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Computational Crystal Plasticity : From Single Crystal to Homogenized
Polycrystals

G. Cailletaud, O. Diard, F. Feyel, S. Forest

Jürgen Olschewski zum Gedächtnis

Crystal plasticity models for single crystals at large deformation are shown. An extension to the computation of
polycrystals is also proposed. The scale transition rule isnumerically identified on polycrystal computations, and
is valid for any type of loading. All these models are implemented in a finite element code, which has a sequential
and a parallel version. Parallel processing makes CPU time reasonable, even for 3D meshes involving a large
number of internal variables (more than 1000) at each Gauss point.

Together with a presentation of the numerical tools, the paper shows several applications, a study of the crack tip
strain fields in single crystals, of zinc coating on a steel substrate, specimen computation involving a large number
of grains in each Gauss point. Finally, polycrystalline aggregates are generated, and numerically tested. The effect
of grain boundary damage, opening and sliding is investigated.

1 Introduction

Continuum crystal plasticity encompasses a large class of now wide–spread models accounting for the anisotropic
deformation of metal single crystals. Its roots are to be found in the works of Taylor, but the complete finite
deformation framework is due to the successive contributions of Bilby, Kröner, Teodosiu, Rice and finally Man-
del (1973). It is the appropriate framework to simulate the deformation of single crystal specimens under complex
loading conditions (tension, shear, torsion, channel die,etc.), but also single crystal components like turbine blades
in jet engines (Forest et al. (1996)). Crystal plasticity can be used also to derive the behavior of metal polycrys-
tals from the behavior of individual grains. Such models arenow available at two levels. The most predictive
version consists in considering sets of interacting grainswith a sufficient description of the transgranular behavior
(Mika and Dawson (1998); Staroselsky and Anand (1998); Barbe et al. (2001b); Böhlke and Bertram (2001)).
This delivers three classes of information : the overall response of the considered material volume that may be
close to the wanted effective behavior of the polycrystal, the mean stress and strain for grains having similar crys-
tal orientations, and, finally, the complete heterogeneousstress/strain distribution inside individual grains. The
results are obtained through considerable computational effort. That is why simplified homogenization models
accounting only for the two first previous information levels are useful. The estimations provided by the Taylor
or self–consistent schemes can capture the initial and strain–induced anisotropy of polycrystal behavior from the
knowledge of single crystal behavior and material texture described by the orientation distribution function (see
references quoted in Cailletaud et al. (2003)). Such modelsare now very efficient regarding computation time and
quality of prediction, so that they can be used for industrial purposes like prediction of texture evolution in metal
forming. They can even be included in finite element simulations (Beaudoin et al. (1993); Cailletaud and Pilvin
(1994)).

The aim of the present work is to illustrate the panel of computational crystal plasticity models that are now
available to describe accurately material behavior ranging from single crystal specimens to polycrystalline metals
and alloys. The gain in using such an approach instead of traditional purely phenomenological constitutive theories
is emphasized. The computational cost of the use of such methods will be shown to be now attractive enough to
compete with more standard design methods. This has to be related to the development of new computational
techniques, involving parallel computations, which are specially competitive for this class of models. A short
presentation of the used methods will be given. One also includes new advances that push forward the limitations
of the classical approach : accounting for size effects, damage and specific grain boundary behavior, etc.
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The present work is divided into four main parts. In the first one, the continuum crystal plasticity framework
is introduced, starting from a representation of dislocation distribution inside the single crystal volume element.
Finite element (FE) computations of stress/strain fields atthe crack tip in single crystals are shown as an example.
The second one deals with the computation of multicrystalline aggregates. Multicrystals are said here to contain
a rather small number of grains, so that the specimen or the component they belong to can be completely meshed
with the real grain orientations. The approach is applied tomulticrystalline metal coating. The topic of the next part
is a discussion of the various scales in an aggregate; a simplified uniform field model involving an explicit scale
transition rule is presented. An application in an FE code isshown. The last part concentrates on polycrystalline
aggregates, i.e. computational models of a representativevolume element (RVE), often artificially generated, to
represent bulk polycrystalline metals. Local responses ona granular and intragranular level are analyzed. They
demonstrate that grain boundaries play a critical role in the polycrystal behavior. This is the reason why a last type
of modeling, including an explicit mesh of the grain boundaries is finally proposed.

2 Single Crystal Plasticity

2.1 Generalized vs. Classical Crystal Plasticity

Continuum crystal plasticity theory aims at establishing acontinuum mechanical framework accounting for the
result of complex dislocation glide, multiplication and interaction processes at work in plastically deformed met-
als. Kröner (1969) proposed to retain the following statistical information out of the intricate entanglement of
dislocations contained in a single crystal material volumeelement :

• the dislocation density tensorα
∼

represents the ensemble average of the tensor product of thedislocation line
and Burgers vectors. It is the basic variable of the continuum theory of disclocations and can be directly
related to the densities of so–calledgeometrically necessary dislocationsρG introduced by Ashby (1971).

• the scalar dislocation densityρS denotes the total length of dislocation lines contained in agiven volume. It
is the basic measure in physical metallurgy and is responsible for a large part of material hardening.

The classical crystal plasticity framework settled by Mandel (1973) and further developed and summarized by
Asaro (1983) and Cuitiño and Ortiz (1993), take only the second dislocation density measure into account. It has
proved to be a well–suited tool to describe homogeneous and slightly heterogeneous deformation and hardening of
single crystals under complex loading conditions. It is based on the definition of crystallographic directors and the
introduction of a unique so–called isoclinic intermediateconfiguration for which the orientation of the directors
coincides with the initial one :

F
∼

= E
∼
.P
∼
, Ṗ

∼
.P
∼
−1 =

N

∑
s=1

γ̇sms⊗ns (1)

where the deformation gradient isF
∼

, the elastic and plastic deformation tensors areE
∼

andP
∼

respectively. The
amount of plastic slip on each slip systems is denoted byγs. The vectorsms andns represent the slip direction and
normal to the slip plane respectively. In the present work, aviscoplastic framework is adopted, together with the
classical Schmid law to trigger plastic glide :

γ̇s
cum=

〈

|τs−xs|− rs

k

〉n

, γ̇s = γ̇s
cumsign(τs−xs) (2)

whereτs, rs andxs denote the resolved shear stress, the isotropic and kinematic hardening variables, respectively.
The isotropic hardening variable is the thermodynamical force associated with an internal variable which usually
is more or less directly related to the dislocation densities ρs. Identifications and applications of such constitutive
equations can be found in Méric et al. (1991); Forest et al. (1996) and Cailletaud et al. (2003).

As acknowledged by Mandel (1973) and Sidoroff (1975), the previous classical formulation is a simplified version
of a more general model that should incorporate at least the two dislocation density measures introduced at the
beginning of this Section. Indeed, such generalized formulations of crystal plasticity have been proposed for
instance by Fleck and Hutchinson (1997) and Forest et al. (1997). According to the latter framework, the rotation
of the crystal directors is regarded as an actual degree of freedom of the material point independent from its
displacement. This leads to the identification of the dislocated crystal with a Cosserat continuum. The kinematics
of Cosserat crystal plasticity is illustrated by Fig. 1. Thegradient of the lattice rotation tensor is called the lattice
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Figure 1: Kinematics of Cosserat single crystal plasticity.

torsion–curvature tensorΓ
∼
, the plastic part of which directly influences the hardeningof the material. This can be

seen in the following generalized non–linear isotropic hardening rule

rs = r0 +Q
N

∑
r=1

hsr(1−exp(−bγr
cum))+Hlcκs (3)

The two first terms are the initial critical resolved shear stress and subsequent non–linear hardening including
the interaction matrixhrs between the slip systems. The last term is a (for simplicity)linear extra hardening
contribution due to the curvatureκs of slip planes (Forest et al. (2000); Kubin and Mortensen (2003)). The
constitutive characteristic lengthlc represents the spatial resolution chosen for the continuumcrystal plasticity
model, below which heterogeneous fields will not be distinguished.

2.2 Application to Stress/Strain Fields at a Crack Tip in Single Crystals

When the hardening effect attributed to lattice curvature can be neglected (for large grains under slow strain gra-
dients for example), Fig. 1 reduces to the classical pictureof Mandel’s multiplicative plasticity. The rotational
degrees of freedom reduce to hidden variables. In contrast,lattice curvature effects can play a significant role in
the presence of severe strain gradients like those encountered near the crack tip in a single crystal. Fig. 2 shows the
plastic strain field at a crack tip in elastic ideally–plastic FCC single crystal under plane strain conditions according
to classical crystal plasticity (H = 0). The crack plane coincides with the (001) crystal plane and the crack prop-
agation direction is [110]. Three intense deformation bands can be seen intersecting at the crack tip, as expected
from Rice’s analysis of the problem (Rice (1987)). The crystallographic nature of each band differs depending on
its orientation with respect to the crystal. The lateral bands are intense slip bands in which slip lines are parallel to
the band. In contrast, the vertical band is called akink band because the slip lines inside are perpenticular to the
band (Forest et al. (2001)). Lattice rotation develops onlyat the boundaries of kink bands, which leads to strong
lattice curvature at the band boundaries. The application of Cosserat or strain gradient plasticity can therefore lead
to strain fields at the crack tip different from the classicalpicture. In particular, Fig. 3 shows that parameterH
controls the intensity of the vertical kink band in the presented computation. For very high values of the extra
hardening parameter, which means a high resistance of the material to lattice curvature, the band can even disap-
pear (Fig. 4). Comparisons between such calculations and experimental results on CT specimens of single crystal
nickel base superalloys will be given in a forthcoming publication.

3 Computation of Multicrystalline Samples

The previous continuum framework, even if restricted to itsclassical formulation, has proved to be very efficient
and accurate enough to describe stress/strain fields in deformed single crystals under various complex loading
conditions (see the references quoted in Cailletaud et al. (2003)). That is the reason why it has been repeatedly
used to model material samples containing a finite number of grains that are called here multicrystalline specimens.
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Figure 2: Equivalent plastic strain field at a (001)[110] crack tip according to classical crystal plasticity. The
location of the crack is indicated by the bold line.
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Figure 3: Amount of equivalent plastic slip along a half circle close to the crack tip for three different values of the
Cosserat extra–hardening parameterH.

Figure 4: Equivalent plastic strain field at a (001)[110] crack tip according to Cosserat crystal plasticity (H = 1000
MPa, deformed geometry showing the crack tip opening).
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3.1 Coarse Grain Specimens : Simulations vs. Strain/Lattice Rotation Fields Measurements

The strong development of experimental field measurement methods in the last ten years makes it possible to
perform accurate comparisons between extensive experimental and numerical results (Ziebs et al. (1996)). The
range of validity of continuum crystal plasticity has been tested on recrystallized metal specimens containing a
small number of large grains. Electron Back Scatter Diffraction (EBSD) can be used to identify the orientation of
all grains. Precise finite element meshes can be designed looking at all sides of the sample, provided that there
is no more than 1 or 2 grains within its thickness. Three typesof information can be determined experimentally
during the deformation of the sample, usually in tension : the lattice rotation field deduced from EBSD analysis
at different stages of straining, in–plane strain field using the fiducial micro–grid technique, and elastic strain field
based on X–ray analysis. The two first types of measurement were carried out by Delaire et al. (2000) in copper
multicrystalline specimens. They reveal the outstanding ability of continuum crystal plasticity to account for
the development of non–homogeneous deformation inside grains associated with strain incompatibility between
neighbouring grains. Precise lattice rotation measurements are also possible using synchrotron radiation, as done
by Eberl et al. (2002) for instance. The intensity of such beams makes it possible to distinguish the lattice rotation
induced by straining from the initial mosaicity, i.e. shortrange fluctuations of crystal orientation, which always
exists in large grains. It is not clear up to now which role theinitial mosaicity plays on the subsequent deformation
of crystals, and whether FE calculations are able to take this into account.

3.2 Metal Coatings

Metal coatings are examples of multicrystalline microstructures with high industrial impact. Zinc coatings on
galvanized steel sheets for instance are used in the automotive industry. The thickness of the coating studied
by Parisot et al. (2001) is 10µm, whereas the in–plane grain size is of the order of 300µm. This means that
the coating contains only one grain within the thickness, and that the microstructure is completely defined by a
2D EBSD map. Zinc has a hexagonal crystallographic structure. The active slip systems are mainly basal and
pyramidalΠ2, as determined by Parisot et al. (2001). Due to the solidification process, the grains have preferred
orientations, as thec–axis of the hexagonal unit cell is close to the vector normalto the steel sheet. Fig. 5(a) shows
a finite element map of 34 zinc grains on a steel substrate. Forthe computations performed for the present work,
a recrystallized coating is considered so that the in–planegrain size is reduced to about 30µm. The objective of
this computation is to analyze the strain gradient that may develop from the interface to the free surface during
tensile testing in the plane. The analysis made for the case of pancake grains (300µm) revealed that no gradient
exists in the thickness except very close to the grain boundaries, as shown by Parisot et al. (2001). The situation
becomes very different when the in–plane grain size is closer to the thickness. Fig. 5(b) and (c) give the maps
of equivalent plastic strain due to basal slip, which is the mainly activated slip system family. It can be seen
that plastic deformation close to the steel/coating interface is significantly more homogeneous than at the free
surface. The deformation near the interface is dictated by the quasi–homogeneous deformation of the substrate.
In contrast, plastic strain incompatibility from grain to grain induced by different crystal orientations results in
strongly heterogeneous plastic slip fields close to the freesurface and grain boundaries.

Another important constraining effect due to the substratehas been reported by Parisot et al. (2001). The plastic
behavior of zinc single crystals is highly anisotropic. In particular, when the coated sample is strained in direction
x1 for instance, the lateral contraction ratio is usually strongly different from−0.5 in the zinc grains, depending on
its special orientation. For some very specific orientations detailed in Parisot et al. (2001), this ratio is even close
to zero. In contrast, the steel substrate behaves almost isotropically. As a consequence, in tension alongx1, the
substrate prescribes a lateral deformation of about−ε11/2 to the individual grains of the coating. This results in
strong biaxial stresses in the zinc grains. That is why pyramidal Π2 slip systems and even twinning, which have
higher critical resolved shear stresses than basal slip systems, are systematically observed in coatings with pancake
grains. Another consequence of this multiaxial stress state inside grains is investigated here. When the lateral
expansion ratio is larger than−1/2, the lateral stressσ22 becomes strongly compressive. If a small crack exists
or develops at the substrate/coating interface, the finite element computations of Fig. 6 show that a local buckling
can occur due to lateral compressive stresses. This is a possible cause for spalling phenomena observed during the
stamping of galvanized steel sheets.
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Figure 5: (a) Finite element mesh of 34 grains in a zinc coating on a steel substrate; basal plastic slip distribution
(b) in the coating near the interface and (c) on the free surface, for a tensile test in directionx1 up to 1.5 % overall
tensile strain (the thick lines coincide with grain boundaries).
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Figure 6: Buckling phenomenon in one grain of a zinc coating on a steel substrate : (a) Finite element mesh
showing an initial crack at the substrate/coating interface, (b) plastic slip contour map and deformed state during a
tensile test along a direction normal to the figure plane (strain in %).

4 Homogenized Polycrystal Models

4.1 Levels of Heterogenities and Modeling Strategies in a Polycrystal

Starting from the macroscopic scale (level 1), where a number of grains are considered, several levels can be
considered in polycrystal modeling. The mechanical state at each of these levels will be characterized by a stress
tensor, a strain tensor, and eventually a series of internalvariables. Additional variables can also be introduced to
model scale transition.

Let us assume first that each grain has a uniform chemical composition and crystal lattice. Level (2) would
correspond to the level of a so–called “phase”. In uniform field models applied to polycrystal modeling, a phase
is nothing but the result of the average of all the grains having similar crystal orientations. So stress and strain
tensors are the result of an average of all the occurences of this orientation. Note that, since the neighboors of each
real grains are different, the averaged quantities in each grain present a certain scatter, related to the local stress
redistribution. One could denote the level of each ”real” grain as (2’). Uniform field models will consider phase (2)
level, so that a scale transition rule will link macroscopicstress and strain with stresses and strains in each phase.

Level (3) classically corresponds to the local field, which represents intragranular stress and strain variations. These
variations are captured only in an FE modeling of the detailed microstructure, and result from the local application
of the equilibrium equations. Averaging level (3) variables in a given grain provides a level (2’) response for this
grain, and averaging all the (2’) values in the RVE leads to the level (2) variables.

On the other hand, polycrystals can also be multiphase materials (ferrite–austenite, austenite–ferrite–perlite–
martensite in steels, for instance). As a rule of thumb, the approximated physical model chosen to represent
the microstructure must take into account the strongest heterogenities in the material. Here, the contrast between
the properties is larger between austenite to martensite than between two composite grains having a different ori-
entation. Since the main reason for having heterogenities in the RVE is now the nature and the local composition
of the material, the most reasonable micro-macro approach will consider an N-phase modeling. A phase will then
be defined for each component, disregarding crystal orientation. As a consequence level (2) stress will be defined
in austenite, ferrite, etc, and the scale transition rule will start from the macro level to directly reach these phases.
Usual criteria like von Mises’s will be used in each phase.

The preceding approach can also be revisited, in order to account for the grain level. The solution is to consider
two scale transitions, one from the RVE to the grain level, the grains being represented by their orientation, and
the second inside each grain, to get the average stress and strain on each intragranular phase. Depending on the
morphology of the phase and the statistical analysis of the distribution, the most efficient transition rule can be the
self–consistent, Mori-Tanaka’s, or any other possibility. Such attempts have been made for instance for modeling
α-β Titanium alloys (Feaugas et al. (1996)), or martensitic steels (Cherkaoui et al. (2000)).
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4.2 Identification of Scale Transition Rules

Homogenized polycrystal models are available to estimate the mean stress–strain in the phases of the polycrystal
in the case of elastoplastic, purely viscoplastic and even elastoviscoplastic grain behavior, for instance according
to self–consistent schemes (Molinari (1999)). They are usually based on simplified morphological assumptions
like that of an inclusion embedded in an infinite matrix combined with a specific pointwise linearization scheme
of the non–linear response of the material. A typical form ofsuch a transition law, common to several simplified
homogenization schemes, is the following

σ
∼

g = Σ
∼
+µ

(

β
∼
−β

∼

g
)

(4)

β
∼

= ∑
g

f gβ
∼

g, β̇
∼

g
= ε̇

∼

pg−Dε̇pg
eqβ

∼

g (5)

where non–linear accommodation variablesβ
∼

g have been introduced by their evolution rules according to Cail-
letaud (1992) and Pilvin (1996). Elastic isotropy of the grains with shear modulusµ is assumed for simplicity, and
ε̇pg

eq is a norm of the mean plastic strain rate in each phase. The evolution law (5) contains a parameterD which can
be calibrated so that the estimated mean stressσ

∼
g is as close as possible to the mean response of the corresponding

grains within the polycrystalline aggregate computed via the finite element method. Note that for the valueD = 0
the model coincides with Kröner’s elastoplastic self–consistent scheme. In the case of FCC polycrystals, this single
parameter is enough to get a reliable estimation of the behavior of the polycrystal (Cailletaud et al. (2003)).

The formulation of this simplified homogenized polycrystalmodel, presented here within the small perturbation
framework, ends up with the standard crystal plasticity consitutive equations for each crystal orientation subjected
to the stressσ

∼
g. Finally, the overall increment of plastic deformation is

Ė
∼

p
= ∑

g
f gε̇

∼

pg (6)

where f g denotes the volume fraction of grains with orientation close tog.

This rule can then be extended for more complex cases:
- for time dependent responses, a recovery term can be used inthe concentration rule;
- for more anisotropic local responses like for HCP crystals, extensions of the evolution rule (tensorial shape instead
of a scalar form) or enhancement of the number of accommodation variables may be necessary;
- for the description of ratchetting effect, a combination of linear and non–linear terms can be introduced in theβ
evolution.

The implementation of such a model in an FE code is not too difficult, since it has the same structure as classical
inelastic models. The only difference is the large number ofinternal variables (with isotropic and kinematic
hardening, the number of variables for each phase is twice the number of slip systems). Oneβ

∼
tensor is also stored

for each phase, that makes(2N + 6)×G, with N the number of systems per grain andG the number of grains
introduced to represent the texture. The final number is(2N + 6)×G+ 7 after adding the macroscopic elastic
strain and the macroscopic accumulated viscoplastic strain. On the other hand, the integration scheme is the same.
For the small perturbation case, the equations set is built from the strain partition equation and the evolution of
the internal variables. The local system can be solved by an explicit Runge-Kutta integration, with automatic time
step, or with a Newton method, if the number of variables is not too high (typically less than 500). The next section
shows an example of such a computation.

4.3 Application to Structural Computations

Some elements concerning the computational technique are reported now, then an example is given. A standard
finite element code where the unknowns are the incremental nodal displacements contains two major stages :

• a global stage: knowing the consistent tangent operator at each integration point, it consists in an assembly
to form the stiffness matrix of the problem. An incremental linear problem has to be solved which involves
this stiffness matrix. Clearly this stage contains a coupling between all points of the structure; hence it is
called aglobal stage. Note also that this global problem is only alinear one.
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• a local stage: the non–linear constitutive equation sets have to be integrated in time to give an estimate of
the stress at each integration point (and also to compute theconsistent tangent operator). These consitutitive
equations (as those presented in section 4.2) are usually non–linear in time. However they remain local in
space; this stage may then be seen as a high number of small differential systems to be solved independently.

The Need for Parallel Computations

The increasing complexity of mechanical models affects both local and global stages : the global stage becomes
more and more complex as soon as the number of degrees of freedom increases to capture fine geometrical aspects
of the structures. The local stage is also affected by this increase (because the number of integration points is tied
to the number of degrees of freedom), and also by the increasing complexity of constitutive equations.

The local stage is naturally parallel, since the integration of the constitutive equations can be performed indepen-
dently from the knowledge of the mechanical state of neighboring Gauss points. Attributing groups of elements
to a different processor is then a natural and very efficient technique, specially for models with a large number of
internal variables. Amdhal’s rule recalls that the gain in CPU time for a parallel computation strongly depends
on the percentage of parallel operations in the code. It is then necessary to also consider the global stage in the
parallel processing.

Domain decomposition methods (DD) are a very good class of methods to overcome these bottlenecks. In this
Section we briefly present the FETI method, a specific DD method. The reader may refer to Roux and Farhat
(1994) and Feyel (1998) for an extensive description.

Let Ω be the mesh of the structure andΩi a partition inN subdomains ofΩ : Ω =
⋃N

i=1 Ωi . Let B
∼ i be the trace

operator which gives the restriction on the boundary of a field defined inΩi . The FETI method deals with a
condensed interface problem, involving boundary forces onthe interfaces. These forces (it is a ”dual“ method)
are estimated using an iterative method that makes the displacement jumps across subdomains vanish. Solving the
global linear problem is indeed similar to solving the following subdomains problems simultaneously:

K
∼
~q = ~F ⇔

{

K
∼ i~qi = ~Fi +~λi, local equilibrium of subdomainsΩi

∑i B∼ i~qi =~0, displacement continuity across subdomains
(7)

Depending on the domain decomposition, it can happen that certain local systems are singular. It means that to
these subdomains not enough Dirichlet boundary conditionsare applied and solid rigid body motions are free. A
projected conjugate gradient method is then used involvingthese rigid body motions, which are determined using
the kernel ofK

∼
. This projection operation is indeed a small problem to be solved on the whole structure considering

all domains as solid blocks subjected only to rigid body motions. This provides the extensibility of the method.

An object–oriented finite element code called “ZSet” has been parallelized using this method (Feyel (1998)). A
major advantage of DD methods is that they automatically ensure not only the parallelization of the global stage,
but also of the local one (a single domain “handles” only the integration points of its domain).

FE Computation with a Large Number of Internal Variables

Polycrystal models have been used in the past in FE codes to predict texture evolution. Authors often use Taylor’s
assumption as a scale transition rule, so that the numericalimplementation is straightforward: the global strain rate
is just applied to a collection of grains. This assumption isno longer valid for complex and/or cyclic loading paths.
In this Section, we show numerical computations using theβ-model, calibrated to model the cyclic hardening of
specimens under non proportional 3D loading. Calloch (1997) developed a triaxial specimen, which was tested
on theAstŕee 3D servohydraulic machine in LMT Cachan. This specimen was acentral cube undergoing 3D
loadings; it allows to study the additional hardening observed in materials like copper or austenitic stainless steels
and described by a strain memory effect and indicators measuring the non–proportional character of loading paths
in constitutive equations.

Due to the complex shape of the specimen used in 3D experiments and described by Calloch (1997), mechanical
fields are not homogeneous, even if the design is such that thecentral cube undergoes uniform fields: the attaching
part of the specimen still plays an important role in the overall behavior. Also, due to the relative dimensions of
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Figure 7: View of the mesh showing the domain decomposition for parallel computing.

the cube with respect to the specimen, neither strain gaugesnor extensometers can be used to get the real loading
conditions prescribed to the central part. FE computationsare then needed to analyze the test results.

The polycristalline model is a good candidate for these computations. A detailed description of the results can be
found in Feyel et al. (1997). Seven years ago, CPU time was about one week. With a simple PC cluster, the same
computations would now take less than one day for several loading cycles. One 8th of the specimen is modeled.
The mesh contains 8288 quadratic elements, 3358 nodes and 69090 integration points. A domain decomposition
into seven subdomains is performed (see Fig. 7). The normal displacement of the side faces are fixed in order
to respect the symmetry of the problem. A cyclic loading is applied on the external faces. The polycrystalline
constitutive equation set contains 40 grains; 1207 internal variables are then necessary at each integration point
of the mesh, that is about 83 millions for the whole mesh. A great advantage of such a modeling is to allow a
simultaneous two scale analysis, on a macro and a micro scale. Fig. 8 shows the contour plots ofσ11 at the end of
the computation.

A microscopic analysis is also available by carefully post-processing the instantaneous and cumulated slip for each
system and each grain. For instance, Fig. 9 shows the evolution of the number of active slip systems, at three
different times during the computation. These values are computed at the center of the specimen. A slip system is
said to be active when the slip rate is higher than a predefinedthreshold. At the beginning of the loading, a certain
number of slip systems are active for all grains. This numberincreases with accumulated plastic strain.

5 Computation of Polycrystalline Aggregates

Polycrystalline aggregates are computational models for arepresentative volume element (RVE), often artificially
generated, to represent polycrystalline materials. They can be used to calibrate the transition rule of the model
shown in Section 4.2 (level (2)), and also to evaluate level (3) fields, in order to investigate local effects due to the
free surface or to grain boundaries.

5.1 Typical Results

A method for generating polycrystalline aggregates has been shown in Barbe et al. (2001a). It uses a Voronoi
tesselation of a given volume, the initial germs being installed by simulating a Poisson point process. The result
is a voxel file, defining grain orientation in each point inside the RVE. The next step is a mesh generation which
respects the microstructure. Two solutions can be found in the literature, a regular mesh involving multimaterial
elements (Fig. 10a) and meshes respecting the shape of the grain (Fig. 10b). The first solution is simpler and can
provide good results, even if the number of elements is relatively low. In fact, the result depends on the contrast
between the different phases. For instance for FCC aggregates, the global response becomes constant for cubic
meshes involving more than 14× 14× 14 elements and 200 crystal orientations. The same order of magnitude
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Figure 8: Contour of theσ11 stress component at the end of the computation.
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Figure 9: Distribution of the number of active slip systems for the central point of the specimen.
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(a) (b)

Figure 10: Two meshing strategies for the polycrystalline aggregate : (a) regular mesh, (b) mesh respecting the
grain boundaries.

is observed for HCP alloys (see Diard et al.). Nevertheless,if the scatter in the local properties is high, the real
convergence is not reached even for very large meshes. On theother hand, multimaterial elements do not allow
to give a realistic view on the grain boundaries. Their use should then be limited to investigations of the global
response, or to qualitative response in the grains, except if a very large number of elements is used (more than
30×30×30 elements, several thousands of Gauss points per grain). They are also not adapted for the description
of intergranular damage.

Fig. 11 shows a typical result concerning the local fields of the total strain in the tensile direction and the von Mises
stress. The material is a Zy4 alloy, identified in Diard et al.. The coefficients have been determined from tension
and internal pressure tests on tubes. The von Mises stress ishigher at the grain boundaries. On the other hand,
the deformation is localized in bands which do not follow thegrain boundaries. The present calculations are made
with a 28×28×28 mesh with 20-node quadratic elements and full integration. The integration point size can be
seen on the picture. In order to improve the description, developments have been made to explicitely account for
grain boundaries. The used model is presented in the next Section, and new results with the same material are
shown at the end of the paper.

5.2 The DOS Model for Grain Boundary Damage, Opening and Sliding

The behavior of a grain boundary is highly anisotropic. It must be defined in a local frame, built from the local
normaln to the grain boundary and two tangent vectors in the grain boundary. The normal direction is quite strong
as long as no damage is present, but the in-plane elastic moduli are weak. As a consequence, the only significant
terms in the stress and strain tensors are:
- the normal stressσn and the normal strainεn, which define grain boundary opening;
- the shear stressτ and the shear strainεt , which define grain boundary sliding.

The problem of the grain boundary opening and sliding is similar to interface debonding. This last problem has
been studied in the past (Needleman (1990); Chaboche et al. (2001)), by introducing special elements. The present
approach will use a regular continuous element, that makes it easier to manage damage.

In the chosen framework, the grain boundary can first have a viscoplastic motion when the loading starts. Damage
will then develop, and enhance opening and sliding. The damage evolution rule is written in terms ofY, which
is its conjugated variable, according to classical damage mechanics (Lemaitre and Chaboche (1990)), and usesE,
the elastic modulus in the normal direction, andµ, the shear modulus in the plane of the grain boundary:

Y =
σn2

E
+

τ2

µ
(8)
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Figure 11: Contour (a) of the total strain in the tensile direction, (b) of von Mises equivalent stress, for the aggregate
shown in Fig. 10.

The basic equations are defined according to the following scheme.

Effect Potential with. . .

normal strain Fn = Kn

〈

f n

Kn

〉nn+1

fn =< σn > /(1−D)−Rn

shear strain Ft = Kt

〈

f t

Kt

〉nt+1

ft = |τ|/(1−D)−Rt

damage FD = KD

〈

f D

KD

〉nD+1

fD =

√

Y
E(1−D)

−RD

Three independent potentials are defined from three threshold functions involving damage, normal stress and shear
stress. These potentials naturally provide a flow rate and a damage rate. One can see that shear and opening strain
are not coupled at the onset of plastic flow. Nevertheless, damage development will produce coupling between
them: as shown in equation 9, if the normal (resp. tangential) stress produces damage, it will increase the tangential
(resp. the normal) strain rate.

ε̇
∼

n =
∂Fn

∂σ
∼

=
∂Fn

∂ fn

∂ fn
∂σ
∼

=

〈

< σn > /(1−D)−Rn

Kn

〉nn

n⊗n = δ̇N
∼

ε̇
∼

t =
∂Ft

∂σ
∼

=
∂Ft

∂ ft

∂ ft
∂σ
∼

=

〈

|τ|/(1−D)−Rt

Kt

〉nt

{n⊗ t} = γ̇T
∼

Ḋ =
∂FD

∂Y
=

∂FD

∂ fD

∂ fD
∂Y

=

〈

√

Y
E

1
1−D

−RD

〉nD
1

√

EY(1−D)

5.3 Explicit Grain Boundary Meshing

Typical results obtained with the DOS model are illustratedin Fig. 12 on a 2D mesh. As shown in Fig. 12a,
the development of intergranular damage will produce a softening of the material. The damage field is shown
in Fig. 12c, for a vertical tensile loading. Since there is nospecific surface effect in the computation, damage
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Figure 12: Illustration of 2D computations with grains and grain boundaries with DOS model: (a) the global load
response, (b) the mesh, (c) resulting intergranular damagefield.

develops anywhere in the material, the grain boundaries perpendicular to the external loading being preferentially
affected. The damage path can be checked using the second plot (Fig. 12b), in which the grain boundary elements
are present between grains.

6 Conclusion and Future Work

Crystal plasticity is now the engine of a lot of models. It hasalready been applied in FE codes by a series
of researchers and engineers. From an industrial point of view, the most significant computations have been
performed to predict texture evolutions, with relatively crude scale transition rules. The present paper shows that
structural computations (here on a specimen) can be made also with more realistic models, valid also under cyclic
loadings. On the other hand, the first computations in the literature have been made on 2D meshes. The more
recent approaches of the problem tend to introduce real or realistic microstructures, and to replace 2D meshes,
which only capture qualitative responses, by 3D meshes, in order to provide quantitative results. It means that the
numerical models are now able to switch from the global to thelocal level, with a reasonable CPU time, provided
parallel processing is introduced into the code.

Crystal plasticity in a parallel FE code represents a powerful computational tool to investigate the local stress
and strain in heterogeneous materials. It allows also to solve problems in which global and local scales are not
well separated. The computation of microstructures will then be used in the future to better understand the local
deformation and failure mechanisms. The present paper shows examples concerning crack tip in single crystals,
zinc coating layers on steels, and deformation of HCP polycrystalline aggregates.
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Starting at a millimetric size, the crystal plasticity approach tends to lower scales. The purpose is then to bridge the
gap between the macroscale and ”less than micrometric” scales, where dislocation densities, and other methods
originating from physics are developed. New models and new techniques are to be developed to allow fruitful
discussion between scientists from both sides. Generalized formulations of plasticity theory to account for high
gradients which are predicted by the computations, and alsomore sophisticated mesh generation tools, coupled
with error control, represent the challenge to come in the near future.
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Olivier Diard, Electricité de France, Division R&D, F-77818 Moret s/ Loing, email:olivier.diard@edf.fr,
Dr. Frédéric Feyel, ONERA/DMSE/LCME, 29 avenue de la Division Leclerc, BP 72, F-92322 Châtillon, email:
feyel@onera.fr

145


