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Abstract

In this paper, we propose a novel inference method for dynamic genetic networks which
makes it possible to deal with a number of time measurements n much smaller than
the number of genes p. The approach is based on the concept of low order conditional
dependence graph which we extend here to the case of Dynamic Bayesian Networks. Most
of our results are based on the theory of graphical models associated with Directed Acyclic
Graphs (DAGs). In this way, we define a DAG G̃ which describes exactly the full order
conditional dependencies given the past of the process. Then, to cope with the large p
and small n estimation case, we propose to approximate DAG G̃ by considering low order
conditional independencies. We introduce partial qth order conditional dependence DAGs
and analyze their probabilistic properties. In general, DAGs G(q) differ from G̃ but still
reflect relevant dependence facts for sparse networks such as genetic networks. By using
this approximation, we set out a non-Bayesian inference method and demonstrate the
effectiveness of this approach on both simulated and real data analysis. The inference
procedure is implemented in the R package ’G1DBN’ which is available from the CRAN
archive.

Keywords: conditional independence, Dynamic Bayesian Network, Directed Acyclic
Graph, networks inference, time series modelling.
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1 Introduction

The development of microarray technology allows to simultaneously measure the expres-
sion levels of many genes at a precise time point. Thus it has become possible to observe
gene expression levels across a whole process such as the cell cycle or response to radiation
or different treatments. The objective is now to recover gene regulation phenomena from
this data. We are looking for simple relationships such as “gene i activates gene j”. But we
also want to capture more complex scenarios such as auto-regulations, feed-forward loops,
multi-component loops... as described by Lee et al. [21] in the case of the transcriptional
regulatory network of the yeast Saccharomyces cerevisiae.

To such an aim, we both need to accurately take into account temporal dependencies
and to deal with the dimension of the problem when the number p of observed genes is
much higher than the number n of observation time points. Moreover we know that most
of the genes whose expression has been monitored using microarrays are not taking part in
the temporal evolution of the system. So we want to determine the few “active” genes that
are involved in the regulatory machinery, as well as the relationships between them. In
short, we want to infer a network representing the dependence relationships which govern
a system composed of several agents from the observation of their “activity” across short
time series.

Such gene networks were first described using static modelling and mainly non oriented
networks. One of the first tools used to describe interactions between genes is the relevance
network [5] or correlation network [36]. Better known as the covariance graph [7] in
graphical models theory, this undirected graph describes the pair-wise correlation between
genes. Its topology is derived from the covariance matrix between the gene expression
levels; an undirected edge is drawn between two variables whenever they are correlated.
However, the correlation between two variables may be caused by linkage with other
variables. This creates spurious edges due to indirect dependence relationships.

Consequently, there has been great interest in the concentration graph [20], also called
the covariance selection model, which describes the conditional dependence structure
between gene expression using Graphical Gaussian Models (GGMs). Let Y = (Y i)1≤i≤p be
a multivariate Gaussian vector representing the expression levels of p genes. An undirected
edge is drawn between two variables Y i and Y j whenever they are conditionally dependent
given the remaining variables (see Figure 1B). The standard theory of estimation in GGMs
[20, 46] can be exploited only when the number of measurements n is much higher than
the number of variables p. This ensures that the sample covariance matrix is positive
definite with probability one. However, in most microarray gene expression datasets, we
have to cope with the opposite situation (n << p). Thus, the growing interest in “small
n, large p” furthered the development of numerous alternatives (Schäfer and Strimmer
[31] [32] , Waddell and Kishino [44] [43], Toh and Horimoto [40] [41], Wu et al. [50],
Wang et al. [45]). Even though concentration graphs allow to point out some dependence
relationships between genes, they do not offer an accurate description of the interactions.
Firstly, no direction is given to the interactions. Secondly, some motifs containing cycles
as in Figure 1A cannot be properly represented.

Contrary to the previous undirected graphs, Bayesian networks (BNs) [13] model di-
rected relationships. Based on a probabilistic measure, a BN representation of a model is
defined by a Directed Acyclic Graph (DAG) and the set of conditional probability distri-
butions of each variable given its parents in the DAG [28]. The theory of graphical models
[46, 9, 20] then allows to derive conditional independencies from this DAG. However, the
acyclicity constraint in static BNs is a serious restriction given the expected structure of
genetic networks.
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Figure 1: (A) A biological regulation motif. (B) The concentration graph corresponding
to the motif A. For all i ≥ 3, Y i is a Gaussian variable representing the expression level
of gene Gi. Some cycles cannot be represented on the concentration graph. (C) Dynamic
network equivalent to the regulation motif A. Each vertex X i

t represents the expression
level of gene Gi at time t. This graph is acyclic and allows to define a Bayesian network.

This limitation can be overcome by employing Dynamic Bayesian networks (DBNs)
introduced for the analysis of gene expression time series by Friedman et al. [14] and
Murphy and Mian [25]. In DBNs, a gene is no longer represented by a single vertex but
by as many vertices as time points in the experiment. A dynamic network (Figure 1C) can
then be obtained by unfolding in time the initial cyclic motif in Figure 1A. The direction
according to time guarantees the acyclicity of this dynamic network and consequently
allows to define a Bayesian network. The nature of the relationships (positive/negative)
does not appear in this DAG but is derived from estimates of the model parameters.

The very high number p of genes simultaneously observed raises a dimension problem.
Moreover, a large majority of time series gene expression data contain no or very few
repeated measurements of the expression level of the same gene at a given time. Hence,
we assume that the process is homogeneous across time. This means that the system is
considered to be governed by the same rules during the whole experiment. Consequently,
the temporal dependencies are homogeneous: any edge is present or absent during the
whole process. This is a strong assumption which is not necessarily satisfied. Nevertheless,
this condition is necessary to carry out estimation unless we have several measurements
of each gene expression at each time point. each gene at two successive time points.

Up to now, various DBN representations based on different probabilistic models have
been proposed (discrete models [26, 51], multivariate auto-regressive process [27], State
Space or Hidden Markov Models [29, 49, 30, 3], nonparametric additive regression model
[16, 17, 19, 37]). See also Kim et al. [18] for a review of such models. Faced with so much
diversity, we introduce in this paper sufficient conditions for a model to admit a DBN
representation and we set out a concrete interpretation in terms of dependencies between
variables by using the theory of graphical models for DAGs. Our DBN representation
is based on a DAG G̃ (e.g. like the DAG of Fig. 1C) which describes exactly the full
order conditional dependencies given all the remaining past variables (see Section 2). This
approach extends the principle of the concentration graph showing conditional indepen-
dencies to the dynamic case.

Even under the assumption of homogeneity, which enables to use the pairs of successive
time point gene expression as repeated measurements, we still have to deal with the
“curse of dimensionality” when inferring the structure of DAG G̃. The difficulty lies in
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coping with the large p and small n estimation case. Several inference methods have
been proposed for the estimation of the topology of the DAG defining the various DBNs
quoted above. To name a few, Murphy [24] implemented several Bayesian structure
learning procedures for dynamic models in the open-source Matlab package BNT (Bayes
Net Toolbox); Ong et al. [26] reduce the dimension of the problem by considering prior
knowledge; Perrin et al. [29] use an extension of the linear regression; Wu et al. [49] use
factor analysis and Beal et al. [3] develop a variational Bayesian method; Zou and Conzen
[51] limit potential regulators to the genes with either earlier or simultaneous expression
changes and estimate the transcription time lag; Opgen-Rhein and Strimmer [27] proposed
a model selection procedure based on an analytic shrinkage approach. However, a powerful
approach based on the consideration of zero- and first-order conditional independencies
to model concentration graphs has gained attention. When n << p, Wille et al. [48, 47]
propose to approximate the concentration graph by the graph G0−1 describing zero- and
first-order conditional independence. An edge between the variables Y i and Y j is drawn in
the graph G0−1 if and only if, zero- and first-order correlations between these two variables
both differ from zero, that is, if

r(Y i, Y j) 6= 0 and ∀k ∈ {1, ..., p}\{i, j}, r(Y i, Y j|Y k) 6= 0, (1)

where r(Y i, Y j|Y k) is the partial correlation between Y i and Y j given Y k. Hence, when-
ever the correlation between two variables Y i and Y j can be entirely explained by the
effect of some variable Y k, no edge is drawn between them.

This procedure allows a drastic dimension reduction: by using first order conditional
correlations, estimation can be carried out accurately even with a small number of observa-
tions. Even if the graph of zero- and first-order conditional independence differs from the
concentration graph in general, it still reflects some measure of conditional independence.
Wille et al. show through simulations that the graph G0−1 offers a good approximation
of sparse concentration graphs and demonstrate that both graphs coincide exactly if the
concentration graph is a forest ([47], Corollary 1). This approach has also been used by
Magwene and Kim [22] and de la Fuente et al. [8] for estimating undirected gene net-
works from microarray gene expression of the yeast Saccharomyces cerevisiae. Castelo and
Roverato [6] investigate such undirected qth order partial independence graphs for q ≥ 1
and present a thorough analysis of their properties. In this paper, we extend this approach
by defining qth order order conditional dependence DAGs G(q) for DBN representations.
Then, by basing our results on these low order conditional dependence DAGs, we propose
a novel inference method for dynamic genetic networks which makes it possible to deal
with the “small n, large p” problem.

The remainder of the paper is organized as follows. In Section 2, we provide suffi-
cient conditions for a DBN modelling of time series describing temporal dependencies.
In particular, we show the existence of a minimal DAG G̃ which allows such a DBN
representation. To reduce the dimension of the estimation of the topology of G̃, we pro-
pose to approximate G̃ by qth order conditional dependence DAGs G(q) and analyze their
probabilistic properties in Section 3. From conditions on the topology of G̃ and the faith-
fulness assumption, we establish inclusion relationships between both DAGs G̃ and G(q).
In Section 4, we exploit our results on DAGs G(q) to develop a non-Bayesian estimation
procedure implemented in the R package G1DBN [1]. Finally, validation is obtained on
both simulated and real data in Section 5. We use our inference procedure for the analysis
of two microarray time course data sets: the Spellman’s yeast cell cycle data [34] and the
diurnal cycle data on the starch metabolism of Arabidopsis Thaliana collected by Smith
et al. [33].
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Table 1: Notations
P = {1 ≤ i ≤ p} set of observed genes,
Pi = P\{i}
N = {1 ≤ t ≤ n} set of observation times,
X = {X i

t ; i ∈ P, t ∈ N} stochastic process (gene expression levels time series),
G = (X, E(G)) a DAG whose vertices are defined by X and edges by E(G) ⊆ X ×X,

G̃ the “true” DAG describing full order conditional dependencies,
G(q) qth order conditional dependence DAG,

2 A DBN representation

Let P = {1 ≤ i ≤ p} describe the set of observed genes and N = {1 ≤ t ≤ n} the
set of observation times. In this paper, we consider a discrete-time stochastic process
X = {X i

t ; i ∈ P, t ∈ N} taking real values and assume the joint probability distribution
P of the process X has density f with respect to Lebesgue measure on R

p×n. We denote
by Xt = {X i

t ; i ∈ P} the set of the p random variables observed at time t and X1:t =
{X i

s; i ∈ P, s ≤ t} the set of the random variables observed before time t.
The main result of this section is set out in Proposition 3; we show that process X

admits a DBN representation according to a minimal DAG G̃ whose edges describe exactly
the set of direct dependencies between successive variables Xj

t−1, X
i
t given the past of the

process. For an illustration, the minimal DAG G̃ is given in the case of an AR(1) model
in Subsection 2.2. Most of our results are derived from the theory of graphical models
associated with DAGs [20]. Note that, even though we need to consider a homogeneous
DBN for the inference of gene interaction networks, the theoretical results introduced in
Sections 2 and 3 are valid without assuming homogeneity across time.

2.1 Background

Theory of graphical models associated with DAGs Let G = (X, E(G)) be a DAG
whose vertices are the variables X = {X i

t ; i ∈ P, t ∈ N} and whose set of edges E(G) is
a subset of X × X. We quickly recall here elements of the theory of graphical models
associated with DAGs [20]. A characterization of a Bayesian Network (BN) representation
for a process X is given in Proposition 1.

Definition 1 (Parents, Lauritzen [20]) The parents of a vertex X i
t in G, denoted by

pa(X i
t ,G), are the variables having an edge pointing towards the vertex X i

t in G,

pa(X i
t ,G) := {Xj

s such that (Xj
s , X

i
t) ∈ E(G); j ∈ P, s ∈ N}.

Proposition 1 (BN representation, Pearl [28]) The probability distribution P of the
process X admits a Bayesian Network (BN) representation according to DAG G whenever
its density f factorizes as a product of the conditional density of each variable X t

i given
its parents in G,

f(X) =
∏

i∈P

∏

t∈N

f(X i
t |pa(X

i
t ,G)).

Throughout this paper, a central notion is that of conditional independence of random
variables. Two random variables U and V are conditionally independent given a third
variable W (and we write U ⊥⊥ V | W ) if they are independent in the joint probability
distribution PU,V,W of the three random variables (U, V, W ). In other words, U and V are
conditionally independent given W if for any possible value w of W , variables U and V are
independent given the variable W = w. This result generalizes to disjoint sets of variables.
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Figure 2: (A) Moral graph of the DAG in Figure 1C. For all t > 1, the parents of the
variable X1

t are “married”, that is connected by an undirected edge. (B) Moral graph
of the smallest ancestral set containing the variables X1

t+1, its parents in the DAG in
Figure 1C and X3

t . As the set (X1
t , X2

t ) blocks all paths between X3
t and X1

t+1, thus
{X1

t , X2
t } separates X1

t+1from X3
t and we have X1

t+1 ⊥⊥ X3
t | (X

1
t , X2

t ).

Such conditional independence relationships can be obtained from a BN representation
by using graphical theory associated with DAGs, essentially based on the directed global
Markov property recalled in Proposition 2.

Definition 2 (Moral graph, Lauritzen [20]) The moral graph Gm of DAG G is ob-
tained from G by first ’marrying’ the parents (draw an undirected edge between each pair
of parents of each variable X i

t) and then deleting the directions of the original edges of G.
For an illustration, Figure 2A displays the moral graph of the DAG in Figure 1C.

Definition 3 (Ancestral set, Lauritzen [20]) The subset S is ancestral if and only
if, for all α ∈ S, the parents of α satisfy pa(α,G) ⊆ S. Hence, for any subset S of vertices,
there is a smallest ancestral set containing S which is denoted by An(S). Then GAn(S)

refers to the graph of the smallest ancestral set An(S). See Figure 2B for an illustration.

Proposition 2 (Directed global Markov property, Lauritzen [20], Corollary 3.23)
Let P admit a BN representation according to G. Then,

E ⊥⊥ F | S,

whenever all paths from E to F intersect S in (GAn(E∪F∪S))
m, the moral graph of the

smallest ancestral set containing E ∪ F ∪ S. We say that S separates E from F .

Sufficient conditions for DBNs representation We recall here sufficient conditions
under which the probability distribution P of process X admits a BN representation
according to a dynamic network (e.g. in Figure 1C). We first assume that the observed
process Xt is first-order Markovian (Assumption 1). That is, the expression level of a gene
at a given time t only depends on the past through the gene expression levels observed at
the previous time t− 1. Then we assume that the variables observed simultaneously are
conditionally independent given the past of the process (Assumption 2). In other words,
we consider that time measurements are close enough so that gene expression level X i

t

measured at time t is better explained by the previous time expression levels Xt−1 than
by some current expression level Xj

t .

6
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Assumption 1 The stochastic process Xt is first-order Markovian, that is,

∀t ≥ 3, Xt ⊥⊥ X1:t−2 | Xt−1.

Assumption 2 For all t ≥ 1, the random variables {X i
t}i∈P are conditionally indepen-

dent given the past of the process X1:t−1, that is,

∀t ≥ 1, ∀i 6= j, X i
t ⊥⊥ Xj

t | X1:t−1.

Assumptions 1 and 2 allow the existence of a DBN representation of the distribution P

according to DAG Gfull = (X, {(Xj
t−1, X

i
t)}i,j∈P,t>1) which contains all the edges pointing

out from a variable observed at some time t− 1 towards a variable observed at the next
time t (See Lemma 1 in Appendix A.1). The direction of the edges according to time
guarantees the acyclicity of Gfull.

2.2 Minimal DAG G̃

Existence and definition Among the DAGs included in Gfull, we show that the prob-
ability distribution P factorizes according to a minimal DAG, which we denote by G̃ (See
Lemma 2, Appendix A.1). The set of edges of G̃ is exactly the set of full order conditional
dependencies between successive variables given the past of the process as set up in the
Proposition 3 (See Proof in Appendix A.2).

Proposition 3 (Existence of minimal DAG G̃, the smallest subgraph of Gfull
allowing DBN modelling) Let Pj = P\{j} and X

Pj

t = {Xk
t ; k ∈ Pj} refer to the set

Pj of p− 1 variables observed at time t. Whenever Assumptions 1 and 2 are satisfied, the
probability distribution P admits a DBN representation according to DAG G̃ whose edges
describe exactly the full order conditional dependencies between successive variables Xj

t−1

and X i
t given the remaining variables X

Pj

t−1 observed at time t− 1,

G̃ =

(

X,
{

(Xj
t−1, X

i
t); X i

t 6⊥⊥ Xj
t−1|X

Pj

t−1

}

i,j∈P,t∈N

)

Moreover, DAG G̃ is the smallest subgraph of Gfull according to which P admits a DBN
representation.

Thus in DAG G̃, the set of parents pa(X i
t , G̃) of a variable X i

t is the smallest subset of
Xt−1 such that the conditional densities satisfy f(X i

t |pa(X i
t , G̃)) = f(X i

t |Xt−1). The set
of parents of a variable can be seen as the only variables on which this variable depends
directly. So G̃ is the DAG we want to infer in order to recover potential regulation
relationships from gene expression time series. From Proposition 3, any pair of successive
variables (Xj

t−1, X
i
t) which are non adjacent in G̃ are conditionally independent given the

parents of X i
t . In short, for all i, j in P , for all t > 1, we have,

(Xj
t−1, X

i
t) /∈ E(G̃) ⇔ X i

t ⊥⊥ Xj
t−1 | pa(X i

t , G̃).

We will make use of this result in Section 3 in order to define low order conditional
dependence DAGs for the inference of G̃.
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Minimal DAG G̃ for an AR(1) process Consider the following first order auto-
regressive model (AR(1)) with a diagonal error covariance matrix Σ,

X1 ∼ N (µ1, Σ1) (2)

∀t > 1, Xt = AXt−1 + B + εt, εt ∼ N (0, Σ), (3)

∀s, t ∈ N, Cov(εt, εs) = δtsΣ, (4)

∀s > t, Cov(Xt, εs) = 0. (5)

where A = (aij)1≤i≤p,1≤j≤p is a real matrix of size p × p, B = (bi)1≤i≤p is a real column
vector, Σ = Diag (σ2

ii)1≤i≤p is the diagonal error covariance matrix of size p × p and for
all s, t in N , δts = 1l{s=t}. Equation (5) implies that the coefficient matrices are uniquely
determined from the covariance function of Xt.

This modelling assumes homogeneity across time (constant matrix A) and linearity
of the dependency relationships. Assumptions 1 and 2 are satisfied. From (3) and (5),
the model is first order Markovian (Assumption 1). From (4), Assumption 2 is satisfied
whenever the error covariance matrix Σ is diagonal. From Proposition 3, the probability
distribution of the AR(1) process defined by equations (2-5) factorizes according to the
minimal DAG G̃AR(1) whose edges correspond to the non-zero coefficients of matrix A.
Indeed, if matrix Σ is diagonal, each element aij is the regression coefficient of the variable

X i
t on Xj

t−1 given X
Pj

t−1, that is

aij = Cov(X i
t , X

j
t−1 | X

Pj

t−1)/V ar(Xj
t−1 | X

Pj

t−1).

As process X is Gaussian, the set of null coefficients of matrix A exactly describes the
conditional independencies between successive variables, thus if Σ is diagonal, we have,

aij = 0 ⇔ ∀t > 1, X i
t ⊥⊥ Xj

t−1|X
Pj

t−1.

Finally, DAG G̃AR(1) has an edge between two successive variables Xj
t−1 and X i

t , for all
t > 1, whenever the coefficient aij of the matrix A differs from zero,

G̃AR(1) :=
(

X,
{

(Xj
t−1, X

i
t) such that aij 6= 0; t > 1, i, j ∈ P

})

. (6)

As an illustration, any AR(1) process whose matrix Σ is diagonal and matrix A has the
following form,

A =







a11 a12 0

a21 0 0

0 a32 0







admits a BN representation according to the dynamic network of Figure 1C (p = 3).
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3 Introducing qth order dependence DAGs G(q) for DBNs

In this paper, we propose to use the DBN modelling according to DAG G̃ (introduced
in Proposition 3) to model genetic regulatory networks from gene expression time series.
Reverse discovery of DAG G̃ requires to determine, for each variable X i

t , the set of vari-
ables Xj

t−1 observed at time t− 1 on which variable X i
t is conditionally dependent given

the remaining variables X
Pj

t−1. However, even under the time homogeneity assumption
discussed in Section 1, standard estimation methods do not allow us to infer the param-
eters of a regression model for p genes (i.e. p2 possible edges) from np measurements.
We still have to face the ’curse of dimensionality’ since the number of genes p, is much
higher than the number of measurements n.

In order to reduce the dimension, we approximate DAG G̃ by qth order conditional
dependence DAGs G(q) (q < p). To such an end, we extend to DBNs the approach based
on the consideration of low order independencies introduced by Wille et al.[48, 47] for
GGM approximation (see more details on low order independence graphs for GGMs in
Section 1). After defining qth order conditional dependence DAGs G(q) for DBNs, we
investigate the manner in which they allow us to approximate the DAG G̃ describing full
order conditional dependencies.

3.1 DAG G(q) Definition

Let q be smaller than p. In the qth order dependence DAG G(q), whenever there exists a
subset XQ

t−1 of q variables among the set of p − 1 variables X
Pj

t−1 such that Xj
t−1 and X i

t

are conditionally independent given XQ
t−1, no edge is drawn between the two successive

variables Xj
t−1 and X i

t . In short, DAGs G(q) are defined as follows,

Definition 4 qth-order conditional dependence DAG G(q)

∀q < p, G(q) =

(

X,
{

(Xj
t−1, X

i
t); ∀Q ⊆ Pj , |Q| = q, X i

t 6⊥⊥ Xj
t−1|X

Q
t−1

}

i,j∈P,t∈N

)

.

DAGs G(q) offer a way of producing dependence relationships between the variables,
but they are no longer associated with a BN representation which would call for more
global relationships. Note that the definition of qth order partial dependence DAG G(q) is
based on exact qth order independencies (not on all partial independencies lower than q as
in the partial order correlation network used by Wille and B̀‘uhlmann [47]). Indeed, we
consider that including only the qth order dependencies better reflects the true DAG G̃.
In particular, for p variables, DAG G(p−1) is DAG G̃. This definition is possible for DBNs
because dynamic modelling essentially differs from static correlation network modelling1.

In general, DAGs G(q) differ from DAG G̃. For instance, the approximation of the DAG
of Figure 1C by the 1st order conditional dependence DAG may give rise to the spurious
edge X3

t−1 → X1
t , for all t > 1 (see Figure 3). Indeed, X1

t−1 (resp. X2
t−1) does not separate

X1
t from X3

t−1 in the smallest moral graph containing the variables X1
t ∪ X3

t−1 ∪ X1
t−1

(resp. X1
t ∪ X3

t−1 ∪ X2
t−1) displayed in Figure ??. Nevertheless, if the vertices of G̃ have

few parents, DAGs G(q) bring relevant information about the topology of G̃, even for small
values of q. In the following, we give characterizations of low order conditional dependence
DAGs G(q) and analyze the accuracy of the approximations they offer.

1In particular, contrary to the case of correlation network, the “ V ” structures (or structures with
multiple parents) do not generate spurious edges in the case of DBN since the definition of the DAG G̃
defining full order dependencies does not allow edges between variables observed at the same time. Thus,
for instance, when considering the following “ V ” structure Xj

t−1 → X i
t ← Xk

t−1, no spurious edge can

be inferred between the variables Xj
t−1 and Xk

t−1.
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Figure 3: First-order conditional dependence DAG G(1) (obtained from the DAG in Fig-
ure 1C). The spurious dashed arrow may appear in G(1).

3.2 A restricted number of parents

In some known gene regulation mechanisms, it is the case that a few genes regulate many
other genes (e.g. the single input modules in the transcriptional regulatory network of S.
Cerevisiae [21]). However, we do not expect a single gene to be regulated by many genes
at the same time. So the number of parents in gene interaction networks is expected to
be relatively small. In this section, we analyze the properties of G(q) when the number of
parents in G̃ is lower than q.

Let us denote by Npa(X
i
t , G̃) the number of parents of X i

t in the DAG G̃ and NMax
pa (G̃)

the maximal number of parents of any variable X i
t in G̃,

Npa(X
i
t , G̃) =

∣

∣

∣
pa(X i

t , G̃)
∣

∣

∣
, NMax

pa (G̃) = Max
i∈P,t∈N

(

Npa(X
i
t , G̃)

)

.

The next results hold when the number of parents in G̃ is restricted.

Proposition 4 If Npa(X
i
t , G̃) ≤ q then

{

(Xj
t−1, X

i
t) /∈ E(G̃)

}

⇒
{

(Xj
t−1, X

i
t) /∈ E(Gq)

}

.

Corollary 1 For all q ≥ NMax
pa (G̃), we have G̃ ⊇ G(q).

Proposition 5 Let X be a Gaussian process. If NMax
pa (G̃) ≤ 1 then G̃ = G(1).

Consider a variable X i
t having at most q parents in G̃ (q < p). Let Xj

t−1 be a variable ob-

served at the previous time t−1 and having no edge pointing towards X i
t in G̃. In the moral

graph of the smallest ancestral set containing X i
t ∪Xj

t−1 ∪ pa(X i
t , G̃), the set of parents

pa(X i
t , G̃) separates X i

t from Xj
t−1. From Proposition 2, we have X i

t ⊥⊥ Xj
t−1 | pa(X i

t , G̃).

The number of parents pa(X i
t , G̃) is smaller than q, so the edge Xj

t−1 → X i
t is not in G(q).

This establishes Proposition 4. Consequently, if the maximal number of parents in G̃ is
lower than q, then G(q) is included in G̃ (Corollary 1). In this case, G(q) does not contain
spurious edges.

The converse inclusion relationship is not true in general2. Nevertheless, if each vari-
able has at most one parent, the converse inclusion G̃ ⊆ G(1) is true if the process is
Gaussian and q = 1 (Proposition 5, see proof in Appendix A.2). At a higher order, we
need to assume that all conditional independencies can be derived from G̃, that is P is
faithful to G̃.

2As an illustration, let Xj
t−1 → X i

t be an edge of G̃, then X i
t and Xj

t−1 are conditionally dependent

given the remaining variables X
Pj

t−1. There may however exist a subset of q variables XQ
t−1, where Q is a

subset of P\{j} of size q, such that X i
t and Xj

t−1 are conditionally independent with respect to this subset

XQ
t−1. Indeed, even though the topology of G̃ allows us to establish some conditional independencies,

DAG G̃ does not necessarily allow to derive all of them. Two variables can be conditionally independent
given a subset of variables whereas this subset does not separate these two variables in G̃.
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3.3 Faithfulness

Definition 5 (faithfulness, Spirtes [35]) A distribution P is faithful to a DAG G
if all and only the independence relationships true in P are entailed by G (as set up in
Proposition 2).

Theorem 1 (Measure zero for unfaithful Gaussian (Spirtes [35]) and dis-
crete (Meek [23]) distributions) Let πN

G (resp. πD
G ) be the set of linearly independent

parameters needed to parameterize a multivariate normal distribution (resp. discrete dis-
tribution) P which admits a factorization according to a DAG G. The set of distributions
which are unfaithful to G has measure zero with respect to Lebesgue measure over πN

G

(resp. over πD
G ).

From Definition 5, whenever the distribution P is faithful to G̃, any subset XQ
t−1 ⊆ Xt−1,

with respect to which X i
t and Xj

t−1 are conditionally independent, separates X i
t and Xj

t−1

in the moral graph of the smallest ancestral set containing X i
t ∪Xj

t−1 ∪XQ
t−1. Under this

assumption, we can derive interesting properties on G̃ from the topology of low order de-
pendence DAGs G(q). As there is no way to assess a probability distribution to be faithful
to a DAG, this assumption has often been criticized. However, Theorem 1, established by
Spirtes [35] for the Gaussian distribution and extended to discrete distributions by Meek
[23], makes this assumption reasonable at least in a measure-theoretic sense. Moreover
this assumption remains very reasonable in a modelling framework where the network to
be inferred describes actual interaction relationships. The next propositions are derived
from the faithfulness of the distribution P to G̃ (See proofs in Appendix A.2).

Proposition 6 Assume P is faithful to G̃. For all q < p, we have G̃ ⊆ G(q).

Corollary 2 Assume P is faithful to G̃. For all q ≥ NMax
pa (G̃), we have G̃ = G(q).

Proposition 7 Assume P is faithful to G̃.
If Npa(X

i
t ,G

(q)) ≤ q then (Xj
t−1, X

i
t) ∈ E(G(q)) ⇒ (Xj

t−1, X
i
t) ∈ E(G̃).

Corollary 3 Assume P is faithful to G̃. For all q ≥ NMax
pa (G(q)), we have G̃ = G(q).

Whenever P is faithful to G̃, DAG G(q) contains DAG G̃ (Proposition 6). Even though
we expect the number of parents in a gene interaction networks to be bounded aboce, the
exact maximal number of parents NMax

pa (G̃) remains mostly unknown. However, we show

that the edges of DAG G(q) pointing towards a variable having less than q parents in G(q)

are edges of G̃ too (Proposition 7). Thus, if P is faithful to G̃, knowledge of the topology
of DAG G(q) only allows us to ascertain some edges of DAG G̃. From Propositions 6 and
7, we establish that both DAG G(q) and DAG G̃ exactly coincide if any node of G̃ has less
than q parents (Corollary 3).

4 G1DBN, a procedure for DBN inference

We introduced and characterized the qth order dependence DAGs G(q), for all q < p,
for dynamic modelling. We now exploit our results to develop a non-Bayesian inference
method for DAG G̃. Let qmax be the maximal number of parents in G̃. From Corollary
3, inferring G̃ amounts to inferring G(qmax). However, the inference of G(qmax) requires to
check, for each pair (i, j), if there exists a subset Q ⊆ Pj of dimension qmax such that
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Choose either LS, Huber or Tukey estimator and set the thresholds α1

and α2.

Step 1: inferring G(1).

For all i ∈ P,

For all j ∈ P, for all k 6= j, compute the p-value pij|k from (7),

S1(i, j) = Maxk 6=j(pij|k).

E(Ĝ(1)) = {(Xj
t−1,X

i
t)t>1; i, j ∈ P, such that S1(i, j) < α1}.

Step 2: inferring G̃ from Ĝ(1).

If NMax
pa (Ĝ(1)) ∼ n− 1, choose a higher threshold α1 and go to Step 1.

For all i such that Npa(X
i
t , Ĝ

(1)) ≥ 1, compute the p-value p
(2)
ij from (9).

S2(i, j) =

{

p
(2)
ij for all i, j ∈ P such that (Xj

t−1,X
i
t)t>1 ∈ Ĝ

(1),

1 otherwise.

E(G̃) = {(Xj
t−1,X

i
t)t>1; i ∈ P, (i, j) ∈ P such that S2(i, j) < α2}.

Figure 4: Outline of the 2 step-procedure G1DBN for DBN inference.

X i
t ⊥⊥ Xj

t−1|X
Q
t−1 for all t > 1. So, for each pair (i, j), there are

(

qmax

p−1

)

potential sets that
can lead to conditional independence. To test each conditional independence given any
possible subset of qmax variables is questionable both in terms of complexity and multiple
testings.

To circumvent these issues, we propose to exploit the fact that the true DAG G̃ is
a subgraph of G(1) (Proposition 6) to develop an inference procedure for G̃. Indeed, the
inference of G(1) is both faster (complexity) and more accurate (number of tests). Thus
we introduce a 2 step-procedure for DBN inference. In the first step, we infer the 1st

order dependence DAG G(1), then we infer DAG G̃ from the estimated DAG Ĝ(1). This
2 step-procedure, summarized in Figure 4, is implemented in a R package ’G1DBN’ [1]
freely available from the Comprehensive R Archive Network.

4.1 Step 1: inferring G(1)

We evaluate the likelihood of an edge (Xj
t−1, X

i
t) by measuring the conditional dependence

between the variables Xj
t−1 and X i

t given any variable Xk
t−1. Assuming linear dependencies,

we consider the partial regression coefficient aij|k defined as follows,

X i
t = mijk + aij|kX

j
t−1 + aik|jX

k
t−1 + ηi,j,k

t ,

where the rank of the matrix (Xj
t−1, X

k
t−1)t≥2 equals 2 and the errors {ηi,j,k

t }t≥2 are cen-
tered, have same variance and are not correlated.

We measure the conditional dependence between the variables Xj
t−1 and X i

t given any

variable Xk
t−1 by testing the null assumption Hi,j,k

0 : “aij|k = 0”. To such an aim, we use
one out of three M-estimators for this coefficient: either the familiar Least Square (LS)
estimator, the Huber estimator, or the Tukey bisquare (or biweight) estimator. The two
latter are robust estimators [12]. Then for each k 6= j, we compute the estimates âij|k

according to one of these three estimators and derive the p-value pij,k from the standard
significance test:

under (Hi,j,k
0 ) : “ aij|k = 0 ”,

âij|k

σ̂(âij|k)
∼ t(n− 4), (7)

where t(n− 4) refers to a student probability distribution with n− 4 degrees of freedom
and σ̂(âij|k) is the variance estimates for âij|k.
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Thus, we assign a score S1(i, j) to each potential edge (Xj
t−1, X

i
t) equal to the maximum

Maxk 6=j(pij|k) of the p−1 computed p-values, that is the most favorable result to 1st order
conditional independence. This procedure does not derive p-values for the edges but allows
to order the possible edges of DAG G(1) according to how likely they are. The smallest
scores point out the most significant edges for G(1). The inferred DAG Ĝ(1) contains the
edges assigned a score below a chosen threshold α1.

4.2 Step 2: inferring G̃ from G(1)

We use the inferred DAG Ĝ(1) as a reduction of the search space. Indeed, from faithfulness,
we know that G̃ ⊆ G(1) (Proposition 6). Moreover, when DAG G̃ is sparse, there are far
fewer edges in G(1) than in the complete DAG Gfull defined in Subsection 2.1. Consequently,

the number of parents of each variable in Ĝ(1) is much smaller than n. Then model selection
can be carried out using standard estimation and tests among the edges of Ĝ(1). For each
pair (i, j) such that the set of edges (Xj

t−1, X
i
t)t>1 is in Ĝ(1), we denote by a

(2)
ij the regression

coefficient,

X i
t = mi +

∑

j∈pa(Xi
t ,Ĝ(1))

a
(2)
ij Xj

t−1 + ηi
t, (8)

where the rank of the matrix (Xj
t−1)t≥2,j∈pa(Xi

t ,Ĝ(1)) is |pa(X i
t , Ĝ

(1))| and the errors {ηi
t}t≥2

are centered, have the same variance, and are not correlated. We assign to each edge of
Ĝ(1) a score S2(i, j) equal to the p-value p

(2)
ij derived from the significance test,

under (Hi,j
0 ) : “ a

(2)
ij = 0 ”,

â
(2)
ij

σ̂(â
(2)
ij )
∼ t(n− 1− |pa(X i

t , Ĝ
(1))|). (9)

The score S2(i, j) = 1 is assigned to the edges that are not in Ĝ(1). The smallest scores
indicate the most significant edges. The inferred DAG for G̃ contains those edges whose
score is below a chosen threshold α2.

When G̃ is sparse, Step 1 of G1DBN inference procedure gives already a good estimation
of G̃ (see Precision-Recall curves obtained for simulated data in Figure 5). Even better
results can be obtained with the 2 step-procedure which requires to tune two parameters
α1 and α2. Parameter α1 is the selection threshold of the edges of Ĝ(1) in Step 1 (that is
the dimension reduction threshold), whereas parameter α2 is the selection threshold for
the edges of G̃ among the edges of DAG Ĝ(1).

4.3 Choice of the thresholds

The choice of thresholds is often something non trivial, especially when using multiple
testing. However, Step 1 of the procedure is conservative by construction. Indeed, the
definition of score S1 (equal to the maximum of p− 1 p-values computed for testing 1st-
order conditional independence) clearly supports the acceptation of the null assumption,
i.e. the absence of an edge. Standard approaches for multiple testing correction do
not apply to choose threshold α1. Thus we introduce a heuristic approach to choose
α1 threshold which is detailed in Supplementary Material [2], Section B. Overall, α1

threshold is chosen so that, after the Step 1, the number of genes having exactly one
parent in DAG G(1) predominates.

The choice of α2 threshold is less problematic. Indeed, the second Step of the inference
procedure is a standard multivariate regression. Then the usual thresholds 1%, 5% or 10 %

13

ha
l-0

01
42

10
9,

 v
er

si
on

 5
 - 

29
 D

ec
 2

00
8



can be chosen or even a lower threshold when a low number of edges is wanted. However,
a large number of tests are computed (as many as edges in DAG G(1)). In such multiple
testing situations, a set of the predictions are expected to be false and it is useful to control
this. We control the expected proportion of false positives edges, i.e. the False Discovery
Rate (FDR) with the approach introduced by Benjamini and Hochberg3 [4].

4.4 Complexity of the algorithm

The complexity of this algorithm is O(p3). However the scores (S1(i, j))j∈P of the incoming
edges of each target gene i can be computed separately by using parallel run. This option
is available in the R package G1DBN by specifying the target gene i in the function
DBNScoreStep1 dedicated to the Step 1 computation.

All the computations were performed on Redhat WS 4 AMD opteron 270 (2GHz). The
computation time mostly depends on the number of TF genes, i.e. the genes allowed to be
parents in the DAG to be inferred. For an illustration based on DBN inference performed
from a real data set by Spellman [34] containing 786 target genes in Section 5.3, the
computation of Step 1 required 7 minutes when the set of possible TF genes was restricted
to 18 genes (resp. 4 minutes with the lasso [39] and 7 seconds with the shrinkage procedure
[27], which are two alternative approaches for DBN inference introduced in Section 5.1).
When all the 786 genes can be TFs, the computation was parallel run and required 19
minutes by target gene with G1DBN (resp. 8 minutes by target gene with the lasso and
5 minutes for the whole set of 786 target genes with the shrinkage procedure). Step 2 of
G1DBN is very quick and requires less than 5 seconds for the 786-TF study. Despite the
need for more time, inference with G1DBN for a data set containing 800 genes is fully
computable, especially when parallel running.

5 Validation

5.1 Comparison with two reference methods

We compare the G1DBN inference procedure with two reference methods for model selec-
tion for multivariate AR(1) process: the shrinkage approach by Opgen-Rhein and Strim-
mer [27] and the lasso (Least Absolute Shrinkage and Selection Operator) introduced by
Tibshirani [39]. Opgen-Rhein and Strimmer recently proposed a model selection proce-
dure based on an analytic approach using James-Stein-Type shrinkage. The procedure
consists of first computing the partial correlation coefficients, r(X i

t , X
j
t−1|X

Pj

t−1), from the
shrinkage estimates of the partial regression coefficients, and second, selecting the edges
with a local false discovery rate approach [10]. Shrinkage inference is performed using the
R code for shrinkage estimation4 implemented by Opgen-Rhein and Strimmer.

The lasso (also called L1 shrinkage) combines shrinkage and model selection. The
lasso estimates are obtained by minimizing the residual sum of squares subject to the
sum of the absolute values of the coefficients being less than a constant. This approach

3Let m be the number of remaining edges after Step 1, then Step 2 requires to compute m tests.
Choose a maximal FDR level q and order the set of m observed p-values: p(1) ≤ · · · ≤ p(i) ≤ · · · ≤ p(m).

Then reject the null assumption (H
(i)
0 : “Edge i is not DAG G̃”) for all i ≤ k where k is defined as follows,

k = max

{

i : p(i) ≤
i

m
q

}

.

If no such i exists, reject no hypothesis. Benjamini and Hochberg (1995) showed that this procedure
ensures the FDR is lower than q m0

m
≤ q where m0 is the number of true null hypotheses.

4available at http://strimmerlab.org/software.html.
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Figure 5: Precision-Recall (PR) curves obtained for network inference from simulated
data (n = 20). (A) Comparison of the inference procedures: G1DBN (LS or Tukey),
shrinkage and lasso. Step 2 of the G1DBN approach drastically improves the results
(threshold α1 = 0.7). (B) Impact of noisy data, simulated using a non diagonal matrix Σ
with either Gaussian or uniform noise, on the G1DBN procedure (Step 2) computed with
LS estimates.

offers the advantage that it automatically sets many regression coefficients to zero. We
performed the lasso with the R package LARS developped by Efron et al. [11].

5.2 Simulation study

As the discovery of genetic regulatory interaction is a field in progress, validation of
predictions made on real gene expression data is only partial, which may render the
estimation of true and false positive detection rate not fully reliable [15]. Thus we first
investigate the accuracy of G1DBN, the shrinkage and the lasso inference procedures on
simulated data.

Data generation We randomly generated 100 time series according to a multivariate
AR(1) model defined by parameters (A[p×p], B, Σ) for p = 50 genes. Since gene regulation
networks are sparse, each matrix A contains 5 % of non zero coefficients. While keeping the
number of parents low, this does not prevent a vertex from having more than one parent.
Non zero regression coefficients aij , mean coefficients bi and error variances σi were drawn
from uniform distributions (aij , bi ∼ U([−0.95;−0.05] ∪ [0.05; 0.95]), σi ∼ U [0.03, 0.08]).
Then time series were generated under the corresponding multivariate AR(1) models for
n = 20 to 50.

Evaluation based on PR curves We evaluated the performance of DBN inference
procedures using the Precision-Recall (PR) curve as plotted in Figure 5. PR curves show
the precision, equal to the Positive Predictive Value (PPV) on the ordinate against the
recall, equal to the power, on the abscissa. PR curves are drawn by first ordering the
edges by decreasing significance, and then by computing the PPV and power for the first
selected edge and for each newly included edge successively. We recall the next definitions,
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Positive Predictive Value (PPV) = True Discovery Rate (TDR)

= 1- False Discovery Rate (FDR)

=
TP

TP + FP

Recall = Sensitivity = Power =
TP

TP + FN

where TP refers to the number of true positive edges, i.e. the number of edges which
are selected by the inference procedure and actually belongs to the true DAG (either
the DAG used for simulating the data or the validation DAG established from biological
knowledge); FP refers to the number of false positive edges, i.e. the edges which are
selected by the procedure but are not in the true DAG and FN refers to the number of
false negative edges, i.e. the number of edges which are not selected by the procedure but
are in the true DAG.

Simulation results We show on Figure 5 the results obtained with n = 20, a length
one can expect from existing gene expression time series. Figure 5A displays the average
Precision Recall (PR) curves obtained with the various inference approaches when the
error covariance matrix Σ is diagonal and the noise distribution is Gaussian. The Step 1
of the G1DBN procedure computed either with the LS estimator or with the Tukey
estimator (dashed lines) gives a very high PPV for the very first selected edges. The
Step 2 of the G1DBN procedure (solid line) drastically improves the results. It allows
to maintain the PPV greater than 95 % while the power goes up to 50%. PR curves
computed with the Huber estimates (not shown) led to comparable results. The lasso
(dotted line) is clearly outperformed by the other approaches and the shrinkage approach
(dashed-dotted line) gives results comparable to the Step 1 of the G1DBN procedure only.
The results of the three methods are naturally improved for greater values of n but their
relative perfomances are preserved (curves not shown).

We investigated the impact of the violation of the model assumptions. First we per-
formed DBN inference on simulated data where the error covariance matrix Σ is not
diagonal (3% of the coefficients outside the diagonal differ from 0) and the noise distribu-
tion is either Gaussian or uniform (U [−2; 2]). As shown on Figure 5B, the accuracy of the
G1DBN procedure (Step 2) is not strongly affected when these assumptions on the noise
distribution are not satisfied. However, it is difficult to get rid of the 1st order Markov
Assumption which was chosen in order to reduce the model dimension. When simulat-
ing an AR(2) model, the 2-order time dependencies existing in the model are missed.
However, the 1-order time dependencies existing in the model are still recovered. Then,
when considering a 2nd order Markov process, an approximation can still be performed by
successively inferring 1- and 2-order time dependencies. Finally, note that the procedure
also performs well when the number of parents in the true DAG G̃ is greater than one
(See Supplementary Material [2], Section A).

5.3 Analysis of microarray time course data sets

Spellman’s Yeast cell cycle data set We inferred a dynamic network from the Sac-
charomyces cerevisiae cell cycle data collected by Spellman et al. [34]. We used the
α Factor-based synchronization data (18 time points) and we focus here on a set of 786

16

ha
l-0

01
42

10
9,

 v
er

si
on

 5
 - 

29
 D

ec
 2

00
8



A B

5 edges 20 edges 50 edges 100 edges 1000 edges

P
e

rc
e

n
ta

g
e

 o
f 
b

io
lo

g
ic

a
ll
y
 v

a
li
d

a
te

d
 e

d
g

e
s

0
2

0
4

0
6

0
8

0
1

0
0

G1DBN(LS)− Step2
G1DBN(LS)− Step1
Shrinkage
Lasso

Figure 6: Results of the 18 TF-survey of S. cerevisiae cell cycle. (A) DAG containing
the 18 first selected edges with G1DBN with LS estimates (PPV=60%). Colored nodes
represent the TFs and the dark blue edges are validated by the Yeastract database.
(B) Percentage of validated edges out of the first 5 to 1000 edges inferred with the three
procedure: the G1DBN procedure, after Step 2 or after Step 1 only, the shrinkage and
the lasso procedure. The dashed line shows the proportion of validated edges out of the
786×18 possible edges.
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Figure 7: Inferred DAG G̃ by G1DBN with LS estimates, for α1 = 0.1, α2 = 0.0059
(ensuring FDR< 0.01) in the 18 TF-survey of the S. cerevisiae cell cycle. The colored
nodes represents the 16 TFs selected out of the 18 under study, and the dark blue edges
are validated by Yeastract. This network contains 286 genes and 308 edges.
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genes which demonstrated consistent periodic changes in transcription level (see Supple-
mentary Material [2], Section D.1 for more details). We carried out two surveys on this
dataset. First, we allow only a subset of 18 genes5 identified as putative TFs to be possible
parent genes (i.e. to have edges pointing out towards other genes in DAG G̃) and look
for their target genes. Then we extend the search for parent genes to the whole dataset
of 786 genes in a second survey. We set the threshold α1 for the G1DBN procedure ac-
cording to guidelines detailed in Supplementary Material [2], Section B (α1 = 0.1 for the
18 TF-survey, α1 = 0.05 for the 786 TF-survey).

It is somehow difficult to assert the validity of the results obtained from real data
as the whole regulatory machinery is not known yet. However the yeast cell cycle has
been studied a lot and many regulation relationships have been recovered. We study the
consistency of the first inferred edges with annotations in the Yeastract database [38], a
curated repository currently listing found regulatory associations between TFs and target
genes in S. cerevisiae.

In the 18 TF-survey, the first few selected edges are biologically validated. In the DAG
comprising the 18 first selected edges (Figure 6A), 11 edges refer to identified regulatory
relationships (thick blue edges). The first detected TFs are the genes coding for proteins
FKH2, NDD1, RAP1 and SWI4. In particular, the proteins FKH2 (known as a TF with
a major role in the expression of G2/M phase genes) and SWI4 (TF regulating late G1-
specific transcription of targets) are pointed out as being essential TFs; they have the
most target genes and the high majority (73%) of these regulatory relationships is listed
in Yeastract.

As introduced in Section 4.3, we chose α2 threshold in order to keep the False Discovery
Rate (FDR) smaller than 1% with the approach by Benjamini and Hochberg [4]. This
lead to α2 = 0.0059. The corresponding inferred DAG is shown in Figure 7. The two
proteins FKH2 and SWI4 are still part of the TFs having the most targets, together with
NDD1, which is an essential component of the activation of the expression of a set of late-
S-phase-specific genes and TEC1, a transcription factor required for full Ty1 expression
and Ty1-mediated gene activation (Ty transposable-element own for causing cell-type-
dependent activation of adjacent-gene expression). The set of selected TFs is listed in
Supplementary Material [2], Section D.2, Table 1, where the third column indicates the
number of validated edges out of the selected ones. Except for NDD1, for which no
target gene is listed in yeastract, one forth of the targets genes of the top four TFs are
validated. Finally, we display the percentage of validated edges out of the first 5 to
1000 selected edges inferred with each inference procedure in the histogram of Figure 6B.
When considering the 1000 first inferred edges, the results are very similar to what could
be expected by chance only. Note that, as the Step 2 of G1DBN choose 308 edges only,
it is not considered when comparing the 1000 first edges.

In the second survey including all the 786 genes as putative TFs, the dimension is
far higher and the results are consequently more restricted. Indeed, the proportion of
validated edges doesn’t exceed 12.5%, obtained with the 2nd step of G1DBN procedure
among the first selected edges. However, this is still a subtantial result as compared with
the proportion of validated edges (0.26%). In order to keep the FDR smaller than 0.01, we
chose α2 = 0.0067 by following the Benjamini and Hochberg approach [4]. The inferred
DAG for the 786 TF-survey contains 437 genes and 380 edges. The display of this DAG,
as well as the list of its edges and the list of the genes selected as TFs, is available in
Supplementary Material [2].

5The 18 genes code for proteins ACE2, FKH1, FKH2, GAT3, MBP1, MCM1, MIG2, NDD1, PHD1,
RAP1, RME1, STB1, SUT1, SWI4, SWI5, SWI6, TEC1 and YOX1. consist of the overlap between the
786 genes under study and the 50 genes identified as putative TFs in a recent study by Tsai et al. [42].

19

ha
l-0

01
42

10
9,

 v
er

si
on

 5
 - 

29
 D

ec
 2

00
8



Figure 8: Inferred DAG G̃ with G1DBN with LS estimates from the data by Smith et
al. [33] to investigate starch metabolism of A. thaliana (α1 = 0.1, α2 = 0.005 such that
FDR< 0.01) The dark colored nodes are the three nodes with the most targets, two out
of them are known for being implicated in starch metabolism. The light colored nodes
are parent nodes already identified as TF or DNA binding protein (see Section E, Table
2 in Supp. Material). This network contains 277 genes and 206 edges.
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Diurnal cycle on the starch metabolism of Arabidopsis Thaliana We applied
the G1DBN inference procedure to the expression time series data generated by Smith
et al. [33] to investigate the impact of the diurnal cycle on the starch metabolism of
Arabidopsis Thaliana. We restricted our study to the 800 genes selected by Opgen-Rhein
and Strimmer [27] as having periodic expression profiles6.

Using the heuristic approach detailed in Supplementary Material [2], Section B, we
choose threshold α1 = 0.02 allowing the distribution of the number of parents in the DAG
G(1) having the number of 0-parent genes to dominate and the number of 1-parent genes
to be half as large. We set α2 = 0.005 in order to maintain the False Discovery Rate
smaller than 0.01 by using the approach by Benjamini and Hochberg [4] (See Section 4.3
for details). We recover the DAG in Figure 8 which has a “hub” connectivity structure.
This network contains 206 edges implicating 277 different genes. We may notice that
this DAG differs from the one inferred by Opgen-Rhein and Strimmer [27]. However the
edges selected by the three inference procedures discussed in this section differ somewhat
(See the proportion of edges in common by using the various inference approaches in
Supplementary Material [2], Section C) and may, in fact, yield complementary information
or insights.

Among the ’parent’ nodes in the inferred DAG, two nodes (799 and 628) out of the
three having the most target refers to proteins that are known to be implicated in starch
metabolism. Indeed, node 799, which has 14 ’target’ nodes, refers to DPE2 (DISPRO-
PORTIONATING ENZYME 2), which is an essential component of the pathway from
starch to sucrose and cellular metabolism in plant leaves at night. Node 628 (6 targets)
is a transferase (At5g24300) implicated in the starch synthase. Node 702, which is an un-
known protein (At5g58220), has also 6 targets. These three nodes are dark-colored in the
DAG of Figure 8. The remaining ’parent’ nodes have from 1 to 4 targets. Among them,
9 genes, which are listed in Supplementary Material [2], Section E Table 2, have already
been identified as TFs or as DNA binding proteins. These 9 nodes are light-colored in the
displayed DAG. Finally a list of 37 unknown proteins have been selected as parents in the
inferred DAG. Potentially implicated in the regulation machinery of starch metabolism,
these proteins represent a subset of genes which is relevant for further analyses. See more
details on the inferred network displayed in Figure 8 in the Supplementary Material [2].

6 Discussion and conclusion

As more and more gene expression time series has become available, the need for efficient
tools to analyze such data has become imperative. In this paper, we first determine
sufficient conditions for Dynamic Bayesian Network modelling of gene expression time
series. This type of modelling offers a straightforward interpretation: the edges of the
DAG G̃ defining the DBN exactly describe the set of conditional dependencies between
successive gene expression levels. Having defined and characterized low order conditional
dependence DAGs for DBNs, we point out relevant characteristics for the approximation
of sparse DAGs. In particular, under faithfulness assumption, DAG G̃ is included in the
1st order conditional dependence DAG G(1).

From these results, we develop G1DBN, a novel procedure for DBN inference, which
makes it possible to tackle the ’small n, large p’ estimation case that occurs with genetic
time series data. Based on the consideration of low order conditional dependencies, the
G1DBN procedure proved to be powerful on both simulated and real data analysis. With

6The data are available in the GeneNet R package at http://strimmerlab.org/software/genenet/html/ar
th800.html or in our R package G1DBN (arth800line).
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respect to other methods, the shrinkage approach considerably improves the precision of
the overall estimation of the partial correlation coefficients when the number of obser-
vations n is small compared to the number of genes p. However, considering 1st order
conditional independence proved to be more efficient for DBN inference in terms of PPV
and power on simulated data, and gave promising results on real data analysis. As for
the lasso, one might notice that a drawback lies in the fact that the edge selection is
done vertex by vertex whereas the DAG G̃ is globally sparse but not uniformally. As a
consequence, the lasso tends to uniformally reduce the number of parents of each vertex
instead of only keeping the total number of edges contained.

The power of the G1DBN procedure comes from the accuracy improvement of the
testing made possible by the dimension reduction. Indeed, as the first step selection
is based on the 1st order conditional independence consideration, significance tests are
performed in a model of dimension 4 (see Section 4.1). This represents a drastic dimension
reduction compared to full order independence testing and makes the testing much more
accurate. Thus, even if there are more edges in the DAG G(1) than in the true DAG G̃
(Proposition 6), Step 1 of the procedure is already very predictive.

Throughout the analyses performed for this paper, we point out two major directions
for further research. On the one hand, we noticed that the edges selected by the three
inference procedures differ somewhat (see Supplementary Material [2], Section C). A
further relevant study would consist of analyzing in which way these DBN inference
procedures could have different strenghts and may be complementary. On the other hand,
the use of robust estimators like Huber or Tukey bisquare did not allow a noticeable change
of the inference approach on real data. Another interesting survey lies in the investigation
of which measures of dependence, like non linear or other robust estimates, are the more
pertinent to analyze gene expression data.
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APPENDIX

A Proofs

A.1 Lemmas 1 to 3 and proofs

Lemma 1 Under Assumptions 1 and 2, the probability distribution P admits a DBN represen-

tation according to a DAG whose edges only join nodes representing variables observed at two

successive time points, at least according to the DAG Gfull = (X, {(Xj
t−1,X

i
t)}i,j∈P,t>1) which

has edges between any pair of successive variables.

Proof of Lemma 1. From assumption 1, the density f of the joint probability distribution
of the process X be written as the product of conditional densities,

f(X) = f(X1)
n

∏

t=2

f(Xt|Xt−1), (10)

where f(Xt|Xt−1) refers to the density of the conditional probability distribution of Xt given
Xt−1.

From Assumption 2, for all t > 1, the conditional density f(Xt|Xt−1) can be written as the
product of the conditional density of each variable Xi

t given the set of variables Xt−1 observed
at the previous time,

f(Xt|Xt−1) =
∏

i∈P

f(Xi
t |Xt−1). (11)

From equations (10) and (11), the density f writes as the product of the conditional density
of each variable Xi

t given its parents in Gfull. From Proposition 1, the probability distribution P

admits a BN representation according to Gfull.

Lemma 2 Assume the joint probability distribution P of the process X has density f with respect

to Lebesgue measure on R
p×n. If P factorizes according to two different subgraphs of Gfull, G1

and G2, then P factorizes according to G1 ∩ G2.

From Lemma 2, it is straightforward that, among the DAGs included in Gfull, there exists
a minimal DAG (denoted by G̃ in the paper) according to which the probability distribution P

factorizes, thus establishing a BN representation of process X.

Proof of Lemma 2. Consider a discrete-time stochastic process X = {Xi
t ; i ∈ P, t ∈ N}

whose joint probability P distribution has the density f with respect to Lebesgue measure on
R

p×n.
Let G1 and G2 be two different subgraphs of Gfull according to which the joint probability

distribution P factorizes. Let i ∈ P , t ∈ N , we consider the random variable Xi
t .

We denote as follows,

• the following subsets of P ,

pa1 = {j ∈ P ;Xj
t−1 ∈ pa(Xi

t ,G1)}

pa1 = P\{pa1}

pa2 = {j ∈ P ;Xj
t−1 ∈ pa(Xi

t ,G2)}

pa2 = P\{pa2}
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• and the densities of the joint or marginal probability distributions of (Xi
t ,Xt−1),

g : R
p+1 → R the density of the joint probability distribution of (Xi

t ,Xt−1),

gi the density of the probability distribution of Xi
t ,

gP the density of the joint probability distribution of (Xt−1),

gi,pa1 the density of the joint probability distribution of (Xi
t ,X

pa1
t−1) = (Xi

t , pa(Xi
t ,G1)),

gi,pa2 the density of the joint probability distribution of (Xi
t ,X

pa2
t−1) = (Xi

t ,Xt−1\{pa(Xi
t ,G2)}),

etc...

In the following, y ∈ R, x = (x1, ..., xp) ∈ R
p and we denote by xpa1 = {xj ; j ∈ pa1} ∈

R
|pa1| (Thus x = (xpa1 , xpa1

) = (xpa2 , xpa2
) ∈ R

p). As the probability distribution P factorizes
according to G1, we derive from the DAG theory the conditional independence,

Xi
t ⊥⊥ X

pa1
t−1|X

pa1
t−1,

that is,

∀y ∈ R,∀x ∈ R
p,

g(y, x)

gP (x)
=

gi,pa1(y, xpa1)

gpa1(xpa1)
.

Equivalent results can be derived from the factorization according to G2 giving,

∀y ∈ R, x ∈ R
p, N gi,pa2(y, xpa2) =

gi,pa1(y, xpa1)

gpa1(xpa1)
gpa2(xpa2).

By taking the integral with respect to xpa2∩pa1
, we write for all y ∈ R, for all xpa1∪pa2 ∈

R
|pa1∪pa2|,

∫

gi,pa2(y, xpa2)d(xpa2∩pa1
) =

∫

gi,pa1(y, xpa1)

gpa1(xpa1)
gpa2(xpa2)d(xpa2∩pa1

)

gi,pa1∩pa2(y, xpa1∩pa2) =
gi,pa1(y, xpa1)

gpa1(xpa1)
gpa1∩pa2(xpa1∩pa2)

Finally we have,

∀y ∈ R,∀x ∈ R
p,

g(y, x)

gP (x)
=

gi,pa1∩pa2(y, xpa1∩pa2)

gpa1∩pa2(xpa1∩pa2)
,

that is the conditional density of the probability distribution of Xi
t given Xt−1 is the conditional

density of the probability distribution of Xi
t given Xpa1∩pa2

t−1 . Then P factorizes according to
G1 ∩ G2.

Lemma 3 (Conditional independence between non adjacent successive variables)
Let G be a subgraph of Gfull according to which the probability distribution P admits a BN rep-

resentation. For any pair of successive variables (Xj
t−1,X

i
t) which are non adjacent in G, we

have

Xi
t ⊥⊥ Xj

t−1 | pa(Xi
t ,G) and Xi

t ⊥⊥ Xj
t−1 | pa(Xi

t ,G) ∪ S,

for all S subset of {Xk
u ; k ∈ P, u < t}.

As an illustration of Lemma 3, assume P admits a BN representation according to the DAG
of Figure 1C. There is no edge between X3

t and X1
t+1 in this DAG. Now consider in Figure 2B

the moral graph of the smallest ancestral graph containing X3
t , X1

t+1 and the parents (X1
t ,X2

t )
of X1

t+1. The set (X1
t ,X2

t ) blocks all paths between X3
t and X1

t+1. From Proposition 2, we have
X1

t+1 ⊥⊥ X3
t | pa(X1

t+1,G).
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Proof of Lemma 3. Assume P admits a BN representation according to G, a subgraph of
Gfull. Let Xj

t−1 and Xi
t be two non adjacent vertices of G (there is no edge between them in G)

and consider the moral graph (G
An(Xi

t∪X
j
t−1∪pa(Xi

t ,G)))
m of the smallest ancestral set containing

the variables Xi
t , Xj

t−1 and the parents pa(Xi
t ,G) of Xi

t in G. As DAG G is a subgraph of

Gfull, the set of parents pa(Xi
t ,G) blocks all paths between Xj

t−1 and Xi
t in the moral graph

(G
An(Xi

t∪X
j
t−1∪pa(Xi

t ,G)))
m. From Proposition 2, this establishes the conditional independence

Xi
t ⊥⊥ Xj

t−1 | pa(Xi
t ,G).

This result holds for the conditioning according to any subset S ⊆ {Xk
u ; k ∈ P, u < t}.

A.2 Proof of Propositions 3, 5, 6 and 7

Proof of Proposition 3.

First, we show that P admits a BN representation according to G̃. Let i, j ∈ P such that

Xi
t ⊥⊥ Xj

t−1|X
Pj

t−1, then we have,

f(Xi
t |Xt−1) = f(Xi

t |X
Pj

t−1).

Under Assumptions 1 and 2, from Lemma 1 (See Appendix A.1) and Proposition 1, P admits
a BN representation according to the DAG (X,E(Gfull) \ (Xj

t−1,X
i
t)) which has the edges of

Gfull except for the edge (Xj
t−1,X

i
t). This holds for any pair of successive variables that are

conditionally independent.
From Lemma 2 (See Appendix A.1), P admits a BN representation according to the intersec-

tion of the DAG (X,E(Gfull) \ (Xj
t−1,X

i
t)) for any pair (Xi

t ,X
j
t−1) such that Xi

t ⊥⊥ Xj
t−1|X

Pj

t−1,

that is DAG G̃.

Also, DAG G̃ cannot be reduced. Indeed, let (X l
t−1,X

k
t ) be an edge of G̃ and assume that P ad-

mits a BN representation according to G̃\(X l
t−1,X

k
t ), that is G̃ with the edge (X l

t−1,X
k
t ) removed.

From Lemma 3 (Appendix A.1), we have Xk
t ⊥⊥ X l

t−1|X
Pl

t−1, which contradicts (X l
t−1,X

k
t ) ∈ V (G̃)

(i.e. Xk
t 6⊥⊥ X l

t−1|X
Pl

t−1).

Proof of Proposition 5.

First, from Corollary 1, G̃ ⊇ G(1).
Second, let X be a Gaussian process and (Xj

t−1,X
i
t) ∈ E(G̃), then according to Proposition

3, Xi
t 6⊥⊥ Xj

t−1 | X
Pj

t−1. Since X is Gaussian, this implies Cov(Xi
t ,X

j
t−1|X

Pj

t−1) 6= 0.

Now assume that there exists k 6= j, such that Xi
t ⊥⊥ Xj

t−1 | X
k
t−1 ie (Xj

t−1,X
i
t) /∈ E(G(1)).

We are going to prove that this contradicts Cov(Xi
t ,X

j
t−1|X

Pj

t−1) 6= 0. Let l be an element of

P\{j, k}. The conditional covariance Cov(ij|k, l) = Cov(Xi
t ,X

j
t−1 |X

k
t−1,X

l
t−1) can be written,

Cov(ij|k, l) = Cov(Xi
t ,X

j
t−1 |X

k
t−1)−

Cov(Xi
t ,X

l
t−1 |X

k
t−1)Cov(Xj

t−1,X
l
t−1|X

k
t−1)

V ar(X l
t−1|X

k
t−1)

,

= Cov(Xi
t ,X

j
t−1 |X

k
t−1) ×

[

1−
(Cov(Xj

t−1,X
l
t−1|X

k
t−1))

2

V ar(Xj
t−1|X

k
t−1)V ar(X l

t−1|X
k
t−1)

]

−
Cov(Xj

t−1,X
l
t−1|X

k
t−1)Cov(Xi

t ,X
l
t−1 |X

k
t−1,X

j
t−1)

V ar(X l
t−1|X

k
t−1)

.

However both terms in the latter expression of Cov(ij|k, l) are null:

• since Xi
t ⊥⊥ Xj

t−1 | X
k
t−1, then Cov(Xi

t ,X
j
t−1 |X

k
t−1) = 0,
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• as NMax
pa (G̃) ≤ 1, Xj

t−1 is the only parent of Xi
t in G̃. So the variable Xj

t−1 and thus

also the set (Xj
t−1,X

k
t−1) blocks all paths between X l

t−1 and Xi
t in the moral graph of the

smallest ancestral set containing Xi
t ∪Xj,k,l

t−1 . Then we have, Xi
t ⊥⊥ X l

t−1 |
{

Xj
t−1,X

k
t−1

}

,

that is Cov(Xi
t ,X

l
t−1 |X

k
t−1,X

j
t−1) = 0.

Then Cov(ij|k, l) = 0. By induction, we obtain Cov(Xi
t ,X

j
t−1|X

Pj

t−1) = 0 leading to a

contradiction with (Xj
t−1,X

i
t) ∈ E(G̃). Therefore (Xj

t−1,X
i
t) ∈ G

(1) and G̃ ⊆ G(1).

Proof of Prop 6 .

Let (Xj
t−1,X

i
t) ∈ E(G̃). Assume that (Xj

t−1,X
i
t) /∈ E(G(q)) then there exists a subset of

q variables XQ
t−1 with respect to which Xj

t−1 and Xi
t are conditionally independent. From

faithfulness, the subset XQ
t−1 separates Xj

t−1 and Xi
t in the moral graph of the smallest ancestral

set containing Xi
t ∪Xj

t−1 ∪XQ
t−1. This contradicts the presence of the edge (Xj

t−1,X
i
t) in G̃.

Proof of Prop 7 .

From faithfulness, G̃ ⊆ G(q). Then for all Xi
t , Npa(X

i
t , G̃) ≤ Npa(X

i
t ,G

(q)) ≤ q. From

Proposition 4, (Xj
t−1,X

i
t) /∈ E(G̃) ⇒ (Xj

t−1,X
i
t) /∈ E(G(q)),that is (Xj

t−1,X
i
t) ∈ E(G(q)) ⇒

(Xj
t−1,X

i
t) ∈ E(G̃).
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