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Abstract 
 
The theoretical study of the input impedance for Fabry-Perot (FP), Electromagnetic Band Gap (EBG) or Leaky 
Wave (LW) antennas is a real challenge from mathematical and electromagnetic modelling point of view and is 
very rarely addressed in the literature. In this paper, an original method will be presented to evaluate the input 
impedance of the EBG antennas excited by a line source or a point source. The method is based on the 
generalisation of the plane wave expansion of the antenna internal fields to cylindrical or spherical wave 
expansions. This procedure leads to simple and rigorous formulas which are very helpful for designing the EBG, 
FP and LW antennas and for understanding their electromagnetic behaviours. 
 
I. Introduction 
 
EBG antennas are generally composed of a (multilayer) 
EBG material (Electromagnetic Band Gap), a reflector 
plane and a primary source that is placed inside the 
structure (Fig. 1). These recent radiating structures are now-
a-days applied to produce highly directive beams. 
Compared to classical directive antennas (horn, parabolic 
reflector, etc) EBG antennas are very compact and low 
profile, but have a very narrow bandwidth. 
The mathematical investigation on antennas input impedance has always been a delicate task due to the 
sigularity of near field in the vicinity of the exciting source. However, the antenna far field (radiation pattern) 
and the general properties of EBG structures (dispersion diagram, transmission and reflection coefficients …) 
can be studied relatively easily by the plane wave excitation method or by the equivalent transmission line 
method. 
In this communication, we will apply as a first stage, the plane wave method to the internal field of Fabry-Perot 
(FP) antennas to extract the expression of the input impedance of ideal plane wave sources. The procedure is 
then generalised for more realistic excitation sources. Hence, we will propose new methods that allow obtaining 
the input impedance of FP or EBG antennas excited by a line source or a point source. The method leads to 
simple and rigorous analytical formulas which are helpful for the design of EBG antennas and gives a better 
comprehension of the physical phenomena.  
 
II. Plane Wave Input Impedance of Fabry-Perot (FP) Antennas 
 
Let us consider a TM plane wave source inside a Fabry Perot cavity made of two infinite Partially Reflective 
Surfaces (PRS) characterized by their transmission (t1;t2) and reflexion coefficients (r1;r2) (Fig. 2). By applying 
the method of the successive reflections inside the cavity, the external (transmitted) and internal fields can be 
written as a superposition of all partially transmitted or reflected fields [1, 2]. 
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Fig. 1.Typical structure of an EBG antenna



The magnetic field H has naturaly two components Hx and Hy. The resulting Hx and Hy given in relation (3) 
lead to two distinct impedance expressions called here Zguide and Zstanding corresponding to the guided and 
standing waves inside the FP cavity (see Fig.2). 
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η is the intrinsic impedance of plane wave in free space. 
If the ideal plane wave source is replaced by a real excitation source of finite size (Fig. 1a), the radiation pattern 
PFP(θ) of the new FP antenna can be obtained by the multiplication of the excitation source pattern Psource(θ) and 
the FP response TFP(θ) (Eq. 1): PFP(θ) = Psource(θ) TFP(θ). The reason is that Psource(θ) is resulted in fact from the 
plane wave expansion of the source far field. To obtain the input impedance of the new FP antenna, one can 
apply a similar method by using the plane wave expansion of real source near field. However, three major 
difficulties appear in this case. First, the mathematical singularity of the near field (due to the stored energies) 
requires a very large number of evanescent and complex plane wave terms. Second, the transmission and 
reflection coefficients (t1;t2) and (r1;r2) should be evaluated for all these evanescent plan waves. This is not a 
simple task. Third, the real source has a unique value for its input impedance, but for plane wave expansions, we 
have at least two different expressions (Eq. 4). We should therefore recombine properly the near field 
expressions to obtain a unique impedance value.  
We should add that all the commercial electromagnetic solvers produce easly the radiation pattern for any 
arbitrary excitation source, but none of them give the plane wave expansion of the near field. We conclude that 
the plane wave expansion method is not a practical way to obtaine the input impedance of the FP and EBG 
antennas excited by realistic and finite size sources. In the following sectoins we wil apply the cylindrical and 
spherical expansions to extract relatively easily the imput impedance of line and point sources respectively. 
Although these are still ideal sources, they seem to be more realistic sources for EBG antennas. 
 

 

Fig. 2. Guided & standing wave inside the cavity 
 
III. Cylindrical Wave Response and Input Impedance 
 
Let us consider a line source (infinitely long current source) placed in front of a PRS. In figure 3, an FDTD 
simulation shows the interaction between the cylindrical wave (created by the line source) and the PRS. The 
incident cylindrical wave is obviously centred on the exciting line source. After having met the PRS, two new 
waves appear: the “transmitted” wave, which remains centred on the primary source, and the “reflected” wave, 
which is centred on the image of the excitation source through the PRS. We should notice that the two waves are 
always cylindrical ones. 
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Let us now consider the FP cavity excited with a line 
source (Fig. 4). By using the method of successive 
reflexions applied in the first part for the plane waves 
and illustrated in Fig. 4 for cylindrical waves, we obtain 
the analytical expression of the electric field E and the 
magnetic field H inside the cavity: 
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Where rc1 and rc2 are the reflection coefficient of the PRS of the FP cavity for cylindrical waves, H0
(2) , H1

(2) are 
Hankel functions of order zero and 1 consecutively and of second kind (output waves) [3].  
The input impedance of the exciting (line) source becomes simply the ratio of electrical field and magnetic field 
at the source point (D1): 
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Figure (6) shows that there is a very good agreement between the relation (7) and the input impedance calculated 
by the FDTD method. 
It should be noted that our results can be applied to multilayer EBG structures by using a simple recursive 
method developed in [1] 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5. Images successive of a cylindrical wave 
source are also cylindrical wave sources 

Fig.6. Input impedance of a infinitely long current source 
placed inside a cavity 

  
IV. Input Impedance of FP Antennas Excited by Point Source or Short  
 
Fig. 7 shows a symmetrical FP cavity excited with a point source or short dipole antenna. The electric and 
magnetic field of the dipole alone are classically given by the following expressions [4]: 
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where, I and l are respectively the dipole current and length. An approximate expression of the complex input 
impedance can be obtained by using the Pointing theorem to evaluate the dipole complex power P: 
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Fig. 4. Fabry-Perot cavity excited by a line source

Fig. 7. Symmetrical Fabry-Perot cavity 
excited by a short dipole 



r0 is the radius of the sphere surface S for the integral evaluation. Obviously, in these expressions, the stored 
energies inside the sphere are neglected. The imaginary part of the input impedance is therefore not exact. We 
have introduced a factor K and adjusted empirically the parameters r0 and K to obtain a good agreement with the 
numerical results obtained by FDTD method (Fig. 8). 
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Fig. 8. Real (left) and imaginary (right) parts of the an isolated short dipole of l=5mm, obtained by 

FDTD method and by the approximate equation (12) 
By applying now the same successive reflexions and image method as in the previous section (Fig. 5), we obtain 
the analytical expression of the input impedance of the short dipole placed in the middle of the symmetrical FP 
cavity (Fig. 7): 
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(FDTD method) for short dipole excitation. The input impedance of the resulting structure obtained from the 
analytical expression (12) shows a good and encouraging agreement with FDTD simulations (Fig. 9).  
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Fig. 9. Impedance of a short dipole (l=5mm) inside a symmetrical FP cavity of D=40 mm (D1=D2). , 
surfaces of metallic wires with a/Pt=5%, , Pt=3mm, diameter of wires, Pt: distance between wires 

 
V. Discussion & Conclusion 
 
We presented an original theory to predict the input impedance of FP antennas from the knowledge of the near 
filed of the exciting source alone. Based on the image principle, the elaborated analytical expressions are fast and 
simple and produce reliable results with good precision for antenna design. Through a recursive procedure 
elaborated in [1], this method can be applied to planar EBG antennas which are similar to FP ones, but have 
multilayer PRS walls.  
In the method presented here, one requires to evaluate the reflection coefficient of the PRS walls for the exciting 
source imbedded in the EBG or FP structure. This is not a major issue and the most of the commercial 
electromagnetic softwares and the known numerical methods allow to obtain these data. In this work we applied 
the FDTD method to evaluate the PRS reflection and transmission coefficients for plane wave excitation (r1, t1, r2 
in Eq. 1-4), cylindrical excitation (rc1, rc2 in Eq. 7) and source point excitation (r1, r2 in Eq. 12). The method 
remains general and applicable to arbitrary sources. We plan to employ it soon for other kinds of primary sources 
such as slot or patch antennas. 
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