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Abstract: In this paper we study a transient birth and death Markov process penalized by
its sojourn time in 0. Under the new probability measure the original process behaves as
a recurrent birth and death Markov process. We also show, in a particular case, that an
initially recurrent birth and death process, behaves as an transient birth and death process
after penalization with the event that it can reach zero in infinite time. We illustrate some
of our results with the Bessel random walk example.
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1 Introduction

Consider a transient Markov chain with positive states. Is it possible to force the chain
to have an infinite number of visits at the state 0? Does one have a reasonable manner to
do this? Conditionally to this behaviour, is the resulting chain recurrent or transient? These
are some natural questions when studying penalization for Markov chains, that is to modify
their laws in order to alter some of their properties. In the present paper by penalization one
understands to condition by an event with probability zero, in our case, the event that the
transient Markov chain returns infinitely often at 0.

The penalization of a probability measure (for instance, the distribution of some Markov
process) by some appropriate weights is the main tool of some classical probabilistic ideas
as Doob’s h-transform, Feynman-Kac transform or Girsanov transform. For instance, in
the latter case, an exponential martingale occurs as weight factor and, under some natural
conditions, a new probability measure is well defined. Since, dividing a probability distribu-
tion by a family of weights does not create necessarily a probability family of distributions,
one needs to made some limiting procedure (often as the parameter goes to infinity). The
main features of the penalization procedure have been pointed out in a series of papers by
Roynette,Vallois,Yor (see [12] for a survey). Essentially, one considers continuous parameter
Markov processes (Brownian motion or Bessel processes) and one penalizes by some function
of local time, maximum, one-sided maximum etc.

For instance, one considers (Ω, {Ft}0≤t≤∞, {Rt}t≥0,
�

) the canonical Bessel process of
index α ∈ (−1, 0), and one denotes {Lt}t≥0 its local time at level 0. Then one can be
interested on the limit

lim
t→∞

�
0 [ � Ash(Lt)]�

0 [h(Lt)]
= Q

(h)

0 (As) =
�

0

[

� AsM
(h)
s

]

, As ∈ Fs (s fixed), h : � + → � +,
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and one proves that the process {M (h)
s }s≥0 is a martingale. Then one studies the canonical

process {Rt}t≥0 under the new probability Q
(h)

0 and some interesting properties of this process
are pointed out.

The discrete parameter counterpart of the same problems was performed very recently
by Debs [1] for random walks. For instance, if (Ω, {Fn}0≤n≤∞, {Sn}n≥0,

�
) is the canonical

standard random walk and if one calls the local time at 0 the following sequence

`0 = 0, `n+1 = `n + � {Sn=0}, n ≥ 0,

then one can be interested on the limit

lim
p→∞

� [ � An

(

(h(`p) � {Sp>0} + g(`p) � {Sp<0})
)]

� [
h(`p) � {Sp>0} + g(`p) � {Sp<0}

]

= Q
(h,g)

(An) = E[ � AnM
(h,g)

n ], An ∈ Fn (n fixed), g, h : � → � + .

Again, one proves that {M (h,g)

n }n≥0 is a martingale and one studies the canonical sequence

{Sn}n≥0 under the probability Q
(h,g)

. Let us notice that in almost of cases considered in the
cited works, one uses as important tools precise informations on the processes : explicit laws
of hitting times, explicit martingales related to considered processes and so on. This allows
to perform exact computations when proving certain properties.

In the present paper we consider the birth and death Markov chains. Recall that these
processes have the property that only transitions to neighbouring states are possible. This
model comes from applications in biology, the developing in time of a population of particles:
each particle lives for a random length of time at the end of which it splits into two particles
or dies. The process is quite simple and constitutes a generalisation of the standard random
walk on � (in the discrete parameter setting) and have some similarities with Bessel processes
(in the continuous parameter setting).

We address the previous simple questions, for birth and death Markov chains with discrete
and continuous parameter. Precisely, we penalize the distribution of the transient birth and
death process by the number of visits at the state 0 (which is like local time type penalization).
When we force the chain to visit an infinitely often the state zero it is reasonable to think that
what we get is a recurrent chain. Indeed, we prove that, under the new probability measure
induced by penalization, the chain behaves as a recurrent birth and death chain. The same
procedure works in continuous parameter setting. We point out that in [11] one studies the
Bessel process of dimension greater than 2 (which is a transient process) penalized in some
sense by its local time at 0 (more precisely, by its sojourn time in an interval, see also Remark
4.1 below).

Our approach is elementary in the discrete parameter setting, and it is based on Dynkin’s
formula for pure jump processes in the continuous parameter setting. We would like to
stress that for both situations all we need is the transient feature of the process, but we do
not need neither explicit expressions of transition probabilities (or rates), nor other explicit
informations related to our processes as in previous cited works. In some sense this is one
of the originalities of the present paper, besides the study of the penalization for birth and
death chains.

Is it possible to penalize a recurrent birth and death chain in order to obtain a transient
one? We give a particular example where we penalize a recurrent random walk by the event
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to reach zero in infinite time and we get a recurrent birth and death chain. Our proof for this
case uses the expression of the law of the hitting time of zero for a biased random walk and we
obtain a particular birth and death chain, the so-called Bessel random walk. For this reason
it seems that the case of a general birth and death chain is more complicate. We illustrate
some other phenomena by further study of Bessel random walks.

The paper is organised as follows : the main results concerning the penalization of transient
birth and death chains, with discrete and also with continuous parameter, are stated in the
next section. Section 2 also contains an example of penalization of recurrent birth and death
chain. All the proofs are given in Section 3. The example of Bessel random walks, but also
some other examples are discussed in the last section of the paper.

2 Notations and main results

2.1 Discrete parameter setting

Let {Xn}n≥0 be a birth and death chain on the canonical probability space (Ω,F∞,
�

).
In other words, {Xn}n≥0 is a Markov chain, with state space � and having the transition
probabilities given by:

p` :=
�

(Xn+1 = ` + 1 | Xn = `), q` :=
�

(Xn+1 = ` − 1 | Xn = `),

r` :=
�

(Xn+1 = ` | Xn = `) = 1 − p` − q`, ` ≥ 1, (2.1)

and
p0 :=

�
(Xn+1 = 1 | Xn = 0), q0 := 0, r0 := 1 − p0. (2.2)

We will denote

γ0 := 1, γ` :=
∏̀

k=1

qk

pk
, ` ≥ 1, (2.3)

and it can proved (see for instance [6], p. 77) the following classical:

Proposition 2.1 The birth and death chain {Xn}n≥0 is transient if and only if

∑

`≥0

γ` < ∞, (2.4)

and in this case we will denote
S :=

∑

`≥0

γ` . (2.5)

Set

Un :=

n
∑

k=0

� {Xk=0}, 0 ≤ n ≤ ∞. (2.6)

We are able to state the first main result:

Theorem 2.1 Let {Fn}n≥0 be the natural filtration associated to the transient birth and death
chain {Xn}n≥0.
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1. For any integer n ≥ 0 and any event An ∈ Fn,

lim
κ→∞

�
0[ � An � {U∞≥κ}]�

0[ � {U∞≥κ}]
=

�
0[ � AnMn], (2.7)

where

Mn :=

(

1

S

)

(

1 − p0

S

)−Un+ �
{Xn=0}





∑

`≥Xn

γ`



 . (2.8)

2. {Mn}n≥0 is a positive {Fn}-martingale which tends toward zero, almost surely. Hence-
forth {Mn}n≥0 is not uniformly integrable.

3. The equality (2.7) induces a probability measure Q0 on (Ω,F∞): for any integer n ≥ 0
and any event An ∈ Fn,

Q0(An) :=
�

0[ � AnMn]. (2.9)

Then, under Q0, {Xn}n≥0 is a recurrent birth and death chain with transition probabil-
ities given by:

p̃` = Q0(Xn+1 = ` + 1 | Xn = `) := p`(
P

k≥`+1 γk)/(
P

k≥` γk),

q̃` = Q0(Xn+1 = ` − 1 | Xn = `) := q`(
P

k≥`−1 γk)/(
P

k≥` γk),

r̃` = Q0(Xn+1 = ` | Xn = `) := r`, ` ≥ 1, (2.10)

and

p̃0 = Q0(Xn+1 = 1 | Xn = 0) := p0(S−1)/(S−p0), q̃0 := 0, r̃0 := r0S/(S−p0). (2.11)

Remark 2.2
1. We suppose that the chain starts from zero only to simplify the computations, but it is
possible to assume that the Markov chain {Xn}n≥0 is starting from x 6= 0. One can obtain a
similar result with minor modifications: for instance in (2.8) one needs to replace the factor

1/S by
(

∑

`≥x γ`

)−1
.

2. As a main example of birth and death chain, we will consider (see also §4.1 below) the
so-called Bessel random walk with index α > −1 or of dimension δ = 2(α + 1) > 0 (see also
[7], p. 448, or [8]). The transition probabilities are given by

p0 = 1, p` =
` + 2α + 1

2` + 2α + 1
, q` =

`

2` + 2α + 1
, r` = 0, ` ≥ 1. (2.12)

If α = −1/2, {Xn}n≥0 is the absolute value of the symmetric standard random walk. Let us
note that {Xn}n≥0 is transient for α > 0, as we can easily see by using Proposition 2.1.

2
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2.2 Continuous parameter setting

Let {X(t)}t≥0 be a Markov process parametrized by t ∈ [0,∞) and with the state space
� . For instance, we can think that X(t) is the size of a population of particles at time t. We
follow [10], p. 373, to describe the continuous time version of the birth and death process
{X(t)}t≥0. The changes of states yields as follows: when the process is in state `, assume
that are given two independent random variables B(`) and D(`), which are independent from
{X(t)}t≥0, and exponentially distributed with parameters b` and d`, respectively. A transition
from ` to ` + 1 is made if B(`) ≤ D(`), which occurs with probability

�
[B(`) ≤ D(`)] = b`/(b`+d`); (2.13)

otherwise a transition from ` to ` − 1 is made. The holding time in state ` is B(`) ∧ D(`),
which is exponential with parameter b` + d` (we assume that d0 = 0). We may think of B(`)
as the time until a birth when the population is ` and similarly, D(`) is the time until a death
when the population is `; the population increases by one if a birth occurs prior to a death;
otherwise the population decreases by one.

Usually, the birth and death process in continuous time is described in terms of birth and
death rates : in a population of size ` a particle is born at rate b` and dies at rate d`. These
refer to the infinitesimal transition probabilities:

�
(X(t + h) = ` + k|X(t) = `) =







b`h + o(h), if k = 1
d`h + o(h), if k = −1
o(h), if |k| > 1,

as h → 0.

It can be seen that these assumptions lead to a model of jump Markov process with the
holding time parameter at `

λ` := b` + d`

and the jump from `

ξ` =

{

+1 with probability b`/(b`+d`)

−1 with probability d`/(b`+d`)
. (2.14)

We will denote

J0 = 0 and, for n ≥ 1, Jn = inf{t ≥ Jn−1 : X(t) 6= X(Jn−1)}. (2.15)

Let us introduce the sequence of random variables {Yn}n≥0, given by

Yn := X(Jn), n ≥ 0. (2.16)

The proof of the following proposition is classical (see, for instance [6], p. 76-77 and [9],
p. 115):

Proposition 2.3

1. {Yn}n≥0 given by (2.16) is a birth and death discrete Markov chain with transition
probabilities given by p` = b`/(b`+d`), q` = d`/(b`+d`), ` ≥ 1 and p0 = 1. We set as
previously

γ0 = 1 and γ` =
∏̀

k=1

qk

pk
=
∏̀

k=1

dk

bk
, ` ≥ 1.
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2. The continuous time birth and death process {X(t)}t≥0 is transient if and only if the
discrete Markov chain {Yn}n≥0 is transient, that is, if and only if

S :=
∑

`≥0

γ` = 1 +
∑

`≥1

∏̀

k=1

dk

bk
< ∞. (2.17)

Let us denote

V (t) :=

∫ t

0
� {X(s)=0}ds, 0 ≤ t ≤ ∞. (2.18)

The second main result is:

Theorem 2.2 Let {Ft}t≥0 be the natural filtration associated to the transient birth and death
process {X(t)}t≥0 on the canonical probability space (Ω,F∞,

�
).

1. For any t ≥ 0 and any event At ∈ Ft,

lim
κ→∞

�
0[ � At � {V (∞)≥κ}]�

0[ � {V (∞)≥κ}]
=

�
0[ � AtM(t)], (2.19)

where

M(t) :=

(

1

S

)

exp

(

b0V (t)

S

)





∑

`≥X(t)

γ`



 . (2.20)

2. {M(t)}t≥0 is a positive {Ft}-martingale which tends toward zero, almost surely. Hence-
forth {M(t)}t≥0 is not uniformly integrable.

3. The equality (2.19) induces a probability measure Q0 on (Ω,F∞): for any t ≥ 0 and any
event At ∈ Ft

Q0(At) :=
�

0[ � AtM(t)]. (2.21)

Then, under Q0, {X(t)}t≥0 is a continuous recurrent birth and death process with birth
and death rates given by:

b̃` := b`(
P

k≥`+1 γk)/(
P

k≥` γk), ` ≥ 0, d̃` := d`(
P

k≥`−1 γk)/(
P

k≥` γk), ` > 0. (2.22)

2.3 Bessel random walk as a penalized classical random walk

In this section we try to make the reverse work, more precisely, to penalize a recurrent
birth and death Markov chain in order to obtain a transient birth and death Markov chain.
We present a particular example of birth and death chain but the method of proof we have
used in this case (see §3.3 below) seems more complicated for the general situation. Thus it
remains an open question.

Let p ∈ (0, 1/2) and we consider a recurrent random walk {Zn}n≥0 with transition proba-
bilities

p` :=
�

(Zn+1 = ` + 1 | Zn = `) = p, q` :=
�

(Zn+1 = ` − 1 | Zn = `) = q = 1 − p, ∀` ≥ 1

and p0 =
�

(Zn+1 = 1 | Zn = 0) = 1. (2.23)

It is a recurrent Markov chain by Proposition 2.1, since
∑

`≥1 γ` =
∑

`≥1(q/p)` = ∞.
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We shall penalize this chain to reach the state zero in an infinite time. As usual, we denote
by T0 the hitting time of state zero by the Markov chain {Zn}n≥0 and it is not very difficult
to get an equivalent for

�
x(T0 ≥ κ), as κ → ∞ (see Lemma 3.5 below). With this tool in

hand, we can prove:

Proposition 2.4 Let {Fn}n≥0 be the natural filtration associated to the recurrent birth and
death chain {Zn}n≥0 with the transition probabilities given by (2.23).

1. For any integers x ≥ 1, n ≥ 0 and any event An ∈ Fn,

lim
κ→∞

�
x[ � An � {T0≥κ}]�

x[ � {T0≥κ}]
=

�
x[ � AnM ′

n], (2.24)

where

M ′
n := � {T0>n}

Zn

x

(

q

p

)(Zn−x)/2

(4pq)
−n/2 (2.25)

is a positive {Fn}-martingale which tends toward zero, almost surely.

2. The equality (2.24) induces a probability measure Qx on (Ω,F∞): for any integer n ≥ 0
and any event An ∈ Fn,

Qx(An) :=
�

x[ � AnM ′
n]. (2.26)

Then, under Qx, {Zn}n≥0 is a transient birth and death chain with transition probabil-
ities given by:

Qx(Zn+1 = ` + 1 | Zn = `) =
` + 1

2`
, Qx(Zn+1 = ` − 1 | Zn = `) =

` − 1

2`
, ∀` ≥ 1,

and Qx(Zn+1 = 0 | Zn = 1) = 0, (2.27)

that is a Bessel random walk with index 1/2 (or dimension 3).

Now, a very natural problem is to make a similar study for a recurrent birth and death
process in continuous time setting. Consider a continuous time random walk {Z(t)}t≥0: when
the process is in ` a transition in ` + 1 or in ` − 1 appears with probability b/(b+d) or d/(b+d),
respectively. Here b, d > 0 are the parameters of the exponential times until a birth or a
death, respectively. Thus, the holding times in any state ` are exponential with parameter
b + d. According to Proposition 2.3, the process {Z(t)}t≥0 is recurrent if and only if d > b.

It seems clearly that, if we penalize this process to reach the state zero in an infinite time,
we obtain a transient Markov process, at least at a heuristic level. Moreover, in the light of
Proposition 2.4, the underlying Markov chain should be a Bessel random walk with dimension
3. If T ′

0 denotes the hitting time of state zero by {Z(t)}t≥0, it seems that the study of the
equivalent of

�
x(T0 ≥ κ), as κ → ∞, is more complicate as in the discrete time setting and

it remains an open problem.
Let us point out that our intuition for the continuous time setting is reinforced by the

study of the drifted recurrent Brownian motion. Indeed, we get the same phenomenon as in
the discrete time setting : when one penalizes the process to reach 0 at an infinite time, the
new process which we obtain is a Bessel process of dimension 3. We state this result in the
following:

7



Proposition 2.5 Let {B(t)}t≥0 be a drifted Brownian motion B(t) := B(t) + µt, where
µ < 0 and {B(t)}t≥0 is a standard Brownian motion starting from x. We denote, as usually,

{F (B,µ)
t }t≥0 its natural filtration and T

(B,µ)
0 the first hitting time of 0 by B.

1. For any t ≥ 0 and any At ∈ F (B,µ)
t ,

lim
κ→∞

�
x

[

� At � {T (B,µ)
0 >κ}

]

�
x

[

� {T (B,µ)
0 >κ}

] =
�

x

[

� AtM
(B,µ)(t)

]

, (2.28)

where

M (B,µ)(t) := � {T (B,µ)
0 >t}

(

B(t)

x

)

exp

(

−µ
(

B(t) − x
)

+
tµ2

2

)

(2.29)

is a positive F (B,µ)-martingale which tends toward zero, almost surely.

2. The equality (2.28) induces a probability measure Q
(B,µ)
x on: for any t ≥ 0 and any

At ∈ F (B,µ)
t ,

Q(B,µ)
x (At) :=

�
x

[

� AtM
(B,µ)(t)

]

(2.30)

and under Q
(B,µ)
x , the infinitesimal generator of {B(t)}t≥0 is L = 1/2 d2/dx2 + 1/x d/dx.

3 Proofs

3.1 Proof of Theorem 2.1

a. Proof of (2.7)-(2.8). To begin with, we split
�

0[ � An � {U∞≥κ}] into two terms

�
0[ � An � {U∞≥κ}] =

�
0[ � An{ � {Un≥κ} + � {U∞≥κ} � {Un<κ}}]

=
�

0[ � An � {Un≥κ}] +
�

0[ � An � {U∞≥κ} � {Un<κ}]

and we note that � {Un≥κ} vanishes if κ ≥ bn/2c.
Consider the second term on the right hand side of the latter equality and the Markov

chain {X̃p := Xn+p − Xn}p≥0. Then, for κ ≥ bn/2c,

�
0[ � An � {U∞≥κ} � {Un<κ}] =

�
0[ � An � {U∞≥κ}] =

�
0

[

� An � {U∞◦θn≥κ−Un+ � {Xn=0}}
]

=
�

0

[

� An

�
Xn

(

� {Ũ∞≥κ−Un+ � {Xn=0}}

)]

.

Here we denoted Ũ∞ =
∑

p≥0

� {X̃p=0} and, as usually, {θn}n≥0 the family of shift operators. At

this level we need the following:

Lemma 3.1 For all integers n ≥ 0,

�
n(U∞ ≥ κ) = (Rn/S)(1 − p0/S)κ−1, (3.1)

where
R0 = S and Rn :=

∑

`≥n

γ`, n ≥ 1. (3.2)

8



Let us postpone the proof of this lemma and we finish the proof of (2.7). We deduce that,
for κ ≥ bn/2c:

�
0[ � An � {U∞≥κ}] =

�
0

[

� An(RXn/S) (1 − p0/S)
κ−Un+ �

{Xn=0}
−1
]

and, when we combine with (3.1) for n = 0, we obtain, for κ ≥ bn/2c,
�

0[ � An � {U∞≥κ}]�
0[ � {U∞≥κ}]

=
�

0

[

� An(RXn/S) (1 − p0/S)
−Un+ �

{Xn=0}

]

.

and the proof of the first part of Theorem 2.1 is done.

Proof of Lemma 3.1.
Let us consider f : � → � given by f(0) = 0 and, for n ≥ 1 integer, f(n) =

∑n−1
`=0 γ`.

Then, it is a direct computation to prove that {f(Xn) : n ≥ 0} is a Fn-martingale.
We denote by Tn the hitting time of n ∈ � by the birth and death chain and we claim

that, for all n ≥ 1, �
n(T0 < ∞) = (

P
`≥n γ`)/S. (3.3)

Indeed, if m ≥ n, by the optional stopping theorem, we get

f(n) =
�

n [f(XTm∧T0)] = f(m)
�

n(Tm < T0) + f(n − 1)[1 − �
n(T0 > Tm)]

and we deduce

�
n(Tm < T0) = (f(n)−f(0))/(f(m)−f(0)) = (

Pn−1
`=0 γ`)/(

Pm−1
`=0 γ`).

Since {Xn}n≥0 is a transient Markov chain, by letting m → ∞ we obtain

�
n(T0 = ∞) = (

Pn−1
`=0 γ`)/S or

�
n(T0 < ∞) = (

P
`≥n γ`)/S = Rn/S .

Let us introduce the following stopping times :

T
(0)
0 = T0 and T

(`)
0 := inf{n ≥ T

(`−1)
0 : Xn = 0}, if ` ≥ 1.

By using (2.6), we can write

�
0(U∞ = `) =

�
0(T

(1)
0 + . . . + T

(`−1)
0 < ∞, T

(1)
0 + . . . + T

(`)
0 = ∞)

=
�

0(T
(1)
0 < ∞)

�
0(T

(2)
0 < ∞ | T

(1)
0 < ∞) . . .

�
0(T

(`−1)
0 < ∞ | T

(1)
0 + . . . + T

(`−1)
0 < ∞)

× �
0(T

(`)
0 = ∞ | T

(1)
0 + . . . + T

(`−1)
0 < ∞)

=
�

0(T
(1)
0 < ∞)`−1 �

0(T
(1)
0 = ∞) =

�
1(T0 < ∞)`−1 �

1(T0 = ∞)

= (p0/S)(1 − p0/S)`−1.

Therefore, on the one hand

�
0(U∞ ≥ κ) =

∑

`≥κ

�
0(U∞ = `) = (1 − p0/S)κ−1,

while, on the other hand, if n ≥ 1,

�
n(U∞ ≥ κ) =

�
n(T0 < ∞)

�
0(U∞ ≥ κ)

from which we get (3.1) and Lemma 3.1 is proved.
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2

Remark 3.2
Let us point out that in fact the limit in (2.7) is an exact equality for κ > bn/2c. This is a
somehow different situation with respect to those in [1] or [12].

2

b. Proof of the second part of Theorem 2.1. By using again the fact that {Xn}n≥0 is
a transient Markov chain, limn→∞ Xn = ∞ almost surely, and by using (2.1) the remainder
of the series (2.6) tends to zero. Furthermore Un is almost surely finite, hence by (2.8) we
obtain that limn→∞ Mn = 0, almost surely. Then, necessarily, by assuming that {Mn}n≥0 is
a martingale, it can not be uniformly integrable, since

�
(M0) = 1.

Hence the only thing we need to prove is that {Mn}n≥0 is a martingale. Since, by (2.8)
and (2.6), for each n ≥ 0,

0 ≤ Mn ≤ (1 − p0/S)−Un ≤ (1 − p0/S)−n,

we see that Mn is integrable. We can write:

�
[Mn+1|Fn] =

� [
Mn+1 � {Xn+1=Xn+1}|Fn

]

+
� [

Mn+1 � {Xn+1=Xn−1} � {Xn 6=0}|Fn

]

+
� [

Mn+1 � {Xn+1=Xn}|Fn

]

. (3.4)

By using (2.8) and (3.2), the first term in (3.4) can be written as follows

� [
(1/S)(1 − p0/S)−UnR

Xn+1
� {Xn+1=Xn+1}|Fn

]

= (1/S)(1 − p0/S)−UnR
Xn+1

� [ � {Xn+1=Xn+1}|Fn

]

= (1/S)(1 − p0/S)−UnR
Xn+1

p
Xn

.

For the second term in (3.4) we split the expectation into two terms

� [
Mn+1 � {Xn+1=Xn−1} � {Xn 6=0,1}|Fn

]

+
� [

Mn+1 � {Xn+1=Xn−1} � {Xn=1}|Fn

]

=
� [

(1/S)(1 − p0/S)−UnR
Xn−1 � {Xn+1=Xn−1} � {Xn 6=0,1}|Fn

]

+
� [

(1/S)(1 − p0/S)−Un−1+1R
Xn−1

� {Xn+1=Xn−1} � {Xn=1}|Fn

]

= (1/S)(1 − p0/S)−UnR
Xn−1

� {Xn 6=0}( � {Xn 6=1} + � {Xn=1})
� [ � Xn+1=Xn−1|Fn

]

= (1/S)(1 − p0/S)−UnR
Xn−1

� {Xn 6=0}qXn
.

By a similar reasoning we can prove that the third term in (3.4) can be written

� [
Mn+1 � {Xn+1=Xn}|Fn

]

= (1/S)(1 − p0/S)−UnR
Xn

r
Xn

.

We replace in (3.4) and we can write on the one hand,

� [
Mn+1 � {Xn 6=0}|Fn

]

= (1/S)(1 − p0/S)−Un � {Xn 6=0}
[

p
Xn

R
Xn+1 + q

Xn
R

Xn−1 + r
Xn

R
Xn

]

= (1/S)(1 − p0/S)−Un � {Xn 6=0}
[

(p
Xn

+ q
Xn

+ r
Xn

)R
Xn

+ q
Xn

γ
Xn−1

− p
Xn

γ
Xn

]

= Mn � {Xn 6=0},
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by using (2.1), (2.3) and (3.2). On the other hand

� [
Mn+1 � {Xn=0}|Fn

]

= (1/S)(1 − p0/S)−Un � {Xn=0}







p0

∑

`≥1

γ` + r0

∑

`≥0

γ`







= (1/S)(1 − p0/S)−Un � {Xn=0}S(1 − p0/S) = (1/S)(1 − p0/S)−Un+1 � {Xn=0}

= Mn � {Xn=0},

where we used the fact that
∑

`≥1 γ` = S−1 and r0 = 1−p0. Hence {Mn}n≥0 is a martingale.

c. Proof of the third part of Theorem 2.1. Assuming that, under Q0, the sequence
{Xn}n≥0 is a birth and death Markov chain, with transition probabilities given by (2.10), it
is no difficult to prove that, under Q0, the chain is recurrent. Indeed, it suffices to use the
result of Proposition 2.1. Set

γ̃0 := 1, γ̃` :=
∏̀

k=1

q̃k

p̃k
, ` ≥ 1. (3.5)

Therefore, by using (2.3), (2.10) and (3.2), we can write

∑

`≥1

γ̃` =
∑

`≥1

∏̀

k=1

qkRk−1

pkRk+1
=
∑

`≥1

γ`

∏̀

k=1

Rk−1

Rk+1
=
∑

`≥1

γ`
R0R1

R`R`+1

= SR1

∑

`≥1

(1/R`+1 − 1/R`) = SR1 lim
N→∞

(1/RN+1 − 1/R1) = ∞, (3.6)

since limN→∞ RN+1 = 0, by Proposition 2.1.
We prove that, under Q0, {Xn}n≥0 is a birth and death Markov chain with transition

probabilities given by (2.10). Consider, for all integers n ≥ 1 and all integers a0, . . . , an−1 ≥ 0,
the event

An−1 := {X0 = a0, . . . , Xn−1 = an−1}.
We can write, for ` ≥ 1 and all integers n ≥ 1,

p̃` = Q0 [Xn+1 = ` + 1|Xn = `, An−1] =

�
0

[

� {Xn+1=`+1,Xn=`}∩An−1
Mn+1

]

�
0

[

� {Xn=`}∩An−1
Mn

] , by (2.9)

=

�
0

[

� {Xn+1=`+1,Xn=`}∩An−1
(1 − p0/S)−Un+1R`+1

]

�
0

[

� {Xn=`}∩An−1
(1 − p0/S)−UnR`

] , by (2.8)

=
R`+1

R`

�
0

[ �
0

[

� {Xn+1=`+1,Xn=`}∩An−1
(1 − p0/S)−Un+1 |Fn

]]

�
0

[

� {Xn=`}∩An−1
(1 − p0/S)−Un

]

=
R`+1

R`

�
0

[

� {Xn=`}∩An−1
(1 − p0/S)−Un

�
0 (Xn+1 = Xn + 1|Fn)

]

�
0

[

� {Xn=`}∩An−1
(1 − p0/S)−Un

] , since ` ≥ 1

=
R`+1

R`

�
0

[

� {Xn=`}∩An−1
(1 − p0/S)−Unp

Xn

]

�
0

[

� {Xn=`}∩An−1
(1 − p0/S)−Un

] = p`
R`+1

R`
.
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With a similar computation we get that, for ` ≥ 1, r̃` = r`.
Assume now that ` = 0. Then, by using a similar reasoning, for all a0, . . . , an−1 ≥ 0,

p̃0 = Q0 [Xn+1 = 1|Xn = 0, An−1]

=

�
0

[

� {Xn+1=1,Xn=0}∩An−1
(1 − p0/S)−Un+1R1

]

�
0

[

� {Xn=0}∩An−1
(1 − p0/S)

−Un+ �
{Xn=0}R0

] , by (2.9) and (2.8)

=
R1

S

�
0

[

� {Xn=0}∩An−1
(1 − p0/S)−Unp

Xn

]

�
0

[

� {Xn=0}∩An−1
(1 − p0/S)−Un+1

] = p0
R1

S

(

1 − p0

S

)−1
.

Furthermore:

r̃0 = Q0 [Xn+1 = 0|Xn = 0, An−1]

=

�
0

[

� {Xn+1=0,Xn=0}∩An−1
(1 − p0/S)

−Un+1+ � {Xn+1=0}R0

]

�
0

[

� {Xn=0}∩An−1
(1 − p0/S)

−Un+ �
{Xn=0}R0

]

=

�
0

[

� {Xn+1=0,Xn=0}∩An−1
(1 − p0/S)−Un−1+1

]

�
0

[

� {Xn=0}∩An−1
(1 − p0/S)−Un+1

] = r0

(

1 − p0

S

)−1
.

3.2 Proof of Theorem 2.2

The proof contains several similar ideas as in the proof of Theorem 2.1. We shall emphasize
the main differences.

a. Proof of (2.19)-(2.20). This part is quite similar to the discrete case. We split

�
0[ � At � {V (∞)≥κ}] =

�
0[ � At � {V (t)≥κ}] +

�
0[ � At � {V (∞)≥κ} � {V (t)<κ}]

and we note that � {V (t)≥κ} vanishes, if κ > t. Set {X̃(s) := X(t + s) − X(t)}s≥0 and note
that V (∞) = V (t) + V (∞) ◦ θt. Again and, as usually, {θt}t≥0 denotes the family of shift
operators. Then, for κ > t:

�
0[ � At � {V (∞)≥κ} � {V (t)<κ}] =

�
0

[

� At � {V (∞)◦θt≥κ−V (t)}
]

=
�

0

[

� At

�
X(t)

(

� {Ṽ (∞)≥κ−V (t)

)]

,

where Ṽ (∞) :=

∫ ∞

0
� {X̃(t)=0}ds. As for the discrete case we can state:

Lemma 3.3 For all integers n ≥ 0, and for any t ≥ 0,

�
n(V (∞) > t) = (Rn/S)e−b0t/S, (3.7)

where Rn is given by (3.2).

Let us finish the proof of (2.19). For κ > t:

�
0[ � At � {V (∞)≥κ}] =

�
0[ � At(RX(t)/S)e−b0(t−V (t))/S]

12



tJ1 J4 J5 J6J7

e2 e3e1

X(t)

Figure 1: X(t) conditionnally to the event U∞ = 3

and using the preceding lemma again, we obtain for κ > t:

�
0[ � At � {V (∞)≥κ}]�

0[ � {V (∞)≥κ}]
=

�
0[ � At(RX(t)/S)e

b0V (t)/S],

that is (2.19)-(2.20).

Proof of Lemma 3.3. Recall that {Yn}n≥0 is given by (2.16) and we shall denote U
(Y )
∞ :=

∑

n≥0 � {Yn=0}. It is no difficult to see that, on the event {U (Y )
∞ = k}, V (∞) is the sum of k

independent random variables e1, . . . , ek, the holding times at 0, having exponential distribu-

tion of same parameter λ0 = b0, and being independent from U
(Y )
∞ (see Figure 1).

Therefore, by using (3.1), for all integers n ≥ 0,

�
n(V (∞) > t) =

∑

k≥0

�
n

(

U (Y )
∞ = k, e1 + ... + ek > t

)

=
∑

k≥0

�
n

(

U (Y )
∞ = k

) �
(e1 + . . . + ek > t) =

∑

k≥0

Rn

S

(

1 − 1

S

)k−1 1

S
e−b0t

k−1
∑

i=0

(b0t)
i

i!

=
Rn

S

1

S
e−b0t

∑

i≥0

(b0t)
i

i!

∑

k≥i+1

(

1 − 1

S

)k−1

=
Rn

S

1

S
e−b0t

∑

i≥0

(b0t)
i

i!

(

1 − 1

S

)i

S =
Rn

S
e

−b0t

S .

The proof of Lemma 3.3 is done.

Remark 3.4
We point out again that in fact the limit in (2.19) is an exact equality for κ > t, as was noted
in the discrete parameter setting.

2

b. Proof of the second part of Theorem 2.2. As in the discrete case we point out a
useful martingale. At this level we need to recall Dynkin’s formula for pure jump processes

13



(see, for instance [5], p. 262): if f : � → � is a bounded function such that {f(X(t))}t≥0 is
a pure jump process, then

Mf (t) := f(X(t)) − f(X(0)) −
∫ t

0
Lf(X(s))ds (3.8)

is a local martingale, where we denoted

Lf(x) := bx [f(x + 1) − f(x)] + dx [f(x − 1) − f(x)] . (3.9)

If we take in (3.9) f(x) =
∑

`≥x γ` = Rx, we obtain:

Lf(x) = bx (Rx+1 − Rx) + dx (Rx−1 − Rx) = −bxγx + dxγx−1

= −bx

x
∏

`=1

d`

b`
+ dx

x−1
∏

`=1

d`

b`
= −b0γ0 � {x=0} = −b0 � {x=0}.

Hence {M f (t)}t≥0 given by (3.8) is a local martingale. Therefore, we can apply the integration
by parts formula (see, for instance [5], p. 220) to the semimartingale

R
X(t)

= Mf (t) + S −
∫ t

0
b0 �

{X(s)=0}
ds

and to the finite variation process A(t) := exp(b0V (t)/S). We note that

dR
X(t)

= dM f (t) − b0 �
{X(t)=0}

dt, dA(t) = (b0/S)e
b0V (t)/S �

{X(t)=0}
dt

and 〈R
X(·)

, A〉 = 0. We obtain, by using (2.20),

S M(t) = R
X(t)

e
b0V (t)/S = S +

∫ t

0
R

X(s)
dA(s) +

∫ t

0
A(s) dR

X(s)
+ 〈R

X(·)
, A〉t

= S +

∫ t

0
R

X(s)

b0

S
e

b0V (s)/S �
{X(s)=0}

ds +

∫ t

0
e

b0V (s)/S

(

dMf (s) − b0 �
{X(s)=0}

ds
)

= S +

∫ t

0
e

b0V (s)/SdMf (s)

and consequently, {M(t)}t≥0 is a local martingale. In fact, it is a (true) martingale since, for
all T ≥ 0,

�
( sup
0≤t≤T

|M(t)|) ≤ exp(b0T/S).

b. Proof of the third part of Theorem 2.2. First, we prove that, under Q0, {X(t)}t≥0

is a Markov process. For any n ≥ 1 and arbitrary sequences 0 ≤ t0 < t1 < . . . < tn−1 and
a0, ..., an−1 ∈ � , we consider the event

An−1 = {X(t0) = a0, ..., X(tn−1) = an−1}.
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Then, for all integers k, ` ≥ 0,

Q0(X(tn+1) = ` | X(tn) = k,An−1)

=

�
0

[

� {X(tn+1)=`,X(tn)=k}∩An−1
M(tn+1)

]

�
0

[

� {X(tn)=k}∩An−1
M(tn)

] =

�
0

[

� {X(tn+1)=`,X(tn)=k}∩An−1
R`e

b0V (tn+1)/S
]

�
0

[

� {X(tn)=k}∩An−1
Rke

b0V (tn)/S
]

=
R`

Rk

�
0

[

� {X(tn+1)=`,X(tn)=k}∩An−1
exp (b0(V (tn)+V (tn+1−tn)◦θtn )/S)

]

�
0

[

� {X(tn)=k}∩An−1
eb0V (tn)/S

]

=
R`

Rk

�
0

[

� {X(tn)=k}∩An−1
eb0V (tn)/S

� [ � {X(tn+1)=`} exp (b0(V (tn+1−tn)◦θtn )/S) | Ftn

]]

�
0

[

� {X(tn)=k}∩An−1
eb0V (tn)/S

]

=
R`

Rk

�
0

[

� {X(tn)=k}∩An−1
eb0V (tn)/S

�
k

[

� {X̃(tn+1−tn)=`}e
b0Ṽ (tn+1−tn)/S

]]

�
0

[

� {X(tn)=k}∩An−1
eb0V (tn)/S

]

=
R`

Rk

�
k

[

� {X̃(tn+1−tn)=`}e
b0Ṽ (tn+1−tn)/S

]

,

which does not depend on An−1. This proves that, under Q0, {X(t)}t≥0 is a Markov process.
Let us study the holding times, under Q0, of the Markov process {X(t)}t≥0, for instance

we shall compute the distribution of J1. For any integer ` ≥ 1 and for any α ≥ 0:

� Q0

` [e−αJ1 ] =

� Q0 [e−αJ1 �
{X(0)=`}

]
�

Q0 [X(0) = `]
=

�
[ �

{X(0)=`}
e−αJ1M(J1)]�

[ �
{X(0)=`}

M(0)]
=

S

R`

�
`[e

−αJ1M(J1)]

=
S

R`

( �
`

[

�
{B(`)≤D(`)}

e−αB(`)M(B(`))
]

+
�

`

[

�
{D(`)≤B(`)}

e−αD(`)M(D(`))
])

=
1

R`

( �
`

[

�
{B(`)≤D(`)}

e−αB(`)R`+1

]

+
�

`

[

�
{D(`)≤B(`)}

e−αD(`)R`−1

])

,

since �
{B(`)≤D(`)}

V (J1) = 0,
�

`-a.s. and by using (2.20) and the stopping theorem. Hence

� Q0

` [e−αJ1 ] =
R`+1

R`

�
`

[

�
{B(`)≤D(`)}

e−αB(`)
]

+
R`−1

R`

�
`

[

�
{D(`)≤B(`)}

e−αD(`)
]

.

By using (2.13) we can compute :

�
`[ � {B(`)≤D(`)}e

−αB(`)] =

∫ ∞

0
dx e−αxe−b`xb`

∫ ∞

x
dy e−d`yd` =

b`

b` + d` + α
.

Therefore, we obtain:

� Q0

` [e−αJ1 ] =
b`R`+1 + d`R`−1

R`(b` + d` + α)
=

b` + d`

b` + d` + α
.

We conclude that the holding time at ` ≥ 1 is an exponential random variable with parameter
λ` = b` + d`. We stress that for ` ≥ 1 the distribution of the holding time is the same under
the probabilities

�
and Q0.
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The reasoning is similar for ` = 0, :

� Q0
0 [e−αJ1 ] =

�
[ �

{X(0)=0}
e−αJ1M(J1)]�

[ �
{X(0)=0}

M(0)]
=

�
0[e

−αB(0) R1

S
e

b0V (B(0))/S]

=
R1

S

�
0[e

−αB(0)e
b0B(0)

S ] =
S − 1

S

�
0[e

B(0)(−α+b0/S)] =
b0 − b0/S

b0 − b0/S + α
,

and we deduce that the holding time at 0 is an exponential random variable of parameter
b0(S−1)/S.

Now, we study the underlying Markov chain {Yn}n≥0 under Q0. For any positive Borel
function g : � → � and ` ≥ 1, as previously:

� Q0

` [g(Y1)] =
� Q0

` [g(X(J1))] =

� Q0 [ � {X(0)=`} g(X(J1))]�
Q0 [ � {X(0)=`}]

=

�
[ � {X(0)=`} � {B(`)≤D(`)} g(` + 1)R`+1]�

Q0 [ � {X(0)=`}R`]
+

�
[ � {X(0)=`} � {D(`)≤B(`)} g(` − 1)R`−1]�

Q0 [ � {X(0)=`}R`]

= g(` + 1)
R`+1

R`

�
`[ � {B(`)≤D(`)}] + g(` − 1)

R`−1

R`

�
`[ � {D(`)≤B(`)}]

= g(` + 1)
R`+1

R`

b`

b` + d`
+ g(` − 1)

R`−1

R`

d`

b` + d`
.

For ` = 0, the reasoning is the same. We conclude that under Q0, {Yn}n≥0 is a birth and
death Markov chain with discrete parameter and the transition probabilities:

p̃` =
R`+1

R`

b`

b` + d`
, q̃` =

R`−1

R`

d`

b` + d`
, for ` ≥ 1, and p̃0 = 1.

Then if we set γ̃0 = 1 and γ̃` =
∏̀

i=1

q̃i

p̃i
, for ` ≥ 1, we have:

∑

`≥0

γ̃` = 1 +
∑

`≥1

∏̀

i=1

di Ri−1

biRi+1
= 1 +

∑

`≥1

∏̀

i=1

qi Ri−1

piRi+1
.

According to (3.6) and Proposition 2.1, {Yn}n≥0 is recurrent. Furthermore, according to the
second point of the Proposition (2.3), {X(t)}t≥0 is recurrent under Q0.
If we denote b̃` and d̃` the birth and death rates of (X(t), t ≥ 0) under Q0,we have:

b̃` + d̃` = b` + d` and p̃` =
b̃`

b̃` + d̃`

=
R`+1

R`

b`

b` + d`
.

Consequently,

b̃` = b`
R`+1

R`
and d̃` = d`

R`−1

R`
,

and (2.22) is proved.
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3.3 Proofs of Propositions 2.4 and 2.5

Proof of Proposition 2.4. To begin with, we need to find an equivalent, as κ → ∞, for�
x(T0 ≥ κ), when x ≥ 1 is an integer. For the sake of completeness we state this in the

following:

Lemma 3.5 Let x ≥ 1 an integer. As κ → ∞,

�
x (T0 ≥ κ) ∼ 4

(

2

π

)1/2

x

(

q

p

)x/2

κ
−3/2(4pq)

κ/2 . (3.10)

As previously, we postpone the proof of this lemma and we finish the proof of (2.24)-(2.25).
As κ → ∞, we obtain the following equivalent

�
x

[

� {An, T0≥κ}
]

�
x

[

� {T0≥κ}
] =

�
x

[

� {Λn, T0≥n}
�

Zn

[

� eT0≥κ−n

]]

�
x

[

� {T0≥κ}
]

∼
κ→∞

�
x

[

� {An, T0≥n}4
(

2
π

)1/2
Zn

(

q
p

)Zn/2
(κ − n)−3/2(4pq)(κ−n)/2

]

4
(

2
π

)1/2
x
(

q
p

)x/2
κ−3/2(4pq)κ/2

and we deduce the expression of M ′
n, (2.25). As usually, we verify the fact that it is a

martingale. Firstly,

�
x

[

M ′
n+1 � {Zn≥2} | Fn

]

= � {T0≥n,Zn≥2}
Zn

x

(

q

p

)(Zn−x)/2

(4pq)
−(n+1)/2 �

[

(

q

p

)ξn+1/2

| Fn

]

+ � {T0≥n,Zn≥2}
1

x

(

q

p

)(Zn−x)/2

(4pq)
−(n+1)/2 �

[

ξn+1

(

q

p

)ξn+1/2

| Fn

]

= � {T0≥n,Zn≥2}
Zn

x

(

q

p

)(Zn−x)/2

(4pq)
−(n+1)/2

[

p

(

q

p

)1/2

+ q

(

q

p

)−1/2
]

+ � {T0≥n,Zn≥2}
1

x

(

q

p

)(Zn−x)/2

(4pq)
−(n+1)/2

[

p

(

q

p

)1/2

− q

(

q

p

)−1/2
]

= � {Zn≥2}M
′
n,

and, secondly,

�
x

[

M ′
n+1 � {Zn=1} | Fn

]

=
�

x

[

� {T0≥nZn+1=2, Zn=1}
2

x

(

q

p

)(2−x)/2

(4pq)
−(n+1)/2

]

= � {T0≥n,Zn=1}
2

x

(

q

p

)(1−x)/2

(4pq)
−n/2

(

q

p

)1/2

(4pq)
−1/2p = � {Zn=1}M

′
n .
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Finally, to verify (2.27), we denote again An−1 := {Z0 = a0, . . . , Zn−1 = an−1}. If ` ≥ 1:

Qx (Zn+1 = ` + 1 | Zn = `, An−1) =

�
x

[

� {Zn+1=`+1,Zn=`}∩An−1
M ′

n+1

]

�
x

[

� {Zn=`}∩An−1
M ′

n

]

=

�
x

[

� {T0≥n+1,Zn+1=`+1,Zn=`,}∩An−1

`+1
x

(

q
p

)(`+1−x)/2
(4pq)−(n+1)/2

]

�
x

[

� {T0≥n,Zn=`,}∩An−1

`
x

(

q
p

)(`−x)/2
(4pq)−n/2

]

=
` + 1

`

(

q

p

)1/2

(4pq)
−1/2

�
x

[

� {T0≥n,Zn+1=`+1,Zn=`}∩An−1

]

�
x

[

� {T0≥n,Zn=`}∩An−1

] =
` + 1

2`p

× �
x (T0 ≥ n,Zn+1 = ` + 1 | Zn = `, An−1) =

` + 1

2`p

�
(Zn+1 = ` + 1 | Zn = `) =

` + 1

2`
,

where we used the Markovian feature of {Zn} under
�

x. Similarly, we show that

Qx (Zn+1 = ` − 1 | Zn = `) =
` − 1

2`
.

Also, it is clear that Qx(Zn+1 = 0 | Zn = 1) = 0 and (2.27) is proved.

Proof of Lemma 3.5. To begin with, recall that (see for instance [2], p. 351), for all
s ∈ [0, 1],

�
x

(

sT0
)

=

(

1 −
√

1 − 4pqs2

2ps

)x

=
∑

r≥x

�
x(T0 = r)sr

It is a direct computation to get:

(

1 −
√

1 − 4pqs2

2ps

)x

=
1

(2p)x

∑

`≥x

(−4pq)`

`!
s2`−x

x
∑

k=0

(−1)k

(

x
k

) `−1
∏

i=0

(

k

2
− i

)

.

Therefore, if x and r are of same evenness we find

Px(T0 = r) =
(−4pq)(n+r)/2

(2p)x ((x+r)/2)!

x
∑

k=0

(−1)k

(

x
k

)
(x+r)/2−1
∏

i=0

(

k

2
− i

)

= − (−4pq)(x+r)/2

(2p)x
(

(x+r)
2

)

!

bx−1
2

c
∑

k′=0

(

x
2k′ + 1

)

(x+r)
2

−1
∏

i=0

(

k′ − i +
1

2

)

.

After some algebraic computations we obtain

�
x(T0 = r) =

(4pq)(x+r)/2

π(2p)x ((x+r)/2)!

bx−1
2

c
∑

k′=0

(−1)k′

(

x
2k′ + 1

)

Γ

(

k′ +
3

2

)

Γ

(

x + r

2
− k′ − 1

2

)

.

As r → ∞, the only significant term in the latter sum corresponds to k ′ = 0, hence

�
x(T0 = r) ∼

r→∞
xΓ(3/2)

π
(

x+r
2

)

!

(

q

p

)x/2

(4pq)
r
2 Γ

(

x + r

2
− 1

2

)

∼ 2x√
π

(

q

p

)x/2
(r

2

)−3/2
(4pq)

r/2.
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Finally, since
�

x(T0 ≥ κ) =
∑

r≥κ

�
x(T0 = r), it is no difficult to prove that, as κ → ∞,�

x(T0 ≥ κ) ∼ �
x(T0 = κ), the first term again. The proof of (3.10) is done.

Proof of Propositions 2.5. It is a classical result, using the Girsanov theorem (see, for
instance [4], p. 197), that, for x > 0:

�
x(T

(B,µ)
0 > κ) =

�
0(T

(B,µ)
−x > κ) =

∫ ∞

κ

x√
2πs3

exp

(

−(−x − µs)2

2s

)

ds,

and we easily deduce that:

�
x(T

(B,µ)
0 > κ) ∼

κ→∞
x√

2πκ3
e−µx−κµ2/2 .

Then, as in the proof of Proposition 2.4:

�
x

[

� At � {T (B,µ)
0 >κ}

]

�
x

[

� {T (B,µ)
0 >κ}

] ∼
κ→∞

�
x

[

� At � {T (B,µ)
0 >κ}

�
B(t)

(

� {eT (B,µ)
0 >κ−t}

)]

�
x

[

� {T (B,µ)
0 >κ}

]

∼
κ→∞

�
x

[

� At � {T (B,µ)
0 >κ}(

B(t)/
√

2π(κ−t)3) exp(−µB(t) − (κ−t)µ2/2)
]

(x/
√

2πκ3) exp(−µx − κµ2/2)

and we deduce the expression of M (B,µ). We prove the fact that it is a F (B,µ)-martingale by
using the classical Itô’s formula. We write

M (B,µ)(t) =
eµx

x
B(t)Y (t), where Y (t) = e−µB(t)−µ2 t/2. (3.11)

Clearly,

Y (t) = e−µx − µ

∫ t

0
Y (s)dB(s)

and then, by the integration by parts formula,

M (B,µ)(t) =
eµx

x
B(t)Y (t) = 1 − eµx

x

∫ t

0
Y (s)(1 − µB(s))dB(s). (3.12)

Let us now study the process {B(t)}t≥0 under Q
(B,µ)
x . We consider an arbitrary function

f ∈ C2( � ; � ). Then, using Itô’s formula and (3.12) we can write

f(B(t))M (B,µ)(t) = f(x) +

∫ t

0

{

f(B(s))dM (B,µ)(s) + M (B,µ)(s)df(B(s))
}

+ 〈f(B),M (B,µ)〉(t) = f(x) +

∫ t

0

{

eµx

x
f(B(s))Y (s)(1 − µB(s)) + f ′(B(s))M (B,µ)(s)

}

dB(s)

+

∫ t

0

{

µf ′(B(s))M (B,µ)(s) +
1

2
f ′′(B(s))M (B,µ)(s) +

eµx

x
Y (s)(1 − µB(s))f ′(B(s))

}

ds.
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Taking the expectation and using (3.11) we get

� (B,µ)
x

[

f
(

B(t)
)]

=
�

x

[

f
(

B(t)
)

M (B,µ)(t)
]

= f(x) +
�

x

[
∫ t

0

{

1

2
f ′′(B(s))M (B,µ)(s) +

eµx

x
Y (s)f ′(B(s))

}

ds

]

= f(x) +

∫ t

0

�
x

[

Lf(B(s))M (B,µ)(s)
]

ds =
� (B,µ)

x

[

f(x) +

∫ t

0
Lf(B(s))ds

]

,

where L = 1/2 d2/dx2 + 1/x d/dx. We deduce that under Q
(B,µ)
x , the infinitesimal generator of

{B(t)}t≥0 is the infinitesimal generator of a Bessel process of dimension 3.

4 Bessel chains and other examples

4.1 Bessel chains

We shall illustrate our results with two examples. In the discrete situation we consider the
so-called Bessel random walk with index α > 0, while in the continuous parameter setting we
adapt this example.

According to Theorem 2.1 one can obtain:

Corollary 4.1 Let {Xn}n≥0 the Bessel random walk with index α > 0.

1. For any integer n ≥ 0 and any event An ∈ Fn, (2.7) is verified with the positive no
uniformly integrable martingale

Mn :=
Γ(2α + 1)Xn!

Γ(Xn + 2α + 1)(2α + 1)−Un+ � {Xn=0}
. (4.1)

2. Let Q0 be the probability measure on (Ω,F∞) given by (2.9). Then, under Q0, {Xn}n≥0

is a recurrent birth and death chain with transition probabilities given by:

p̃0 = 1 and p̃` :=
` + 1

2` + 2α + 1
, q̃` :=

` + 2α

2` + 2α + 1
, for ` ≥ 1. (4.2)

Proof. We compute Rn, ∀n ≥ 0. First, by (2.3):

γ` =
∏̀

i=1

qi

pi
=
∏̀

i=1

i

i + 2α + 1
= Γ (2α + 2)

Γ(` + 1)

Γ(` + 2α + 2)
= (2α + 1)β(2α + 1, ` + 1).

Then, by (3.2), for n ≥ 1:

Rn = (2α + 1)
∑

`≥n

β(2α + 1, ` + 1) = (2α + 1)
∑

`≥0

β(2α + 1, ` + n + 1) = (2α + 1)β(2α, n + 1),

where we used the following equality
∑

k≥0 β(x, y + k) = β(x − 1, y) (see for instance, [3], p.
950). Hence,

Rn =
(2α + 1)Γ(2α)n!

Γ(n + 2α + 1)
, for n ≥ 1, and R0 = S = 1 + R1 =

2α + 1

2α
. (4.3)

20



The expression (4.1) is then a consequence of (4.3) and (2.8). Furthermore, according to
(2.10), p̃k = pkRk+1/Rk, and using again (4.3) we obtain (4.2).

Remark 4.1
In [11] one considers the penalization of the transient continuous Bessel process {Rt}t≥0 with
dimension d > 2 (or of index n = d/2 − 1 > 0) by its sojourn time in an interval. Set, for

r > 0, U
(r)
t =

∫ t
0 � [0,r](Rs)ds (0 ≤ t ≤ ∞). One studies the limit

lim
t→∞

�
x

[

� As � {U(r)
∞ >t}

]

�
x

[

� {U(r)
∞ >t}

] =
�

x

[

� AsM
(r)
s

]

=: Q(r)
x (As), As ∈ Fs (s fixed).

One proves in [11] that :

• the positive martingale M
(r)
s is given by M

(r)
t := h(r)(Rt) exp(z1U

(r)
t /2r2), where

h(r)(z) := Γ(n + 1) [(2r/z1z)nJn(z1z/r) � 0≤z≤r + (2r2/z1z2)nJn(z1) � z≥r],

and z1 is the first positive zero of the Bessel function Jn−1.

• for x ≥ r, under Q
(r)
x , the process {Rt}t≥0 has the infinitesimal generator L := 1/2 d2/dx2 +

(1−2n)/x d/dx. This process is recurrent and behaves, in a certain sense, as r → 0, as a
Bessel process of dimension 4 − d (or of index −n).

We return to the case of Bessel random walk with index α > −1 and transition probabilities
given by (2.12) and we illustrate now a similar phenomenon as for the continuous Bessel
process. Let us remak that the Bessel random walk could also be characterized by the
following transition probabilities:

�
(Xn+1 = ` − 1 | Xn = `) =

1

2

(

1 − α + 1/2

` + α + 1/2

)

,

�
(Xn+1 = ` + 1 | Xn = `) =

1

2

(

1 +
α + 1/2

` + α + 1/2

)

, for `, n ≥ 1 integers.

Clearly, if α ∈ (0, 1) \ {1/2} (or of dimension δ ∈ (2, 4) \ {3}),

Q(Xn+1 = ` − 1 | Xn = `) =
1

2

(

1 − −α + 1
2

` − α + 1
2

)

+
H(`)

2
,

with

H(`) =
α/2 − α2

(` − α + 1/2)(` + α + 1/2)
.

As ` → ∞, we can write

Q(Xn+1 = ` − 1 | Xn = `) =
1

2

(

1 − −α + 1
2

` − α + 1
2

)

+ o(1/`).

In other words, if α 6= 1/2, the behaviour of the chain {Xn}n≥0 under Q, is that of a Bessel
random walk with index α′ = −α (or with dimension δ′ = 4 − δ ∈ (0, 2) \ {1}), at least for
large states `. If α = 1/2, the chain {Xn}n≥0 under Q is a standard symmetric random walk.
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Let us turn now to the continuous parameter example which is built using the previous
example. Let us call it Bessel jump process with index α > 0. It is a pure jump process
{X(t)}t≥0 with birth and death rates:

b` = ` + 2α + 1, d` = `, for ` ≥ 0 integer.

We can state a consequence of Theorem 2.2:

Corollary 4.2

1. For any t ≥ 0 and any event At ∈ Ft, (2.19) is verified with the positive no uniformly
integrable martingale

M(t) :=
2α

2α + 1
e2αV (t) Γ(2α + 1)X(t)!

Γ(2α + X(t) + 1)
. (4.4)

2. Let Q be the probability measure on (Ω,F∞) given by (2.21). Then, under Q, {Xt}t≥0

is a recurrent birth and death chain with transition probabilities given by:

b̃` := ` + 1, ` ≥ 0, d̃` := ` + 2α, ` ≥ 1. (4.5)

The proof of this corollary is based on the following fact : the underlying jump chain
associated to {X(t)}t≥0 is a Bessel random walk with index α. The remaining details are left
to the reader.

4.2 Other examples

Let us state other natural questions: assuming the hypothesis of Theorem 2.2, the pro-
cess {X(t)}t≥0, under Q, is it recurrent positive? Does there exist an invariant probability
distribution? The answer at these questions is no. Here are two simple examples.

Set, for ` ≥ 0, b` := a`, d` := a2`, where 0 < a < 1. Therefore, the associated birth and
death process is transient since

γn =
n
∏

`=1

a` = a
n(n+1)/2, S =

∑

n≥0

a
n(n+1)/2 < ∞.

Again, the process is recurrent under Q, by Theorem 2.2. Using (2.22) we get

b̃` = b`
R`+1

R`
= a` R`+1

R`
, d̃` = d`

R`−1

R`
= a2` R`−1

R`
.

We compute

∑

j≥1

j
∏

`=1

b̃`−1

d̃`

=
∑

j≥1

(

Rj

S

)2 j
∏

`=1

1

a`+1
=

1

S2

∑

j≥1

R2
j

a(j2+3j)/2
=

1

S2

∑

j≥1

Uj,
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where

Uj :=
1

a(j2+3j)/2





∑

`≥j

a
`(`+1)/2





2

.

Since

Uj+1

Uj
= a

(2j−4)/2 a
(j+1)(j+2)

a
j(j+1)

(

∑

`≥0 a`(`+2j+3)/2

∑

`≥0 a`(`+2j+1)/2

)2

= a3j

(

∑

`≥0 a`(`+2j+3)/2

∑

`≥0 a`(`+2j+1)/2

)2

and, by dominated convergence theorem,

lim
j→∞

∑

`≥0 a`(`+2j+3)/2

∑

`≥0 a`(`+2j+1)/2
= 1,

then limj→∞ Uj+1/Uj = 0. By D’Alembert criterion, the series (1/S2)
∑

j≥1 Uj converges and
therefore the necessary condition for the existence of an invariant distribution (see, for instance
[6], p. 78 or [10], p. 412) is satisfied. Hence, in this case there exists an invariant distribution
for the process {X(t)}t≥0 under Q.

Set, for ` ≥ 0, b` := a`, d` := a`+1, where 0 < a < 1. Again, the associated birth and
death process is transient since

γn =
n
∏

`=1

a = an, S =
∑

n≥0

γn =
1

1 − a
< ∞.

Using (2.22) we obtain

b̃` = b`
R`+1

R`
= b`

a`+1

a`
= a`+1, d̃` = d`

R`−1

R`
= d`

a`−1

a`
= a`.

On the one hand, by Theorem 2.2 one knows that the process is recurrent under Q. On the
other hand:

∑

j≥1

j
∏

`=1

b̃`−1

d̃`

=
∑

j≥1

1 = ∞.

Hence in this case there is not invariant distribution for {X(t)}t≥0 under Q.
Let us note that in previous examples there is no explosion. A natural question is then

the following : if the process explodes is it possible to prove the existence of an invariant
distribution? Again the answer is negative as we can see below.

Let us recall, according to [9] p. 90 , that {X(t)}t≥0 can explode if sup`≥0 b` + d` = ∞.
Set, for ` ≥ 0, b` = (1+ `)a and d` = `a, with a > 1. Then, obviously sup`≥0 b` +d` = ∞, and

γn =

n
∏

`=1

`a

(1 + `)a
, S =

∑

`≥0

1

(1 + `)a
< ∞.

As previously, we have:

∑

j≥1

j
∏

`=1

b̃`−1

d̃`

=
∑

j≥1

(

Rj

S

)2 j
∏

`=1

b`−1

d`
=

1

S2

∑

j≥1





∑

`≥j

1

(1 + `)a





2

.
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Since
∑

`≥j

1

(1 + `)a
∼

j→∞

∫ ∞

j

1

(1 + y)a
=

1

(a − 1)(j + 1)a−1
,

the series
∑

j≥1

∏j
`=1

b̃`−1/d̃` behaves as the series
∑

j≥1(j+1)2−2a, that is convergent if a > 3/2

and divergent if a ≤ 3/2.
Finally, the explosion is not a criterion for the existence of an invariant distribution.
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