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Abstract-     

The paper deals with an entire system of monitoring and 
diagnosis of LV switchboards based on the measurements of 
currents, ambient temperatures and local temperatures of 
electrical joints. This system meets the needs to prevent the 
breakdowns of LV switchboards, which, although rare, can 
involve huge financial and human loss. The thermal 
measurements are done by wireless thermal sensor. The measured 
data are transmitted via internet and collected in a server, to be 
centrally processed. This centralized data processing includes a 
local detection of failures and a global diagnosis which leads to  
some maintenance recommendations. This paper will focus on, the 
local detection by comparison with an healthy model, and the 
global diagnosis using Bayesian network technique. The feasibility 
of these methods is tested with experimental data and expert’s 
information. 

I. INTRODUCTION  

The switchboard is a key element of any electrical installation. 

It incorporates devices designed to distribute electrical power 

and protect circuits and people. It is a critical element to the 

dependability of an electrical installation. A breakdown of the 

switchboard although rare could be catastrophic because of the 

critical nature of some of the supplied systems (airport, 

hospital) and the high costs associated with failures. Therefore, 

LV switchboard users need to detect and solve the problems 

before failures appear. Alternatively, even in case of failure, 

they need to diagnose properly and rapidly the failure’s causes 

in order to eliminate them as soon as possible. An inquiry to 

Schneider-Electric worldwide experts gives the following 

failure distribution (Fig.1). 

 
Fig 1 LV switchboard failure distribution. 

As we can notice, the first cause of LV switchboards failure is 

joints fault, which, very often leads to a local overheating. It 

should be noticed that, the others causes of failure such as 

overloads, harmonics and malfunction of ventilation are also 

associated with overheating. Therefore, there is reason to 

address the detection and diagnosis problems with a 

monitoring system based on thermal measurements. Up to 

now, the trend was to carry out frequent thermographic 

inspections (Once every 2 years) to determine the hot points in 

one shot. Today, with internet technology, and wireless 

temperature sensors, it is possible to continuously record the 

thermal data from sensors. This recording process including 

wireless temperature sensors and internet server is now 

available at Schneider Electric. Current measurements could 

also be available via communicating equipment. This paper 

aim is to present a monitoring system that uses the data from 

existing recording process to detect and then diagnose the 

failures.  

 
Fig 2. Monitoring and diagnosis system based on wireless thermal sensor and 

current measurements  

As it can be noticed in fig 2, this system is composed of three 

stages: • First, the data transmission via internet technology, 

•Second, the detection stage with alarm generation, •Third, the 

diagnosis itself in order to analyze the alarms generated from 

the detection stage to make some preventive or curative 

maintenance recommendations. To ensure a good detection, we 

need to understand the effects of failure and to know the right 

sensor placement. This will be addressed in section 1. Section 

2 will be devoted to the detection stage, by comparison with a 

healthy thermal model. Another approach of detection, 

presented in a previous paper [1], may be to use an estimator 

based on training process with neural network.We will not go 

into that in this paper.  Section 3 will be dedicated to the global 

diagnosis stage using the technique of Bayesian networks. 

II. EXPERIMENTS ON ELECTRICAL JOINTS 

       
      Clamped         gripped        bolted      on edge 

Fig 3 Different types of electrical joints. 

Some experiments, carried out on various types of joints are 

presented. The goals of these experiments are to analyze the 
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thermal changes due to joint failures and to find the right 

sensors placement. They are related to clamped joint failure 

effects, joint progressive loosening, joint aging. 

A.  Effect of Clamped joint failure. 

More and more seen in LV switchboards, clamped joints are 

used to connect withdrawable apparatuses, which permit to 

drastically reduce the dismantling time during maintenance 

operation. The following test has been carried out to illustrate 

what happens when a clamped joint fails. The test assembly is 

composed of a Schneider Electric three-phase circuit breaker 

NS630 installed in a cubicle.  We distinguish on fig4 a 

clamped joint (with 3 clamps)  used to connect each phase of 

the circuit breaker. The test will consist of supplying the circuit 

breaker with the rated current (520A) in different 

configurations, with clamped joints composed of  3 , 2, and 1 

clamp respectively. Thermocouples are used to measure the 

temperature of selected point numbered from 1 to 13.We can 

notice that thermocouples are also placed inside the circuit 

breaker. Fig4 gives the resulting profile of temperature in 

which we can see that the reduction of the number of clamp 

leads to rise the profile of temperature.  

Fig 4 Effets of clamped joints failure 

This observation could be explained by the increase of the 

electrical resistance when reducing the number of clamps (of 

each joint). Thus, according to Joule Effect when the current 

passes through, the contact becomes the seat of a stronger 

creation of heat. The reduction of the number of clamps not 

only increases the electrical resistance but the thermal 

resistance too[3]. Thus the heat produced by the circuit breaker 

has more difficulties to be propagated through the joints. That 

results in the noticeable difference in temperature at point 2 

and 3 or 11 and 12 in both sides of the “1 clamp” curve. The 

conclusion of this experiment for sensor placement is that in 

such a configuration, it is preferable to put the sensor on the 

side near the circuit breaker. Today, the switchboard 

architecture does not always permit this placement. Some 

studies are being carried out at Schneider Electric to integrate 

the wireless sensor in the clamped joint. 

B. Joint progressive loosening 

This experiment has been carried out to analyze the 

temperature changes generated by a progressive loosening on 

three common technologies of electrical joints (gripped joint, 

bolted joint, on edge joint).This test consists in supplying a 

busbar leading to a joint (gripped, bolted or on edge) with 

about the rated current. After the stabilization of the 

temperature, progressive loosening of ½, ¼... of the rated 

tightening torque  is made. The profile of temperature is 

measured using thermocouples placed along the busbar (fig5) 

 
Fig 5 Progressive loosening test assembly and results for the gripped joint. 

Point 1: Thermocouple placed at 60cm ,Point3; Thermocouple placed at 20cm  

Point5:Thermocouple placed on the contac;, Ambient:  approximately 50 cm 

far from the busbar 

The results of the test, for the gripped joint (fig 5), show that it 

is necessary to loosen down to less than 1/8 of its rated torque, 

(28Nm) to be able to see a significant overheating.  This shows 

that the electrical resistance of the gripped joint does not vary 

enormously during loosening until 4 Nm (around 1/8 of the 

rated torque), from which it increases exponentially. Since the 

heating results from Joule Effect, heating increases with 

electrical resistance[4]. With regard to the other types of joints, 

this experiment gives similar results. The on edge joint 

distinguishes itself somewhat by greater joint electrical 

resistance, more overheating being generated on it (fig 6). The 

overheating attenuation can be calculated as the ratio of 

overheating on the joint (point 5) to the overheating 200 mm 

far from the joint (point 3).   
Gripped Bolted On edge

Rated torque (RT) 28Nm 50Nm 28Nm

Busbar cross-section(mm²) 80*10 60*10 60*10

Current 1800A 1500A 1500A

Time constant (minutes) 45 40 42

Overheating with 1/4 RT 4°C 3°C 12°C

Attenuation at 20cm 47% 53% 55%  
Fig 6 Result of progressive loosening test, on the three types of joints. 

There is 52% attenuation on average of the overheating on the 

three types of joints (gripped, bolted, On edge) at 200 mm 

from the joint (point 3).Through the observations made during 

this experiment, we can assume that:                

To observe a considerable rise in temperature the joint has to 

be loosened down 1/8 of the rated torque. Moreover, to detect 

the heating effect of the loosening of a joint the sensor has to 

be placed less than 200 mm from the joint. 

20°C

40°C

60°C

80°C

100°C

120°C

140°C

00
:0
0

00
:4
0

01
:2
0

02
:0
0

02
:4
0

03
:2
0

04
:0
0

04
:4
0

05
:2
0

06
:0
0

06
:4
0

07
:2
0

08
:0
0

Time(h:mn)

Ambiant [°C]

Point 1 [°C]

Point3 [°C]

Point5 [°C]

1/2 1/4 1/8
With  

hands

31 5

1500

20°C

40°C

60°C

80°C

100°C

120°C

140°C

00
:0
0

00
:4
0

01
:2
0

02
:0
0

02
:4
0

03
:2
0

04
:0
0

04
:4
0

05
:2
0

06
:0
0

06
:4
0

07
:2
0

08
:0
0

Time(h:mn)

Ambiant [°C]

Point 1 [°C]

Point3 [°C]

Point5 [°C]

1/2 1/4 1/8
With  

hands

20°C

40°C

60°C

80°C

100°C

120°C

140°C

00
:0
0

00
:4
0

01
:2
0

02
:0
0

02
:4
0

03
:2
0

04
:0
0

04
:4
0

05
:2
0

06
:0
0

06
:4
0

07
:2
0

08
:0
0

Time(h:mn)

Ambiant [°C]

Point 1 [°C]

Point3 [°C]

Point5 [°C]

1/2 1/4 1/8
With  

hands
1/21/2 1/41/4 1/81/8

With  

hands

With  

hands

31 5

1500
31 531 531 5

1500

80°C

100°C

120°C

140°C

160°C

180°C

200°C

220°C

1 2 3 4 5 6 7 8 9 10 11 12 13

1 clamp

2 clamps

3 clamps

1 2 3 11 13
4

12

80°C

100°C

120°C

140°C

160°C

180°C

200°C

220°C

1 2 3 4 5 6 7 8 9 10 11 12 13

1 clamp

2 clamps

3 clamps

80°C

100°C

120°C

140°C

160°C

180°C

200°C

220°C

1 2 3 4 5 6 7 8 9 10 11 12 13

1 clamp

2 clamps

3 clamps

1 2 3 11 13
4

12

inner 

5

6 7

8

9 10

5

6 7

8

9 10



C.  Joint Aging 

In this test, the aging process of the joints is investigated and 

then analysis is made of the influence of the current level on 

this aging. The test is made on the gripped joint tightened 

beforehand at 1/8 of its rated torque to accelerate the aging 

process. The experiment consists of supplying the busbar with 

cycles of currents. Each cycle consisted of two hours of current 

supply followed by a cool-off period of about two and a half 

hours. The e-hour duration was chosen to allow the busbar to 

reach a stable temperature, after which the busbar was allowed 

to cool down to ambient temperature. For the first 12 cycles, 

the busbar was supplied with a current of 1800 A, after which 

it was supplied with a current of 2200A until cycle 32. Fig 7 

gives the temperature rise calculated as the difference of 

temperature between point 5 (on the contact) and point 2 (400 

mm far from the contact). This curve shows that the number of 

cycles affects the joint contact by the rise of the local heating.  

 
Fig 7 Aging test on gripped joint 

From cycle 1 to cycle 12, the contact has not aged significantly 

From cycle 12 to cycle 32 with a supply current of 2200A 

(about 1.5 time of the rated current), a steady increase of the 

overheating can be observed.  Therefore, the joint indeed ages 

in time with the number of cycles. This ageing process is 

accelerated by overloads. The ageing process could be 

explained by two reasons: The oxidation of the joint interface 

metal, which contributes to increase the joint resistance, with 

an oxidation speed accelerated by temperature rise due to 

overloads. The thermo-mechanical effects involving stress-

relaxation phenomena associated with cycles, which reduces 

contact force and consequently increases contact resistance [2].  

Through the previous experiments, it is apparent that an 

electrical joint holds onto its failure state once the failure 

appears, and could get worse under certain conditions. In the 

following section, a technique of detection of failures using a 

comparison with a healthy model is tested.    

III. AUTOMATIC DETECTION OF ABNORMAL 

HEATING BY COMPARISON WITH A HEALTHY 

THERMAL MODEL.   

A. Principle of modeling and automatic detection. 

At Schneider Electric, there is an in-house, thermal 

computation software based on a representation of the LV 

switchboard as a network of nodes connected to each other by 

thermal conductance (convective, conductive, and irradiative). 

The principle of modeling is a nodal method and the 

calculations are done by finite difference. The software takes 

into account the electric aspect of the problem through   

electrical resistance. This model is suitable for modeling 

conduction phenomena, which represents 60 to 70% of heat 

exchange phenomena in the switchboard. 

 

 

 

 

 

 

 

 

 

 

Fig 8 Electrical joints’s states estimator. 

This software can be used to have a thermal modeling of the 

switchboard (Schneider Electric model library). The inputs of 

the model are the currents and the ambient temperature of the 

switchboard.  The output of the model is the temperature on 

several selected electrical joints. It should not be forgotten that 

most of the time the model result is a bit different from the 

experimental results. For reducing the disparity between the 

model and the real system, something important to do after 

modeling is to make the model in line with an experimental 

measurement from a healthy switchboard. This is done by 

tuning some parameters as joint electrical resistance, thermal 

resistance and heat exchange coefficient. This tuning has to be 

done on the operating currents range. Then the fitted model is 

used as a reference of a healthy switchboard. Over time, the 

drift of the difference from the temperature measured in 

comparison with the corresponding temperature from the 

model is an estimator of the joints state (fig8). In the following 

paragraph we will test this method on a switchboard in real-life 

situation. 

B. Example of a real switchboard tested and modeled..             

 

 

 
 

 

 

 

 : Points of measurement of compartment ambient temperature. 

: Busbar with bolted joint.        : Clamped joint. 

 :  Compartment.       : Points of measurement of joint temperature. 

Fig 9 Real LV switchboard in experiment, with associated busbar circuit and 
measured points. 
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Fig 9 shows a real switchboard in the experiment (left), with 

one of the three associated busbar circuit phases (right). 

Thermocouples have been put on some joints (including bolted 

and clamped). Ambient temperatures of selected compartments 

have been measured via thermocouples too. First, the 

switchboard has been supplied by a current of 1000A the 

thermal stabilization occurred after a time period of about four 

and a half hours. Fig 10 gives the comparison between 

temperatures performed by the modeling software after tuning, 

and the real values measured on the joints. It can be noticed on 

fig 10 that the temperatures resulting from modeling are very 

close to the experimental ones. The average relative error 

between the model and the experiment is 1% with a maximum 

of 2% on points 2, 4, 6 and 7. To verify the validity of the 

model, we choose to supply the switchboard with another 

range of current (1600A) in order to make the same 

comparison.  
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Fig 10 Comparison between the model and the experiment after tuning with a 

test at 1000A, and validation of the model with a test at 1600A. 

The model has been run without changing anything on the 

modeling parameters apart from the input current of 1600A. 

The graph also gives the comparison between the model and 

the experiment with 1600A of supplied current. The average 

relative’ error between the model and the experiment is 2% 

with a maximum of 4% reached on the point 5. According to 

these results, the model can be qualified as valid. Now this 

model can be used as a valid reference.  In order to check that 

the model can detect an abnormal heating, an experiment has 

been done with joint 9 loosened at 1/8 of its rated torque. The 

supplied current was 1000A. We can see on fig 11 that the 

faulty point 9 is abnormally hot, compared to the healthy 

model. And the others faultless points are close to the model, 

apart from the point 8 a bit affected by the hot temperature on 

point 9 through heat exchange. 
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Fig 11 Comparison between the model and a test with failure of the joint 9. 

IV. DIAGNOSIS OF FAILURES BASED ON 

BAYESIAN NETWORKS. 

Once the failure has been detected, the following stage should 

be the diagnosis itself, that is to know the cause of the failure. 

In the present methodology, when a failure occurs, the experts 

go on site to seek some indications guiding them to find the 

causes of failure. More specifically, knowing the failure, they 

seek the indications in a probable family of indications, and 

work by an elimination process to find the most likely cause. 

Since experts have a probabilistic and inference based 

reasoning, one of the natural ways to represent and to automate 

this reasoning is by a Bayesian Networks (BN) approach. BN 

also allows predictive diagnosis, ie knowledge of consequences 

to LV switchboard working conditions, early drift detection. 

The second reason in support of the BN choice is that in 

numerous industrial diagnosis problems, BN showed 

encouraging results [14].  

A. Bayesian Network. 

It is to the Bayes rule that we owe the term “Bayesian”. BN is 

the research results of J.Pearl and a Danish team of Aalbord 

University [5]. BN is a causal graph making it possible to bind 

a set of effects to their causes. BN combines tables of 

conditional probabilities with the causal graph that enables a 

probabilistic reasoning on the graph to be accomplished. With 

BN it is possible reason in the two directions: the calculations 

of the probability of causes knowing the effects but also the 

probabilities of the effect knowing the causes. The 

implementation of a BN is done in two stages:  

• Knowledge acquisition and graph creation. 

• Conditional probabilities table (CTP) filling. 

 Several internal documents in Schneider Electric deal with LV 

switchboard failure causes.  The reading of these documents 

[6]-[7]-[8]-[9] enables us to get an idea of the parameters 

acting on the operation of LV switchboard and which could be 

useful for its diagnosis. This information has been 

supplemented with various discussions with experts. Indeed six 

experts were questioned on the possible causes of degradations 

of LV switchboards and three among these experts intervened 

in the construction and the final validation of the BN. With 

regard to BN implementation, we use MATLAB Toolbox, 

FullBNT-1.0.2 developed by Kervin Murphy at Berkeley [10]. 

B. Case of application: Example extracted from the whole graph. 

In this section a concrete example of BN is given. This 

example is drawn from a complete BN of the LV switchboard. 

The choice of this part of the graph was guided by a 

preoccupation with simplification. Thus, a part of the graph 

with variables that have a reduced number of states was taken. 

These variables have been considered as binary. By 

considering binary variables, we place ourselves on a level of 

diagnosis, which can be interpreted as a "roughing" step in 

diagnosis. 

1) Information coming from the experts:  

 • An increase in the external temperature (ET) automatically 

involves an increase in the LV switchboard ambient 

temperature.• A ventilation obstruction (VO) makes the 

circulation of fresh air difficult. Hence, with a VO additional 

heating of the internal air of the switchboard is observed. • The 

rated current is distributed in the different circuits of the LV 

switchboard by taking into account a multiplying factor called 

the diversity factor (DF), given by the manufacturer.  The 

failure to respect this requirement leads to a rise in the internal 



temperature of the table. • Abnormal heating (AH) is a local 

phenomenon, which does not contribute very much to the 

heating of the ambient temperature of the switchboard, but 

rather contributes to the degradation of the insulators (ID) that 

are close to the hot point. • A high internal temperature (IT) 

has two consequences, which are the tripping of thermal 

release (TTR) of circuit breakers or the degradation of 

insulators that are under additional thermal stresses. 

2) Graph construction and CPT filling. 

All this information enables us to identify the variables and 

build the causality graph (Fig12). The experts set the direction 

of the arrows of causality, and some weights corresponding to 

some extent to the force of the causality.   

Therefore, these weighs transformed into probabilities are 

useful to compute the probabilities of the nodes IT, ID and 

TTR on Noisy Or variable assumption.  

 

 

 

 

 

 

 

 

 

Fig 12 Causal graph deducted from experts information with corresponding arc 
strength meaning. 

In fact the estimation of all the combinations by an expert 

would be very tiresome.  For example for a binary node, Y 

with four parents X, it should be necessary for the experts to 

estimate 2
4
 = 16 probabilities.  That becomes unrealistic on the 

scale of a complex graph. As suggested by Finn V Jensen in 

his book Bayesian Networks and Decision Graphs [11], in such 

a case it is possible to make the assumption of the variable 

Noisy-Or . The Noisy-Or variable aims to simplifying the 

calculation of all the combinations. For binary variables and on 

the assumption that event “Xi causes Y” either independent of 

the events “Xj causes Y” for i different from j, The Noisy -Or 

assumption gives: ∏
∈

−−=
XpXii

piXYp
/

)1(1)/(            (1) 

Thus for a node Y with N parents X, N probabilities will be 

specified instead of 2
N
 probabilities. In addition to this 

calculation, the following assumption is made:  When all the 

parents X are false, the probability of having the result "false" 

is 0.9 instead of 1, because we are not sure that all cases have 

been considered.  The literature in this case, proposes to add a 

leaky node that is always activated on “true”. This method is 

not followed because it contributes to increase CPT length. The 

use of Noisy-Or assumption for IT and ID nodes is not really 

necessary because the dimension of the CPT for these two 

variables are not high. However, the resultant CPT for these 

two variables, by making this assumption was close to those 

expected by the experts. 

C. Results: 

1) Diagnosis analysis. 

Let us consider the case where the client observes that his 

switchboard is failing but still operating. For instance, he 

observes a tripping of thermal release (TTR=true) and an 

insulation degradation (ID=true). Therefore, he wants to know 

the failures cause. The Bayesian network is then questioned 

about effects toward causes.  This leads to the results in fig 13.  
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Fig 13 Inference to diagnose a failure 

Although the results say that an abnormal heating (AH) is the 

most probable cause, an increase of the exterior temperature 

(ET) is also a probable cause since the two probabilities do not 

differ so much. In this case, we want to know the true cause. 

Therefore, the variable which is the most cost effective to be 

checked, should be investigated. In this case, AH could not be 

checked without stopping the process supplied by the LV 

switchboard, leading to high cost.    

 
Fig 14 help for diagnosing principle scheme. 

In this case it is more cost effective to check if the exterior 

temperature is high, for example by checking the weather 

report. Afterward, an effective maintenance strategy can be 

implemented according to result of the weather report. As can 

be noticed, Bayesian Network is a tool for focusing our 

attention on the main causes to check.  

2) Risks analysis purpose:  

In the case where the client does not notice any  failure of the 

system, but wants to know the risks of defaults taking into 

account the environment of the system and its operating 

condition, BN can be used to achieve this aim.  

 
 Fig 15 Risk analysis principle scheme 

The graph is then questioned by causes towards effects. For 

instance, the client knows that the ventilation does not work 

well, the question it can ask himself is: Is it risky for the plant? 

The implemented BN can answer this question. Fig 16 shows 

that, there is about 70 % of chance that an insulation 

degradation (ID) appears. That can be risky for the client to let 

its LV switchboard without doing anything.                      
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Therefore, it should be decided to repair the ventilation as soon 

as possible. 
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Fig 16 Inference for risk analysis. 

D. The use of BN with learning process. 

When constructing a Bayesian network, it is not always 

possible to be certain of the correctness of the chosen 

conditional probabilities tables. It is often the case that experts 

in design tend to overestimate the reliability of the equipment 

that they design. Therefore, we want to build a system that 

automatically adapts the probabilities tables (Fig17).  

 
Fig 17 Automatically update of CPT. 

A learning process could accomplish this using a database. 

Learning conditional probabilities from database is a well-

known concept. This is well explained in [12]. In the case that 

all the variables are observed, one of the simple ways for 

learning probabilities is statistical learning [13]. For instance, 

according to statistical learning, the calculation of the 

conditional probability from a database )1,1/1( === ITAHIDp  

 is given by: 

1,1,01,1,1

1,1,1

======

===

+ ITAHIDITAHID

ITAHID

NN

N
                      (2)                              

where 1,1,1 === ITAHIDN  is the amount of time the combination 

ID=1, AH=1, IT=1 occurs, and
1,1,0 === ITAHIDN  , the amount of 

time the combination ID=0, AH=1, IT=1 occurs. Most of the 

time, in practical problems, there are some unobserved 

variables. The databases are then incomplete. In this case, there 

are some methods for learning, based on the estimates of the 

missing parameters. The most used method is the Expectation-

Maximization (EM) algorithm [13]. The centralized database 

will contain all the encountered cases that the experts will have 

validated the coherence and logic before registering them into 

the database. This allows a diagnosis of a switchboard by using 

the cases encountered in other switchboards. The database 

could be initialized with some samples whose distribution 

reflects the probabilities given by the experts. The higher the 

initial samples size, the higher the probabilities will be resistant 

to changes.           

V. CONCLUSION 

This paper has presented a combined, local detection of failure, 

and global approach for LV switchboards diagnosis. The 

results of some experiments leading to the right placement of 

sensors, have been shown. A method of detection of failures 

based on comparison with a healthy model, in order to raise 

alarms with electrical joint failure, has been presented. The test 

of this method on a switchboard in a real-life situation gives 

encouraging results. Concerning the diagnosis stage, we use a 

Bayesian network that is a suitable technique to automate the 

probabilistic way of thinking of the experts. A concrete 

implementation of a part of the whole switchboard Bayesian 

network shows that this method can be a useful tool for the 

diagnosis and the risk analysis too. A major benefit of using 

Bayesian Network is that it allows easily taking into account 

the experience feedback for updating the conditional 

probabilities with learning process (fig 17). The encouraging 

results, showed in this paper enable us to believe in the 

feasibility of this system of detection and diagnosis. 
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