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Positive, conservative, equilibrium state preserving and implicit

difference schemes for the isotropic Fokker-Planck-Landau

equation

Christophe Buet ∗ Kim-Claire Le Thanh †

Abstract

The aim of this paper is to describe the discretization of the Fokker-Planck-Landau
(FPL) collision term in the isotropic case, which models the self-collision for the electrons
when they are totally isotropized by heavy particles background such as ions. The dis-
cussion focuses on schemes, which could preserve positivity, mass, energy and Maxwellian
equilibrium on non uniform grid. The Chang and Cooper method is widely used by
plasma’s physicists for the FPL equation (and for Fokker-Planck type equations). We
present a new variant that is both positive and conservative contrary to the existing one’s.
In the category of others difference schemes we propose a simple scheme on non-uniform
grid, which is both positive, conservative and equilibrium state preserving in opposition
to what exists. The case of Coulombian potential is emphasized. We address also the
problem of the time discretization. In particular we show how to recast some implicit
methods to get band diagonal system and to solve it by direct method with a linear cost.
Numerical tests are performed.
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∗Département des Sciences de la Simulation et de l’Information, CEA-DIF, 91680 Bruyères le Châtel, BP
12, France (christophebuet@cea.fr).
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1 Introduction

The Fokker-Planck-Landau equation (FPLE) is commonly used in plasma physics when study-
ing kinetic effects between charged particles under Coulomb interaction.
In particular, the isotropic Fokker-Planck-Landau operator is generally used in the modeling
of inertial controlled fusion. More precisely, it is used to describe the electronic energy
transport phenomena in laser produced plasma. In some conditions, it is well known that the
fluid theory, for which the hydrodynamic equations are closed using the law for the thermal
fluxes proposed by Spitzer-Harm [25] is not valid [15]. A more accurate solution is to use
a model based on the expansion of the FPL operator in spherical harmonics [26] and to
retain the two first terms (P1 model), and the isotropic FPL operator is the leading order
term [15, 17]. Within this inertial controlled fusion context P1 model is sufficient to describe
physical phenomena and 3-D FPL equation unnecessarily complicates the issue.
The most popular difference scheme for Fokker-Planck type equations is the Chang and
Cooper method [6]. This method was originally devoted to linear Fokker-Planck equations
and it was shown in [6] that in this case this method is positive and preserves the equilibrium
states. On the contrary a paper of Larsen et al. [19] shows that this method applied for
non-linear Fokker-Planck equations could produce non-positive solutions. It is also used for
the isotropic Landau equation by Langdon [18], in the SPARK code by Epperlein [15] and by
Kingham and Bell [17] in the code IMPACT. At our knowledge, in this non-linear case, there
is no rigorous proof of the positivity and the energy conservation.
There exists also conservative or entropic schemes for this equation [1, 2, 3, 4, 10, 22, 23]
based on the symmetrized weak form or on the ”Log” weak symmetric form of the Landau
equation. Unfortunately on non-uniform grid in energy these methods suffer from some
limitations. Some of them could not be positive [3, 10], some others [1, 2, 22, 23] are not
equilibrium state preserving. And the one’s using Logarithm of the distribution function
[3, 10] do not handle correctly highly peaked distribution functions.
Spectral methods were also developed by Pareschi et al. [21] and Filbet et al. [16] for the 3-D
FPL equation and could be applied to the isotropic FPL equation. But these schemes approx-
imate energy only with spectral accuracy, that means they are not conservative. Moreover
discrete Maxwellians are not preserved and positivity is not ensured. Another disadvantage
is that such method is not suitable to describe peaked functions.
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It would be interesting to enlighten the situation about positive, conservative and equilibrium
states preserving velocity difference schemes for the isotropic Landau equation. Conservation
property is important. Especially conservation of the energy to avoid inopportune cooling
or heating of the plasma. Preservation of equilibrium states, Maxwellian in this case, is
important since it is the long time behavior for coupling with fluid limit or to have the right
heat flux at equilibrium. But positivity is also important since it is true at the continuous
level and for obvious physical reasons. Thus it would be in time discretization to ensure
stability. It is quite surprising that this point is not analyzed in papers devoted to algorithms
for the FPL equation [1, 2, 10, 15, 20, 22, 23].
In the first part of this paper we focus our attention on the Chang and Cooper method.
Contrary to the existing works, we start from the weak symmetrized form of the isotropic
Landau operator, so that the conservation of energy is obvious. We construct two variants
of the Chang and Cooper method, a new one, called S1, and an other one, called S2, that is
described by Langdon et al. [8, 18] in the Coulombian case but constructed directly from the
Rosenbluth form of the operator. These two schemes only differ in the boundary condition.
These two variants conserve the energy but we show that the second one, S2, is not positive.
As we will also see, due to bad boundary conditions, the Chang and Cooper version used by
Epperlein [15] or by Kingham and Bell [17], although positive, is not conservative in energy.
In other hand we show that the Chang and Cooper method is not the only way to obtain
positive, conservative and equilibrium preserving states even on non-uniform meshes. We
propose a new scheme that shares the same properties with the Chang and Cooper method.
This ”equilibrium scheme”, called S3, is based on the work of Larsen et al. [19] for Fokker-
Planck equations. In the case of uniform meshes this scheme is nothing but the conservative
positive and entropy scheme developed by Berezin et al. [1] and studied in detail by one of
the authors [3, 4].
Time discretization is also a crucial point in the numerical simulation of the Fokker-Planck-
Landau equation. Implicit schemes are attractive: they make the code robust and able to
use large time steps well exceeding the characteristic collision time. The explicit method
cannot be eliminate, since for practical computations, the number of discretization points
will lie between 20 and 150 approximately. Despite its parabolic time step restriction, it
could be cheaper for coarse grids. We study several implicit schemes. We begin with the well
known fixed point method, described in particular in [15], that is conservative in mass and
positive. However, this scheme is not conservative in energy. Then, we recall the contracted
implicit method developed by Lemou and Mieussens [20]. Their scheme is conservative in
mass and energy, the positivity is lacking but it is cheap. The last method studied is the
Newton method. The mass and energy conservation is ensured. For the ”contracted implicit”
method and the Newton method, we show that by rewriting the problem, in the particular
case of coulombian potentials, the linear systems involved can be solved by direct method
in only O(N) operations (N is the number of unknowns). This strategy can be applied to
Maxwellian potential for the isotropic FPL equation but also for the 3-D equation. The
key point, for the Coulombian potentials, is to remember that drift and diffusion coefficients
satisfy Poisson equation, which can be solved efficiently at a linear cost by direct method (see
also [7]). In fact, such a strategy works as soon as the discrete operator can be evaluated
using recurrences relations, and then at a linear cost . We show, on numerical examples, the
gain in these implicit methods compared to the explicit time discretization in terms of CPU
times.
This paper is organized as follow: in the first part, we recall the continuous FPL equation
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in the homogeneous and isotropic case and its properties. In a second part we present the
Chang and Cooper type schemes and an equilibrium scheme. We show all the properties of
these schemes: energy and equilibrium states conservation, positivity. We also indicate the
simplifications occurring in the case of a uniform mesh, or in the Coulombian case. The third
part is devoted to the time discretization: explicit and implicit schemes. In the fourth part
we present some numerical tests in the Coulombian case.

2 The isotropic Fokker-Planck-Landau equation

Let us recall the homogeneous non-linear Fokker-Planck-Landau equation (FPL equation) in
the isotropic case where the distribution function f(~x,~v, t) depends only on the modulus of
the velocity v =‖ ~v ‖ and on the time t, in other words f(~x,~v, t) = f(v, t). We consider f
as a function of ε = v2 where ε is the energy variable. In this case, Fokker-Planck-Landau
equation can be written:

∂f(ε, t)
∂t

= Q(f)(ε) =
1√
ε

∂

∂ε

∫ ∞

0
g(ε, ε′)

(
f(ε′)

∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

)
dε′, (2.1)

where g(ε, ε′) is positive, symmetric and increasing (g(ε, ε′) = min(ε
3
2 , ε′

3
2 ) for Coulombian

interactions and g(ε, ε′) = ε
3
2 ε′

3
2 for Maxwellian interactions) and Q(f) is the so-called FPL

collision operator. This operator can be written in the following weak form (let φ(ε) be any
test function)∫ ∞

0

∂f(ε, t)
∂t

φ(ε)
√
εdε = −1

2

∫ ∞

0

∫ ∞

0
(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

)g(ε, ε′)(f(ε′)
∂f(ε)
∂ε

−f(ε)
∂f(ε′)
∂ε′

)dε′dε.

(2.2)
Note that the right hand side of (2.2) can be equivalently written in the so-called ”Log” weak
form

−1
2

∫ ∞

0

∫ ∞

0
(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

)g(ε, ε′)f(ε′)f(ε)(
∂ log f(ε)

∂ε
− ∂ log f(ε′)

∂ε′
)dε′dε, (2.3)

or in (2.1), the collision operator can be written in the following diffusive form

Q(f)(ε) =
1√
ε

∂

∂ε
(E(f)f(ε) +D(f)

∂f

∂ε
), (2.4)

where the drift coefficient E and the diffusion coefficient D are given by

D(f) =
∫ ∞

0
g(ε, ε′)f(ε′)dε′ and E(f) = −

∫ ∞

0
g(ε, ε′)

∂f(ε′)
∂ε′

dε′. (2.5)

2.1 General properties

Let us recall the most important properties of the problem (2.1).
This operator satisfies the conservation of mass (respectively energy) by choosing φ(ε) = 1
(respectively φ(ε) = ε) in (2.2)

ρ =
∫ ∞

0
f(ε, t)

√
εdε and ρE =

∫ ∞

0
f(ε, t)ε

3
2dε. (2.6)
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Note that the conservation properties are a consequence of the symmetry property (between
ε and ε′) of the collision operator. Let us also mention that the temperature T of the plasma

is defined as
3
2
ρT = ρE.

Any function of the type ψ(ε) = α exp(−βε) where α and β are arbitrary constants (β > 0) is
a stationary solution of equation (2.1). And we have the famous H-Theorem: for any solution
f the entropy defined by

H(f) =
∫ ∞

0
f(ε) log(f(ε))

√
εdε, (2.7)

satisfies
dH(f)
dt

≤ 0 with
dH(f)
dt

= 0 ⇐⇒ f(ε) = α exp(−βε), (2.8)

with α and β such that f and M = α exp(−βε) have the same mass and density.
For more details concerning the Landau equation we refer to [9, 12, 13, 14].

2.2 Coulombian interactions

In the Coulombian case, g(ε, ε′) = min(ε
3
2 , ε

′3
2 ) thus the drift and diffusion coefficients E(f)

and D(f) are given by

E(f) =
3
2

∫ ε

0

√
ε′f(ε′)dε′ and D(f) =

3
2

∫ ε

0

√
ε′
(∫ ∞

ε′
f(ε′′)dε′′

)
dε′. (2.9)

Deriving once E(f) and twice D(f) we have

f(ε) =
2
3

1√
ε

∂E(f)
∂ε

= −2
3
∂

∂ε

1√
ε

∂

∂ε
D(f). (2.10)

These relations are nothing else than the Poisson equations satisfy by the Rosenbluth poten-
tials.

3 Semi-discretized problems

In this section we focus on the discretization in the energy variable. For numerical simulations,
we reduce the integration domain in FPL equation to a bounded domain in the variable ε
where ε ∈ [0, E ]. Thus we consider the approximate problem of (2.2) defined by∫ E

0

∂f(ε, t)
∂t

φ(ε)
√
εdε = −1

2

∫ E

0

∫ E

0
(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

)g(ε, ε′)(f(ε′)
∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

)dε′dε.

(3.1)
Let us introduce {εi}1≤i≤N an increasing sequence such that ε1 = 0, εN = E and ∆εi+ 1

2
= εi+1 − εi.

We suppose that {∆εi+ 1
2
}1≤i≤N−1 is constant or increasing sequence. By convention we set

ε 1
2

= 0. Any function f(ε, t) is approximated on the grid by values {fi}1≤i≤N supposed be
approximations of {f(εi)}1≤i≤N . We also introduce the notations (∆φ)i+ 1

2
= φi+1 − φi and

(Dφ)i+ 1
2

=
(∆φ)i+ 1

2

(∆ε)i+ 1
2

as an approximation of the partial derivative ∂εφ(εi+ 1
2
).
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First, we consider the discretization of the expression
∫ E

0

∂f

∂t
φ(ε)

√
εdε for any function φ. By

using the standard quadrature formula with respect to the measure
√
εdε, we approximate it

by ∫ E

0

∂f

∂t
φ
√
εdε '

N∑
i=1

(φi
dfi

dt

∫ ε
i+1

2

ε
i− 1

2

√
εdε)

def
=

N∑
i=1

ciφi
dfi

dt
. (3.2)

Thus the weights ci are defined by c1 =
2
3
ε

3
2
3
2

, ci =
2
3
(ε

3
2

i+ 1
2

− ε
3
2

i− 1
2

) for i = 2, · · · , N .

Below, we present various strategies to construct schemes that have properties of conservation
and if possible positivity and entropy decaying. These schemes differ intrinsically in the way
we discretize the right-hand side of (3.1):

(r.h.s.) = −1
2

N−1∑
i=1

N−1∑
j=1

(∫ εi+1

εi

∫ εj+1

εj

(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

)g(ε, ε′)(f(ε′)
∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

)dεdε′
)
.

(3.3)
We must also introduce the Maxwellian associated to a distribution function f . For a distri-
bution function f we define ρ and ρE the discretized analogous of the density and the energy

(2.6) as ρ =
N∑

i=1

cifi and ρE =
N∑

i=1

εicifi. The temperature is still defined by
3
2
ρT = ρE. For

a distribution function f , we denote by M = α exp(−βε) the Maxwellian which has the same
mass and energy as f .

It’s easy to check that T̃ =
∑N

i=1 εiciMi∑N
i=1 ciMi

=
∑N

i=1 εici exp(−βεi)∑N
i=1 ci exp(−βεi)

, is a strictly monotone (de-

creasing) function of β with lim
β→0

T̃ = Tmax =
∑N

i=1 εici∑N
i=1 ci

and lim
β→+∞

T̃ = Tmin = 0.. Thus for

any distribution function f such that 0 ≤ T ≤ Tmax there is a unique β ≥ 0 such that T̃ = T

and consequently M is unique. Note that β ' 1
T

. For the rest of this work we consider only

distribution functions such that 0 ≤ T ≤ Tmax, that is, we exclude distribution function for
which M is an increasing function of ε (β ≤ 0) (that means we exclude distribution function

such that Tmax ≤ T ≤ 2
3
E).

To check the positivity of the schemes we need the following well-known result:

Lemma 1. Consider the Cauchy problem for the ordinary differential equation

df

dt
= Lf and f(t = 0) = f0,

with f = {fi}1≤i≤N and with the square matrix L = L(f, t) such that Lij ≥ 0 for i 6= j,
Lii ≤ 0.
If there exists a constant C such that ∀ i, j |Lij(f, t)| ≤ C, and if the initial data is non-
negative i.e. f0 ≥ 0, then as long as the solution exists it is non-negative.

3.1 Chang and Cooper type schemes

One of the most popular method used for Fokker-Planck equations is due to Chang and
Cooper [6]. Originally this method was proposed for the linear Fokker-Planck equation and
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the construction is entirely devoted to the preservation of equilibrium states. The authors
also show that in the linear case (and only in this case) the method provides non-negative
solutions. At contrary others authors, see [19], have shown that for the non-linear Fokker-
Planck equation this method can produce non-positive solutions. Let us recall the spirit of
the Chang and Cooper method on the simple Fokker-Planck equation,

∂f

∂t
=
∂F

∂v
=

∂

∂v
(vf + σ

∂f

∂v
) = σ

∂

∂v
(M

∂

∂v
(
f

M
)),

where v ∈ R and the equilibrim state M is a Maxwellian: M = M(v) = exp(−|v|2/2σ). On a
uniform grid of velocity space step ∆v and vi = i∆v, the Chang and Cooper method consists
in discretizing the diffusion as usual and the drift in such a way that for f = M the fluxes F
are all equal to zero. One takes at cell interface vi+ 1

2
= (i+ 1

2)∆v

Fi+ 1
2

=
σ

∆v
(fi+1 − fi) + vi+ 1

2

(
(1− δi+ 1

2
)fi+1 + δi+ 1

2
fi

)
,

and forcing the fluxes to be zero for equilibrium leads to δi+ 1
2

=
σ

vi+ 1
2
∆v

−

(
exp(

vi+ 1
2
∆v

σ
)− 1

)−1

.

The scheme writes as
dfi

dt
=

1
∆v

(Fi+ 1
2
− Fi− 1

2
).

This method is also one of the most used for FPL equation. And this is a non-linear problem.
None of the main work in this area [15, 17, 18] contains the proof of the positivity of the
Chang and Cooper method or the proof of the energy conservation. Moreover it is not
clear that equilibrium states are preserved by this method for the FPL equation since, in
this case, the coefficients of Chang and Cooper [6] are defined in an implicit manner for
the FPL equation. In this section we propose a variant of this method which intrinsically
contains the conservation of the energy, preserves discrete Maxwellian and is positive. We
recall also the variants developed by Langdon et al. [8, 18] which is non positive and the one’s
developped by Epperlein in [15] and used by other people (see [17] for example) which is in
fact non conservative in energy. For these two variants the problem comes from the boundary
condition used at one end of the domain of computation ε = E .

3.1.1 A new variant: scheme S1

Using for each integrals of (3.3) a midpoint quadrature formula, we approximate it by

(r.h.s.) = −1
2

N−1∑
i=1

N−1∑
j=1

((Dφ)i+ 1
2
−(Dφ)j+ 1

2
)gi+ 1

2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
−fi+ 1

2
(Df)j+ 1

2
)∆εi+ 1

2
∆εj+ 1

2
,

(3.4)
with gi+ 1

2
,j+ 1

2
= g(εi+ 1

2
, εj+ 1

2
). Hence, the weak formulation of the semi-discretized model

reads
N∑

i=1

ci
∂fi

∂t
φi = −

N−1∑
i=1

(Dφ)i+ 1
2
∆εi+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
− fi+ 1

2
(Df)j+ 1

2
)∆εj+ 1

2
. (3.5)

To simplify we note Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
− fi+ 1

2
(Df)j+ 1

2
)∆εj+ 1

2
the numeri-

cal flux. By identifying the terms involving φi in (3.5), we obtain the system of ordinary
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differential equation
dfi

dt
= QS1

i 1 ≤ i ≤ N, (3.6)

with QS1
1 = K 3

2
/c1, QS1

i = (Ki+ 1
2
−Ki− 1

2
)/ci for 2 ≤ i ≤ N − 1 and QS1

N = −KN− 1
2
/cN . We

can rewrite the numerical flux

Ki+ 1
2

= Ei+ 1
2
fi+ 1

2
+Di+ 1

2

fi+1 − fi

∆εi+ 1
2

1 ≤ i ≤ N − 1, (3.7)

and the drift and diffusion coefficients are given by

Ei+ 1
2

= −
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
and Di+ 1

2
=

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
. (3.8)

By integrating by parts the drift term reads

Ei+ 1
2

=
N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj − gi+ 1

2
,N− 1

2
fN . (3.9)

Remark 1. We assume that {gi+ 1
2
,j+ 1

2
}1≤i≤N,1≤j≤N is an increasing sequence. Then, even

if the fi’s are positive, Ei+ 1
2

can be negative if fN 6= 0. In other hand, since the fi+ 1
2
’s are

positive, Di+ 1
2

remains positive.

We turn now to the discretization of fi+ 1
2
. We suppose that fi+ 1

2
is an approximation of

f(εi+ 1
2
) given by the following definition [6]

Definition 1. The Chang and Cooper average fi+ 1
2

of quantities fi and fi+1 is defined by

fi+ 1
2

= δi+ 1
2
fi + (1− δi+ 1

2
)fi+1 1 ≤ i ≤ N − 1, (3.10)

with
δi+ 1

2
=

1
αi+ 1

2

− 1
exp(αi+ 1

2
)− 1

1 ≤ i ≤ N − 1, (3.11)

and αi+ 1
2

=
Ei+ 1

2

Di+ 1
2

∆εi+ 1
2
.

To be comfortable we denote h(α) =
1
α
− 1

(exp(α)− 1)
(thus δi+ 1

2
= h(αi+ 1

2
)). This smooth

function is decreasing and bounded such that h(−∞) = 1, h(0) = 1/2 and h(+∞) = 0.
Moreover, his derivative is negative and bounded too (h′(±∞) = 0). Note that whatever the
value of αi+ 1

2
(positive or negative) if δi+ 1

2
exists we get 0 ≤ δi+ 1

2
≤ 1. Therefore, since the

fi’s are positive the fi+ 1
2
’s remain positive. Now we clarify the expression of δi+ 1

2
. We recall

that f is the N-dimensional column vector with components {fi}1≤i≤N . Thus, assuming that
δ is the (N-1)-dimensional column vector with components {δi+ 1

2
}1≤i≤N−1, we can write δi+ 1

2

as a function of f and introducing H = {Hi+ 1
2

= h(αi+ 1
2
)}1≤i≤N−1 , the system to be solved

for δ is
δ(f) = H(δ(f), f), (3.12)
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where f is a distribution function that has density ρ and energy ρE and H is a (N-1)-
dimensional vector valued function. Using a Newton’s method requires O(N3) operations.
But we will see that for Coulombian potentials this cost can be reduced to O(N) operations
(see also [7]). Note that this is also true for Maxwellian potentials [5].

Proposition 1. The flux Ki+ 1
2

satisfies the following relation

Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi 1 ≤ i ≤ N − 1, (3.13)

where

Ai+ 1
2

= v(αi+ 1
2
)
Di+ 1

2

∆εi+ 1
2

, and Bi+ 1
2

= u(αi+ 1
2
)
Di+ 1

2

∆εi+ 1
2

, (3.14)

and with u(x) =
x

exp(x)− 1
and v(x) =

x exp(x)
exp(x)− 1

.

Proof. The proof is the same as in Chang and Cooper’s paper [6] but in the non-linear case.
By substituting the Chang and Cooper average fi+ 1

2
in the right-hand side of the relation

(3.7) we get

Ki+ 1
2

= Ei+ 1
2
((1− δi+ 1

2
)fi+1 + δi+ 1

2
fi) +Di+ 1

2

fi+1 − fi

∆εi+ 1
2

1 ≤ i ≤ N − 1.

As αi+ 1
2

=
Ei+ 1

2

Di+ 1
2

∆εi+ 1
2
, we can write Ei+ 1

2
=
αi+ 1

2
Di+ 1

2

∆εi+ 1
2

. Thus, if we develop δi+ 1
2

we have

Ki+ 1
2

=
αi+ 1

2
exp(αi+ 1

2
)

exp(αi+ 1
2
)− 1

Di+ 1
2

∆εi+ 1
2

fi+1 −
αi+ 1

2

exp(αi+ 1
2
)− 1

Di+ 1
2

∆εi+ 1
2

fi.

And now, we can write Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi.

3.1.2 Properties

We summarize the conservation properties of the scheme S1 in the following proposition:

Proposition 2. The scheme S1 conserves the mass and the energy and has the Maxwellians
M = exp(−βε) as equilibrium states.

Proof. Mass and energy conservation properties come from (3.4) by taking φ = 1, ε .
Let us now check the second point which is not so clear as for linear Fokker-Planck equations.
First we have Mi+1 −Mi = −Mi+1(exp(−β∆εi+ 1

2
) − 1). Assuming that Mi+ 1

2
is computed

by Chang and Cooper average formula (3.10) with

δi+ 1
2

=
1

β∆εi+ 1
2

− 1
exp(β∆εi+ 1

2
)− 1

1 ≤ i ≤ N − 1, (3.15)

we get

Mi+ 1
2

=

(
1

β∆εi+ 1
2

− 1
exp(−β∆εi+ 1

2
)− 1

)
(Mi −Mi+1) +Mi+1.

9



Therefore

Mi+ 1
2

= (
1

β∆εi+ 1
2

+
Mi+1

Mi+1 −Mi
)(Mi −Mi+1) +Mi+1 = −Mi+1 −Mi

β∆εi+ 1
2

. (3.16)

Thanks to (3.16) the drift term reads for a Maxwellian

Ei+ 1
2

= −
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Mj+1 −Mj) =

N−1∑
j=1

gi+ 1
2
,j+ 1

2
Mj+ 1

2
β∆εj+ 1

2
= βDi+ 1

2
.

Thus the coefficients δi+ 1
2

defined by (3.15) are solution of the equation (3.12) when f = M .
Furthermore, in that case the fluxes Ki+ 1

2
vanish. So Maxwellians are equilibrium states of

the scheme S1.

Now we analyse the positivity of the scheme. For linear Fokker-Planck equations, Chang and
Cooper [6] have shown that their scheme is non-negative. Afterwards, Larsen et al. [19] have
pointed out that for non-linear Fokker-Planck equations, but with local drift and diffusion
coefficients, the Chang and Cooper method can produce negative solution. Our case is a non-
linear Fokker-Planck equation with non-local drift and diffusion coefficients. For this case we
can show that the Chang and Cooper scheme S1 is positive.

Proposition 3. The solutions of (3.6) with non-negative initial conditions fi(t = 0) are
non-negative.

We don’t have existence result for (3.6). The problem is that we have very few information
about the solutions of (3.12): existence can be obtain by Brouwer’s fixed point theorem but
we have nothing about uniqueness and regularity of the solutions as functions of f .

Proof. From the Proposition (1) we get Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi where Ai+ 1

2
and Bi+ 1

2

are given by (3.14). The function u(x) =
x

exp(x)− 1
is positive, decreasing from −∞ to 0,

while v(x) =
x exp(x)

exp(x)− 1
is positive too, increasing from 0 to +∞. To prove the positivity

we use Lemma 1. Thus all we need to do is showing that the Ai+ 1
2
’s and Bi+ 1

2
’s are positive

and bounded. As a result (see Remark 1) we have Di+ 1
2
≥ 0. Moreover u and v are positive

functions therefore Ai+ 1
2

and Bi+ 1
2

are positive too. Now we have to show that Ai+ 1
2

and
Bi+ 1

2
are bounded. At first we assume that f is a distribution function that has density ρ

and energy ρE thus we get fj ≤
ρ

maxi ci
,∀j; 1 ≤ j ≤ N − 1. So that we can bound the drift

term as following

| Ei+ 1
2
|=|

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj − fj+1) |≤

ρ

maxi ci
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
≤ ρ

maxi ci
2(N − 1)gN− 1

2
,N− 1

2
.

Consequently, there exists C > 0 such that | Ei+ 1
2
|< C. In the same way we get an

upperbound for the diffusion coefficients

Di+ 1
2
≤ ρ

maxi ci
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
∆εj+ 1

2
.

10



To continue we distinguish two cases. First we suppose that | αi+ 1
2
|≥ 1. Then we get

Ai+ 1
2

=
exp(αi+ 1

2
)

exp(αi+ 1
2
)− 1

Ei+ 1
2

and Bi+ 1
2

=
1

exp(αi+ 1
2
)− 1

Ei+ 1
2
.

And even if | αi+ 1
2
|→ ∞, Ai+ 1

2
and Bi+ 1

2
remain bounded. Now we assume that | αi+ 1

2
|≤ 1

then u(αi+ 1
2
) and v(αi+ 1

2
) are bounded and Ai+ 1

2
and Bi+ 1

2
too since Di+ 1

2
is also bounded.

Thus, thanks to Lemma 1 this ends the proof.

It is easy to check that the above results about positivity, energy conservation and equilibrium
states for S1 don’t depend on the definition of the coefficients ci, see (3.2), or on our choice
for the value of ε1. If one takes the Chang and Cooper coefficients δi+ 1

2
at equilibrium, that

is given by (3.15), or freeze the value given by the initial data, it is easy to see that if it is
done in the expression of the fluxes given by (3.7) the scheme is still positive but no more
conservative in energy and if it is done in (3.13) this is the converse. The algebra that permits
to pass from the form (3.7) to the form (3.13) is valid if and only if the coefficients verify at
all times the relation (3.12). This remark is still valid if one does not calculate exactly the
Chang and Cooper coefficients by an iterative method.
We don’t have any H-theorem but as we will see on numerical examples, the entropy is quite
decaying with this scheme.

3.1.3 The case of physical interest: Coulombian potential

We write now the Rosenbluth coefficients in the case of Coulombian potentials

(ki+ 1
2
,j+ 1

2
= min(ε

3
2

i+ 1
2

, ε
3
2

j+ 1
2

)). To simplify we denote ∆ε
3
2
i = ε

3
2

i+ 1
2

− ε
3
2

i− 1
2

. From (3.8) the drift

term reads

Ei+ 1
2

=
i∑

j=1

∆ε
3
2
j fj − fNε

3
2

i+ 1
2

1 ≤ i ≤ N − 1, (3.17)

and for the diffusive term we have

Di+ 1
2

=
i∑

j=1

∆εj+ 1
2
fj+ 1

2
ε

3
2

j+ 1
2

+ ε
3
2

i+ 1
2

N−1∑
j=i+1

∆εj+ 1
2
fj+ 1

2
1 ≤ i ≤ N − 1. (3.18)

As Di+ 1
2

depends on the f midpoint values it is clear that (3.10) is non-linear in the fi+ 1
2
’s.

We therefore have to solve a full matrix that arises from the implicit differencing of the fi+ 1
2
’s.

A way to compute the Chang and Cooper average (3.10) is to consider the second equation

of (2.9). Thus we have to solve an elliptic equation, namely −2
3
∂

∂ε

1√
ε

∂

∂ε
(D(f(ε))) = f(ε).

The non-linear system which solution is f δ = {fi+ 1
2
}1≤i≤N−1 is then replaced by a non-linear

system inD(f) and the matrix involved is tri-diagonal (see [5, 7]). We can use a new expression
for fi+ 1

2

fi+ 1
2

= − 1
∆εi+ 1

2

Di+ 3
2
−Di+ 1

2

∆ε
3
2
i+1

−
Di+ 1

2
−Di− 1

2

∆ε
3
2
i

 , (3.19)

which can be solved, for a given distribution function by a Newton’s method, with the cost
of a tridiagonal system that is O(N) operations at each iteration.
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3.1.4 About other existing variants of the Chang and Cooper method for the
isotropic FPL equation

We want to emphasize that the two known other Chang and Cooper method for the isotropic
FPL equation are not conservative and positive at the same time. As we will see the first one
conserves the energy but is not positive. The second one does not conserve the energy but is
positive.
The first one, we call it the scheme S2, reduces to the Langdon’s scheme in the case of a
Coulombian potential. Another option consists in integrating the right-hand side of (3.5)
up to εN+1, assuming that fN+1 = 0 and constraining the flux at the last point εN+ 1

2
to

be identically equal to zero. This strategy was carried by Langdon [18] and Decoster and
Langdon [8] in the case of Coulombian interactions. We extend their method to the general
case. The derivation begins as for the S1 scheme using the weak formulation (3.4) but with
N + 1 points. We denote by Ẽi+ 1

2
, D̃i+ 1

2
, K̃i+ 1

2
, i = 1, ...N the drift coefficients, the diffusion

coefficients and the fluxes using respectively (3.8) and (3.7) with N + 1 points.

Imposing
dfN+1

dt
= K̃N+ 1

2
= 0 with fN+1 = 0 leads to

ẼN+ 1
2
fN+ 1

2
− D̃N+ 1

2

fN

∆εN+ 1
2

= 0. (3.20)

Thanks to (3.20) the diffusion becomes

D̃i+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
+ gi+ 1

2
,N+ 1

2

D̃N+ 1
2

ẼN+ 1
2

fN . (3.21)

We integrate by parts the drift term and get

Ẽi+ 1
2

=
N∑

j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj∆εj+ 1

2
. (3.22)

We assume that {gi+ 1
2
,j+ 1

2
}1≤i≤N,1≤j≤N is an increasing sequence. Then, if the fi’s are posi-

tive, Ẽi+ 1
2

is positive too. In other hand, even if the fi+ 1
2
’s are positive D̃i+ 1

2
can be negative

if fN 6= 0.
The discretization of fi+ 1

2
is still given by the Chang and Cooper average (3.10) and (3.11)

with α̃i+ 1
2

=
Ẽi+ 1

2

D̃i+ 1
2

∆εi+ 1
2
. As in the previous scheme, the (N-1)-dimensional vector δ̃ with

components {δ̃i+ 1
2
}1≤i≤N is the root of a non-linear equation like (3.12). By construction this

scheme conserves the energy and discrete Maxwellians (see [5] for more details).
Comparing formally the drift and diffusion functional discretized respectively by S1 and S2

we get for 1 ≤ i ≤ N − 1

Ẽi+ 1
2

= Ei+ 1
2

+ fNgi+ 1
2
,N+ 1

2
and D̃i+ 1

2
= Di+ 1

2
+ gi+ 1

2
,N+ 1

2

D̃N+ 1
2

ẼN+ 1
2

fN . (3.23)
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In the case of the Coulombian potential one can check (see [5]) that leads to the relation
D̃N+ 1

2

ẼN+ 1
2

=
D̃N− 1

2

ẼN− 1
2

and thus

Ei+ 1
2

= Ẽi+ 1
2
− fNε

3
2

i+ 1
2

Di+ 1
2

= D̃i+ 1
2
−
D̃N− 1

2

ẼN− 1
2

ε
3
2

i+ 1
2

. (3.24)

This is the Langdon version of the Chang and Cooper method for the FPL equation derived
originally only for Coulombian potential and using the Rosenbluth form of the equation.
But using (3.24) one can see that D̃N− 1

2
could become negative. To see that this scheme is

not positive it suffices to considere the following initial data: let f a distribution function
with fixed density ρ and energy ρE and of the form f = aδε1 + bδεN . Thus b = ρE/(cNεN )
and a = (ρ− ρE/εN )/c1 and a and b are positive. With such an initial condition and for

sufficiently fine grids it’s easy to verify that
dfN−1

dt
< 0 and consequently fN−1 gets negative

too.
The second well known implementation of the Chang and Cooper method is the one proposed
by Epperlein for Coulombian collisions [15] and used in the code SPARK or by Kingham
and Bell in the recent code IMPACT [17]. These authors assume that the diffusion term
and the distribution function vanish at εN+ 1

2
and that the distribution function vanishes at

εN+1. Thus the numerical flux is zero and consequently the density is conserved. But the
Epperlein velocity discretization is nothing else than a miscellany of what we called scheme
S1 and scheme S2: the drift term is the one discretized by scheme S2, formula (3.22), and
the diffusion term the one computed by S1, formula (3.18). So the discrete operator has no
weak symmetrized form. Thus one can have a doubt concerning the energy conservation since
the energy conservation’s proof is based on the existence of a weak symmetrized form of the
collision operator. Numerical tests confirm this fact. The proof of positivity of this scheme
is like those of the S1 scheme since the diffusion term is non-negative.
For more details the reader can refer to [5]. We can remark that these three Chang and
Cooper type schemes are equivalent when the integrating domain is not bounded. The only
difference between these schemes lies in the manner to treat boundary conditions when the
integrating domain is reduced to [0, E ].

3.2 Equilibrium scheme (scheme S3)

The Chang and Cooper method is not the only way to provide positive, conservative and
equilibrium states preserving schemes for the FPL equation on non-uniform grid. The scheme
we’ll propose in this section share also these properties and is simpler and thus cheaper.
This scheme is based on the work of Larsen et al. [19]. Their work is for linear and non-linear
Fokker-Planck equations. But they do not consider non-linearity as in the Landau equation,
that is drift and diffusion coefficients are functionals of the distribution functions. One of
the two main ideas exposed in their paper to preserve Maxwellian states is to remark that

ε-derivative that appears in the flux can be rewritten as
∂

∂ε
= −βy ∂

∂y
where y = exp(−βε).

Thus it becomes easy to preserve Maxwellians in the weak form of the Fokker-Planck equation.
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Following these authors, in the case of the FPL equation, we set

∆εi+ 1
2

= −
(∆M)i+ 1

2

βMi+1
=

exp(β∆εi+ 1
2
)− 1

β
' ∆εi+ 1

2
. (3.25)

Thus we consider the following approximation of the weak symmetrized form of the problem

N∑
i=1

ci
∂fi

∂t
φi = −1

2

N−1∑
i=1

N−1∑
j=1

(
∆φi+ 1

2

∆εi+ 1
2

−
∆φj+ 1

2

∆εj+ 1
2

)
gi+ 1

2
,j+ 1

2

(
fj+ 1

2

∆fi+ 1
2

∆εi+ 1
2

− fi+ 1
2

∆fj+ 1
2

∆εj+ 1
2

)
∆εj+ 1

2
∆εi+ 1

2
,

(3.26)
with the approximations fi+ 1

2
taken decentred and defined by fi+ 1

2
= fi+1.

As in the previous section we obtain the system of ordinary equation for the approximation
of the FPL equation

dfi

dt
= QS3

i 1 ≤ i ≤ N, (3.27)

where QS3
1 = K 3

2
/c1, QS3

i = (Ki+ 1
2
−Ki− 1

2
)/ci for 2 ≤ i ≤ N−1 and QS3

N = −KN− 1
2
/cN with

the numerical flux

Ki+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+1

∆fi+ 1
2

∆εi+ 1
2

− fi+1

∆fj+ 1
2

∆εj+ 1
2

)∆εj+ 1
2

1 ≤ i ≤ N − 1.

By factorizing the terms fi and fi+1 in the last sum, the numerical flux reads

Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi, (3.28)

with
Ai+ 1

2
=

∆εi+ 1
2

∆εi+ 1
2

 1
∆εi+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
+

N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj − fNgi+ 1

2
,N− 1

2

 ,

Bi+ 1
2

=
1

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
.

(3.29)
The fluxes can be also written using drift and diffusion coefficients

Ki+ 1
2

= Ei+ 1
2
fi+1 +Di+ 1

2

fi+1 − fi

∆εi+ 1
2

, (3.30)

where the drift coefficients
∆εi+ 1

2

∆εi+ 1
2

Ei+ 1
2

are defined by (3.9) and the diffusion coefficients Di+ 1
2

are defined by (3.8) with fi+ 1
2

= fi+1 and ∆εi+ 1
2

in place of ∆εi+ 1
2
.

We can summarize the properties of this scheme in the following proposition

Proposition 4. If gi+ 1
2
,j+ 1

2
is an increasing sequence and ∆εi+ 1

2
≤ ∆εN− 1

2
the scheme S3 is

conservative in mass and energy. Moreover it is positive and preserves the equilibrium state
when is reached.
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Proof. Mass and energy conservation are easily checked by setting φ = 1 and φ = ε in the
weak symmetrized form of the discrete FPL equation (3.26).
Using the definition (3.25) of ∆εi+ 1

2
and the definition of the fi+ 1

2
’s it’s easy to see that for

f = M we have

fj+ 1
2

∆fi+ 1
2

∆εi+ 1
2

− fi+ 1
2

∆fj+ 1
2

∆εj+ 1
2

= −β(Mj+1Mi+1 −Mi+1Mj+1) = 0

thus the scheme preserves the Maxwellians states.
Let us now check the positivity. The fluxes are given by (3.28) and (3.29). Now, to use
Lemma 1 we have just to check that Ai+ 1

2
and Bi+ 1

2
are positive and bounded. As gi+ 1

2
,j+ 1

2

is positive, Bi+ 1
2

is obviously positive. We can write

Ai+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

(
1

∆εi+ 1
2

N−2∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
+

N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj

+ fNgi+ 1
2
,N− 1

2
(
∆εN− 1

2

∆εi+ 1
2

− 1)).

Assuming that gi+ 1
2
,j+ 1

2
is an increasing sequence and that ∆εi+ 1

2
≤ ∆εN− 1

2
leads to the

positivity of Ai+ 1
2
. Now, ∆εi+ 1

2
/∆εi+ 1

2
∈ [0, 1] therefore Ai+ 1

2
, Bi+ 1

2
are bounded since, due

to mass conservation, we have fi ≤
ρ

minj cj
. According to Lemma (1), fi cannot vanish in

finite time. That completes the proof.

One could replace the exact equilibrium Mi in the definition of the scheme by an approximate
equilibrium state M̃i with same mass and energy and the resulting scheme is still conservative,
positive but the equilibrium state is now M̃i. This could be useful since this scheme requires
the knowledge of the equilibrium state and normally this can be done only by solving a
non-linear equation with an iterative method.

If we stand fi+ 1
2

= fi instead of fi+ 1
2

= fi+1 in the numerical flux and if we take ∆εi+ 1
2

=
(∆M)i+ 1

2

βMi
,

the Maxwellians are also preserved but we can show that S3 is positive if and only if the energy
grid is uniform.
On a uniform grid all the terms ∆εi+ 1

2
are equal and up to a multiplicative constant the flux

reduces to

Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fi+1fj − fifj+1).

The scheme is then nothing else than the scheme provided by Berezin and Pekker [1] which
is also an entropic scheme as shown in [4].
For Maxwellian (g(ε, ε′) = ε

3
2 ε′

3
2 ) or Coulombian (g(ε, ε′) = min(ε

3
2 , ε′

3
2 )) potentials the

evaluation of all the coefficients Ai+ 1
2

and Bi+ 1
2

can be achieved in only O(N) operations as
explained in [3, 4].
When applied to Coulombian potentials it can be easily checked that the Di+ 1

2
satisfies a

relation of the type (3.19).
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The second idea of Larsen et al. in [19] to preserve equilibrium states in the discretization of
Fokker-Planck equations and which could be applied to the isotropic FPL equation is to write
∂f

∂ε
= M

∂

∂ε
(
f

M
)− βf in the weak formulation (2.2). Proceeding as above leads to a scheme

which is indeed conservative in mass and energy and preserves the Maxwellians. But at this
time, we cannot show the positivity. Nevertheless it could be possible to derive a positive
scheme since there are sufficiently degrees of freedom in the discretization, namely the factor
fi+ 1

2
and Mi+ 1

2
.

4 Time discretizations

Time discretization is also a key point in the numerical simulation of the FPL equation. As
we have seen above, S1 and S3 can be evaluate in O(N) operations in the Coulombian case
(this is true for all known schemes dealing with the FPL equation for Coulombian potential).
Thus the only problem could arise with the time discretization. For ICF applications the
scheme must be able to take into account time steps in the range from .01τ to 10τ , where

τ =
√
π

3
1
ρ

(
ρE
ρ

)
3
2 is the collision time. Moreover the number of discretization points N will be

between 20 and 150. Despite the parabolic stability condition inherent to such an equation it
is not clear that implicit time discretization could be cheaper than explicit time discretization.
Thus we explore all the ways. Contrary to ”Log” schemes for the isotropic FPL equation,
[3, 11], we can exhibit a good stability condition (positivity) for explicit schemes. It will be
possible to measure the gain obtained using implicit discretization for example. We recall
the more natural way to obtain an implicit solution, the fixed point method using an M-
matrix. One must converge to ensure energy conservation but at each iteration one has to
invert a tridiagonal band matrix which is very cheaper. We examine also two other methods,
the classical and widely used Newton’s method and the ”contracted implicit” method (non-
iterative method) developed by Lemou and Mieussens [20]. For these two methods we show
that by recasting them properly gives band diagonal system which can be solved by direct
method like LU in O(N) operations. The key point to achieve that is to remember that drift
and diffusion coefficients satisfy (2.10) in continuous and it is anything else only to remember
that for 3-D FPL equation Rosenbluth potentials satisfy Poisson equation. After that the
game is to minimize the size of the band to have the minimum lower cost as possible.

4.1 Explicit time discretization

Let us introduce explicit scheme in time such as the well known Euler forward scheme

fn+1 − fn = ∆tQ(fn), (4.1)

where ∆t is the time step, fn is the approximation of f(ε, tn) and tn+1 = tn + ∆t and Q is
the discrete operator defined by (3.6) for S1 or by (3.27) for S3. We exhibit a condition such
that the scheme remains positive. For the schemes S1 and S3 we get from relation (3.13) and
(3.28)

fn+1
i = fn

i (1−∆tPn
i ) + ∆tGn

i ,

where Pn
i =

1
ci

(An
i− 1

2

+Bn
i+ 1

2

) and Gn
i =

1
ci

(An
i+ 1

2

fn
i+1 +Bn

i− 1
2

fn
i−1). Above we saw, for S1 and

S3, that if fi ≥ 0 for all i ∈ [1, N ] then Ai+ 1
2

and Bi+ 1
2

are non-negative and bounded for
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all i. Consequently Gn
i and Pn

i are positive and bounded too. Now, if ∆t ≤ max
i

(Pn
i )−1 then

fn+1
i is positive. For a given time step we define the CFL number as CFL = ∆tmax

i
Pn

i .

Such time stability condition can’t be obtained using ”Log” schemes, that is, schemes based
on the ”Log” form of the equation (see [3]). As proved in [4], our time restriction could be
bounded below by using mass, energy and the L∞ norm of the distribution function, but from
a practical point of view it is unnecessary.

4.2 Implicit time discretization

The implicit scheme consists in solving

fn+1 − fn = ∆tQ(fn+1), (4.2)

where fn is supposed being the approximation of f(ε, tn).

4.2.1 A positive fixed point method

The first discretization uses a Picard fixed point method based on a semi-implicit algorithm,
namely

fk
i − fn

i

∆t
=

1
ci

(
Ak−1

i+ 1
2

fk
i+1 − (Ak−1

i− 1
2

+Bk−1
i+ 1

2

)fk
i +Bk−1

i− 1
2

fk
i−1

)
,

which can be written in the compact form

fk − fn = ∆tL(fk−1)fk, (4.3)

where fk is the kth iterate and the coefficients Ai+ 1
2

and Bi+ 1
2

are defined by (3.14) for S3

and (3.29) for S1. At convergence we naturally obtain fn+1 = fk. As we have seen above
L(fk) is an L-matrix for S1 and S3, his transpose is diagonally dominant, and the kernel is
the space of vectors whose all components are equal. Thus

(
Id−∆tL(fk)

)
is an M-matrix

and the iterative procedure (4.3) preserves mass and positivity. Due to the tridiagonal form
of
(
Id−∆tL(fk)

)
, it only requires O(N) operations to compute fk (in fact the cost is the

same as the explicit method). We show on numerical examples that this fixed point method
converges rather well.

4.2.2 The ”contracted implicit” method

This scheme was developed by Lemou and Mieussens [20]. By noticing that conservation and
entropy properties are a consequence of the symmetry property of the collision operator, the
authors make implicit in time the diffusive term (f(ε′)∂εf(ε)) in (2.1) without breaking the
symmetry between ε and ε′. They get the following contracted implicit scheme

fn+1 − fn = ∆tqci(fn, fn+1), (4.4)

with qci(f, g) =
1√
ε

∂

∂ε

∫ ∞

0
k(ε, ε′)

(
f(ε′)

∂g(ε)
∂ε

− f(ε)
∂g(ε′)
∂ε′

)
dε′. This scheme conserves mass,

energy, see [20], and discrete Maxwellians but it can produce negative solution. In our case
this time discretization writes as

fn+1
i − fn

i =
∆t
ci

(En+1
i+ 1

2

fn
i+ 1

2

+Dn
i+ 1

2

fn+1
i+1 − fn+1

i

∆εi+ 1
2

− En+1
i− 1

2

fn
i− 1

2

−Dn
i− 1

2

fn+1
i − fn+1

i−1

∆εi− 1
2

), (4.5)
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for S1 and for S3 we just have to replace fn
i+ 1

2

by fn
i+1

∆εi+ 1
2

∆εi+ 1
2

(see (3.25)) and Dn
i+ 1

2

by Dn
i+ 1

2
.

For the sake of simplicity we write them in the compact form (Id − ∆tLci(fn))fn+1 = fn.
Using the definition of the drift coefficients Ei+ 1

2
it is obvious that Id−∆tLci(fn) is a non-

sparse matrix, the drift term fills the matrix with his coefficients and we get a N ×N matrix.
The procedure to solve (4.4) by a direct method requires O(N3) operations (note that Lci

is nearly a lower triangular matrix, thus the cost can be reduced to O(N2) operations). To
bring the matrix sparse (and in fact band diagonal with the last column if the unknowns are
stored correctly) the idea is to introduce the drift coefficient E as unknown associated with
the equation (2.10). Namely we rewrite the ”contracted implicit” scheme as{

fn+1 − fn −∆tq̃ci((fn, En), (fn+1, En+1)) = fn+1 − fn −∆tqci(fn, fn+1) = 0,

fn+1 −R(En+1) = 0.
(4.6)

where R(En+1) =
2
3

1√
ε

∂En+1

∂ε
. If one discretizes in energy by the Chang and Cooper type

scheme we get from (3.17)
fn+1

i − fn
i −

∆t
ci

(En+1
i+ 1

2

fn
i+ 1

2

+Dn
i+ 1

2

fn+1
i+1 − fn+1

i

∆εi+ 1
2

− En+1
i− 1

2

fn
i− 1

2

−Dn
i− 1

2

fn+1
i − fn+1

i−1

∆εi− 1
2

) = 0,

fn+1
i − fn+1

N −
En+1

i+ 1
2

− En+1
i− 1

2

∆ε
3
2
i

= 0.

(4.7)

To solve (4.7) the number of arithmetic operations required is
N − 1

2
operations (subtractions)

to eliminate the last column and m2 × (2N − 1) operations to solve one m-diagonal system
by LU factorization (here m = 5). We can also substitute the function distribution fn+1

i in
the first equation of (4.7) by his expression in the drift term given by the second equation.
Thus the operator is a N ×N sparse matrix and the number of operations required to solve
the scheme reduces to O(N) and the number of diagonal is now m = 5 (as done by Decoster
for the Newton’s method [7]). Therefore we gain a factor 2 in terms of CPU time. For the

equilibrium scheme S3 we just have to replace fn
i+ 1

2

by fn
i+1

∆εi+ 1
2

∆εi+ 1
2

(see (3.25)) and Dn
i+ 1

2

by

D
n
i+ 1

2
.

It is obvious that the scheme (4.7) is still conservative in mass and energy. This type of
procedure can be easily extended to all variants of the ”Log” scheme. It is also straightforward
to generalize it to Maxwellian potential since in this case we have recurrences relation to
evaluate drift and diffusion coefficients. It is also interesting to notice that the ”contracted
implicit” method applied to S1, S3 or the ”Log” scheme depicted by Dellacherie in [11] gives
exactly the same system to solve for uniform grid. The only differences is in the manner to
compute the diffusion coefficients from the distribution function. Obviously, at equilibrium,
the diffusion coefficients are the same.

4.2.3 The Newton’s method

The last method uses a Newton algorithm to solve equation (4.2).
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Introducing F (f) = f − fn −∆tQ(f) the resulting iteration procedure is

F ′(fk−1) · (fk − fk−1) = −F (fk−1), (4.8)

where F ′(fk−1) is the Jacobian and we choose the starting point f0 with the same mass and
energy as fn. Introducing the linearized operator Ql around f we have

Ql(f, g) =
1√
ε

∂

∂ε

∫ ∞

0
k(ε, ε′)

(
f(ε′)

∂g(ε)
∂ε

− f(ε)
∂g(ε′)
∂ε′

+ g(ε′)
∂f(ε)
∂ε

− g(ε)
∂f(ε′)
∂ε′

)
dε′,

(4.9)
and thus we can write

F ′(fk−1) · (fk − fk−1) = fk − fk−1 −∆tQl(fk−1, fk − fk−1).

This is the method used by Epperlein in [15]. The Newton’s sequence becomes

fk − fn = ∆t
(
Ql(fk−1, fk)−Q(fk−1, fk−1)

)
.

Because Ql and Q have a symmetric weak form, the Newton’s process conserves mass and
energy at each iteration. Now we assume that the discretization in energy is provided by the
Chang and Cooper type scheme. This scheme is naturally expensive because it generates a
N × N non-sparse matrix when we discretize in energy. The cost is then in O(N3) at each
iteration. In the case where potentials are Coulombian an other strategy is to remember the
equations satisfied by the drift and the diffusive terms, namely (2.9), and to introduce E and
D as unknowns [7]. Thus the implicit scheme writes

fn+1 − fn

∆t
= Q(fn+1) = Q̃(fn+1, E(fn+1), D(fn+1)) = Q̃(fn+1, En+1, Dn+1),

fn+1 = R(E(fn+1)) = R(En+1),

fn+1 = −S(D(fn+1)) = −S(Dn+1),

where the unknowns are now fn+1, En+1 and Dn+1 and S(D) =
2
3
∂

∂ε

1√
ε

∂D

∂ε
. We solve the

previous system by the Newton’s method. The Jacobian matrix involved in the method is
now a sparse matrix. If one discretizes in energy by the Chang and Cooper type scheme this
yields to

fi − fn
i −

∆t
ci

(Ei+ 1
2
fi+ 1

2
+Di+ 1

2

fi+1 − fi

∆εi+ 1
2

− Ei− 1
2
fi− 1

2
−Di− 1

2

fi − fi−1

∆εi− 1
2

) = 0,

fi − fN −
Ei+ 1

2
− Ei− 1

2

∆ε
3
2
i

= 0,

fi+ 1
2

+
1

∆εi+ 1
2

Di+ 3
2
−Di+ 1

2

∆ε
3
2
i+1

−
Di+ 1

2
−Di− 1

2

∆ε
3
2
i

 = 0,

where fi+ 1
2

is given by the Chang and Cooper average (3.10) for S1. Note that fi+ 1
2

depends
on E, D and f = {fi}1≤i≤N . Thus we can write the above system in f,E,D as

f − fn −∆tQ̃(f,E,D) = 0,
f −R(E) = 0,
h(f,E,D) + S(D) = 0.

(4.10)
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Starting from (f0, E0, D0) verifying the second and third equation of (4.10) the iteration
procedure is defined as:

Iteration process 1. Steps:

1. we solve

fk − fn = ∆t
(
∂f,E,DQ̃(fk−1, Ek−1, Dk−1).(fk − fk−1, Ek − Ek−1, Dk −Dk−1)

−Q̃(fk−1, Ek−1, Dk−1)
)

fk −R(Ek) = 0,

∂f,E,Dh(fk−1, Ek−1, Dk−1) · (fk − fk−1, Ek − Ek−1, Dk −Dk−1) + S(Dk)

= −h(fk−1, Ek−1, Dk−1)
(4.11)

where ∂f,E,DQ̃
l(f,E,D) is the linearized of Q̃(f,E,D), and we have taken into account

all the simplifications coming from the fact that R and S are linear operators.

2. Set Dk as the solution of h(fk, Ek, Dk)− S(Dk) = 0.

Proposition 5. The sequence fk defined by the iteration process (1) is conservative in mass
and energy.

Proof. We proceed by induction. By construction fk−1, Ek−1, Dk−1 satisfy the second and
third equations of (4.10). Thus the second and third equations of (4.11) give Ek − Ek−1 =
∂fE(fk−1).(fk− fk−1) and Dk−Dk−1 = ∂fD(fk−1).(fk− fk−1). Plugging these relations in
the first equation of (4.11), we have nothing else than the sequence of the Newton’s method
(4.8) with only the unknown f , which is conservative in mass and energy since the linearized
operator Q(f) defined by (3.6) is too. Thus fk and fk−1 have the same mass and energy.
Since (f0, E0, D0) verify the second and third equation of (4.10) that ends the proof. The
starting point f0 is obviously chosen such that it has the same mass and energy as fn.

The linear system involved by (4.11) when the vector of the unknowns is stored as

((fi, Ei+ 1
2
, Di+ 1

2
)i=1,N−1, fN )

gives a (3N − 2) × (3N − 2) matrix like a block-tridiagonal matrix where 3(N − 1) blocks
represent a square matrix of order 3 and the last row (respectively column) is a 3N − 2
vector (respectively column-vector). The last row can be easily eliminated by subtracting
lines and that gives a band diagonal system which can be solved by a direct method like LU
in O((3N − 2)m2) operations, m = 11 is the number of diagonals.
Applied to the equilibrium scheme S3 this strategy is more simple since the function h becomes
linear: the second step of the iteration process (1) is useless.
Additional optimization can be done in the case of Coulombian potentials, by replacing the
fi; i = 1, N − 1 by Ei+ 1

2
and by rearranging a little bit the linear system involved by the

Newton’s method, the matrix is then only (2N − 1) × (2N − 1), the number of diagonals
is m = 9 and we gain approximately a factor 2 in terms of CPU time. This the Newton’s
implementation of Decoster [7] for S2 for which we have a substantial gain since the last row
is null.
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Such a strategy can be also be applied with ”Log” schemes. It can also be applied for
Maxwellian potentials even for the full 3-D Landau equation. The key point is still the
fact that in these cases drift and diffusion coefficients can be computed trough recurrences
relations. But for the full Landau equation with Coulombian potentials the question remains
open.

5 Numerical results

We compare S1 and S3 and the various implicit schemes on two numerical test cases: the first
one is the classical Rosenbluth test [24] and the second one is a δ function in energy.

5.1 Test 1: the classical Rosenbluth test

This numerical test is extracted from the work of Rosenbluth et al. [24]. The initial data is
a gaussian velocity distribution given by f0(ε) = 0.01 exp

(
−10((

√
ε− 0.3)/0.3)2

)
. We use a

regular velocity discretization. Thus the discrete energy points are εi = (
i

N
)2 for i = 1 to

N . Let ∆texp the largest step ensuring the stability of the explicit scheme. As the grid is
irregular, the time step of the explicit scheme is constrained by the smallest step size of the
mesh. We denote τ the characteristic collision time. In figure (1) we plot the numerical kinetic

entropy
N∑

i=1

fn
i log fn

i ci as a function of time, obtained by the ”contracted implicit” method

(4.4) and the full implicit method (4.11). Tolerance for the iterative schemes is 10−12. We
consider three time steps namely: ∆t = 10−1τ , ∆t = τ and ∆t = 10τ . The final physical time
corresponds to 20τ . We observe that the equilibrium state is reached in only four collision
times. The results given by the full implicit method are the more accurate. This is clear also

in figure (2) where the fourth moment
N∑

i=1

fn
i ε

2
i ci is plotted as a function of time or for the

distribution function in figure (3). The time step ∆t = 10τ gives a CFL of about 23000. For
our two schemes we show in table (1), for all the time discretization, the CPU time required
to attain a final time of 30τ . The ”contracted implicit” scheme is the cheaper method but
gives poor results as the time step exceed τ and it could give negative solutions.

Explicit Contracted implicit Fixed point Newton
S1, ∆t = 10−1τ 6 7.9E-002 0.26 0.24
S1, ∆t = τ 6 9.6E-003 7.32E-002 2.46E-002
S1, ∆t = 10τ 5.7 1.6E-003 5.1E-002 3.9E-003
S3, ∆t = 10−1τ .6 3.0E-002 6.6E-002 0.16
S3, ∆t = τ 0.75 4.2E-003 1.7E-002 1.7E-002
S3, ∆t = 10τ 0.78 1.0E-003 1.0E-002 1.7E-003

Table 1: Test 1. Comparison of the total costs involved by S1 and S3 for three values of the
time step, ∆t = 10−1τ, τ, 10τ , and a final time T = 30τ .
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Figure 1: Test 1. Kinetic entropy for contracted implicit scheme (CI) and full implicit (FI),
S1 vs S3.

0 5 10 15 20
time

1

1.5

2

2.5

3

fo
ur

th
 o

rd
er

 m
om

en
t

CI: ∆t = 0.1 τ
FI: ∆t=0.1τ
CI: ∆t=τ
FI: ∆t=τ
CI: ∆t=10τ
FI: ∆t=10 τ

0 5 10 15 20
time

1

1.5

2

2.5

3

fo
ur

th
 o

rd
er

 m
om

en
t

CI: ∆t = 0.1 τ
FI: ∆t=0.1τ
CI: ∆t=τ
FI: ∆t=τ
CI: ∆t=10τ
FI: ∆t=10 τ

Figure 2: Test 1. Fourth order moment for contracted implicit scheme (CI) and full implicit
(FI), S1 vs S3.

5.2 Test 2: a mono-energetic initial data

This is typically a test that can’t be handle by ”Log” schemes : either the scheme is not
defined [10] or the initial data don’t evolve through time [4, 11]. One consider thus the initial
data f0(ε) = δε=0.3 and we do the same computations as for the Rosenbluth test case, that
is with the same parameters. Now the time step ∆t = 10τ gives a CFL of about 23000. As
for test 1, the full implicit scheme via fixed point method or the Newton method gives the
more accurate results even if the time step is much larger: see figures (6) and (5) where the

fourth moment
N∑

i=1

fn
i ε

2
i ci is plotted as a function of time. The contracted implicit scheme is

still the cheaper but to give the right relaxation, the time step would not exceed 10−1τ , see
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Figure 3: Test 1. Distribution function, ∆t = 0.1τ , S1 vs S3.

figure (4). And it could produce negative solutions even with large time steps. At contrary
the full implicit scheme using fixed point iteration or Newton method gives always a positive
solution and a better relaxation despite their extra cost.
At this point, we want to emphasize that, our schemes S1 and S3 are robust whatever the
time discretization. This point out the interest of designing positive schemes for the FPL
equation, not as the ”Log” schemes rightly. This last class of scheme is very useless with
the ”contracted implicit” method or the Newton method since they used Logarithm of the
distribution function. And the fixed point iterative method cannot be defined in general for
them. This is in relationship with the fact that for them, excepted for the Berezin and Pekker
one on uniform grid in energy, it is impossible to exhibit a condition on the time step to
ensure the positivity (see [3, 4]).
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Figure 4: Test 2. Distribution function, ∆t = τ , S1 vs S3.
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Figure 5: Test 2. Kinetic entropy for contracted implicit scheme (CI) and full implicit (FI),
S1 vs S3.
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Figure 6: Test 2. Fourth order moment for contracted implicit scheme (CI) and full implicit
(FI), S1 vs S3.

6 Conclusions

In this work, we have introduced a new variant of the Chang and Cooper method S1 for
the isotropic FPL equation and also a new scheme called equilibrium scheme S3. These
two methods, on non-uniform grid, are both positive, conservative in mass and energy and
preserve the discrete Maxwellians, contrary to other existing methods for the isotropic FPL
equation. This last method is cheaper than the Chang and Cooper one. Nevertheless this one
could be more precise if the temperature of the plasma becomes low compared to the mesh
size. These two schemes should apply to the full 3-D Landau equation.
We have also shown that time discretization like the ”contracted implicit” method and the
Newton’s method can be formulate in such a manner so that they lead to the inversion of
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a band diagonal system which can be solved by direct method with a linear cost. Let us
also emphasize that if such technics could be also applied to ”Log” schemes, they will be
more expensive due to the more complex structure of such algorithms. Despite it’s lack
of conservation of energy, the fixed point approach method works well on numerical tests
and it has a cost comparable to the ”contracted implicit” method or the Newton’s method.
Moreover since we have positive scheme, we are able to give a time step restriction for the
explicit scheme which could be the cheaper if the number of points is of the order of 20 and if
the time step is little compared to the collision time (approximately 10−2τ). With these four
time’s discretization it could be possible, by switching between them, to minimize the cost

of a time step according to the number of points and the ratio
∆t
τ

. In conclusion, through
this study we have also emphasized the importance of positive schemes, especially when time
discretization is approached. The extension of these tools to the full Landau equation will be
the subject of a future work.
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