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LOCALIZATION OF INJECTIVE MODULES OVER PRÜFER

DOMAINS

FRANÇOIS COUCHOT

Abstract. It is proved that S−1G is injective if G is an injective module
of finite Goldie dimension over a reduced arithmetic ring R, for each multi-
plicative subset S. Moreover, if R is a Prüfer domain of finite character then
localizations of injective modules are injective too.

If R is a noetherian or hereditary ring, it is well known that localizations of
injective R-modules are injective. By [1, Corollary 8] this property holds if R is
a h-local Prüfer domain. However [1, Example 1] shows that this result is not
generally true. Moreover, by [2, Theorem 25] there exist a coherent domain R, a
multiplicative subset S and an injective module G such that S−1G is not injective.

The aim of this paper is to study localizations of injective modules over arith-
metic rings. We deduce from [1, Theorem 3] the two following results: any local-
ization of an injective module of finite Goldie dimension over a reduced arithmetic
ring is injective (Theorem 1) and any localization of an injective module over a
Prüfer domain of finite character is injective (Theorem 3).

In this paper all rings are associative and commutative with unity and all modules
are unital. A module is said to be uniserial if its submodules are linearly ordered
by inclusion. A ring R is a valuation ring if it is uniserial as R-module and R
is arithmetic if RP is a valuation ring for every maximal ideal P. An arithmetic
domain R is said to be Prüfer. We say that a module M is of Goldie dimension

n if and only if its injective hull E(M) is a direct sum of n indecomposable injective
modules. We say that a domain R is of finite character if every non-zero element
is contained in finitely many maximal ideals.

Theorem 1. Let R be a reduced arithmetic ring. Then, for each injective module

G of finite Goldie dimension, S−1G is injective for every multiplicative subset S of

R.

Proof. G is a finite direct sum of indecomposable injective modules. So, we may
assume that G is indecomposable. Let L = {r ∈ R | ∃0 6= x ∈ G such that rx = 0}.
Since G is a uniform module, L is a prime ideal of R. Moreover G is a module over
RL. If S′ is the multiplicative subset of RL generated by S, then L′ := RL \S′ is a
prime ideal of RL and S−1G = GL′ . Since RL is a valuation domain, we conclude
that S−1G is injective by [1, Theorem 3]. �

Lemma 2. Let R be a Prüfer domain of finite character. For each maximal ideal

P , let F(P ) be an injective RP -module and let F =
∏

P∈Max R
F(P ). Then S−1F is

injective for every multiplicative subset S of R.
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Proof. Let T(P ) be the torsion submodule of F(P ), let G(P ) = F(P )/T(P ), let
T =

∏
P∈Max R

T(P ) and let G =
∏

P∈Max R
G(P ). Then G is torsion-free and

F ∼= T ⊕ G. It is obvious that S−1G is injective. Let T ′ = ⊕P∈Max RT(P ). Since
R has finite character, it is easy to check that T ′ is the torsion submodule of
T . So, T ′ is injective and S−1(T/T ′) is injective. For each maximal ideal P ,
S−1T(P ) is injective by [1, Theorem 3]. Since S−1T ′ is the torsion submodule of
∏

P∈Max R
S−1T(P ), we successively deduce the injectivity of S−1T ′ and S−1T . �

Theorem 3. Let R be a Prüfer domain of finite character. Then, for each injective

module G, S−1G is injective for every multiplicative subset S of R.

Proof. Let E =
∏

P∈Max R
ER(R/P ) and let F = HomR(HomR(G, E), E).

Then E is an injective cogenerator and G is isomorphic to a summand of F . Since
R is coherent, HomR(G, E) is flat by [3, Theorem XIII.6.4(b)]. Thus F is injective.
We put F(P ) = HomR(HomR(G, E), ER(R/P )). Then F(P ) is an injective RP -

module and F ∼=
∏

P∈Max R
F(P ). By Lemma 2 S−1F is injective. We conclude

that S−1G is injective too. �

Corollary 4. Let R be a semilocal Prüfer domain. Then, for each injective module

G, S−1G is injective for every multiplicative subset S of R.

The following example shows that the finite character is not a necessary condition
in order that localizations of injective modules at multiplicative subsets are still
injective.

Example 5. Let R be the ring defined in [4, Example 39]. Then R is a Prüfer
domain which is not of finite character. But, since R is the union of a countable
family of principal ideal subrings, it is easy to check that, for any multiplicative
subset S, R satisfies [2, Condition 14]. So, for each injective module G, S−1G is
injective by [2, Theorem 15].
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