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Institut de Mathématiques et de Modélisation de Montpellier,
UMR CNRS 5149
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ABSTRACT
This paper deals with the computation of the rank and of
some integer Smith forms of a series of sparse matrices aris-
ing in algebraic K-theory. The number of non zero entries
in the considered matrices ranges from 8 to 37 millions. The
largest rank computation took more than 35 days on 50 pro-
cessors. We report on the actual algorithms we used to build
the matrices, their link to the motivic cohomology and the
linear algebra and parallelizations required to perform such
huge computations. In particular, these results are part of
the first computation of the cohomology of the linear group
GL7(Z).

1. INTRODUCTION
1.1 Motivation from K-theory
Numerous problems in modern number theory could be solved
or at least better understood, if we have a good knowledge
on the algebraic K-theory (or motivic cohomology) of inte-
gers of number fields or the so–called “arithmetic cohomol-
ogy” (i.e., the cohomology of subgroups of GLN (Z), or more
generally congruence subgroups). As a short list, we could
mention:

• modular forms and special values of L functions,

• Iwasawa theory and understanding of the “cyclotomy”,

• Galois representations (or automorphic representations).

Let us explain first what is algebraic K-theory: to a commu-
tative ring R we can associate (functorially) an infinite fam-
ily of abelian groups Kn(R) which encodes a huge amount of
information on its arithmetic, geometric and algebraic struc-
tures. These groups extend some classical notions and give
higher dimensional analogues of some well known results;

• K0(R) is the classical Grothendieck group (classifying
finitely generated R−modules),

• K1(R) is the group of invertibles of R,

• K2(R) classifies the universal extensions of SL(R) and
is related to the Brauer group in the case of a field.

We can give a general abstract definition of the Kn for n > 0,

Kn(R) = πn(BGL(R)+) ,

or also as the homotopy groups of the classifying space of
some category associated to R. We also can see the K-
groups as a way to understand GL(R). For instance, K1(R)
is isomorphic to GL(R) modulo elementary relations. For a
more detailed background on K-theory and its applications
see [22]. Fact: these groups are hard to compute.

1.1.1 The Vandiver conjecture as an illustration
Conjecture of Vandiver: Let p be an odd prime, ζp =
e2πi/p, C the p-Sylow subgroup of the class group of Q(ζp)
and C+ the subgroup fixed by the complex conjugation. The
Vandiver conjecture is the statement that C+ = 0.

Fact (Kurihara, 1992)[21]: If K4n(Z) = 0 for all n > 0, then
the conjecture of Vandiver is true.



Some partial results on this conjecture are given in [24].
General problem: Find explicit methods for computing
(co)homologies of arithmetic groups (mainly subgroups of
GLN (A) with A the ring of integers of a number field) and
the K-theory of number fields (or their ring of integers).
Our first task will be the computation of the (co)homolo-
gies of linear groups (mainly GLN (Z) and SLN (Z)). We
can show [14, 12, 13] that the computation of those groups
is the key point for computing K-groups with our method.
We will begin by recall some facts from topology.

1.1.2 Topological Excursion: Cellular complexes,
or how to simply describe the "combinatorial"
structure of a topological space

The notion of cellular complex is a generalization of a graph
to several dimensions. We call n−cell a topological space
homeomorphic to the open unit ball of Rn and such that its
closure is homeomorphic to the closed unit ball. A cellular
complex (or cell complex or also cellular decomposition or
cellular space) is a family of sets Xn (with n ∈ N), such
that each Xn is a collection (eventually infinite) of n−cells.
Usually we work with cell complexes with a finite number
of cells.
A classical result [25] shows that any (reasonable) topological
space can be approximated by such cell complexes.

A cellular decomposition of the cube

1.1.3 Computation of the homology of a cell complex
To a cell complex, we can associate a family Cn (n ∈ N)
of free Z−modules and a family dn : Cn → Cn−1 of linear
maps.
The module Cn is the free module with basis the n−cells
(modulo a choice of orientation).
If the complex is finite, then all the modules are of finite rank
and we will denote by {bn

λ}λ∈Λn
a basis of Cn, Λn being an

index set for the n−cells. Then the map dn is defined by

dn(bn
λ) =

∑

µ

[bn
λ : bn−1

µ ]bn−1
µ ,

and the integer number [bn
λ : bn−1

µ ] is called the incidence
number of the cell en−1

µ inside the cell en
λ. The relation

dn ◦ dn+1 = 0 (i.e., formally d2 = 0) should hold for any n.
If the complex is regular (i.e., always at most one cell of

dimension n + 1 between two cells of dimension n), then
we can build the incidences inductively starting from the
0−cells up to the maximal cells using the d2 = 0 condition
and moreover the incidence numbers will be 0, or ±1.
The nth homology group of the complex is defined as the
quotient of Ker(dn) by Im(dn+1). This construction is func-
torial (in the category of cell complexes). As a consequence,
we can determine the homology groups effectively by comput-
ing the Smith form of the integral matrices of the dn (rela-
tively to the fixed basis). Notice that the Smith form gives
both the rank of the free part and the explicit description of
the torsion part. In case the computation of the torsion is
unnecessary (or to difficult to achieve), we can tensorize by
− ⊗Z Q and the homology groups become Q-vector spaces
with their dimensions given by the ranks of the matrices of
the differentials.

In general, the matrices of the differentials can be very large
even for a relatively simple cell complex. However, they are
also very sparse and we may look for some other favorable
properties which would enable the computation despite the
size of the problem.

1.1.4 How to use such settings for the computation
of linear groups ?

If G is a group acting on a cell space X (i.e., G sends n−cells
to n−cells), then, under some technical assumptions on X
and on the action, we can show that roughly computing the
homology of G (as group homology) is the same as comput-
ing the homology of the cell space X/G. Hence, if X/G can
be calculated effectively, we can compute explicitly its ho-
mology, and from this the homology of G (similarly for the
cohomology). Notice that in general the space X/G will not
be regular anymore. The main difficulty is to find a cell
space X such that X/G will be effective. We will discuss
in section 2.1 how we can construct such cellular space for
linear groups.

1.2 Parallelism motivations
This first idea to deal with very large sparse matrices is
to use them as blackboxes, i.e. only using the matrix-vector
product. This will let the matrix remain sparse all along the
algorithm where Gaussian elimination for instance would fill
it up. To compute the rank, the fastest black box algorithm
is Wiedemann’s as shown in [9]. This algorithm computes
a sequence of scalars of the form utAiv (u and v are vec-
tors) with i matrix vector products and dot products. It
has been shown to successfully deal with large sparse ma-
trix problems from homology, see e.g. [8]. Nevertheless,
when matrices are very large (e.g millions on non-zero en-
tries) computations would require months or years. This is
due to the low practical efficiency of the computation of a
sparse matrix-vector product. For instance, in our case of
homology computation, one would need 300 days of CPU
to compute the sequence involving matrix of GL7(Z) with
n = 19 (GL7d19 matrix). To achieve computations of many
homologies in a realistic time we then need to parallelize the
computation of the sequence. Then the algorithm candidate
is the block Wiedemann method, which computes a sequence
XT AiY where X and Y are blocks of vectors. This step can
be easily parallelized by distributing vectors of block Y to
several processors. We thus have several objectives with re-



gard to the parallelism in this paper:

• We want to solve large problems coming from homol-
ogy computation.

• We want to experimentally validate our parallel imple-
mentation of the block Wiedemann rank algorithm.

• We want to show the parallel scaling of block Wiede-
mann approaches.

1.3 Summary of the paper
In section 2, the algorithms and optimizations we used to
generate the matrices and compute with them are discussed.
Then, section 3 shows our experimental results on these
large sparse matrices coming from homology.

2. ALGORITHMS AND OPTIMIZATIONS
As seen in section 1.1.3, we can effectively compute the ho-
mology of a cellular space and of a group which acts “nicely”
on a cellular space. The main difficulty remains to find such
explicit cellular space. In section 2.1 we present the process
of matrix generation and optimization. Then in the follow-
ing sections we give a description of the algorithms used for
the computation of the rank and the Smith form of those
matrices.

2.1 Matrices generation
In the case of subgroups of GLN (Z), we have an “obvious”
action on ZN . We can then capture the topology by regard-
ing ZN not as a free Z−module but as a lattice (or equiv-
alently as quadratic forms), and see if this leads to some
interesting topological construction. We will describe this
approach below and the results that we can get.

2.1.1 Voronöı’s reduction theory
Let N > 2 be an integer. We let CN be the set of positive
definite real quadratic forms in N variables. Given h ∈ CN ,
let m(h) be the finite set of minimal vectors of h, i.e. vectors
v ∈ ZN , v 6= 0, such that h(v) is minimal. A form h is called
perfect when m(h) determines h up to scalar: if h′ ∈ CN is
such that m(h′) = m(h), then h′ is proportional to h.

Example 2.1. The form q(x, y) = x2+y2 has minimum 1
and minimal vectors ±(1, 0) and ±(0, 1). Nevertheless this
form is not perfect, because there is an infinite number of
definite positive quadratic forms having these minimal vec-
tors.
On the other hand, the form q(x, y) = x2 + xy + y2 has also
minimum 1 and has exactly 3 minimal vectors, the one above
and ±(1,−1). This form is perfect, the associated lattice is
the ”honeycomb lattice” (with optimal spheres packing in the
plane), it is the only one.

Denote by C∗

N the set of non negative real quadratic forms
on RN the kernel of which is spanned by a proper linear
subspace of QN , by X∗

N the quotient of C∗

N by positive real
homotheties, and by π : C∗

N → X∗

N the projection. Let
XN = π(CN) and ∂X∗

N = X∗

N − XN . Let Γ be either
GLN (Z) or SLN (Z). The group Γ acts on C∗

N and X∗

N

on the right by the formula

h · γ = γt h γ , γ ∈ Γ , h ∈ C∗

N ,

where h is viewed as a symmetric matrix and γt is the trans-
posed of the matrix γ. Voronöı proved that there are only
finitely many perfect forms modulo the action of Γ and mul-
tiplication by positive real numbers ([31], Th. p. 110).
Given v ∈ ZN − {0} we let v̂ ∈ C∗

N be the form defined by

v̂(x) = (v | x)2 , x ∈ R
N ,

where (v | x) is the scalar product of v and x. The convex
hull of a finite subset B ⊂ ZN − {0} is the subset of X∗

N

image by π of the elements
∑
j

λj v̂j , vj ∈ B, λj ≥ 0. For

any perfect form h, we let σ(h) ⊂ X∗

N be the convex hull of
the set m(h) of its minimal vectors. Voronöı proved in [31,
§ 8-15], that the cells σ(h) and their intersections, as h runs
over all perfect forms, define a cell decomposition of X∗

N ,
which is invariant by the action of Γ. We endow X∗

N with
the corresponding CW -topology. If τ is a closed cell in X∗

N

and h a perfect form with τ ⊂ σ(h), we let m(τ ) be the set
of vectors v in m(h) such that v̂ lies in τ . Any closed cell τ
is the convex hull of m(τ ) and m(τ ) ∩ m(τ ′) = m(τ ∩ τ ′).

2.1.2 Voronöı’s complex
Let d(N) = N(N + 1)/2 − 1 be the dimension of X∗

N and
n ≤ d(N) a natural integer. We denote by Σ∗

n a set of
representatives, modulo the action of Γ, of those cells of
dimension n in X∗

N which meet XN , and by Σn ⊂ Σ∗

n the
cells σ such that the stabilizer Γσ of σ in Γ preserves its
orientation. Let Vn be the free abelian group generated by
Σn. We define as follows a map

dn : Vn → Vn−1 .

For each closed cell σ in X∗

N we fix an orientation of σ, i.e.
an orientation of the real vector space R(σ) of symmetric
matrices spanned by the forms v̂, v ∈ m(σ). Let σ ∈ Σn

and let τ ′ be a face of σ. Given a positive basis B′ of R(τ ′)
we get a basis B of R(σ) by adding after B′ a vector v̂,
v ∈ m(σ) − m(τ ′). We let ε(τ ′, σ) = ±1 be the sign of the
orientation of B in the oriented vector space R(σ) (this sign
does not depend on the choice of v).

Next, let τ ∈ Σn−1 be the cell equivalent to τ ′ = τ · γ. We
define η(τ, τ ′) = 1 (resp. η(τ, τ ′) = −1) when γ is com-
patible (resp. incompatible) with the chosen orientations of
R(τ ) and R(τ ′). If G is either GLN (Z) or SLN (Z), we de-
note by Gop, the equivalence modulo G for the cells which
are compatible with the chosen orientations. The matrices
of the differentials of the complex depend on those cells.

Finally we define

dn(σ) =
∑

τ∈Σn−1

∑

τ ′

η(τ, τ ′) ε(τ ′, σ) τ , (1)

where τ ′ runs through the set of faces of σ which are equiv-
alent to τ .
It is shown in [13], that up to p-torsions with p 6 N +1, the
homology of this complex computes the cohomology of G.
For N = 5, 6, 7 we get the following results for Σn.

Theorem 2.2. (Elbaz-Vincent/Gangl/Soulé)[14, 12, 13].
The cardinality of Σn is shown on figure 1 for N = 5, 6 and
on figure 2 for N = 7.



n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total

GL5(Z) 5 10 16 23 25 23 16 9 4 3 136

GL5(Z)op 0 0 0 1 7 6 1 0 2 3 20

GL6(Z) 3 10 28 71 162 329 589 874 1066 1039 775 425 181 57 18 7 5634

GL6(Z)op 0 0 0 0 3 46 163 340 544 636 469 200 49 5 0 0 2455

SL6(Z) 3 10 28 71 163 347 691 1152 1532 1551 1134 585 222 62 18 7 7576

SL6(Z)op 0 3 10 18 43 169 460 815 1132 1270 970 434 114 27 14 7 5486

Figure 1: Cardinality of Σn for N = 5, 6 (empty slots denote zero)

n 6 7 8 9 10 11 12 total

GL7(Z) 6 28 115 467 1882 7375 26885 36758

GL7(Z)op 0 0 0 1 60 1019 8899 9979

n 13 14 15 16 17 18 19 20 21 total

GL7(Z) 87400 244029 569568 1089356 1683368 2075982 2017914 1523376 876385 10167378

GL7(Z)op 47271 171375 460261 955128 1548650 1955309 1911130 1437547 822922 9309593

n 22 23 24 25 26 27 total TOTAL

GL7(Z) 374826 115411 24623 3518 352 33 518763 10722899

GL7(Z)op 349443 105054 21074 2798 305 33 478707 9798279

Figure 2: Cardinality of Σn for N = 7

The previous result gives the precise size of the matrices
involved in the computation of the homology.

The main challenge was then the computation of the ranks of
the matrices of the differential (this gives the free part of the
homology) and the computation of the Smith forms (which
gives the relevant arithmetical information of the homology),
in particular for N = 7, knowing that such matrices are
particularly sparse. We can emphasize the fact that what
we want to detect is the “high torsion” in the homology (i.e.
the prime divisors > 7 of the Smith invariants).

In the following paragraphs we will discuss the different
methods chosen for the computations and to take up the
challenge1.

2.2 Coppersmith Block Wiedemann
One successful approach to deal with linear algebra compu-
tations on large sparse matrices is to rely on Lanczos/Krylov
black-box methods. In particular, block versions of Wiede-
mann method [32] are well suited for parallel computation.
This technique has been first proposed by Coppersmith in [5]
for computation over GF (2) and then analyzed and proved
by Kaltofen [18] and Villard [29, 30]. The idea is for a
matrix A ∈ F

n×n to compute the minimal generating ma-
trix polynomial of the matrix sequence {XAiY }∞i=0 ∈ F

s×s,
where X, Y are blocks of s vectors (instead of vectors in the
original Wiedemann’s algorithm). Therefore, an intuitive
parallelization of this method is to distribute the vectors of
the block X, Y to several processors. Thus, the computation
of the sequence, which is the major performance bottleneck

1All the matrices are available on line in the “Sparse
Integer Matrix Collection” (ljk.imag.fr/membres/
Jean-Guillaume.Dumas/simc.html)

of this method, can be done in parallel and then allow for
better performance.

Lots of implementations and practical experimentations has
been developed on parallel block Wiedemann. For instance,
in 1996, Kaltofen and Lobo [19] have proposed a coarse grain
implementation to solve homogeneous linear equations over
GF (2). They have thus been capable to solve a system of
252 252 linear equations with about 11.04 million non-zero
entries, in about 26.5 hours using 4 processors of an SP-2
multiprocessor.

Lately, in 2001, Thomé in [26]improved Coppersmith’s al-
gorithm by introducing matrix half-gcd’s computation, and
its implementation [27] was able to outperform Kaltofen-
Lobo’s software. One may remark that introduction of ma-
trix gcd was first suggested by Villard in [29] who relied on
the work of Beckermann and Labahn [2] on power Hermite
Padé approximation. Finally, Giorgi, Jeannerod and Vil-
lard have generalized in [15] block Wiedemann algorithms
by introducing σ-basis computation and then reducing the
complexity to polynomial matrix multiplication. A sequen-
tial implementation of this algorithm is now available in the
LinBox library (www.linalg.org).

2.3 Block symmetry
In order to reduce the number of dot products, we used a
symmetric projection. In other words, we set X = Y T in
the XAiY sequence. Indeed, in this case the probability of
success is reduced but the obtained block is symmetric as
soon as A is symmetric. This is always the case when the
preconditioners of [9] are used (they are of the form AT A).
This reduces the dot product part of the computation of the
sequence by a factor of two. For instance column i can be
deduced from its top i elements and row i. This induces

ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html


some load balancing issues when one process owns the com-
putation of one column. Note also that we use BLAS level-2
for the computation of this dot products. In other words we
perform them by blocks.

2.4 σ-basis computations
In order to efficiently compute σ-basis we rely on algorithm
PM-Basis of [15] which reduces this computation to poly-
nomial matrix multiplication. One can multiply two poly-
nomial matrices A,B ∈ F

n×n[x] of degree d in O(n3d +
n2d log d) finite field operations if d-th primitive roots of
unity are available in F. Consequently, we decided for our
computations to define F as a prime field with primes of the
form c × 2k + 1 such that c × 2k ≡ 0 mod d. These primes
are commonly called FFT primes since they allow the use
of FFT evaluation/interpolation for polynomials of degree
d. We refer the reader to [4, 3] and references therein for
further informations on fast polynomial matrix arithmetic.

When finite fields not having d-th primitive roots of unity
are used, polynomial matrix multiplication is still be done
efficiently by using Chinese Remainder Theorem with few
FFT primes. Let be F a prime field of cardinality p, then
the multiplication of A,B ∈ F

n×n[x] of degree d can be ef-
ficiently done by using CRT with FFT primes pi satisfying∏

pi > d × n × p2. This is equivalent to perform the multi-
plication over the integers and then reduce the result in F.
The overall performance of the multiplication, and then of
the σ-basis , is dependent on the numbers of FFT primes
needed.

2.5 Rank
Our main interest in the block Wiedemann approach is to
compute the rank of large sparse matrices given by the Ho-
mology group determination problem explained in section
1.1. Hence, we rely on Kaltofen-Saunder’s rank algorithm
[20] and its block version [28] to achieve efficient parallel
computation.

The Kaltofen-Saunders approach is based on the fact that
if Ã is a good preconditioned matrix of A then its rank
is equal to the degree of its minimal polynomial minus its
valuation (or co-degree) [20]. Thus, by using well chosen
preconditioners and Wiedemann algorithm one can easily
compute the rank of a sparse matrix over a finite field. The
block version of this method is presented e.g. in [28, §4].
We recall now the basic outline of this algorithm.

Block Wiedemann Rank Algorithm :
let A ∈ F

n×n,

1 form Ã from A with good preconditioners (e.g. those
of [9]).

2 choose random block Y ∈ F
n×s and compute the

matrix sequence S = {Y T ÃiY } for i = 0 . . . 2n/s + O(1).

3 compute the minimal matrix generator F Ã
Y ∈ F

s×s[x]
of the matrix sequence S.

4 return the rank r as r = deg(det(F Ã
Y ))−codeg det(FÃ

Y).

Note that if the minimal matrix of step 3 is in Popov form
(e.g. computed using the σ-basis of [15]), then the degree of

det(F Ã
Y ) is simply the sum of the row degrees of the matrix

F Ã
Y . Then the co-degree is zero if the determinant of the

constant term of F Ã
Y , seen as a matrix polynomial, is non-

zero. In the latter case the computation of the determinant
of the whole polynomial matrix can be avoided.

When this fails, this determinant is computed by a mas-
sively parallel evaluation/interpolation. It could be inter-
esting, though, to interpolate only the lower coefficients of
this polynomial incrementally. This was not required for the
matrices we considered and we therefore did not investigate
more on these speed improvements.

Note that to probabilistically compute the rank over the in-
tegers, it is sufficient to choose several primes at random
and take the largest obtained value, see e.g. [8] for more
details. Moreover, one can choose the primes at random
among primes not dividing the determinant (and thus pre-
serving the rank). In order to ensure this property it it
sufficient to select primes not dividing the valence or last
invariant factor computed by one of the methods of next
section.

2.6 Smith form
The computation of the Smith form for the matrices of
GL7(Z) turned out to be a very challenging problem.

2.6.1 Smith for via the Valence
Prior experience with sparse homology matrices led us to
try the SmithViaValence algorithm of [8]. The idea is to
compute the minimal valence (the coefficient of the small-
est non zero monomial of the minimal polynomial) of the
product AT A to determine the primes p which divide the
invariant factors of the Smith form of A. When the primes
have been found, one can compute the local Smith forms of
A at each p separately and return the resulting Smith form
S as the product of the local Smith forms Sp over all p.
Local Smith form computation can be done by a repeated
Gauss elimination modulo pe where the exponent e is ad-
justed automatically during the course of the algorithm.

This algorithm works very efficiently for sparse matrices pro-
vided that the minimal polynomial of the product AAT has
a small degree. Unfortunately, the latter condition does not
hold in the case of GL7(Z) matrices. Moreover, some early
experiments with small matrices showed that much more
primes occur in the computed valence than in the Smith
form of the original matrix.

2.6.2 Saunders and Wan’s adaptive algorithm
Thus, we decided to apply the adaptive algorithm of Saun-
ders and Wan [23] which is a modified version of Eberly-
Giesbrecht-Villard algorithm [11]. In [11] the authors pro-
posed a procedure OneInvariantFactor(i, A) (OIF) which
computes the ith invariant factor of a n×n matrix A. Then
the binary search for distinct invariant factors allows them
to find the Smith form of A. OIF reduces the ith factor
computation to the computation of the last (nth) invariant
factor (LIF) of a preconditioned matrix A + UiVi, where
Ui, V

T
i are random n× (n− i) matrices. In [23] the method

was extended to handle the rectangular case of m × n ma-
trix. It is done by computing the last (ith) invariant factor



of a preconditioned matrix LiARi where Li is a m × i and
Ri is a i × n matrix.

The procedure OIF is of Monte Carlo probabilistic type
where the probability of correctness is controlled by repeat-
ing the choice of preconditioners. Assuming the correctness
of LIF computation, it gives a multiple of the ith invariant
factor. In practice, LIF is also of randomized Monte Carlo
type. The idea is to get a divisor of the last invariant factor
by solving a linear equation Mx = b with random right-
hand side. After several solvings we get the last invariant
factor with large probability. Thus, the overall situation is
more complex and we cannot exclude the possibility that
some primes are omitted or unnecessary in the output of
OIF. However, the probability that a prime is omitted or is
unnecessary in this output can be controlled for each prime
separately and is smaller for bigger primes.

Therefore in [23] the authors introduce a notion of smooth
and rough parts of the Smith form. The idea is to compute
the local Smith form for smaller primes by for example the
SmithViaValence or OIF algorithm and to recover only large
primes with the invariant factor search of [11]. When we
consider large primes, a sufficient probability of correctness
can be obtained by a smaller number of repetitions.

2.6.3 More adaptiveness
As we did not want to compute the valence, we introduced
some minor changes to the algorithm, which at the end is
as follows:

1. r = rank(A)

2. For primes 1 < p < 100 compute the local Smith form
Sp of A;

3. Compute sr(A) by OneInvariantFactor algorithm;

4. P = all primes p > 100 which divide sr(A);

5. If P = ∅ return S = Π
p
Sp;

One advantage of this method is that we get the information
on the smooth form of the matrix very quickly. Moreover,
the OIF computation acts as a certification phase which
allows us to prove that no other primes are present with a
sufficiently large probability. This probability is explicit in
the following theorem:

Theorem 2.3. The probability that there exists a prime
p > P that divides the ith invariant factor but does not divide
the output of OIF which uses M random preconditioners
Li, Ri and N random vectors b, with b ∈ {0, 1, . . . β−1} and
β > si(A), in the LIF procedure is bounded by

M
∞∑

p>P

(
2

p

)N

.

Proof. As we take the gcd of the result with different
preconditioners Li and Ri, is suffices that the LIF computa-
tion fails in one case to spoil the computation. We are free

to choose a large bound for ‖b‖ such that ‖b‖ > si(A) with-
out increasing the complexity of LIF computation. Then
the probability that a prime p < ‖b‖ is omitted in LIF is
less than or equal to 1

β
⌈β

p
⌉ < 2

p
, see [1]. Finally, we bound

the probability that any prime p > P, p | si(A) is missing by
taking a sum over all primes.

The choice M = N = 2 suffice to obtain a small probability
0, 015 of omitting an important prime, and at the same time
to exclude all primes that are not in the ith invariant factor.
In our experiments, there was no need to perform the com-
putation for any additional prime p > 100 as all the primes
were excluded by the OIF computation. This is one of the
most important advantages over the valence computation.

The algorithm [23] was stated in the case of dense matrices.
We slightly modified it in order to exploit the sparse struc-
ture of the matrix. In particular, we used the sparse local
Smith form computation of [8, Algorithm LRE] but stick to
the dense Dixon solver [6] as long as the memory was suffi-
cient. Any other solver, including the new sparse solver of
[10] could potentially be used for larger matrices.

The limits of this method are imposed by the available mem-
ory. For example, it was possible to use the dense Dixon
solver only for the six smallest matrices. Furthermore, sparse
elimination reached its limits for matrices of size greater
than 171375 × 47271 and 21074 × 105054 when the filling
of the matrices started to be impossible to handle. For the
460261×171375 matrix GL7d15 and 105054×349443 matrix
GL7d23, specialized space-efficient elimination procedures
mod 2,3 and 5 allowed us to compute the rank mod 2, 3 and
5 respectively.

2.6.4 Chain Reductions
The encountered problems have shown a need for a more
elaborated reduction algorithm. We focused our attention
on the algebraic reduction algorithm for chain complexes of
[17]. We implemented a simplified version of the algorithm
in the language of matrices using the LinBox library. The
heuristic behind this algorithm is that Gaussian elimination
can propagate from one matrix of a chain complex to the
next thanks to the exactness of the differential map (i.e.
d2 = 0 condition).

The motivations come from the geometric properties of ho-
mologies. By a free face we refer to a (k − 1) cell a which
is in the differential of only one k-dimensional cell b. By
removing the pair (a, b) we obtain a retract of the initial
cell complex (viewed as a geometrical object), see Figure
3. The process can be repeated. From the homology theory
we know that the groups of homology are the same for the
set and its retract. The removal of pairs leads to a reduction
of the basis of the cell complex. We refer to [16, Ch.4] for a
full description of the procedure.

If the differential map is represented by matrices whose rows
represent the cells of dimension k − 1 and columns - dimen-
sion k, the removal of a pair (a, b) can be interpreted as the
removal of a row with only one non-zero entry (1-row) and
the column it points to. In the general case, the algebraic
reduction of (a, b) such that dk(b) = λa + u is possible iff λ



Figure 3: Retraction for a square

is invertible in the ring of computation i.e. Q, Z, Zpk - de-

pending on the problem. A modification d̃ of the differential
given by the formula

d̃kv = dk(v) − λ−1[v : a]dk(b). (2)

Thus, in the basic case of free face removal no modification
is needed. In the case of matrices, the formula describes a
step of Gauss elimination where the reduced row is removed
and not permuted. This proves that the Smith form (or the
rank) of the initial and reduced matrix will be the same,
provided we add a number of trivial invariant factors equal
to the number of rows reduced to the reduced Smith form.

The important characteristic of this methods is that, thanks
to the exactness of the matrix sequence, we can also remove
row b and column a from the neighboring matrices. In this
way, elimination in one matrix can propagate on the others.

Due to the format of data (large files with matrix entries)
we decided to implement only the simplest case of 1-rows
removal which led to entries removal but no modifications.
We removed the empty rows/columns at the same time and
performed the whole reduction phase at the moment of read-
ing the files. This led to vast matrix reduction in the case of
GL7(Z) matrices from the beginning of the sequence. The
propagation of reductions unfortunately burned out near
GL7d14 matrix and stopped completely on GL7d19. Ap-
plying the process for the transposed sequence did not im-
prove the solution. Next step would be to implement the
propagation of Gauss elimination steps as in Eq. (2). It
would be interesting to examine whether the burn-out can
be connected to the loss of regularity for X/G and/or a huge
rectangularity of the input matrix GL7d14.

3. EXPERIMENTAL RESULTS
3.1 Parallel implementation
For the sake of simplicity in our experimental validation,
we decided to develop our parallel implementation using
shell tasks distribution on SMP architecture. Thus, a sim-
ple script code is used to distribute all different tasks over
all the processors and files are used to gather up the com-
puted results. Our parallel implementation has been done
as follow:

1. The block of vectors Y and the sparse matrix A are
broadcasted on every processors.

2. Each process takes one column of the blackbox AT .A
and compute the corresponding column’s sequence us-
ing the first ith columns of Y . Each process writes the

result in a file labeled with the corresponding index of
the column sequence.

3. When all previous processes have terminated, the σ-
basis computation is sequentially performed after load-
ing the sequence from the generated files.

Despite the näive approach used for the parallelization, our
implementation authorized us to perform very large compu-
tations as show in next section. However, our experiments
show a need for at least a more robust parallel computation
scheduler.

3.2 Rank and Smith form
All our computation have been done on a SGI Altix 3700
gathering 64 Itanium2 processors with 192Gb memory and
running SuSE Linux Enterprise System 10. Further infor-
mations on this platform are available at http://www.math.
uwaterloo.ca/mfcf/computing-environments/HPC/pilatus.

In Table 1 we include the information about the dimensions
of the GL7Z matrices and their sparsity. The matrices are
very sparse which is illustrated by the fact that less than
1% of the entries are non-zero except for matrices GL7d10
and GL7d11. This value drops to less than 0,2% in the case
of the largest matrices. Also in Table 1 we give the results
for the rank and the Smith form computations. We have
obtained a full information on the rank of GL7(Z) matri-
ces. For the computation of the Smith form, full result has
been obtained in the case of matrices 10,11,12,13,25,26. For
matrices 14 and 24 only the smooth part of the Smith form
has been computed. For matrices 15 and 23 we have proved
the existence of a non-trivial local Smith form at 2 and 3
and a triviality of the local Smith form at 5. As the result
for these matrices we give the number of invariant factors
divisible by 2 and 3.

In Table 2 we give the times for the Smith form algorithms
used. For cases with * no data are available or relevant.

The rank computation for GL7(Z) matrices was performed
modulo 65537. This FFT prime allowed us to use both
BLAS routines and sigma-basis reconstruction using fast
polynomial multiplication. In Table 3 we give the timings
for different operations used in the computation i.e. the
sparse matrix-vector product, BLAS-based matrix-vector prod-
uct and, for the sake of comparison, the time of scalar dot
product equivalent to the BLAS computation.

In Table 4 we give the estimation of sequential and paral-
lel cpu time of rank computation and compare it with the
real time of parallel computation. The times are estimated
based on the number of iterations and the times of one step
which can be computed from Table 3 (notice, that in the
scalar case we use 1 dot product instead of BLAS). The real
time of computation includes the time of writing and read-
ing the data which was considerable. The difference of the
real and estimated running times may also be due to the
overload of the computation cluster. Moreover, long com-
putations suffered from system crashes and/or shutdowns.
Some restoration scripts were used to recover the data which
unfortunately required re-running some part of the compu-
tation. Thus, the real time given in Table 4[Col.5] should

http://www.math.uwaterloo.ca/mfcf/computing-environments/HPC/pilatus


A Ω n m rank ker Smith form

GL7d10 8 60 1 1 59 1
GL7d11 1513 1019 60 59 960 1 (59)
GL7d12 37519 8899 1019 960 7939 1 (958), 2 (2)
GL7d13 356232 47271 8899 7938 39333 1 (7937), 2 (1)
GL7d14 1831183 171375 47271 39332 132043 1 (39300),2 (29),4 (3)
GL7d15 6080381 460261 171375 132043 28218 1 (131993), 2·? (46), 6·? (4) (*)
GL7d16 14488881 955128 460261 328218 626910
GL7d17 25978098 1548650 955128 626910 921740
GL7d18 35590540 1955309 1548650 921740 1033569
GL7d19 37322725 1911130 1955309 1033568 877562
GL7d20 29893084 1437547 1911130 877562 559985
GL7d21 18174775 822922 1437547 559985 262937
GL7d22 8251000 349443 822922 262937 86506
GL7d23 2695430 105054 349443 86505 18549 1 (86488), 2·? (12), 6·? (5) (*)
GL7d24 593892 21074 105054 18549 2525 1 (18544),2 (4),4 (1)
GL7d25 81671 2798 21074 2525 273 1 (2507), 2 (18)
GL7d26 7412 305 2798 273 32 1 (258), 2 (7), 6 (7), 36 (1)

Table 1: Results of the rank and Smith form computation for GL7(Z) matrix A of dimension n × m with Ω
non-zero entries. For (*) the information is incomplete - only divisors of the invariant factors were determined
based on the rank mod 2 and 3 computation.

A ñ m̃ r̃ Red RAdaptive SmoothSF AdaptiveSF SFValence

GL7d11 39 8 52 0.01s < 10−2s 0.09s 0.26s 4.84s
GL7d12 289 58 909 0.30s 0.16s 9.75s 218.68s 4.04h
GL7d13 7938 740 7250 3.12s 159.16s 0.76h * 2526.65h
GL7d14 165450 35741 4279 21.62s * 796h * *
GL7d25 2797 20990 0 1.74s * 17.67s 4.40h 52.13h
GL7d26 302 2748 0 0.14s * 0.29s 26.81s 274.35s

Table 2: Times for Smith Form computation for GL7(Z) matrices. From left to right: the dimensions of the
matrix after reductions, rank approximation by reductions, time of reading and reducing the matrix, time
for the adaptive algorithm for a reduced matrix; times for the original matrix: smooth form computation,
adaptive algorithm; valence computation in parallel - sequential time equivalent.

A iter [1] time app iter [p] time time app σ-basis

GL7d11 120 0.02s 6 [30] 0.01s < 10−2s 0.58s
GL7d12 1922 7.53s 66 [30] 0.32s 0.26s 12.16s
GL7d13 15878 880.28s 532 [30] 51.65s 29.49s 249.17s
GL7d14 78666 5.90h 2625 [30] 0.56h 0.20h 0.45h
GL7d15 264088 66.98h 8805 [30] 2.25h 2.23h 2.45h
GL7d16 656438 509.80h 21884 [30] 27.29h 17.00h 6.03h
GL7d17 1253822 113.90d 41796 [30] 14d 3.80d 0.57d
GL7d18 1843482 256.50d 46089 [40] 28d 6.41d 1.00d
GL7d19 2067138 321.89d 41345 [50] 35d 6.44d 1.56d
GL7d20 1755126 212.82d 36568 [48] 10d 4.43d 1.41d
GL7d21 1119972 75.01d 37335 [30] 5d 2.50d 0.55d
GL7d22 525876 293.60h 17532 [30] 16.47h 9.79h 5.85h
GL7d23 173012 21.18h 5769 [30] 1.17h 0.71h 1.09h
GL7d24 37100 3172.79s 1239 [30] 188.78s 105.96s 666.83s
GL7d25 5052 40.21s 171 [30] 1.56s 1.36s 41.47s
GL7d26 548 0.40s 21 [30] 0.03s 0.02s 2.03s

Table 4: A summary of large-scale parallel rank computation. From left to right: number of iteration in the
scalar case, time estimation in this case, number of iterations on p processors computed as 2 + 2 · r/p, average
(real) time of sequence computation, estimated time on p processors, the time of the σ basis computation for
a sequence of length iter [p] of p × p matrices.



A 1AT Au [s] 1UT v [s] 30uT v [s]

GL7d11 0.0002 < 10−4 < 10−4

GL7d12 0.0038 0.0001 0.0002
GL7d13 0.0550 0.0005 0.0036
GL7d14 0.2677 0.0025 0.0190
GL7d15 0.9048 0.0082 0.0708
GL7d16 2.7724 0.0234 0.2641
GL7d17 7.8003 0.0485 0.5052
GL7d18 11.9457 0.0759 0.8710
GL7d19 13.3591 0.0948 1.0710
GL7d20 10.4056 0.0711 0.8587
GL7d21 5.7461 0.0408 0.4604
GL7d22 1.9919 0.0180 0.2082
GL7d23 0.4354 0.0052 0.0459
GL7d24 0.0843 0.0012 0.0085
GL7d25 0.0078 0.0002 0.0008
GL7d26 0.0007 < 10−4 < 10−4

Table 3: CPU timings (in sec.) for different opera-
tions used in large-scale parallel rank computation.
All times in seconds. From left to right: time of
a matrix-vector product, a BLAS multiplication of
a vector and a 30 × min(n, m) matrix U and 30 dot
products.

be treated as a rough approximation.

4. CONCLUSION
Using the previous methods and computations, we get the
following new result for the rational cohomology of GL7(Z).

Theorem 4.1. (Elbaz-Vincent/Gangl/Soulé)[13] We have

Hm(GL7(Z),Q) =

{
Q if m = 0, 5, 11, 14, 15,

0 otherwise.

Clearly the simple parallelization we used together with the
highly optimized routines were the key to enable these com-
putations.

To go further and solve even larger problems, it is manda-
tory to improve the parallelism. On SMP we can split the
matrices into blocks and perform the matrix-vector prod-
ucts with different threads. This, and the unbalanced load
we had when we choose to assign one vector to one process,
advocates for the use of more advanced scheduling. We are
experimenting KAAPI2 but were not ready for the compu-
tation of GL7.

Other improvements are of algorithmic type. They include
the use of the sparse projections of [10] for the matrix se-
quence. But then we loose the symmetry of the projections
and therefore must pay a factor of two for the number of
iterations. We could also use an early termination strategy
to stop the iteration earlier, but up to now this require to
loose the fast algorithm for the sigma bases. Then if a good
structure for the sparsity of the matrices could be found,
e.g. an adapted reordering technique, this would enable an

2Kernel for Adaptive, Asynchronous Parallel and Interactive
programming, kaapi.gforge.inria.fr

efficient clustering and therefore faster and more scalable
matrix-vector products.

In order to have the relevant part of the torsion of the in-
tegral cohomology of GL7(Z), we would need the complete
description of the Smith forms of all the matrices described
above. Our experiments have shown that this can be an
enormously difficult task. The computation remains to be
done but would have applications in number theory.
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[27] E. Thomé. Subquadratic computation of vector
generating polynomials and improvement of the block
Wiedemann algorithm. Journal of Symbolic
Computations, 33(5):757–775, July 2002.

[28] W. J. Turner. A block wiedemann rank algorithm. In
Dumas [7], pages 332–339.

[29] G. Villard. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear
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