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A Three-Parameter Hopf Deformation of the Algebra of Feynman-like Diagrams

We construct a three-parameter deformation of the Hopf algebra LDIAG. This is the algebra that appears in an expansion in terms of Feynman-like diagrams of the product formula in a simplified version of Quantum Field Theory. This new algebra is a true Hopf deformation which reduces to LDIAG for some parameter values and to the algebra of Matrix Quasi-Symmetric Functions (MQSym) for others, and thus relates LDIAG to other Hopf algebras of contemporary physics. Moreover, there is an onto linear mapping preserving products from our algebra to the algebra of Euler-Zagier sums.

How and why these Feynman-like Diagrams arise

. In this note we shall emphasize the ‡ i.e. the commultiplication obtained by replacing each variable by the sum of two (independent) copies of it.

Introduction

We briefly describe the passage from the product formula, as described by by Bender et al. [START_REF] Bender | Quantum field theory of partitions[END_REF], and the related Feynman-like diagrams, to the description of Hopf algebra structures [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF] on the diagrams themselves compatible with their evaluations. First, C. M. Bender, D. C. Brody, and B. K. Meister [START_REF] Bender | Quantum field theory of partitions[END_REF] introduced a special field theory which proved to be particularly rich in combinatorial links and by-products. Second, the Feynman-like diagrams produced by this theory label monomials; these monomials combine in a manner compatible with the monomial multiplication and coaddition ‡. This is the Hopf algebra DIAG. Third, the natural noncommutative pull-back of this algebra, LDIAG, has a basis (the labeled diagrams) which is in one-to-one correspondence with that of the Matrix Quasi-Symmetric Functions (the packed matrices of MQSym), but their algebra and co-algebra structures are completely different. In particular, in this basis, the multiplication of MQSym implies a sort of shifted shuffle with overlappings reminiscent of Hoffmann's shuffle used in the theory of of polyzeta functions [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzeta et groupes pro-unipotents[END_REF]. The superpositions and overlappings involved there are not present in the (non-deformed) LDIAG and, moreover, the coproduct of LDIAG is co-commutative while that of MQSym is not.

The aim of this paper is to introduce a "parametric algebra" which mediates between the two Hopf algebras LDIAG and MQSym. The striking result is that when we introduce parameters which count the crossings and overlappings of the shifted shuffle, one notes that the resulting law is associative (graded with unit). We also show how to interpolate with a coproduct which makes, at each stage, our algebra a Hopf algebra. The result is thus a three-parameter Hopf algebra deformation which reduces to LDIAG at (0, 0, 0) and to MQSym at [START_REF] Bayen | Deformation and Quantization[END_REF][START_REF] Bayen | Deformation and Quantization[END_REF][START_REF] Bayen | Deformation and Quantization[END_REF]. Moreover it appears that, for one set of parameters, the multiplication rule of LDIAG recovers that of Euler-Zagier sums. latter part of the analysis, where the algebraic structure constructed on the diagrams themselves arise.

Our starting point is the formula (product formula) of Bender and al. [START_REF] Bender | Quantum field theory of partitions[END_REF], which can be considered as an expression of the Hadamard product for an exponential generating series. That is, using

F (z) = n≥0 a n z n n! , G(z) = n≥0 b n z n n! , H(F, G) := n≥0 a n b n z n n! (1) 
one can check that

H(F, G) = F z d dx G(x) x=0 . (2) 
When F (0) and G(0) are not zero one can normalize the functions in this bilinear product so that F (0) = G(0) = 1. We wish to obtain compact and generic formulas. If we write the functions as

F (z) = exp ∞ n=1 L n z n n! , G(z) = exp ∞ n=1 V n z n n! . (3) 
that is, as free exponentials, then by using Bell polynomials in the sets of variables L, V (see [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF][START_REF] Duchamp | One-parameter groups and combinatorial physics[END_REF] for details), we obtain

H(F, G) = n≥0
z n n! P 1 ,P 2 ∈U Pn L T ype(P 1 ) V T ype(P 2 ) (4)

where UP n is the set of unordered partitions of [1 • • • n]. An unordered partition P of a set X is a subset of P ⊂ P(X) -{∅} § (that is an unordered collection of blocks, i. e. non-empty subsets of X) such that

• the union Y ∈P Y = X (P is a covering)

• P consists of disjoint subsets, i. e. Y 1 , Y 2 ∈ P and Y 1 ∩ Y 2 = ∅ =⇒ Y 1 = Y 2 .
The type of P ∈ UP n (denoted above by T ype(P )) is the multi-index (α i ) i∈N + such that α k is the number of k-blocks, that is the number of members of P with cardinality k.

At this point the formula entangles and the diagrams of the theory arise.

Note particularly that

• the monomial L T ype(P 1 ) V T ype(P 2 ) needs much less information than that which is contained in the individual partitions P 1 , P 2 (for example, one can relabel the elements without changing the monomial), § The set of subsets of X is denoted by P(X) (this notation [START_REF] Bourbaki | Theory of sets[END_REF] is that of the former German school).

• two partitions have an incidence matrix from which it is still possible to recover the types of the partitions.

The construction now proceeds as follows.

(i) Take two unordered partitions of [ (iii) Construct the diagram representing the multiplicities of the incidence matrix : for each block of P 1 draw a black spot (resp. for each block of P 2 draw a white spot) (iv) Draw lines between the black spot Y ∈ P 1 and the white spot Z ∈ P 2 ; there are card(Y ∩ Z) such.

(v) Remove the information of the blocks Y, Z, • • •.

In so doing, one obtains a bipartite graph with p (= card(P 1 )) black spots, q (= card(P 2 )) white spots, no isolated vertex and integer multiplicities. We denote the set of such diagrams by diag. ). P 1 = {{2, 3, 5}, {1, 4, 6, 7, 8}, {9, 10, 11}} and P 2 = {{1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11}} (respectively black spots for P 1 and white spots for P 2 ). The incidence matrix corresponding to the diagram (as drawn) or these partitions is   0 2 1 0 1 1 3 0 0 0 1 2   . But, due to the fact that the defining partitions are unordered, one can permute the spots (black and white, between themselves) and, so, the lines and columns of this matrix can be permuted. the diagram could be represented by the matrix

  0 0 1 2 0 2 1 0 1 0 3 1   as well.
The product formula now reads

H(F, G) = n≥0 z n n! d∈diag |d|=n mult(d)L α(d) V β(d) (5) 
where α(d) (resp. β(d)) is the "white spots type" (resp. the "black spots type") i.e. the multi-index (α i ) i∈N + (resp. (β i ) i∈N + ) such that α i (resp. β i ) is the number of white spots (resp. black spots) of degree i (i lines connected to the spot) and mult(d) is the number of pairs of unordered partitions of [ Now one may naturally ask Q1) "Is there a (graphically) natural multiplicative structure on diag such that the arrow

d → L α(d) V β(d) (6) 
be a morphism ?"

The answer is "yes". The desired product just consists in concatenating the diagrams (the result, i.e. the diagram obtained in placing d 2 at the right of d 1 , will be denoted by [d 1 |d 2 ] D ). One must check that this product is compatible with the equivalence of the permutation of white and black spots among themselves, which is rather straightforward (see [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF]). We have Proposition 2.1 Let diag be the set of diagrams (including the empty one). i) The law (d 1 , d 2 ) → [d 1 |d 2 ] D endows diag with the structure of a commutative monoid with the empty diagram as neutral element(this diagram will, therefore, be denoted by d) is a morphism of monoids, the codomain of this arrow being the monoid of (commutative) monomials in the alphabet L ∪ V i.e.

1 diag ). ii) The arrow d → L α(d) V β(

MON(L

∪ V) = {L α V β } α,β∈(N + ) (N) = n,m≥1 {L α 1 1 L α 2 2 • • • L αn n V β 1 1 V β 2 2 • • • V βm m } α i ,β j ∈N .
iii) The monoid (diag, [-|-] D , 1 diag ) is a free commutative monoid. Its letters are the connected (non-empty) diagrams.

Remark 2.2

The reader who is not familiar with the algebraic structure of MON(X) can find rigorous definitions in paragraph (3.1) where this structure is needed for the proofs relating to deformations.

Non-commutative lifting (classical case)

The "classical" construction of the Hopf algebra LDIAG was given in [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF]. We give the proofs below, using a coding through "lists of monomials" needed for the deformed (quantum) case. The entries of a list can be considered as "coordinate functions" for the diagrams (see introduction of section (4)).

Free monoids

We recall here the construction of the free and free-commutative monoids generated by a given set of variables (i.e. an alphabet) [START_REF] Berstel | Rational series and their languages EATCS Monographs on Theoretical Computer Science[END_REF]. Let X, be a set. We denote by X * the set of lists of elements of X, including the empty one. In many works, and in the sequel, the list [x 1 , x 2 , • • • , x n ] will be considered as a

word x 1 x 2 • • • x n so that the concatanation of two lists [x 1 , x 2 , • • • , x n ], [y 1 , y 2 , • • • , y m ] is just the word x 1 x 2 • • • x n y 1 y 2 • • • y m .
For this (associative) law, the empty list [ ] is the neutral element and will therefore be denoted by 1 X * Similarly, we denote by N (X) [START_REF] Bourbaki | Algebra, chapter III[END_REF] the set of multisubsets of X (i.e. the set ofmultiplicity -mappings with finite support X → N). Every element α of N (X) can be written multiplicatively, following the classical multi-index notation

X α = x∈X x α(x) (7) 
and the set MON(X) = {X α } α∈N (X) is exactly the set of (commutative) monomials with variables in X. It is a monoid, indeed a (multiplicative) copy of N (X) as X α X β = X α+β . The subset of its non-unit elements is a semigroup which will be denoted by MON + (X) (= MON(X) -{X 0 }).

Labeling the nodes

There are (at least) two good reasons to look for non-commutative structures which may serve as a noncommutative pullback for diag.

• Rows and Columns of matrices are usually (linearly) ordered and we have seen that a diagram is not represented by a matrix but by a class of matrices

• The complexity of diag and its algebra is not sufficient to relate it to other (noncommutative or non-cocommutative) algebras relevant to contemporary physics

The solution (of the non-deformed problem [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF]) is simple and consists in labeling the nodes from left to right and from "1" to the desired number as follows. The set of these graphs (i.e. bipartite graphs on some product [1..p] × [1.

.q] with no isolated vertex) will be denoted by ldiag. The composition law is, as previously, concatenation in the obvious sense. Explicitly, if

d i , i = 1, 2 are two diagrams of dimension [1..p i ] × [1..q i ]
, one relabels the black (resp. white) spots of d 2 from p 1 + 1 to p 1 + p 2 (resp. from q 1 + 1 to q 1 + q 2 ) the result will be noted [d 1 |d 2 ] L . One has Proposition 3.1 Let ldiag be the set of labeled diagrams (including the empty one). i) The law (d 1 , d 2 ) → [d 1 |d 2 ] L endows ldiag with the structure of a noncommutative monoid with the empty diagram (p = q = 0) as neutral element(which will, therefore, be denoted by 1 ldiag ).

ii) The arrow from ldiag to diag, which implies "forgetting the labels of the vertices" is a morphism of monoids.

iii) The monoid (ldiag, [-|-] L , 1 ldiag ) is a free (noncommutative) monoid. Its letters are the irreducible diagrams (denoted from now on by irr(ldiag)).

Remark 3.2 i) In a general monoid (M, ⋆, 1 M ), the irreducible elements are the elements x = 1 M such that x = y ⋆ z =⇒ 1 M ∈ {y, z}.
ii) It can happen that an irreducible of ldiag has an image in diag which splits, as shown by the simple example of the cross defined by the incidence matrix 0 1 1 0 .

Coding ldiag with "lists of monomials"

One can code every labelled diagram by a "list of (commutative) monomials" in the following way.

• Let X = {x i } i≥1 be an infinite set of indeterminates and d ∈ ldiag p×q a diagram (ldiag p×q is the set of diagrams with p black spots and q white spots).

• Associate with d the multiplicity function [1..p] × [1.

.q] → N such that d(i, j) is the number of lines from the black spot i to the white spot j.

• The code associated with

d is ϕ lm (d) = [m 1 , m 2 , • • • , m p ] such that m i = q j=1 x m(i,j) j Fig 3. -Coding the diagram of fig 2 by a word of monomials. The code here is [x 2 2 x 3 , x 1 x 2 x 3 3 , x 3 x 2 4 ]
As a data structure, the lists of monomials are elements of (MON + (X)) * , the free monoid whose letters are MON + (X) = MON(X) -{X 0 }, the semigroup of non-unit monomials over X.

It is not difficult to see that, through this coding, concatenation is reflected in the following formula

ϕ lm ([d 1 |d 2 ] L ) = ϕ lm (d 1 ) * T max(IndAlph(ϕ lm (l 1 ))) (ϕ lm (d 2 )) (8) 
where T p is the translation operator which changes the variables according to T p (x i ) = x i+p (which corresponds to the relabelling of the white spots) and p 1 is the number of black spots of d 1 .

For example, one has

T 2 ([x 2 2 x 3 , x 1 x 2 x 3 3 , x 3 x 2 4 ]) = [x 2 4 x 5 , x 3 x 4 x 3 5 , x 5 x 2 6 ] ; T 6 ([x 1 , x 2 2 ]) = [x 7 , x 2 8 ] (9)
4. The Hopf algebra LDIAG (non-deformed case)

In [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF], we defined a Hopf algebra structure on the space of diagrams LDIAG. The aim of this section is to give complete proofs and details for this construction through the use of the special space of coordinates constructed above (the complete vector of coordinates of a diagram being its code).

4.1. The monoid (MON + (X)) * and the submonoid of codes of diagrams Formula (8) can be written using lists as

l 1 * l 2 = l 1 * T max(IndAlph(l 1 )) (l 2 ) (10) 
which defines a monoid structure on (MON + (X)) * (the set of lists of non-unit monomials) with the empty list as neutral (i.e. [ ] which will, therefore, be denoted by "1 (MON + (X)) * " or simply "1" when the context is clear). We will return to this construction (called shifting [START_REF] Duchamp | Hopf algebras of diagrams[END_REF]) later. The alphabet of a list is the set of variables occurring in the list. Formally

Alph([m 1 , m 2 , • • • m n ]) = 1≤i≤k Alph(m i ) (11) 
where, classically, for a monomial m = X α , Alph(m) = {x i } α(i) =0 . Now, we can define the "compacting operator" on k MON + (X) by its action on the lists. This operator actually removes the holes in the alphabet of a list by pushing to the left the indices which are at the right of a hole. For example (we denote by cpt the operator)

cpt([x 2 2 x 10 , x 3 x 4 x 3 8 , x 3 x 2 4 ]) = [x 2 1 x 5 , x 2 x 3 x 3 4 , x 2 x 2 3 ]. ( 12 
)
The alphabet of the list on the LHS is

Alph(l) = Alph([x 2 2 x 10 , x 3 x 4 x 3 8 , x 3 x 2 4 ]) = {x 2 , x 3 , x 4 , x 8 , x 10 
}, its indices are IndAlph(l) = {2, 3, 4, 8, 10} and the re-indexing function is the unique strictly increasing mapping from {2, 3, 4, 8, 10} to [ [START_REF] Blasiak | Some useful formula for bosonic operators[END_REF]]. Here the compacting operator is just the substitution

x 1 ← x 2 ; x 2 ← x 3 ; x 3 ← x 4 ; x 4 ← x 8 ; x 5 ← x 10
The formal definitions are the following

• IndAlph(l) = {i | x i ∈ Alph(l)}
• l being given, let φ l be the unique increasing mapping from IndAlph(l) to [[card(IndAlph(l))]] (in fact, card(IndAlph(l)) = card(Alph(l)))

• let s l be the substitution x i ← x φ l (i) in the monomials.

• Then, if l = [m 1 , m 2 , • • • m n ], cpt(l) = [s l (m 1 ), s l (m 2 ), • • • s l (m n )]. Définition 4.1 The compacting operator cpt : k MON + (X) → k MON + (X)
is the extension by linearity of the mapping cpt defined above.

It can be checked easily that, for l ∈ (MON + (X)) * , the following are equivalent

(i) cpt(l) = l (ii) IndAlph(l) = [[card(IndAlph(l))]]
(iii) there is no hole in Alph(l); that is, there exists no i ≥ 1 s.t.

x i / ∈ Alph(l) and x i+1 ∈ Alph(l))
(iv) l is the code of some (then unique) diagram d.

It follows from the preceding properties that cpt is a projector with range the subspace C ldiag of k MON + (X) generated by the codes of the diagrams. Formula [START_REF] Bourbaki | Theory of sets[END_REF] proves that C ldiag is closed under the shifted concatenation defined by [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzeta et groupes pro-unipotents[END_REF]. More precisely Proposition 4.2 The algebra C ldiag is a free algebra on the set of the codes of irreducible diagrams.

These codes are also the non-empty lists l which are compact (i.e. cpt(l) = l) and cannot be factorized into a product of two non-empty lists i.e. l = l 1 * l 2 ; l i = [ ] (one can check easily that, if l 1 * l 2 is compact, so are l 1 and l 2 ).

The Hopf algebras C ldiag and LDIAG

The algebra LDIAG is endowed with the structure of a bi-algebra by the comultiplication

∆ BS (d) = I+J=[1..p] d[I] ⊗ d[J] ( 13 
)
where p is the number of black spots and d[I] is the "restriction" of d to the black spots selected by the I ⊂ [1..p].

On the other hand, we have a standard Hopf algebra structure on the free algebra, expressed in terms of concatenation and subwords [START_REF] Hazewinkel | Hopf algebras of endomorphisms of Hopf algebras[END_REF][START_REF] Reutenauer | Free Lie algebras[END_REF]. Let A be an alphabet (a set of letters) and w ∈ A * a word, if we write w a a sequence of letters

w = a 1 a 2 • • • a n ; a i ∈ A, the length |w| of w is n and if I = {i 1 , i 2 , • • • i k } ⊂ [1..n], the subword w[I] is a i 1 a i 2 • • • a i k
(this notation is slightly different from that of [START_REF] Reutenauer | Free Lie algebras[END_REF] where it is w| I ). Then, the free algebra k A is a Hopf algebra with comultiplication [START_REF] Reutenauer | Free Lie algebras[END_REF][START_REF] Hazewinkel | Hopf algebras of endomorphisms of Hopf algebras[END_REF].

∆ LieHopf (w) = I+J=[1..n] w[I] ⊗ w[J]. (14) 
One has the following relation between restrictions of diagrams and subwords

ϕ lm (d[I]) = cpt(ϕ lm (d)[I]) (15) 
this suggests that the coproduct

∆ list (l) = I+J=[1..n] cpt(l[I]) ⊗ cpt(l[J]) (16) 
could be a Hopf algebra comultiplication for the shifted algebra (k MON + (X) , * , [ ]).

Unfortunately, this fails due to the lack of counit (i and ii of the following Theorem), but the "ground subalgebra" C ldiag is a genuine Hopf algebra (which is exactly what we do need here).

Theorem 4.3 Let A = (k MON + (X) , * , [ ])
be the algebra of lists of (non-unit) monomials endowed with the shifted concatenation of formula [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzeta et groupes pro-unipotents[END_REF]. Then i) A is a free algebra.

ii) The coproduct ∆ list (recalled below) is co-associative and a morphism of algebras A → A ⊗ A (i.e. A is a bi-algebra without counit).

∆ list (l) = I+J=[1..n] cpt(l[I]) ⊗ cpt(l[J]) (17) 
iii) The algebra C ldiag is a sub-algebra and coalgebra of A which is a Hopf algebra for the following co-unit and antipode.

• Counit ε(l) = δ l,[ ] (Kronecker delta) (18) 
• Antipode

S(l) = r≥0 I 1 +I 2 +...Ir =[1..p] I j =∅ (-1) r cpt(l[I 1 ])cpt(l[I 2 ]) • • • cpt(l[I r ]) (19) 
Proof -i) Throughout the proof, we will denote by * the concatenation between lists and * the shifted concatenation defined by the formula [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzeta et groupes pro-unipotents[END_REF]. We first remark that, if l = l 1 * l 2 , then max(IndAlph(l 1 )) < min(IndAlph(l 2 )). This leads us to define, for a (non-shifted 

) factorization l = l 1 * l 2 = l[1..t] * l[t + 1..p] (p =
ω l (t) = card [1..max(IndAlph(l[1..t])] ∩ [min(IndAlph(l[t + 1..p])..∞[ = max(IndAlph(l[1..t])) -min(IndAlph(l[t + 1..p])) + 1 + . (20) 
(We recall that, for a real number x, x + is its positive part x + = max(x, 0) = 1 2 (|x| + x) [START_REF] Bourbaki | Algebra, chapter VI[END_REF]). It can be easily checked that the points t where ω l (t) = 0 determine the (unique) factorisation of l in irreducibles. It follows that the monoid ((MON + (X)) * , * , [ ]) is free and so is its algebra (k MON + (X) , * , [ ]).

ii) If we denote ∆ : A → A ⊗ A the standard coproduct given, for a list l of length p, by formula [START_REF] Duchamp | Direct and dual laws for automata with multiplicities[END_REF], one can remark that

(i) cpt(l 1 ) * cpt(l 2 ) = cpt(l 1 * l 2 ) (ii) ∆ list = (cpt ⊗ cpt) • ∆ (iii) ∆ list • cpt = ∆ list (iv) (∀n ∈ N)(cpt(T n (l)) = cpt(l)) (v) (∀n ∈ N)(∆ • T n = (T n ⊗ T n ) • ∆). Coassociativity of ∆ list . - One has (∆ list ⊗ Id) • ∆ list = (∆ list ⊗ Id) • (cpt ⊗ cpt) • ∆ = ' ((∆ list • cpt) ⊗ cpt) • ∆ = (∆ list ⊗ cpt) • ∆ = (((cpt ⊗ cpt) • ∆) ⊗ cpt) • ∆ = (cpt ⊗ cpt ⊗ cpt) • (∆ ⊗ Id) • ∆ = (cpt ⊗ cpt ⊗ cpt) • (Id ⊗ ∆) • ∆ (cpt ⊗ ((cpt ⊗ cpt) • ∆)) • ∆ = (cpt ⊗ ∆ list ) • ∆ = (cpt ⊗ (∆ list • cpt)) • ∆ = (Id ⊗ ∆ list ) • (cpt ⊗ cpt) • ∆ = (Id ⊗ ∆ list ) • ∆ list (21) 
∆ list is a morphism. -For two lists u, v ∈, let us compute ∆ list (u * v). With p = max(IndAlph(u)), one has

∆ list (u * v) = (cpt ⊗ cpt) • ∆(l 1 * T p (v)) = (cpt ⊗ cpt)(∆(u) * ⊗2 ∆(T p (v))) = (cpt ⊗ cpt)(∆(u) * ⊗2 (T p ⊗ T p )∆(v) = (cpt ⊗ cpt)( (1)(2) u (1) ⊗ u (2) ) * ⊗2 (T p ⊗ T p )( (3)(4) v (3) ⊗ v (4) ) = (cpt ⊗ cpt)( (1)(2)(3)(4) u (1) * T p 1 (T p-p 1 (v (3) )) ⊗ u (2) * T p 2 (T p-p 2 (v (4) ))) (22)
with, for each term in the sum

p 1 = max(IndAlph(u (1) )) ≤ p ; p 2 = max(IndAlph(u (2) )) ≤ p so, the quantity in (22) is (cpt ⊗ cpt)( (1)(2)(3)(4) u (1) * (T p-p 1 (v (3) )) ⊗ u (2) * (T p-p 2 (v (4) ))) = (1)(2)(3)(4) cpt(u (1) * (T p-p 1 (v (3) ))) ⊗ cpt(u (2) * (T p-p 2 (v (4) ))) = (1)(2)(3)(4) cpt(u (1) ) * cpt(T p-p 1 (v (3) )) ⊗ cpt(u (2) ) * cpt(T p-p 2 (v (4) )) = (1)(2)(3)(4) cpt(u (1) ) * cpt(v (3) ) ⊗ cpt(u (2) ) * cpt(v (4) ) = (1)(2) cpt(u (1) ) ⊗ cpt(u (2) ) * ⊗2 (3)(4) cpt(v (3) ) ⊗ cpt(v (4) ) = ∆ list (u) * ⊗2 ∆ list (v) (23) 
iii) As C ldiag is generated by the image of cpt it is clear that this space is a subcoalgebra of A. Moreover, cpt is a (multiplicative) morphism A → A and thus its image C ldiag is a subalgebra of A. We now supply the missing ingredients to complete the proof of the Hopf algebra structure.

ε is a counit. -Let l = cpt(l) be a compact list. We remark that, for any list u, one has

cpt(u) = [ ] ⇐⇒ u = [ ]. Then, with µ l : k ⊗ A → A the scaling operator µ l (ε ⊗ Id)∆ list (l) = I+J=[1..n] ε(cpt(l[I]))cpt(l[J]) = I+J =[1..n] I=∅ ε(cpt(l[I]))cpt(l[J]) + I+J =[1..n] I =∅ ε(cpt(l[I]))cpt(l[J]) = cpt(l) + 0 = l ( 24 
)
the proof of the fact that ε is a left counit is similar.

S is the antipode. -One has C ldiag = k.1 ⊕ ker(ε), let us denote Id + the projection C ldiag → ker(ε) according to this decomposition. Then, for every list l,

r≥0 I 1 +I 2 +...Ir =[1..p] I j =∅ (-1) r cpt(l[I 1 ])cpt(l[I 2 ]) • • • cpt(l[I r ])
is well defined as the first sum is locally finite. Thus, the operator

r≥0 I 1 +I 2 +...Ir =[1..p] I j =∅ (-1) r (Id + * Id + * • • • * Id + ) r times
is well defined and is the convolutional inverse of Id.

Subalgebras of LDIAG

Graphic primitive elements

The problem of Graphic Primitive Elements (GPE) is the following. Let H be a Hopf algebra with (linear) basis G, a set of graphs. The GPE are the primitive elements Γ ∈ G which are primitive i.e.

Γ is a GPE

⇐⇒ Γ ∈ G and ∆(Γ) = Γ ⊗ 1 + 1 ⊗ Γ. ( 25 
)
It is not difficult to check that, in any case, the subalgebra H GPE generated by these elements is also a sub-coalgebra.

We make an extra hypothesis (which is often fulfilled)

1 H ∈ G and (Γ ∈ G -{1 H } =⇒ ε(Γ) = 0). ( 26 
)
Then (if [START_REF] Kreimer | Knots and Feynman Diagrams[END_REF] is fulfilled) H GPE is a sub-Hopf algebra as the antipode of the product

Γ 1 Γ 2 • • • Γ p of (GPE) is S(Γ 1 Γ 2 • • • Γ p ) = (-1) p Γ p Γ p-1 • • • Γ 1 . ( 27 
)
The following proposition helps to determine LDIAG GPE . Then, the Hopf algebra LDIAG GPE is generated by the product of "one-black-spot" diagrams. 

Level subalgebras

One can also impose limitations on the incoming degrees of the white spots in a way compatible with the coproduct. In this case, one defines an infinity of Hopf-subalgebras of LDIAG which we will call "level subalgebras". More precisely, given an integer l > 0, one can ask for spaces generated by the diagrams d for which every white spot has an incoming degree ≤ l. This amounts to say that the "white spot type" of every diagram d is of the form

α(d) = (α 1 , α 2 , • • • α k , 0, 0 • • • 0, • • •) ; ( all the α i ≤ l for i ≤ k and α i = 0 for i > k)
We denote by LDIAG ≤l the subspace generated by these diagrams. One has a chain of Hopf algebras

LDIAG ≤1 ⊂ LDIAG ≤2 ⊂ • • • LDIAG ≤l ⊂ LDIAG ≤l+1 ⊂ • • • ⊂ LDIAG (28)
In the next paragraph, we will specially be interested in

LBELL = LDIAG ≤1 ∩ LDIAG GPE .

BELL and LBELL

The algebras BELL and LBELL were defined in [START_REF] Solomon | Hopf algebra structure of a model quantum field theory[END_REF].

The algebra LBELL is the intersection LDIAG ≤1 ∩ LDIAG GPE and since they are subspaces generated by subsets of ldiag, LBELL is generated by diagrams that

• are concatenations of one-black-spot-diagrams

• such that the incoming degree of every white spot is one.

Let d k be the diagram with code [x 1 , x 2 , • • • x k ].
LBELL is generated by concatenations of these diagrams. Indeed, the diagrams d k are a subalphabet of the free monoid ldiag so that they generate a free submonoid which we will denote here lbell. The algebras LDIAG and LBELL are both enveloping algebras. They are generated by their primitive elements which are in general linear combinations of diagrams and not pure diagrams. For an analysis of "graphic primitive elements" see section (4.3.1).

5. The algebra LDIAG(q c , q s , q t ) (deformed case) 5.1. Counting crossings (q c ) and superpositions (q s ) The preceding coding is particularly well adapted to the the deformation we want to construct here. The philosophy of the deformed product is expressed by the descriptive formula .

[d 1 |d 2 ] L(qc,qs) = cs(?) all crossing and superpositions of black spots

q nc×weight c q weight×weight s cs([d 1 |d 2 ] L )(29)
where • q c , q s ∈ C or q c , q s formal. These and other cases may be unified by considering the set of coefficients as belonging to a ring K.

• the exponent of q nc×weight c is the number of crossings of "what crosses" times its weight

• the exponent of q weight×weight s is the product of the weights of "what is overlapped"

• cs() are the diagrams obtained from [d 1 |d 2 ] L by the process of crossing and superposing the black spots of d 2 on to those of d 1 , the order and distinguishability of the black spots of d 1 (i.e. d 2 ) being preserved.

What is striking is that this law is associative. This result will be established after the following paragraph. * = +q

2 s + q 2 c + q 2 c q 6 s + q 8 c Fig 5.
-Counting crossings and superposings produces an associative law.

Exact definition of the coefficient q nc×weight c q weight×weight s is the result of crossing and shifting processes which will be detailed in paragraph (5.2). Fig 6 . -Detail of the fourth monomial (with coefficient q 2 c q 6 s ), crossings (circles) and superposings (black squares) are counted the same way but with a different variable.

Modified laws

• Twisting Proposition 5.1 Let A = (A n ) n∈N a graded semigroup and A * the set of lists (denoted by [a 1 , a 2 , • • • a k ]) with letters in A.
For convenience we define the operator * (left append)

A × A * → A * by a * [b 1 , b 2 , • • • b n ] := [a, b 1 , b 2 , • • • b n ] (30) 
Let q c , q s ∈ k be two elements in a ring k. We define on

k < A >= k[A * ] a new law ↑ by w ↑ 1 A * = 1 A * ↑ w = w a * u ↑ b * v = a * (u ↑ b * v) + q |a * u||b| c b * (a * u ↑ v) + q |u||b| c q |a||b| s ab * (u ↑ v) (31)
where the weights (|x| = n if x ∈ A n ) are extended additively to lists by

[a 1 , a 2 , • • • , a k ] = k i=1 |a i |
Then the new law ↑ is graded, associative with 1 A * as unit.

Proof -It suffices to prove the identity x ↑ (y ↑ z) = (x ↑ y) ↑ z ; x, y, z being lists (as the two members are trilinear). It is obviously true when one of the factors is the empty list. We show it when the three factors are non-empty (throughout the computation, the law * will have priority over other operators).

(a * u ↑ b * v) ↑ c * w = (a * (u ↑ b * v) + q |u||b| t |a||b| (ab)(u ↑ v) + q |a * u||b| b(a * u ↑ v)) ↑ c * w = a * ((u ↑ b * v) ↑ c * w) + q (|u|+|b * v|)|c| t |a||c| (ac)((u ↑ b * v) ↑ w) +q (|a * u|+|b * v|)|c| c * (a * (u ↑ b * v) ↑ w) + q |u||b| t |a||b| (ab)(u ↑ v ↑ c * w) + q |u||b|+(|u|+|v|)|c| t |a||b| t (|a|+|b|)|c| (abc)(u ↑ v ↑ w) + q |u||b|+(|a * u|+|b * v|)|c| t |a||b| c(((ab)(u ↑ v)) ↑ w) + q |a * u||b| b((a * u ↑ v) ↑ c * w) + q |a * u||b|+(|a * u|+|v|)|c| t |b||c| (bc)(au ↑ v ↑ w) + q |a * u||b|+(|a * u|+|b * v|)|c| c(b(a * u ↑ v) ↑ w) (32) 
a * u ↑ (b * v ↑ c * w) = a * u ↑ (b * (v ↑ c * w) + q |v||c| t |b||c| (bc)(v ↑ w) + q |b * v||c| c(b * v ↑ w)) = a * (u ↑ b * (v ↑ c * w)) + q |u||b| t |a||b| (ab)(u ↑ v ↑ c * w) + q |a * u||b| b(a * u ↑ v ↑ c * w) + q |v||c| t |b||c| a * (u ↑ (bc)(v ↑ w)) + q |v||c|+|u|(|c|+|b|) t |b||c|+|a|(|b|+|c|) (abc)(u ↑ v ↑ w) + q |v||c|+|a * u|(|b|+|c|) t |b||c| (bc)(a * u ↑ v ↑ w) + q |b * v||c| a * (u ↑ c(b * v ↑ w)) + q (|u|+|b * v|)|c| t |a||c| (ac)(u ↑ b * v ↑ w) + q (|a * u|+|b * v|)|c| c * (a * u ↑ b * v ↑ w) (33) 
in the second expression, one gathers the three terms which we find first in the square brackets and we get

a * (u ↑ b * (v ↑ cw)) + q |v||c| t |b||c| a * (u ↑ (bc) * (v ↑ w)) + q |b * v||c| a * (u ↑ c * (b * v ↑ w)) = a * (u ↑ b * v ↑ c * w) (34) 
in the first expression, one gathers the three terms which we find last in the square brackets and we get

q (|a * u|+|b * v|)|c| c * (a * (u ↑ b * v) ↑ w) + q |u||b|+(|a * u|+|b * v|)|c| t |a||b| c * (((ab) * (u ↑ v)) ↑ w) + q |a * u||b|+(|a * u|+|b * v|)|c| c * (b * (a * u ↑ v) ↑ w) = q (|au|+|bv|)|c| c * (a * u ↑ b * v ↑ w) (35) 
and one finds the 7-term expression

a * (u ↑ b * v ↑ c * w) + q |a * u| b * (a * u ↑ v ↑ c * w) + q |a * u|+|b * v| c * (a * u ↑ b * v ↑ w) + q |u||b| t |a||b| (ab) * (u ↑ v ↑ c * w) + q (|u|+|b * v|)|c| t |a||c| (ac) * (u ↑ b * v ↑ w) + q |v||c|(|b|+|c|)|au| t |b||c| (bc) * (a * u ↑ v ↑ w) +q |v||c|+|u|(|c|+|b|) t |b||c|+|a|(|b|+|c|) (abc) * (u ↑ v ↑ w) (36) 
The framework with diagrams will need another proposition on shifted laws.

• Shifting

We begin by the "shifting lemma".

Lemma 5.2 Let A be an associative algebra (whose law will be denoted by ⋆) and A = ⊕ n∈N A n a decomposition of A in direct sum. Let T ∈ End(A) be an endomorphim of the algebra A. We will denote by

T n = T • T • • • • • T the n-th compositional power of T .
We suppose that the shifted law

a ⋆ b = a ⋆ T α (b) ( 37 
)
for a ∈ A α is graded for the decomposition A = ⊕ n∈N A n . Then, if the law ⋆ is associative so is the law ⋆.

Remark 5.3 The hypothesis that the shifted law given by eq.(37) be graded is automatically satisfied if A = ⊕ n∈N A n is a graded algebra and if all the morphisms T n are of degree 0. This lemma will be applied to the decomposition given by n = sup(Alph(w)) (the highest index of variables appearing in w) and the morphism given by T (x i ) = x i+1 .

What do these statements mean for us ? Here the graded semigroup is MON + (X) and we do not forget the coding arrow ϕ lm : ldiag → (MON + (X)) * . The image of ϕ lm is exactly the set of lists of monomials w = [m 1 , m 2 , • • • , m k ] such that the set of variables involved Alph(w) is of the form x 1 • • • x l (the labelling of the white spots is without hole). By abuse of language we will say that a list of monomials "is in ldiag" in this case. It is not difficult to see, from formulas [START_REF] Solomon | Normal Order: Combinatorial Graphs Quantum Theory and Symmetries[END_REF]37) that if w i , i = 1, 2 are in ldiag so are all the factors of w 1 ↑w 2 , this defines a new law on K[ldiag] and this algebra will be called LDIAG(q c , q s ). The properties of this algebra will be made precise in the following proposition. Proposition 5.4 Let C ldiag be the subspace of (K < MON + (X) >, ↑) generated by the codes of the diagrams (i.e. the lists w ∈ MON + (X) such that Alph(w) is without hole). Then i) (C ldiag , ↑) is a unital subalgebra of (K < MON + (X) >, ↑) ii) (C ldiag , ↑) is a free algebra. More precisely, for any diagram decomposed in irreducibles

d = d 1 .d 2 • • • d k let B(d) := ϕ lm (d 1 ) ↑ϕ lm (d 2 ) • • • ↑ϕ lm (d k ) (38) then α) (B(d)) d∈ldiag is a basis of C ldiag β) B(d 1 .d 2 ) = B(d 1 ) ↑B(d 2 )
As k[ldiag] is isomorphic to C ldiag as a linear space, we denote LDIAG(q c , q s ) the new algebra structure of k[ldiag] inherited from C ldiag . one has LDIAG(0, 0) ≃ LDIAG; LDIAG(1, 1) ≃ MQSym (39)

Coproducts

We must now define a parametrized (say, by q t ) coproduct such that (LDIAG(q c , q s ), ↑, 1 ldiag , ∆ qt , ε) is a graded bialgebra (as in the non-deformed Hopf algebra of [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF], the counit ε is just the "constant term" linear form). We will take advantage of the freeness of LDIAG(q c , q s ) through the following lemma. 

: A → k < Y > ⊗k < Y >, we denote ∆ : k < Y > → k < Y > ⊗k < Y >
its extension as a morphism of algebras (k < Y > ⊗k < Y > being endowed with its non-twisted structure of tensor product of algebras). Then, in order to be coassociative, it is necessary and sufficient that

( ∆ ⊗ I) • ∆ and (I ⊗ ∆) • ∆ (40) 
coincide on Y.

The preceding lemma expresses the fact that, for a free algebra, the variety of the possible coproducts is a linear subspace. This will be transparent in formula (43).

We now consider the structure constants of the coproduct of MQSym [START_REF] Duchamp | Non commutative functions VI: Free quasisymmetric functions and related algebras[END_REF] expressed with respect to the family of free generators

{MS P } P ∈PM c
where PM c is the set of connex packed matrices (similarly, PM is the set of packed matrices).

∆ MQSym (MS P ) = Q,R∈PM α Q,R P MS Q ⊗ MS R (41) 
For the irreducible diagram d, we set

∆ 1 (d) = d 1 ,d 2 ∈irr(ldiag) α ϕ lm (d 1 ),ϕ lm (d 2 ) ϕ lm (d) d 1 ⊗ d 2 (42) 
and ∆ 0 (d) = ∆ W S (d). Then proposition (6.1) proves that, for q t ∈ {0, 1}

∆ t = (1 -q t )∆ 0 + q t ∆ 1 (43) 
is a coproduct of graded bialgebra for (LDIAG(q c , q s ), ↑, 1 ldiag ).

We sum up the results Proposition 6.2 i) With the operations defined above, q c , q s complex or formal and q t boolean (q t ∈ {0, 1}), LDIAG(q c , q s , q t ) := LDIAG(q c , q s ), ↑, 1 ldiag , ∆ qt , ε is a Hopf algebra. ii) At parameters (0, 0, 0), one has LDIAG(0, 0, 0) ≃ LDIAG iii) At parameters (1, 1, 1), one has LDIAG(1, 1, 1) ≃ MQSym 7. More on LDIAG(q c , q s , q t ) : structure, images and the link with Euler-Zagier sums

It has been proved recently that LDIAG(q c , q s , q t ) is a tridendriform Hopf Algebra [START_REF] Foissy | Personal Communication[END_REF] and that LDIAG(1, q s , q t ) is a homomorphic image of the algebra of planar decorated trees of Foissy [START_REF] Foissy | Isomorphisme entre l'algèbre des fonctions quasi-symétriques libres et une algèbre de Hopf des arbres enracinés décorés plans[END_REF][START_REF] Foissy | Les algèbres de Hopf des arbres enracinés decorés[END_REF]. Bidendriformity of the algebra LDIAG(q c , q s ) can also be established through a bi-word realization providing yet another (statistical) interpretation of the (q c , q s ) deformation [START_REF] Duchamp | Hopf algebras of diagrams[END_REF].

We will now make clear the relations between the (q c , q s ) deformation and Euler-Zagier sums.

According the notation of [START_REF] Kreimer | Knots and Feynman Diagrams[END_REF], one has

ζ(s 1 , • • • , s n ; σ 1 , • • • , σ n ) = 0<i 1 <•••<in σ i 1 1 • • • σ in n i s 1 1 • • • i sn n (44) 
with σ i ∈ {-1, 1} and s 1 > 1 if σ 1 = 1. Here we are more interested in the multiplication mechanism, so we extend the notation to formal variables and use, for indices, the biword notation. Hence

ζ F P m 1 • • • m n s 1 • • • s n = 0<i 1 <•••<in m i 1 1 • • • m in n i s 1 1 • • • i sn n . (45) 
We remark that the indices are taken as words (i.e. lists) with variables located in the semigroup MON(Z) × N + with Z = {z i } i≥1 .

The set of these functions is closed under multplication and will be called below F P (Z), formal polyzeta functions in the variables Z. Hence, the multiplication of these sums fits in the hypotheses of Proposition (5.1) with q c = q s = 1 (quasi-shuffle in [START_REF] Cartier | A primer of Hopf algebras[END_REF]). From this, we deduce an arrow LDIAG(1, 1) → F P (Z). the law ↑ 11 being unshifted and specialized to (q c , q s ) = (1, 1). When restricted to "convergent" diagrams (i.e. diagrams with deg(m 1 ) ≥ 2 which form a subalgebra of LDIAG u (q c , q s )) and specializing all the variables to 1, we recover the "usual" Euler-Zagier sums by just counting the outgoing degrees of the black spots and the arrow of ] can be temporarily seen as a "vector of coordinates" for the given diagram, but we prefer to stick to the structure of lists as, firstly, the dimension of the vector varies with the diagram and secondly, we have to concatenate the codes. The coordinate functions of the diagram d are therefore the family (a i ) i>0 defined by a i (d) = m i for i ≤ r and a i (d) = 0 for i > r. From this perspective the "q t " of our three parameter deformation is a quantization in the sense of Moyal's deformed products [START_REF] Bayen | Deformation and Quantization[END_REF] on the algebra of coordinate functions (but without the first order condition; see the introduction of [START_REF] Chari | A guide to quantum groups[END_REF]), by the formula

a i 1 * a i 1 • • • * a i k (d) = µ(a i 1 ⊗ a i 1 ⊗ • • • ⊗ a i k (∆ [k] qt (d))) ( 51 
)
where µ is the ordinary multiplication of polynomials. The crossing parameter q c is also a quantization parameter as, for q s = 0, one has code(d 1 * d 2 ) = code(d 1 ) ⊔ qc T (code(d 2 )) (52

)
where T is a suitable translation of the variables and ⊔ qc is the quantum shuffle [START_REF] Rosso | Quantum groups and quantum shuffles[END_REF] for the braiding on V = C[x i ; i ≥ 1] defined by

B(x α 1 i 1 x α 2 i 2 • • • x α k i k ⊗ y β 1 j 1 y β 2 j 2 • • • y β l j l ) = q ( α i )( β j ) c y β 1 j 1 y β 2 j 2 • • • y β l j l ⊗ x α 1 i 1 x α 2 i 2 • • • x α k i k (53) 
Let us add that q s and q c are of different nature as q s is the coefficient of a perturbation of the shuffle product (better seen on the coproduct). This kind of perturbation occurs in various domains as : computer science by means of the infiltration product introduced by Ochsenschläger [START_REF] Ochsenschläger | Binomialkoeffitzenten und Shuffle-Zahlen[END_REF] (see also [START_REF] Duchamp | Congruences Compatible with the Shuffle Product[END_REF] and [START_REF] Duchamp | Direct and dual laws for automata with multiplicities[END_REF]), algebra of the Euler-Zagier sums [START_REF] Hoffman | Quasi-shuffle products[END_REF] and noncommutative symmetric functions [START_REF] Duchamp | Non commutative functions VI: Free quasisymmetric functions and related algebras[END_REF]. The mathematics of this dual aspect is of geometrical nature and will be developed in [START_REF] Duchamp | Geometric combinatorial twisting and shifting[END_REF].

Fig 1 .-

 1 Fig 1. -Diagram from P 1 , P 2 (set partitions of [1 • • • 11]).P 1 = {{2, 3, 5}, {1, 4, 6, 7, 8}, {9, 10, 11}} and P 2 = {{1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11}} (respectively black spots for P 1 and white spots for P 2 ). The incidence matrix corresponding to the diagram (as drawn) or these partitions is 

Fig 2 .-

 2 Fig 2. -Labelled diagram of format 3 × 4 corresponding to the one of Fig 1.

  |l|), a gauge of the degree of overlapping of the intervals (of integers) [1..max(IndAlph(l1))] and [min(IndAlph(l2))..∞[, thus the function

Proposition 4 . 4

 44 In LDIAG (with basis G = ldiag), the following are equivalent i) d is a GPE ii) d has only one black spot.

Fig 4 .

 4 Fig 4. -Graphic Primitive Elements of LDIAG have only one black spot and therefore are coded by the sequence of the ingoing degrees of their white spots (a composition). The first one here has code [1, 2, 3, 1]. The picture shows an element of the monoid generated by Graphic Primitive Elements (a linear basis of LDIAG GPE ) which is then coded by a list of compositions, here [1, 2, 3, 1], [2, 3, 1], [2, 1, 4] .

Fig 5 .

 5 Fig 5. -An element of lbell, concatenation d 1 d 3 d 2 .

Lemma 6 . 1

 61 Let Y be an alphabet, k a ring and k < Y >= k[Y * ] be the free algebra constructed on Y. For every mapping ∆

( 46 )

 46 More precisely, ifd is a diagram with code [m 1 , m 2 • • • , m p ] we make correspond ζ F P m 1 • • • m n deg(m 1 ) • • • deg(m n ) (47)where deg(m i ) is the total degree of m i . We will denote ζ D2F P (d) this value (47).One hasζ D2F P (d 1 )ζ D2F P (d 2 ) = ζ D2F P (d 1 ↑ 11 d 2 ) (48)

  (46) becomesd → ζ(deg(m 1 ), • • • , deg(m n ))(49)(usual Euler-Zagier sums). Denoting the last (49) value ζ D2EZ (d), one has ζ D2EZ (d 1 )ζ D2EZ (d 2 ) = ζ D2EZ (d 1 ↑ 11 d 2 ) (50) 8. Concluding remarks For a diagram d with r black spots, the code [m 1 , m 2 , • • • , m r
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