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ABSTRACT

In addition to genomic RNA, HIV-1 particles pack-
age cellular and spliced viral RNAs. In order to
determine the encapsidation mechanisms of these
RNAs, we determined the packaging efficiencies
and specificities of genomic RNA, singly and
fully spliced HIV mRNAs and different host RNAs
species: 7SL RNA, U6 snRNA and GAPDH mRNA
using RT-QPCR. Except GAPDH mRNA, all RNAs
are selectively encapsidated. Singly spliced RNAs,
harboring the Rev-responsible element, and fully
spliced viral RNAs, which do not contain this motif,
are enriched in virions to similar levels, even though
they are exported from the nucleus by different
routes. Deletions of key motifs (SL1 and/or SL3) of
the packaging signal of genomic RNA indicate that
HIV and host RNAs are encapsidated through
independent mechanisms, while genomic and
spliced viral RNA compete for the same trans-
acting factor due to the presence of the 50 common
exon containing the TAR, poly(A) and U5-PBS hair-
pins. Surprisingly, the RNA dimerization initiation
site (DIS/SL1) appears to be the main packaging
determinant of genomic RNA, but is not involved in
packaging of spliced viral RNAs, suggesting a
functional interaction with intronic sequences.
Active and selective packaging of host and spliced
viral RNAs provide new potential functions to these
RNAs in the early stages of the virus life cycle.

INTRODUCTION

The full-length HIV-1 genomic RNA (FL RNA) is a
capped and polyadenylated Pol II transcript that is
selectively incorporated into the viral particles as a non-
covalent dimer. RNA packaging into virus particles is
dependent upon specific interaction between FL RNA
and the nucleocapsid protein (NC) domain of the Gag
precursor. A recent study suggests that capture of
FL RNA occurs at a perinuclear/centrosomal site (1).
Selection of the HIV-1 genomic RNA involves the
so-called Psi region located immediately upstream of the
gag start codon (Figure 1) and folded into four stem-loops
important for genome packaging (SL1 to SL4) [for
review see (2)] (Supplementary Figure 1). In particular,
SL1 contains the dimerization initiation site (DIS), a
GC-rich loop that mediates in vitro RNA dimerization
through kissing-complex formation, presumably a
prerequisite for virion packaging of FL RNA [for
review see (3)]. While both SL2 and SL3 bind HIV-1
NC with high affinity (4), only SL3 seems capable of
independently directing the packaging of heterologous
RNAs (5), pointing at a particular contribution of SL3
in packaging.
Additional cis-acting sequences have also been shown

to contribute to FL RNA packaging. Some of these
elements are located in the first 50 nt of the gag gene,
including SL4 (Supplementary Figure 1) and are present
only in the FL RNA molecule (6,7), whereas others are
located upstream of the splice-donor site (SD1), and are
consequently present in all HIV-1 RNAs. These upstream
sequences include TAR (trans-acting responsive element),
poly(A) and U5-PBS hairpins (Supplementary Figure 1)
that are involved in FL RNA packaging (8–10).
Although selective encapsidation of FL RNA is largely

attributed to Psi, presence of spliced viral RNAs has been
found in infectious wild-type (wt) HIV particles (11) and
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in mutant particles with altered levels of FL RNA due to
Gag or Psi mutations (12–16), but the determinants
and mechanism involved in spliced-RNA encapsidation
remain undefined.
The FL-HIV-1 transcript undergoes complex alterna-

tive splicing that produces446 spliced RNAs (17), divided
in to two classes: fully spliced mRNAs (2.4 kb) encoding
Tat, Rev and Nef, and singly spliced mRNAs (4 kb)
encoding Vpu, Vpr, Vif and Env (Figure 1). The fully
spliced RNAs, also called the early transcripts, follow
the classical route of host mRNAs nuclear export. In
contrast, singly spliced HIV-1 mRNA and FL RNA
are intron-containing transcripts that would normally
be restricted from leaving the nucleus, but are exported
via the CRM1-dependent protein export pathway due to
the HIV-1 Rev protein, which serves as an adaptor
between the Rev-responsive element (RRE) present in the
env gene (Figure 1) and CRM1 (18). Thus, the export
pathway might also contribute to the selective packaging
of FL RNA. Currently, the packaging efficiency and
selectivity of the two groups of spliced RNAs is not well
characterized, and one cannot discard the possibility that
these spliced viral mRNAs are randomly packaged,
together with cellular RNAs.
Indeed, retroviruses package significant amounts of

cellular RNA (�50% of the RNA mass in virions) (19).
Recently, Telesnitsky and coworkers showed that host
7SL RNA, a component of signal recognition particles
(SRPs) essential for protein translocation across the
endoplasmic reticulum, is selectively enriched in HIV-1

particles (20). Ribosomal RNA, tRNA or U6
spliceosomal RNA have also been detected in other
retroviral particles (21,22), raising the issue of specific
packaging determinants.

In order to unravel the mechanisms conferring RNA
packaging specificity, we undertook a detailed quantita-
tive analysis of the RNA content of HIV-1 particles by
RT-QPCR. Our study not only quantified the relative
packaging efficiency of all singly and fully spliced viral
mRNAs and of few distinct host RNA species (7SL, U6
and GAPDH RNAs) relative to that of FL RNA, but also
allowed to evaluate the importance of the different regions
of HIV-1 RNA and of the RNA export pathway on the
packaging efficiency. We also studied the effects of SL1
and/or SL3 deletion on the packaging efficiency of these
RNAs. By measuring the effects of these deletions on the
packaging efficiency of each RNA species, we could not
only evaluate the relative importance of SL1 and SL3 in
the packaging of FL RNA, but also deduce whether the
same mechanism underlies encapsidation of the different
RNAs. Altogether, our results allowed us to propose
a model for selective RNA encapsidation, revealing a
new potential of the RNA structural domains
located upstream of Psi and shared by spliced and
unspliced RNAs.

MATERIALS AND METHODS

The HIV-1 pNL4.3 molecular clone was used to generate
constructs with deletion of SL1 (pNL4.3 �SL1), SL3

Figure 1. HIV-1 genome expression. (A) HIV-1 proviral DNA (pNL4.3). Black boxes correspond to 50 and 30 LTR and color boxes to open reading
frames. The packaging signal (Psi) in red and the rev-responsive element (RRE) in gray, are also depicted. (B) Representation of the major HIV-1
mRNAs species. Spliced RNAs are classified into two groups: the singly and fully spliced mRNAs. Thick lines correspond to exons and dotted lines
to introns. Only the two splice donor sites (SD1 and SD4) and the two splice acceptor sites (SA5 and SA7) important for this study are indicated.
While p10þp1, p7þ p9 and p2þ p8 PCR-primer pairs are used to quantify total viral RNAs (gray rectangle), FSpl RNAs (orange rectangle) and
singly spliced RNAs (dark green rectangle), respectively, individual RNA species were detected with p2þ p4 or p5þ p6 (FL RNA, blue), p3þ p8
(env-1, light green), and p3þ p9 (nef-2, red).
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(pNL4.3 �SL3) or both SL1 and SL3 (pNL4.3
�SL1SL3). To obtain these constructs, the QuickChange
site-directed mutagenesis kit was used according to the
manufacturer (Stratagene), using plasmid DNA pLTR50-
NL4.3 containing the AatII-SphI fragment of pNL4.3
molecular clone (23). The mutated oligonucleotides were
pS681-746 (50-TCTCTCGACGCAGGAGGGCGGCGA
CTGGTG-3) and pAS681-746 (50-CACCAGTCGCCGC
CCTCCTGCGTCGAGAGA-30) for mutant pLTR50-
�SL1 and pS751-794 (50-CGCCAAAAATTTTGAAAG
GAGAGAGATGGG-30) and pAS-751-794 (50-CCCATC
TCTCTCCTTTCAAAATTTTTGGCG-30) for mutant
pLTR50-�SL3. After confirmation of the presence of the
deletion by restrictions and DNA sequencing, plasmid
DNAs were digested with AatII and SphI and the
resulting fragment was substituted for the homologous
region of pNL4.3 DNA. Positions of deletions are given in
Supplementary Figure 1.

Cell culture, transfections and infections

Human embryonic kidney 293 (HEK 293T) cells were
maintained at 378C in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with glutamine (2mM),
penicillin, streptomycin and 10% (v/v) heat-inactivated
fetal calf serum. The human T lymphoblastoid H9 cell
lines were grown in RPMI 1640 medium supplemented the
same way. Transfections of 293T cells were performed
with 3� 106 cells splitted the day before in 100-mm dishes
in 8ml medium by calcium phosphate precipitation.
For moderate- or high-level expression of HIV, 2 mg
along with 6 mg of carrier DNA (plasmid pSP72) or 8 mg of
HIV-1 plasmid DNA were transfected and samples
collected 20 or 48 h after transfection, respectively. For
cotransfections, 2 mg of each plasmid were used along with
4 mg of pSP72 carrier. In all cases, cells were splitted and
washed with PBS a few hours after transfection to
eliminate plasmid excess. The amount of HIV particles
in supernatants was determined using a HIV-1 CA p24
core antigen enzyme-linked immunosorbent assay
(ELISA) Kit (Beckman CoulterTM). Virus-containing
supernatants used for infection of H9 cells were obtained
with 8 mg HIV-1 plasmid DNA. To assess the viral titers of
wt and mutant viruses, H9 cells were infected with serial
dilutions of cell-free medium harvested from transfected
293T culture. Cells were fed every 3–4 days. Viral
replication was monitored over 10 days by standard RT
enzyme assay (24).

RNA extraction and analysis

RNA extractions from cell and virion were performed
as previously described (25). To control virion-RNA
extraction from the virus-containing supernatants, 5 ml of
supernatant of MuLV-infected NIH3T3 cells, previously
calibrated as in (26), were added as a tracer to each
HIV supernatant before ultracentrifugation. Usually,
a maximal variation of 20% was found which
was corrected accordingly. Reverse transcription was
performed as described (25) with 1 mg of total cellular
RNA or 1/20 aliquots of virion RNA samples. Oligo(dT)
was used as RT-primer for all viral and GAPDH mRNAs

while reverse transcription of 7SL and U6 RNAs required
specific internal primers. Standard PCR was performed
with 5% of RT reaction, using Takara Taq (Invitrogen).
Quantitative PCR was achieved with 2.5% of the
RT-d(T), 0.125% of RT-U6 and 0.05% of RT-7SL
reactions with SYBR Green Kit (Roche) with the
LightCycler (Roche) and RotorGene (Labgene) systems.
A standard curve was generated from 50 to 500 000 copies
of pNL4.3 plasmid. Each RT-PCR assay was accompa-
nied by controls without reverse transcriptase that showed
DNA contamination levels 50.1% of the HIV genomic
RNA, and 50.001% of 7SL and U6 RNAs. Packaging
efficiency was determined by calculating the ratio of the
total amount of each RNA present in the supernatant
(V) and the total amount present in cells (C). All primer
sequences and detailed PCR conditions will be provided
on request.

RESULTS

Detection of singly spliced viral RNAs in HIV-1 particles

Besides specific packaging of two copies of FL RNA,
HIV-1 also incorporates spliced viral RNAs, although at a
lesser extent (11,12). First, we looked for virion-associated
singly spliced RNAs, including the env mRNA present in
all retroviruses. RNA samples were extracted from
pNL4.3-transfected cells and from viral pellets obtained
from cell culture supernatants, and analyzed by standard
RT-PCR as described in the Materials and methods
section. The primer combination p2þ p8 enabled simul-
taneous detection of all singly spliced RNAs (Figure 1).
The most abundant singly spliced HIV-1 RNAs in cells
were vif-2 (1347 nt), vpr-3 (870 nt) and env-1 (284 nt)
(Figure 2A, lane 1). A similar pattern was observed with
RNA samples extracted from viral pellet (Figure 2A,
lane 4). FL RNA was detected with primers p2þ p4
(Figure 2A, lanes 1 and 4). By comparison with the singly
spliced RNAs, FL RNA was enriched in the viral
particles, as expected from its preferential packaging.
In all cases, no background signal was observed with
mock-transfected cells (Figure 2A and B, lanes 3 and 6).
A positive control corresponding to direct PCR amplifica-
tion with pNL4.3 displayed a specific FL signal with
p2þ p4 primers (Figure 2B, lane 8), while no signal was
observed with the p2þ p8 primers, specific for the spliced
RNA species (Figure 2A, lane 8). Thus, our results
confirm the presence of at least the most abundant singly
spliced RNA species, and probably all, in wt HIV-1
particles, and suggest that all singly spliced viral RNAs are
packaged with similar efficiencies.

Quantitative and comparative analysis of viral FL,
singly and fully spliced RNA packaging

Up to now, there are no data available on spliced viral
RNA packaging efficiency in HIV-1 particles. Indeed, the
low abundance and large diversity of the HIV-1-spliced
transcripts make difficult their quantification in virions.
Here, we used several primer pairs allowing specific
analysis of one major representative of each HIV spliced
RNA classes: env-1, representing 74% of the singly spliced
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RNAs, and nef-2, amounting to 27% of all fully spliced
RNAs (17) (Figure 1). In addition, we designed a primer
pair specific for the SD4/SA7 exon–exon junction
(p7þ p9, Figure 1) that allowed overall quantification of
the fully spliced RNA class (FSpl).
Since it was previously reported that levels of spliced

HIV RNAs varied between different infected cell types
(PBMC, macrophages or T-lymphocytes) and with the
kinetics of infection (27), transfection, although less
physiological than infection, was used in this study.

Nevertheless, moderate-level expression of HIV-1 was
chosen to prevent cell lysis, which could disturb the
intracellular RNA traffic (28). Quantitative analysis of
HIV FL, env-1, nef-2 and FSpl RNAs were performed
from the same RT reaction using oligo d(T) as a primer,
followed by specific QPCR amplifications. The amplifica-
tion products were analyzed on agarose gel
(Supplementary Figure 2A) and sequenced (not shown)
to ensure that the expected products were amplified. The
copy numbers of each viral RNA in assays and mock
controls were measured in 50 ng of total cell RNA and
1/400 of virion RNA, and a representative experiment
is shown in Supplementary Figure 2B. To determine
encapsidation efficiencies, copy numbers measured in cells
and in virions were reported to the total input of cellular
and virion RNA samples, and virus-to-cell RNA ratios
[(V/C)� 100] were calculated and normalized to FL level
(Figure 3A). As expected, FL RNA was encapsidated
more efficiently than spliced viral RNAs (459-fold). FSpl
RNAs, as well as its major representative nef-2 RNA,
were incorporated with an efficiency similar to env-1 RNA
and likely to all singly spliced RNAs (Figure 2A). These
results showed that singly and fully spliced RNAs
displayed similar encapsidation capabilities. Considering
that the presence of spliced RNA could result from the
moderate-level expression of HIV, we conducted similar
analysis in high-level expression conditions (see the
Materials and methods section). The data are reminiscent
of those observed in moderate-level expression conditions
with even higher encapsidation levels of spliced RNA
(data not shown). Thus, in both moderate- and high-
expression conditions, HIV-1 particles contained low but
significant amounts of singly and fully spliced viral RNAs.

Quantitative analysis of host RNA packaging

Packaging of spliced viral mRNAs may represent for-
tuitous random packaging. To determine whether pack-
aging of env-1- and nef-2-spliced RNAs is specific, we also
evaluated the incorporation levels of several host RNAs.
Comparison with 7SL RNA was especially interesting

Figure 3. Relative encapsidation efficiencies of HIV-1 (A) and total cellular (B) RNAs in wt virus. RNAs were quantitated by RT-QPCR in both
transfected cell and virus. Relative packaging efficiencies were determined [(V/C)� 100] and normalized to FL level. Results represent
mean� standard deviations of at least three independent experiments.

Figure 2. Analysis of unspliced (FL) and singly spliced mRNAs in wt
and mutant HIV-1 particles. Singly spliced (A) and FL (B) RNAs were
detected in RNA samples extracted from wt (lanes 1 and 4), �SL1SL3
(lanes 2 and 5) and mock (lanes 3 and 6) transfected cells and in
corresponding viral particles (lanes 4–6) using standard RT-PCR. As a
control, amplification was also performed using pNL4.3 plasmid as a
template (lane 8). Bands corresponding to vif-2, vpr-3 and env-1
mRNAs are indicated by arrows. In the mutant virus, all amplicons
were shortened by 34 nt, due to the SL1 deletion. This result is
representative of at least three independent experiments.
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because of its preferential packaging into HIV-1 particles
(20). Similarly, we monitored nuclear U6 snRNA that was
previously described associated to murine leukemia
viruses (MLV) (29). As a marker for random packaging,
we analyzed incorporation of a housekeeping mRNA
abundantly expressed in cells, GAPDH mRNA. These
three cellular RNAs were analyzed as the spliced viral
RNAs and their copy numbers measured in transfected or
mock-transfected cells and in the corresponding super-
natants (Supplementary Figure 3). To assess the signifi-
cance of the presence of these host RNAs in virions,
percentages of host RNA leakage were calculated as (total
c.p.s. in C/total c.p.s. in V )� 100 of mock samples. Host
RNA leakages were similar for the three host RNAs
(0.0037% for U6, 0.0043% for 7SL and 0.0031% for
GAPDH). Leakage was subtracted from assays, and
encapsidation efficiencies of host RNA were determined
as above for spliced RNAs, and normalized to the FL
RNA level (Figure 3B). GAPDH mRNA level in the
supernatant culture was insensitive to the production of
HIV particles, indicating that GAPDH mRNA was not
detectably incorporated into HIV virions. The packaging
efficiencies of 7SL RNA and U6 snRNA were very
different, being 55-fold and43 orders of magnitude lower
than that of viral FL RNA, respectively. These three host
RNAs were packaged with even higher efficiencies when
HIV-1 was highly expressed (data not shown).

These results show that all cellular RNAs were not
encapsidated with the same efficiency, suggesting that they
are not randomly packaged. The undetectable GAPDH
mRNA level suggests that active mechanisms of pack-
aging and/or exclusion are involved and that the pool of
cellular mRNAs is counter-selected.

Effects of Psi mutations on virus release and infectivity

We showed that viral singly and fully spliced RNAs and
some host RNAs are natural components of HIV-1
virions. To further understand the mechanisms governing
packaging of these RNAs, we altered FL RNA packaging
by deleting the two major cis-acting Psi elements, SL1 and
SL3 (Supplementary Figure 1), either individually or
together. A decrease, or a compensatory increase, of the
amount of spliced or host RNAs in viral particles in
response to diminished FL RNA packaging, would
support the existence, or not, of common packaging
determinants between these RNAs.

First, we analyzed the impact of these deletions on
HIV-1 replication. Mutants HIV-1 molecular clones were
transfected into 293T cells to produce virus stocks that
were subjected to viral capsid protein analysis by ELISA.
As shown in Table 1, deletions did not significantly affect
release of capsid proteins, suggesting that similar levels of
wt and mutant viral particles were released in the media.
Then, same amounts of virus were used to infect H9 cells.
H9 progeny viruses were titrated by measuring the RT
activity in culture supernatants. Deletion of SL1 resulted
in a greater reduction in virus infectivity (200-fold) than
deletion of SL3 (4-fold), with a maximal effect for the
double deletion mutant, which was essentially non-
infectious (Table 1). These alterations would complicate

the analysis of the mutation effects in an infection context.
These results indicated that both SL1 and SL3 are
important for HIV-1 replication but that their deletion
did not significantly interfere with virion production.

Effects of Psi mutations on viral RNA production

We could not a priori exclude an impact of the SL1 and/or
SL3 deletions on the very close SD1 site. Because
modifications of FL RNA splicing would complicate the
analysis of the effects of these deletions on RNA
packaging, we first examined the splicing efficiencies of
the Psi mutant viruses. RNA samples extracted from
transfected 293T cells were analyzed by RT-QPCR to
quantify FL, FSpl, nef-2 and env-1 RNA species.
Quantification of the total viral RNA pool indicated
that wt and mutant RNAs were expressed at similar levels
(data not shown) excluding an effect of mutations on viral
RNA stability. For comparative purposes, tested RNA-
to-FL RNA ratios were determined and normalized to wt
levels (Table 1). Our results indicated that neither FSpl,
nef-2, nor env-1 RNA levels were modified by the
deletions. Thus, deletion of SL1 and/or SL3 preserved
FL RNA expression levels without affecting splicing.

Effects of SL1 and/or SL3 deletions on RNA packaging

Genomic RNA levels in virions and virus-producing cells
were quantified by RT-QPCR and encapsidation efficien-
cies were determined for each FL RNA mutant and
normalized to that of wt FL RNA (Figure 4A). Deletion
of SL3 resulted in a 2-fold reduction of the FL RNA
encapsidation efficiency. Deletions of SL1 or SL1 and SL3
had more severe effects, reducing FL RNA packaging
5-fold. Thus, both RNA stem-loops were important for
genomic RNA encapsidation, with a major role for SL1.
Next, we examined the consequences of reduced FL

RNA incorporation on packaging of the spliced viral
RNAs and host RNAs in mutant particles. First, we
glanced at the effect of the SL1þSL3 deletion on the

Table 1. Effect of mutations on virus release, infectivity and splicing

Wt �SL1 �SL3 �SL1SL3

p24 in supernatanta 100 69� 29 70� 4 87� 37
Infectivityb 100 0.5� 0.03 24� 10 ND
Viral RNA in cellsc

Tot/FL 100 93� 12 81� 14 83� 19
env-1/FL 100 97� 18 105� 17 83� 15
nef-2/FL 100 86� 14 91� 24 72� 11
FSpl/FL 100 98� 36 81� 26 82� 17

All results represent mean� standard deviations of at least three
independent experiments. For comparison purposes, averaged values
were normalized to wt levels.
aLevels of virions released in culture media of 293T cells transfected
with wt and mutant constructs were analyzed by quantitation of viral
capsid (p24) with p24 ELISA kit.
bVirions from (a) were used to infect H9 cells and infectivity was
determined by monitoring reverse transcriptase activity in supernatant
of infected H9 cells. ND: not detectable.
cTotal viral RNA (Tot), env-1, nef-2, FSpl and FL RNAs were
quantified by specific RT-QPCR in RNA samples extracted from
transfected cells and their relative abundance to FL RNA was
calculated.
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FL and the overall profile of singly spliced RNA
packaging by standard RT-PCR. While similar levels of
wt and mutant RNAs were present in cells, �SL1SL3 FL
RNA was less efficiently incorporated into virions than wt
FL RNA, correlating with quantitative data of Figure 4A,
whereas singly spliced RNAs were more abundant in
�SL1SL3 virions (Figure 2). These results showed that the
simultaneous deletion of SL1 and SL3 affects packaging of
FL and singly spliced RNAs in opposite ways. Besides,
they confirmed that these deletions did not affect splicing,
since the relative abundance of singly spliced RNA species
was the same in cells expressing wt or �SL1SL3 viruses
(Figure 2).
Next, detailed quantitative studies of the RNA content

of �SL1, �SL3 and �SL1SL3 particles were undertaken
by RT-QPCR. Levels of singly and fully spliced viral
RNAs, as well as host 7SL, U6 and GAPDH RNAs, were
assessed in the same viral pellets as used above for FL
RNA analysis. Encapsidation efficiencies of each RNA
species were determined for all mutants and normalized to
those determined for wt virus (Figure 4B). As observed
above with wt virions (Figure 3B), GAPDH mRNA was

excluded from all mutant virions. In �SL1 virions, a
strong increase of all spliced RNA species was observed,
with a maximum effect for the env-1 RNA (6-fold).
However, deletion of SL1 did not significantly enhance
packaging of 7SL and U6 RNAs (Figure 4B). Deletion of
SL3 resulted in a slight increase (2-fold) of both spliced
viral RNA and host RNA encapsidation levels, revealing
similar limited consequences of SL3 deletion on the two
RNA species. In contrast, the double mutant (�SL1SL3)
showed a drastic 16-fold increase of the spliced viral
RNAs, accompanied by a modest 2–3-fold increase of 7SL
and U6 RNAs in �SL1SL3 particles.

In conclusion, no significant difference was observed
between the singly and fully spliced RNA encapsidation
among the deletion mutants. Interestingly, deletions
induced different effects on encapsidation of host and
spliced viral RNAs. While 7SL and spliced viral RNAs
appeared encapsidated with similar efficiency in wt virions
(FSpl¼ 7SL¼ 1.8%, Figure 3), they displayed very
different packaging efficiencies in �SL1 and �SL1SL3
particles, strongly suggesting that spliced viral RNAs and
7SL RNA are incorporated through different mechanisms.

Competition between wt and �SL1 RNAs for packaging

It is usually thought that the presence of SL1 in HIV-
1-spliced RNAs could direct their encapsidation into
virions. However, the significant increase of spliced-
RNA packaging observed upon SL1 deletion did not
favor this hypothesis, and rather suggested an inhibitory
effect of SL1 on spliced-RNA packaging. To directly
address this issue, we undertook competition experiments.
The wt and �SL1 pNL4.3 plasmids were cotransfected in
293T cells. RNA was extracted from cells and virions and

Figure 4. RNA encapsidation efficiencies in mutant viruses. (A)
Relative encapsidation efficiency of FL RNA. Encapsidation efficiency
[(V/C)� 100] is given as% of the wt level. (B) Relative encapsidation
efficiency of spliced viral and host RNAs. For each RNA species,
packaging efficiencies levels were average (�SD) from at least three
independent experiments and normalized to wt level.

Figure 5. Comparison of viral RNA encapsidation when wt and �SL1
viruses are coexpressed. 293T cells were cotransfected with same
amount of wt and �SL1 constructs. RNA was extracted from cells (C)
(lane 1) and viruses (V) (lane 2) and singly spliced (A) and FL (B)
RNAs were detected by RT-PCR. Because �SL1 deletion shortened the
amplified product by 34 nt, wt and mutant forms of each RNA species
were distinct.

2700 Nucleic Acids Research, 2007, Vol. 35, No. 8

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/35/8/2695/1044910 by BIU

 M
ontpellier user on 01 June 2022



analyzed by standard RT-PCR, followed by agarose gel
electrophoresis, and visualization of the bands corre-
sponding to vpr-3 and env-1 RNAs. This approach
allowed discrimination between wt and mutant RT-PCR
products since the latter were shorter, due to SL1 deletion
(Figure 5). When wt and �SL1 singly spliced RNAs were
equally coexpressed in cells, virions exhibited similar levels
of the two RNAs (Figure 5A, lanes 1 and 2), indicating
that they were incorporated in virions with the same
efficiency. Thus, the SL1 motif did not confer any
advantage or disadvantage to the singly spliced RNAs
for packaging. Of course, SL1 remained a crucial
determinant for FL RNA packaging, since wt FL RNA
showed preferential incorporation over �SL1 FL RNA
when wt and �SL1 FL RNAs were coexpressed at similar
levels in cells (Figure 5B, lanes 1 and 2).

DISCUSSION

The results described in this article indicate that HIV-1
incorporates measurable amounts of nongenomic RNAs
such as spliced viral RNAs and cellular 7SL and U6
RNAs in addition to the genomic FL RNA. We examined
whether the same mechanism underlies encapsidation of
these different RNA species.

Packaging of cellular RNAs greatly varied from one
species to another. 7SL RNA was packaged in wt HIV-1
particles as efficiently as singly and fully spliced viral
RNAs, whereas packaging of U6 snRNA was less efficient
(Figure 3B). At the opposite, GADPH mRNA was not
detectably encapsidated into virions, arguing against a
background random packaging of cellular RNAs.

When packaging of FL RNA was reduced by deleting
SL1 and/or SL3 (Figure 4A), the space normally occupied

by genomic RNA was not passively and randomly filled
by cellular RNA. Indeed, GAPDH mRNA remained
undetectable in the virions containing mutant FL RNA
and the relative packaging efficiency of 7SL and U6 RNAs
only slightly increased (Figure 4B). In contrast, to
compensate the loss of FL RNA, mutant particles
specifically favored encapsidation of spliced HIV RNA
(see below). These results demonstrate that host and viral
RNAs were packaged through independent mechanisms.
Consistently, it was recently reported that packaging of
7SL RNA in HIV-1 does require neither the FL RNA nor
the Gag protein (20). It is also unclear whether packaging
of U6 and 7SL RNAs were governed by the same process.
The only common feature between these host RNAs is
transcription by RNA polymerase III, which might
require common determinants and/or a trafficking path-
way contributing to packaging.
Spliced viral RNAs are usually considered to be

encapsidated in trace amounts in wt HIV-1 particles.
However, our quantitative analysis show that spliced viral
RNAs are encapsidated with significant efficiency
(Figure 3A). Importantly, we (Houzet et al. submitted
for publication) and others (11) have shown that spliced
mRNAs are reverse transcribed during infection, demon-
strating that viral particles containing spliced viral RNAs
are infectious. In addition, we did not observe any
significant difference in the packaging efficiency of the
singly spliced (RREþ) and fully spliced (RRE�) RNAs,
indicating that: (i) spliced viral RNAs are equally
encapsidated regardless of their nuclear export pathway,
(ii) the RRE motif is not involved in spliced-RNA
packaging and (iii) there is no packaging determinant in
the exonic sequences removed during full splicing but
conserved in the singly spliced RNAs.
Whereas deletions of SL1 and/or SL3 had little effect on

encapsidation of host RNAs, they favored packaging of
both singly and fully spliced viral RNA (Figure 4B). In
addition, our quantitative analysis demonstrates a direct
correlation between the decrease in packaging efficiency of
FL RNA and the increased packaging of FSpl RNAs
(Figure 6). This opposite co-variation was observed with
all spliced RNA species studied in this work (and not
shown in Figure 6) and suggests selective incorporation of
spliced viral RNAs via an active mechanism. It also
indicates that the FL and spliced viral RNA species are
packaged in a competitive manner, thus implying that
these RNA species utilize common cis-packaging signals
and trans-protein factor(s).
Remarkably, in mutant �SL1SL3 virions, FL and FSpl

RNAs were packaged with similar efficiency (Figure 6)
suggesting that the 50 UTR upstream of SL1 contains
cis-packaging signals, shared by FL and spliced viral
RNAs, that are sufficient to confer a packaging efficiency
corresponding to 15–18% of the packaging efficiency of wt
FL RNA (Figure 6). On the other hand, it suggests that
SL2, the putative SL4 and the coding sequences unique to
FL RNA marginally contribute to packaging of FL RNA,
at least in the context of the �SL1SL3 mutant.
Interestingly, the region located upstream of SL1 includes
three well-characterized structures, TAR, polyA and
U5-PBS hairpins, that have been shown to be involved

Figure 6. Model for competitive and selective encapsidation of viral
unspliced and spliced RNAs. For an overview of RNA packaging
variations among mutants, packaging efficiencies of FL (blue) and fully
spliced RNA (orange), expressed as% of the wt FL level, were reported
in a log-scale graph. The SL1-SL4 hairpins forming the Psi site were
schematically drawn, with SL1 and SL3 hairpins in red, along with the
three upstream structural motifs: TAR, poly(A) and U5-PBS hairpins
in black. The dotted line shows the axial symmetry between FL and
spliced RNA variations illustrating a competition between the two
RNA species for packaging. Opposite co-variation and convergence are
two features suggesting that spliced and FL RNAs compete for a
common trans-acting factor (oval) that binds the different wt or mutant
RNAs with high (horizontal) or medium (vertical) affinity.
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in FL RNA packaging (8,9,30–33). Since these three
structural domains are common to all HIV spliced
and unspliced RNAs, they are likely responsible for
encapsidation of the viral FL and spliced RNAs in
�SL1SL3 mutant, which remained selective despite its
limited efficiency. Such a contribution of sequences
located upstream of Psi is not a general feature of
retroviruses, since mutations in MLV Psi virtually
abolished encapsidation of FL RNA (34,35) and did
not increase spliced RNA levels in MLV particles [(34)
and data not shown].
Analysis of the SL1 deletion was of particular interest,

since SL1 is present in both FL and spliced wt RNAs.
Unexpectedly, this deletion had opposite effects on FL
and spliced RNA packaging, with an inhibitory effect on
FL RNA and a strong positive effect on spliced RNA
packaging (Figures 4 and 6). However, when wt and �SL1
viruses were coexpressed, spliced wt and �SL1 RNAs
were packaged with the same efficiency (Figure 5). Thus,
increased packaging of spliced RNA in the �SL1 mutant
resulted from a competitive compensation of the defect in
FL RNA packaging, rather than from a direct cis-effect of
the deletion on spliced RNA.
Since SL1 has been identified as the DIS of HIV-1 RNA

in vitro and contribute to dimerization of HIV-1 FL RNA
in cell culture [for review see (36)], our results exclude the
possibility that spliced viral RNAs are packaged by
forming heterodimers via SL1 with the FL genomic
RNA. In addition, the absence of stoichiometric co-
variation between FL and spliced RNA packaging with
the mutants also argues against this possibility. Our results
also suggest that spliced viral RNAs do not homodimerize
via SL1 in cell culture or that SL1 dimerization of these
RNAs does not affect their packaging, in sharp contrast
with FL RNA, for which dimerization and packaging are
intricately linked processes [for reviews see (2,36)].
In keeping with previous studies performed either with

chimeric constructs, or in cotransfection of wt and mutant
HIV, or in infection [(37) and references therein], we found
that deletion of SL1 and/or SL3 hairpins decreased FL
RNA levels in virions, confirming their roles in genomic
RNA packaging. Our study indicates that SL1 plays a
greater role in RNA packaging and viral infectivity than
SL3. Note that the deletions studied in these early studies
did not only encompass SL3 or SL1, but larger regions
which may indirectly affect packaging by altering folding
of the complete Psi region. Interestingly, SL1 appears to
favor RNA packaging only in the context of the FL RNA,
suggesting that it works together with sequences that are
not present in spliced RNA. In particular, sequences in
gag might directly interact with SL1 since they are known
to stabilize the SL1-mediated RNA dimer in vitro (38,39).
We suggest that these sequences, which remain to be
precisely identified, cooperate with SL1 to direct specific
packaging of the FL RNA. This would explain why gag
sequences enhance packaging of wt FL RNA (6,7), but do
not seem to contribute to packaging of �SL1SL3 FL
RNA (Figure 6).
Altogether our observations allow us to propose a

working model in which FL and spliced RNAs act as
competitors in a common selective but weakly efficient

packaging process driven by determinant(s) located
upstream of the Psi region. In the wt virus, the presence
of Psi insures optimal specificity and efficiency, mainly
mediated by SL1, and possibly in cooperation with gag
sequences, to FL RNA to the detriment of spliced RNAs.
This model correlates with previous works showing that
the region encompassing SL1 to SL4 is not sufficient to
target RNA into HIV-1 virions (40). Instead, the minimal
region shown to confer autonomous packaging activity
spans the first 350 to 400 bases of the genome, and thus
not only includes Psi, but also 242 bases upstream and the
50 40 nt of gag (6,7,41,42). Our model suggests that the
upstream three hairpins also provide low affinity interac-
tions with a trans-acting factor, presumably Gag. This
hypothesis is supported by a previous study showing that
Gag binds the 50 first 261 nt, precisely corresponding to 50

leader sequence of spliced RNA, with significant affinity
(43). This model does not exclude that other factors might
also indirectly affect packaging, such as subcellular
localization of the RNA or its ability to bind cellular or
viral chaperone proteins (44–46).

A better understanding of the mechanism allowing
packaging of HIV-1-spliced RNAs could bring the first
elements to explain the alterations of packaging specificity
in AIDS patients treated with highly active antiretroviral
therapy. Recent plasma analysis of these patients revealed
accumulation of defective HIV particles mainly containing
spliced viral RNAs (47).

In conclusion, active packaging of nongenomic
RNAs likely increases the probability of generating
recombinant transforming viruses through a reverse-
transcriptase-mediated mechanism (19). Since evidence
of reverse transcription of spliced viral mRNAs and host
7SL and U6 RNAs has been reported (11,21,48), their
selective encapsidation could have profound effects on the
malignant transformation process of infected cells. These
considerations should be taken into account in gene
therapy strategies that commonly used HIV-based vectors
or HIV-producer cells (49). Avoiding possible inadvertent
packaging is indeed a major concern in these approaches.
Thus, understanding of the packaging specificity
should help in designing optimal vectors and packaging
cell lines.
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