC cluster, the same
computations would now take less than one day for severdirigacycles. One'8 of the specimen is modeled.
The mesh contains 8288 quadratic elements, 3358 nodes 8860 68egration points. A domain decomposition
into seven subdomains is performed (see Fig. 7). The norigpladement of the side faces are fixed in order
to respect the symmetry of the problem. A cyclic loading iplagnl on the external faces. The polycrystalline
constitutive equation set contains 40 grains; 1207 intera@dables are then necessary at each integration point
of the mesh, that is about 83 millions for the whole mesh. Aagexlvantage of such a modeling is to allow a
simultaneous two scale analysis, on a macro and a micro. $eéigle8 shows the contour plots of; at the end of

the computation.

A microscopic analysis is also available by carefully ppsicessing the instantaneous and cumulated slip for each
system and each grain. For instance, Fig. 9 shows the emolofithe number of active slip systems, at three
different times during the computation. These values aneprded at the center of the specimen. A slip system is
said to be active when the slip rate is higher than a predefimedhold. At the beginning of the loading, a certain
number of slip systems are active for all grains. This nunibeeases with accumulated plastic strain.

5 Computation of Polycrystalline Aggregates

Polycrystalline aggregates are computational models fepeesentative volume element (RVE), often artificially

generated, to represent polycrystalline materials. Tlybe used to calibrate the transition rule of the model
shown in Section 4.2 (level (2)), and also to evaluate Ie¥kfi€lds, in order to investigate local effects due to the
free surface or to grain boundaries.

5.1 Typical Results

A method for generating polycrystalline aggregates has lskewn in Barbe et al. (2001a). It uses a Voronoi
tesselation of a given volume, the initial germs being iifestiaby simulating a Poisson point process. The result
is a voxel file, defining grain orientation in each point iresitie RVE. The next step is a mesh generation which
respects the microstructure. Two solutions can be founterliterature, a regular mesh involving multimaterial
elements (Fig. 10a) and meshes respecting the shape ofaime(Big. 10b). The first solution is simpler and can
provide good results, even if the number of elements isivelgtlow. In fact, the result depends on the contrast
between the different phases. For instance for FCC aggregtte global response becomes constant for cubic
meshes involving more than 3414 x 14 elements and 200 crystal orientations. The same ordemlaghitude
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Figure 8: Contour of the11 stress component at the end of the computation.
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Figure 10: Two meshing strategies for the polycrystalliggragate : (a) regular mesh, (b) mesh respecting the
grain boundaries.

is observed for HCP alloys (see Diard et al.). Neverthelié$se scatter in the local properties is high, the real
convergence is not reached even for very large meshes. (othibehand, multimaterial elements do not allow

to give a realistic view on the grain boundaries. Their ussukhthen be limited to investigations of the global

response, or to qualitative response in the grains, exteptéry large number of elements is used (more than
30x 30x 30 elements, several thousands of Gauss points per grdiay.dre also not adapted for the description
of intergranular damage.

Fig. 11 shows a typical result concerning the local field$eftotal strain in the tensile direction and the von Mises
stress. The material is a Zy4 alloy, identified in Diard et @he coefficients have been determined from tension
and internal pressure tests on tubes. The von Mises strégghisr at the grain boundaries. On the other hand,
the deformation is localized in bands which do not follow ¢inain boundaries. The present calculations are made
with a 28x 28 x 28 mesh with 20-node quadratic elements and full integnafidne integration point size can be
seen on the picture. In order to improve the descriptioneldgments have been made to explicitely account for
grain boundaries. The used model is presented in the nexibB8eand new results with the same material are
shown at the end of the paper.

5.2 The DOS Model for Grain Boundary Damage, Opening and Slithg

The behavior of a grain boundary is highly anisotropic. ltstiioe defined in a local frame, built from the local
normaln to the grain boundary and two tangent vectors in the graimtary. The normal direction is quite strong
as long as no damage is present, but the in-plane elasticlnaodwveak. As a consequence, the only significant
terms in the stress and strain tensors are:

- the normal stress" and the normal straiel’, which define grain boundary opening;

- the shear stressand the shear stragh, which define grain boundary sliding.

The problem of the grain boundary opening and sliding is Isimo interface debonding. This last problem has
been studied in the past (Needleman (1990); Chaboche 208l1)), by introducing special elements. The present
approach will use a regular continuous element, that malessier to manage damage.

In the chosen framework, the grain boundary can first haveapiastic motion when the loading starts. Damage
will then develop, and enhance opening and sliding. The danesolution rule is written in terms of, which
is its conjugated variable, according to classical damagehanics (Lemaitre and Chaboche (1990)), and Hses
the elastic modulus in the normal direction, andhe shear modulus in the plane of the grain boundary:

0n2 T2

YZ?-FH (8)
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Figure 11: Contour (a) of the total strain in the tensile clien, (b) of von Mises equivalent stress, for the aggregate
shown in Fig. 10.

The basic equations are defined according to the followihgise.

Effect Potential with. ..
fn nn+1
normal strain F, = K, <K_> fa=<0o">/(1-D)—R,
ftn n+1
shear strain Ft:Kt<K> fi=1]/(1-D)—R
) np+1 Y
damage FD:KD<K—D> fD: m—RD

Three independent potentials are defined from three thiefinctions involving damage, normal stress and shear
stress. These potentials naturally provide a flow rate arah@ade rate. One can see that shear and opening strain
are not coupled at the onset of plastic flow. Neverthelessade development will produce coupling between
them: as shown in equation 9, if the normal (resp. tanggmstisdss produces damage, it will increase the tangential
(resp. the normal) strain rate.

o oF, _aFn%:<<c">/(1—D)—Rn>”"

€ T3 oty 0o Ky

g _Or _OROK
~ Jg 0f; dg

o M i [V 1 g c__ 1
oY ofp oY E1-D EY(1-D)

5.3 Explicit Grain Boundary Meshing

_ _ Nt
<—|T|/(1 KtD) Rt> {n®t}=VyT

Typical results obtained with the DOS model are illustraitedrig. 12 on a 2D mesh. As shown in Fig. 12a,
the development of intergranular damage will produce aesaffy of the material. The damage field is shown
in Fig. 12c, for a vertical tensile loading. Since there isspecific surface effect in the computation, damage
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Figure 12: lllustration of 2D computations with grains andig boundaries with DOS model: (a) the global load
response, (b) the mesh, (c) resulting intergranular darfielge

develops anywhere in the material, the grain boundarigsepeicular to the external loading being preferentially
affected. The damage path can be checked using the secdrfBigldL2b), in which the grain boundary elements
are present between grains.

6 Conclusion and Future Work

Crystal plasticity is now the engine of a lot of models. It teieady been applied in FE codes by a series
of researchers and engineers. From an industrial pointe,vihe most significant computations have been
performed to predict texture evolutions, with relativelyde scale transition rules. The present paper shows that
structural computations (here on a specimen) can be maalevdlsmore realistic models, valid also under cyclic
loadings. On the other hand, the first computations in tleeditire have been made on 2D meshes. The more
recent approaches of the problem tend to introduce realadistie micr&structures, and to replace 2D meshes,
which only capture qualitative responses, by 3D meshegsderdo provide quantitative results. It means that the
numerical models are now able to switch from the global tdakel level, with a reasonable CPU time, provided
parallel processing is introduced into the code.

Crystal plasticity in a parallel FE code represents a pawexdmputational tool to investigate the local stress

and strain in heterogeneous materials. It allows also teesotoblems in which global and local scales are not

well separated. The computation of microstructures waitlve used in the future to better understand the local
deformation and failure mechanisms. The present papershgamples concerning crack tip in single crystals,

zinc coating layers on steels, and deformation of HCP pgbtatline aggregates.
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Starting at a millimetric size, the crystal plasticity apach tends to lower scales. The purpose is then to bridge the
gap between the macroscale and "less than micrometricescalhere dislocation densities, and other methods
originating from physics are developed. New models and rhlirtiques are to be developed to allow fruitful
discussion between scientists from both sides. Genedalarenulations of plasticity theory to account for high
gradients which are predicted by the computations, andrals® sophisticated mesh generation tools, coupled
with error control, represent the challenge to come in theg hdure.
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