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Abstract

In this paper, we propose a novel inference method for dynamic genetic networks which makes
it possible to face with a number of time measurements n much smaller than the number of
genes p. The approach is based on the concept of low order conditional dependence graph
that we extend here in the case of Dynamic Bayesian Networks. Most of our results are based
on the theory of graphical models associated with the Directed Acyclic Graphs (DAGs). In
this way, we define a DAG G̃ which describes exactly the full order conditional dependencies
given the past of the process. Then, to face with the large p and small n estimation case,
we propose to approximate DAG G̃ by considering low order conditional independencies.
We introduce partial qth order conditional dependence DAGs and analyze their probabilistic
properties. In general, DAGs G(q) differ from G̃ but still reflect relevant dependence facts
for sparse networks such as genetic networks. By using this approximation, we set out a
non-bayesian inference method and demonstrate the effectiveness of this approach on both
simulated and real data analysis. The inference procedure is implemented in the R package
’G1DBN’ which is available from the CRAN archive.

Keywords: conditional independence, Dynamic Bayesian Network, Directed Acyclic Graph,
networks inference, time series modeling.

1 Introduction

The development of microarray technology allows to simultaneously measure the expression
levels of many genes at a precise time point. Thus it has become possible to observe gene
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expression levels across a whole process like cell cycle or response to radiation or several
treatments. The objective is now to recover gene regulation phenomena from this data.
We are looking for simple relationships such as ”gene i activates gene j”. But we also
want to capture more complex scenarios such as auto-regulations, feed-forward loops, multi-
component loops... as described by Lee et al. [21] in the transcriptional regulatory network
of the yeast Saccharomyces cerevisiae.

To such an aim, we both need to accurately take into account temporal dependencies and
to face with the dimension of the problem as the number p of observed genes is much higher
than the number n of observation time points. Moreover we know that most of the genes
whose expression has been monitored using microarrays are not taking part in the temporal
evolution of the system. So we want to determine the few ”active” gene that are involved in
the regulatory machinery, as well as the relationships between them. In short, we want to
infer a network representing the dependence relationships which govern a system composed
of several agents from the observation of their ”activity” across short time series.

Such gene networks were firstly described by using static modeling and mainly non oriented
networks. One of the first tools used to describe interaction between genes is the relevance
network [3] or correlation network [36]. Better known as covariance graph [5] in the graphical
models theory, this non directed graph describes the pair-wise correlation between genes.
Its topology is derived from the covariance matrix between the gene expression levels; an
undirected edge is drawn between two variables whenever they are correlated. Nevertheless,
the correlation between two variables may come from the linkage with other variables. This
creates spurious edges due to indirect dependence relationships.

Consequently, great interest has been taken in the concentration graph [18], also called
covariance selection model, which describes the conditional dependence structure between
gene expression in Graphical Gaussian Models (GGMs). Let Y = (Y i)1≤i≤p be a multivariate
Gaussian vector representing the expression levels of p genes. An undirected edge is drawn
between two variables Y i and Y j whenever they are conditionally dependent given the re-
maining variables. The standard theory of estimation in GGMs [46], [18] can be exploited
only when the number of measurements n is much higher than the number of variables p.
This ensures that the sample covariance matrix is positive definite with probability one. Nev-
ertheless, in most of the microarray gene expression data, we have to cope with the opposite
situation (n << p). Thus, the growing interest for ’small n, large p’ furthered the develop-
ment of numerous alternatives (Schäfer and Strimmer [31] [32] , Waddell and Kishino [44]
[43], Toh and Horimoto [40] [41], Wu et al. [50], Wang et al. [45]). Even though concentration
graphs allow to point out some dependence relationships between genes, they do not offer
an accurate description of the interactions. Firstly, no direction is given to the interactions.
Secondly, some motifs containing cycles cannot be properly represented (see Figure 1).

Contrary to the previous undirected graphs, Bayesian networks (BNs) [11] model directed
relationships. Based on a probabilistic measure, a BN representation of a model is defined by
a Directed Acyclic Graph (DAG) and the set of conditional probability distributions of each
variable given its parents in the DAG [28]. Then the theory of graphical models [46, 7, 18]
allows to derive conditional independencies from this DAG. However the acyclicity constraint
in static BNs is a serious restriction given the expected structure of genetic networks.
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Figure 1: A biological regulation motif (left) and the corresponding concentration graph
(right). For all i ≥ 3, Y i is a Gaussian variable representing the expression level of gene Gi.
Some cycles cannot be represented on the concentration graph.
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Figure 2: Dynamic network equivalent to the regulation motif in Figure 1 (left). Each vertex
X i

t represents the expression level of gene Gi at time t. This graph is acyclic and allows to
define a Bayesian network.

Here comes the interest of Dynamic Bayesian networks (DBNs) first introduced for the
analysis of gene expression time series by Friedman et al. [12] and Murphy and Mian [25].
In DBNs, a gene is not anymore represented by a single vertex but by as much vertices
as time points in the experiment. A dynamic network (Figure 2) can then be obtained by
unfolding in time the initial cyclic motif in Figure 1 (left). The directions according to the
time guarantees the acyclicity of this dynamic network and consequently allows to define a
Bayesian network. The signs +/- showing the type of regulation in the biological motif do
not appear in this DAG but they can be derived from model parameters estimates.

The very high number p of genes simultaneously observed raises a dimension problem.
Moreover, a large majority of time series gene expression data contain no or very few repeated
measurement(s) of the expression level of the same gene at a given time. Hence, we assume
that the process is homogeneous across time. This consists of considering that the system
is governed by the same rules during the whole experiment. Consequently, the temporal
dependencies are homogeneous: any edge is present during the whole process. This is a
strong assumption which is not necessarily satisfied. Nevertheless, this condition is necessary
to carry out estimation. Indeed, in that case, we observe n − 1 repeated measurements of
the expression level of each gene at two successive time points.

Up to now, various DBN representations based on different probabilistic models have been
proposed (discrete models [26, 51], multivariate auto-regressive process [27], State Space or
Hidden Markov Models [29, 49, 30, 1], nonparametric additive regression model [14, 15, 17,
37]). See also Kim et al. [16] for a review of such models. Facing with as much diversity, we
introduce in this paper sufficient conditions such that a model admits a DBN representation
and we set out a straight interpretation in terms of dependencies between variables by using
the theory of graphical models for DAGs. Our DBN representation is based on a DAG G̃
(e.g. like the DAG of Fig. 2) which describes exactly the full order conditional dependencies
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given all the remaining past variables (see Section 2). This approach extends the principle
of the concentration graph showing conditional independencies to the dynamic case.

Even under homogeneity assumption, which enables to use the different time points as
repeated measurements of the same process, we still have to deal with the ’curse of dimension’
to infer the structure of DAG G̃. The difficulty lies in facing with the large p and small n
estimation case. Several inference methods have been proposed for the estimation of the
topology of the DAG defining the various DBNs quoted above. Among others, Murphy [24]
implemented several Bayesian structure learning procedures for dynamic models in the open-
source Matlab package BNT (Bayes Net Toolbox); Ong et al. [26] reduce the dimension of
the problem by considering prior knowledge; Perrin et al. [29] use an extension of the linear
regression; Wu et al. [49] use factor analysis and Beal et al. [1] develop a variational Bayesian
method; Zou and Conzen [51] limit potential regulators to the genes with either earlier or
simultaneous expression changes and estimate the transcription time lag; Opgen-Rhein and
Strimmer [27] recently proposed a model selection procedure based on an analytic shrinkage
approach. However, a powerful approach based on the consideration of zero- and first-order
conditional independencies recently gained attention to model concentration graphs. When
n << p, Wille et al. [48, 47] propose to approximate the concentration graph by the graph
G0−1 describing zero- and first-order conditional independence. An edge between the variables
Y i and Y j is drawn in the graph G0−1 if and only if, zero- and first-order correlations between
these two variables both differ from zero, that is, if the next conditions are satisfied,

r(Y i, Y j) 6= 0 and ∀k ∈ {1, ..., p}\{i, j}, r(Y i, Y j |Y k) 6= 0, (1)

where r(Y i, Y j |Y k) is the partial correlation between Y i and Y j given Y k. Hence, whenever
the possible correlation between two variables Y i and Y j can be entirely explained by the
effect of some variable Y k, no edge is drawn between them.

This procedure allows a drastic dimension reduction: by using first order conditional cor-
relations, estimation can be carried out accurately even with a small number of observations.
Even if the graph of zero- and first-order conditional independence differs from the concen-
tration graph in general, it still reflects some measure of conditional independence. Wille
et al. show through simulations that the graph G0−1 offers a good approximation of sparse
concentration graphs and demonstrate that both graphs even coincide exactly if the concen-
tration graph is a forest ([47], Corollary 1). This approach has also been used by Magwene
and Kim [22] and de la Fuente et al. [6] for estimating non-directed gene networks from
microarray gene expression of the yeast Saccharomyces cerevisiae. Castelo and Roverato [4]
investigate such non directed qth order partial independence graphs for q ≥ 1 and introduce
a sharp analysis of their properties. In this paper, we extend this approach by defining qth

order order conditional dependence DAGs G(q) for DBN representations. Then, by basing on
our results on these low order conditional dependence DAGs, we propose a novel inference
method for dynamic genetic networks which makes it possible to face with the ’small n, large
p’ estimation case.

The remainder of the paper is organized as follows. In Section 2, we expose sufficient
conditions for a DBN modeling of time series describing temporal dependencies. We partic-
ularly show the existence of a minimal DAG G̃ which allows such a DBN representation. To
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reduce the dimension of the estimation of the topology of G̃, we propose to approximate G̃
by qth order conditional dependence DAGs G(q) and analyze their probabilistic properties in
Section 3. From conditions on the topology of G̃ and faithfulness assumption, we establish
inclusion relationships between both DAGs G̃ and G(q). In Section 4, we exploit our results
on DAGs G(q) to develop a non-Bayesian estimation procedure implemented in the R package
’G1DBN’ [19]. Finally, validation is obtained on both simulated and real data in Section 5.
We use our inference procedure for the analysis of two microarray time course data sets: the
Spellman’s yeast cell cycle data [34] and the diurnal cycle data on the starch metabolism of
Arabidopsis Thaliana collected by Smith et al. [33].

2 A DBN representation

Let P = {1 ≤ i ≤ p} describe the set of observed genes and N = {1 ≤ t ≤ n} the space of
observation times. In this paper, we consider a discrete-time stochastic process X = {X i

t ; i ∈
P, t ∈ N} taking real values and assume the joint probability distribution P of the process X
has density f with respect to Lebesgue measure on R

p×n. We denote by Xt = {X i
t ; i ∈ P}

the set of the p random variables observed at time t and X1:t = {X i
s; i ∈ P, s ≤ t} the set of

the random variables observed before time t.
The main result of this section is set out in Proposition 3; we show that process X admits

a DBN representation according to a minimal DAG G̃ whose edges describe exactly the set of
direct dependencies between successive variables Xj

t−1, X
i
t given the past of the process. For

an illustration, minimal DAG G̃AR(1) is given in the case of an AR(1) model in Subsection
2.2.2. Most of our results are derived from the theory of graphical models associated with
the DAGs [18]. Note that, even though we need to consider a homogeneous DBN for the
inference of gene interaction networks, the theoretical results introduced in Sections 2.2 and
3 are valid without assuming homogeneity across time.

Table 1: Notations
P = {1 ≤ i ≤ p} set of observed genes,
Pi = P\{i}
N = {1 ≤ t ≤ n} time space,
X = {X i

t ; i ∈ P, t ∈ N} stochastic process (gene expression levels time series),
G = (X, E(G)) a DAG whose vertices are defined by X and edges by E(G) ⊆ X ×X,

G̃ the ”true” DAG describing full order conditional dependencies,
G(q) qth order conditional dependence DAG,

2.1 Backgrounds

2.1.1 Theory of the graphical models associated with DAGs

Let G = (X, E(G)) be a DAG whose vertices are the variables X = {X i
t ; i ∈ P, t ∈ N} and

whose set of edges E(G) is a subset of X ×X. We quickly recall here elements of the theory
of graphical models associated with the DAGs [18].
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Figure 3: Moral graph of the DAG in Figure 2. For all t > 1, the parents of the variable X1
t

are “married”, that is connected by a non directed edge.

Definition 1 (Parents, Lauritzen [18]) The parents of a vertex X i
t in G, denoted by

pa(X i
t ,G), are the variables having an edge pointing towards the vertex X i

t in G,

pa(X i
t ,G) := {Xj

s such that (Xj
s , X

i
t) ∈ E(G); j ∈ P, s ∈ N}.

Proposition 1 (BN representation, Pearl [28]) The probability distribution P of the
process X admits a Bayesian Network representation according to DAG G whenever its den-
sity f factorizes as a product of the conditional density of each variable X t

i given its parents
in G,

f(X) =
∏

i∈P

∏

t∈N

f(X i
t |pa(X i

t ,G)).

Definition 2 (Moral graph, Lauritzen [18]) The moral graph Gm of DAG G is obtained
from G by first ’marrying’ the parents (draw an undirected edge between each pair of parents of
each variable X i

t) and then deleting directions of the original edges of G. For an illustration,
Figure 3 displays the moral graph of the DAG in Figure 2.

Definition 3 (Ancestral set, Lauritzen [18]) The subset S is ancestral if and only if,
for all α ∈ S, the parents of α satisfy pa(α,G) ⊆ S. Hence, for any subset S of vertices,
there is a smallest ancestral set containing S which is denoted by An(S). Then GAn(S) refers
to the graph of the smallest ancestral set An(S). See Figure 4 for an illustration.

Throughout this paper, a central notion is that of conditional independence of random
variables. Let PU,V,W be the joint distribution of three random variables (U, V, W ). We say
that U is conditionally independent of V given W under PU,V,W and write U ⊥⊥ V | W
whenever the variable U does not depend on V when considering the joint distribution
PU,V,W . This result generalizes to sets of disjoint variables. Such conditional independence
relationships can be set from a BN representation by using the graphical theory associated
with the DAGs. Most of the results are based on the next proposition which is derived from
the Directed global Markov property [18].

Proposition 2 (Lauritzen [18], Corollary 3.23) Let P admit a BN representation ac-
cording to G. Then,

E ⊥⊥ F | S,

whenever all paths from E to F intersect S in (GAn(E∪F∪S))
m, the moral graph of the smallest

ancestral set containing E ∪ F ∪ S. We say that S separates E from F .
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Figure 4: Moral graph of the smallest ancestral set containing the variables X1
t+1, its parents

in the DAG in Figure 2 and X2
t . As the set (X1

t , X
2
t ) blocks all paths between X3

t and X1
t+1,

we have X1
t+1 ⊥⊥ X3

t | (X
1
t , X

2
t ).

2.1.2 Sufficient conditions for DBNs representation

We recall here sufficient conditions under which the probability distribution P of process X
admits a BN representation according to a dynamic network (e.g. in Figure 2). We first
assume that the observed process Xt is first-order Markovian (Assumption 1). That is the
expression level of a gene at given time t only depends on the past through the gene expression
levels observed at the previous time t − 1. Then we assume that the variables observed
simultaneously are conditionally independent given the past of the process (Assumption 2).
In other words, we consider that time measurements are close enough so that a gene expression
level X i

t measured at time t is better explained by the previous time expression levels Xt−1

than by some current expression level Xj
t .

Assumption 1 The stochastic process Xt is first-order Markovian,

∀t ≥ 3, Xt ⊥⊥ X1:t−2 | Xt−1.

Assumption 2 For all t ≥ 1, the random variables {X i
t}i∈P are conditionally independent

given the past of the process X1:t−1, that is,

∀t ≥ 1, ∀i 6= j, X i
t ⊥⊥ Xj

t | X1:t−1.

Lemma 1 Under Assumptions 1 and 2, the probability distribution P admits a DBN repre-
sentation according to a DAG whose edges only join nodes representing variables observed
at two successive time points, at least according to the DAG Gfull = (X, {(Xj

t−1, X
i
t)}i,j∈P,t>1)

which has edges between any pair of successive variables.

Assumptions 1 and 2 allow the existence of a DBN representation of the distribution P

according to DAG Gfull which contains all the edges pointing out from a variable observed
at some time t − 1 towards a variable observed at the next time t (Lemma 1, see proof in
Appendix A). The direction of the edges according to the time guarantees the acyclicity of
Gfull.
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2.2 Minimal DAG G̃

2.2.1 Existence and definition

We demonstrate here the existence of a minimal DAG G̃ according to which process X admits
a DBN representation. This DAG describes exactly the full order conditional dependencies
between successive variables given the past of the process (Proposition 3).

Lemma 2 Assume the joint probability distribution P of the process X has density f with
respect to Lebesgue measure on R

p×n. If P factorizes according to two different subgraphs of
Gfull, G1 and G2, then P factorizes according to G1 ∩ G2.

Lemma 3 (Conditional independence between non adjacent successive vari-
ables) Let G be a subgraph of Gfull according to which the probability distribution P admits
a BN representation. For any pair of successive variables (Xj

t−1, X
i
t) which are non adjacent

in G, we have

X i
t ⊥⊥ Xj

t−1 | pa(X i
t ,G) and X i

t ⊥⊥ Xj
t−1 | pa(X i

t ,G) ∪ S,

for all S subset of {Xk
u ; k ∈ P, u < t}.

The proofs of lemmas 2 and 3 are shown in Appendix A. As an illustration of Lemma 3,
assume P admits a BN representation according to the DAG of Figure 2. There is no edge
between X3

t and X1
t+1 in this DAG. Now consider in Figure 4 the moral graph of the smallest

ancestral graph containing X3
t , X1

t+1 and the parents (X1
t , X2

t ) of X1
t+1. The set (X1

t , X2
t )

blocks all paths between X3
t and X1

t+1. From Proposition 2, we have X1
t+1 ⊥⊥ X3

t | pa(X1
t+1,G).

It follows directly from Lemma 2 that, among the DAGs included in Gfull, it exists a
minimal DAG, denoted by G̃, according to which the probability distribution P factorizes.
From Lemma 3, the set of edges of G̃ is exactly the set of full order conditional dependencies
given the past of the process as set up in the next proposition.

Let Pj = P\{j}. We denote by X
Pj

t = {Xk
t ; k ∈ Pj} the set of p − 1 variables observed

at time t.

Proposition 3 (Existence of minimal DAG G̃, the smallest subgraph of Gfull al-
lowing DBN modeling) Whenever Assumptions 1 and 2 are satisfied, the probability dis-
tribution P admits a BN representation according to DAG G̃ whose edges describe exactly
the full order conditional dependencies between successive variables Xj

t−1 and X i
t given the

remaining variables X
Pj

t−1 observed at time t− 1,

G̃ =

(

X,
{

(Xj
t−1, X

i
t); X i

t 6⊥⊥ Xj
t−1|X

Pj

t−1

}

i,j∈P,t∈N

)

,

Moreover, DAG G̃ is the smallest subgraph of Gfull according to which P admits a BN repre-
sentation.
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See Proof in Appendix A. In DAG G̃, the set of parents pa(X i
t , G̃) of a variable X i

t is
the smallest subset of Xt−1 such that the conditional densities satisfy f(X i

t |pa(X i
t , G̃)) =

f(X i
t |Xt−1). The set of parents of a variable can be seen as the only variables on which this

variable depends directly. So G̃ is the DAG we want to infer to recover potential regulation
relationships from gene expression time series. From Lemma 3, any pair of successive variables
(Xj

t−1, X
i
t) which are non adjacent in G̃ are conditionally independent given the parents of

X i
t ,

X i
t ⊥⊥ Xj

t−1 | pa(X i
t , G̃).

We will make use of this result in Section 3 in order to define low order conditional dependence
DAGs for the inference of G̃.

2.2.2 Minimal DAG G̃AR(1) for an AR(1) process

Consider the following first order auto-regressive model,

AR(1) model

X1 ∼ N (µ1, Σ1) (2)

∀t > 1, Xt = AXt−1 + B + εt, εt ∼ N (0, Σ), (3)

∀s, t ∈ N, Cov(εt, εs) = δtsΣ, (4)

∀s > t, Cov(Xt, εs) = 0. (5)

where A = (aij)1≤i≤p,1≤j≤p is a p × p matrix, B = (bi)1≤i≤p is a column vector of size
p, Σ = (σij)1≤i≤p,1≤j≤p is the error covariance matrix and for all s, t in N , δts = 1l{s=t}.
Equation (5) implies that the coefficient matrices are uniquely determined from the covariance
function of Xt.

This modeling assumes homogeneity across time (constant matrix A) and linearity of the
dependency relationships. From (3) and (5), the model is first order Markovian and Assump-
tion 1 is satisfied. From (4), Assumption 2 is satisfied whenever the error covariance matrix
Σ is diagonal. Considering non correlated measurement errors between distinct genes is a
strong assumption especially since microarray data contain several sources of noise including
block effects. Nevertheless, assuming Σ diagonal is still reasonable after a normalization
procedure.

From Proposition 3, the probability distribution of this AR(1) process factorizes according
to a minimal DAG G̃AR(1) whose edges correspond to the non-zero coefficients of matrix A.
Indeed, if matrix Σ is diagonal, each element aij is the regression coefficient of the variable

X i
t on Xj

t−1 given X
Pj

t−1, that is

aij = Cov(X i
t , X

j
t−1 | X

Pj

t−1)/V ar(Xj
t−1 | X

Pj

t−1).

As process X is Gaussian, the set of null coefficients of matrix A exactly describes the
conditional independencies between successive variables,

if Σ is diagonal, we have aij = 0 ⇔
{

∀t > 1, X i
t ⊥⊥ Xj

t−1|X
Pj

t−1

}

.

9



So DAG G̃AR(1) has an edge between two successive variables Xj
t−1 and X i

t , for all t > 1,
whenever the coefficient aij of the matrix A differs from zero,

G̃AR(1) :=
(

X,
{

(Xj
t−1, X

i
t) such that aij 6= 0; t > 1, i, j ∈ P

})

. (6)

As an illustration, any AR(1) process whose matrix Σ is diagonal and matrix A has the
following form,

A =







a11 a12 0

a21 0 0

0 a32 0







admits a BN representation according to the dynamic network of Figure 2 (p = 3).

3 Introducing qth order dependence DAGs G(q) for DBNs

In this paper, we propose to use the DBN modeling according to DAG G̃ (introduced
in Proposition 3) to model genetic regulatory networks from gene expression time series.
Reverse discovering DAG G̃ requires to determine, for each variable X i

t , the set of variables
Xj

t−1 observed at time t − 1 on which variable X i
t is conditionally dependent given the

remaining variables X
Pj

t−1.
Even under the homogeneity assumption discussed in the introduction, the available gene

expression time series data do not allow such testing. Indeed, we still have to face the ’curse
of dimension’ as the number of genes p, is much higher than the number of measurements n.
Thus we extend to DBNs the approach based on the consideration of low order indepen-
dencies introduced by Wille et al.[48, 47] for GGM approximation (see more details on low
order independence graph for GGMs in the introduction section). After defining qth order
conditional dependence DAGs G(q) (q < p) for DBNs, we investigate in which manner they
allow us to approximate the DAG G̃ describing full order conditional dependencies.

3.1 DAG G(q) Definition

Let q be smaller than p. In the qth order dependence DAG G(q), no edge is drawn between two
successive variables Xj

t−1 and X i
t whenever it exists a subset XQ

t−1 of q variables among the

p− 1 variables X
Pj

t−1 such that Xj
t−1 and X i

t are conditionally independent given this subset.
In short, DAGs G(q) are defined as follows,

Definition 4 qth-order conditional dependence DAG G(q)

∀q < p, G(q) =

(

X,
{

(Xj
t−1, X

i
t); ∀Q ⊆ Pj , |Q| = q, X i

t 6⊥⊥ Xj
t−1|X

Q
t−1

}

i,j∈P,t∈N

)

.

DAGs G(q) offer a way of producing some dependence relationships between the variables
but are not anymore associated with a BN representation which would call for more global
relationships. Note that the definition of q-th order partial dependence DAG G(q) is based
on exact q-th order independencies (not on all partial independencies lower than q as in the
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Figure 5: First-order conditional dependence DAG G(1) (obtained from the DAG in Figure 2).
The spurious dashed arrow may appear in G(1).

partial order correlation network used by Wille and Bühlmann [47]). Indeed, we consider
that including the q-th order dependencies only reflects somehow better the true DAG G̃. In
particular, for p variables, DAG G(p−1) is DAG G̃. This definition is possible for DBNs because
dynamic modeling essentially differs from static correlation networks modeling. In particular,
contrary to the case of correlation network, the ”V” structures (or structures with multiple
parents) do not generate spurious edges in the case of DBN since the definition of the DAG G̃
defining full order dependencies does not allow edges between variables observed at the same
time. Then, for instance, when considering the following ”V” structure Xj

t−1 → X i
t ← Xk

t−1,

no spurious edge can be inferred between the variables Xj
t−1 and Xk

t−1.

In general, DAGs G(q) differ from DAG G̃. For instance, the approximation of the DAG
of Figure 2 by the 1st order conditional dependence DAG may give birth to the spurious
edge X3

t−1 → X1
t , for all t > 1 (see Figure 5). Indeed, X1

t−1 (resp. X2
t−1) does not separate

X1
t from X3

t−1 in the smallest moral graph containing the variables X1
t ∪X3

t−1 ∪X1
t−1 (resp.

X1
t ∪X3

t−1 ∪X2
t−1) displayed in Figure 4. Nevertheless, if the vertices of G̃ have few parents,

DAGs G(q) bring relevant information on the topology of G̃, even for small value of q. In
the following, we give characterizations of low order conditional dependence DAGs G(q) and
analyze how accurate approximations they do offer.

3.2 A restricted number of parents

In the known gene regulation mechanisms, some genes regulate many other genes (e.g. the
single input modules in the transcriptional regulatory network of S. Cerevisiae [21]). Never-
theless, we do not expect a single gene to be regulated by a lot of genes at the same time.
So the number of parents in gene interaction networks is expected to be relatively small. In
this section, we analyze the properties of G(q) when the number of parents in G̃ is lower than
q.

Let us denote by Npa(X
i
t , G̃) the number of parents of X i

t in the DAG G̃ and NMax
pa (G̃)

the maximal number of parents of any variable X i
t in G̃,

Npa(X
i
t , G̃) =

∣

∣

∣
pa(X i

t , G̃)
∣

∣

∣
, NMax

pa (G̃) = Max
i∈P,t∈N

(

Npa(X
i
t , G̃)

)

.

The next results hold when the number of parents in G̃ is restricted.

Proposition 4 If Npa(X
i
t , G̃) ≤ q then

{

(Xj
t−1, X

i
t) /∈ E(G̃)

}

⇒
{

(Xj
t−1, X

i
t) /∈ E(Gq)

}

.
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Corollary 1 For all q ≥ NMax
pa (G̃), we have G̃ ⊇ G(q).

Proposition 5 Let X be a Gaussian process. If NMax
pa (G̃) ≤ 1 then G̃ = G(1).

Consider a variable X i
t having at most q parents in G̃ (q < p). Let Xj

t−1 be a variable

observed at the previous time t − 1 and having no edge pointing towards X i
t in G̃. In the

moral graph of the smallest ancestral set containing X i
t ∪Xj

t−1∪pa(X i
t , G̃), the set of parents

pa(X i
t , G̃) separates X i

t from Xj
t−1. From Proposition 2, we have X i

t ⊥⊥ Xj
t−1 | pa(X i

t , G̃). The

number of parents pa(X i
t , G̃) is smaller than q, so the edge Xj

t−1 → X i
t is not in G(q). This

establishes Proposition 4.
Consequently, if the maximal number of parents in G̃ is lower than q then G(q) is included

in G̃ (Corollary 1). In that case, G(q) does not contain spurious edges.
The converse inclusion relationship is not true in general. Let Xj

t−1 → X i
t be an edge of

G̃, then X i
t and Xj

t−1 are conditionally dependent given the remaining variables X
Pj

t−1. It may

however exist a subset of q variables XQ
t−1, where Q is a subset of P\{j} of size q, such that

X i
t and Xj

t−1 are conditionally independent with respect to this subset XQ
t−1. Indeed, even

though the topology of G̃ allows to establish some conditional independencies, DAG G̃ does
not necessary allow to derive all of them. Two variables can be conditionally independent
given a subset of variables whereas this subset does not separate these two variables in G̃.
Nevertheless, if each variable has at most one parent, the converse inclusion G̃ ⊆ G(1) is true
if the process is Gaussian and q = 1 (Proposition 5, see proof in Appendix A). At a higher
order, we need to assume that all conditional independencies can be derived from G̃, that is
P is faithful to G̃.

3.3 Faithfulness

Definition 5 (faithfulness, Spirtes [35]) A distribution P is faithful to a DAG G if
all and only the independence relationships true in P are entailed by G (as set up in Propo-
sition 2).

Theorem 1 (Measure zero for unfaithful Gaussian (Spirtes [35]) and discrete
(Meek [23]) distributions) Let πN

G (resp. πD
G ) be the set of linearly independent param-

eters needed to parameterize a multivariate normal distribution (resp. discrete distribution)
P which admits a factorization according to a DAG G. The set of distributions which are
unfaithful to G is measure zero with respect to Lebesgue measure over πN

G (resp. over πD
G ).

If distribution P is faithful to G̃, then any subset XQ
t−1 ⊆ Xt−1, with respect to which X i

t

and Xj
t−1 are conditionally independent, separates X i

t and Xj
t−1 in the moral graph of the

smallest ancestral set containing X i
t ∪ Xj

t−1 ∪ XQ
t−1. Under this assumption, we can derive

interesting properties on G̃ from the topology of low order dependence DAGs G(q). As there is
no way to assess a probability distribution to be faithful to a DAG, this assumption has often
been criticized. Nevertheless, Theorem 1, established by Spirtes [35] for Gaussian distribution
and extended to discrete distribution by Meek [23], makes this assumption reasonable at
least in a measure-theoretic sense. Given that we consider a single distribution inherent
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to the studied process, the distribution P is not necessary faithful to G̃. Nevertheless, this
assumption remains very reasonable and calls for careful interest. The next propositions are
derived from faithfulness to G̃.

Proposition 6 Assume P is faithful to G̃. For all q < p, we have G̃ ⊆ G(q).

Proof. Let (Xj
t−1, X

i
t) ∈ E(G̃). Assume that (Xj

t−1, X
i
t) /∈ E(G(q)) then it exists a

subset of q variables XQ
t−1 with respect to which Xj

t−1 and X i
t are conditionally independent.

From faithfulness, the subset XQ
t−1 separates Xj

t−1 and X i
t in the moral graph of the smallest

ancestral set containing X i
t∪Xj

t−1∪XQ
t−1. This contradicts the presence of the edge (Xj

t−1, X
i
t)

in G̃.

Corollary 2 Assume P is faithful to G̃. For all q ≥ NMax
pa (G̃), we have G̃ = G(q).

Proposition 7 Assume P is faithful to G̃. If Npa(X
i
t ,G

(q)) ≤ q then (Xj
t−1, X

i
t) ∈ E(G(q)) ⇒

(Xj
t−1, X

i
t) ∈ E(G̃).

Proof. From faithfulness, G̃ ⊆ G(q). Then for all X i
t , Npa(X

i
t , G̃) ≤ Npa(X

i
t ,G

(q)) ≤ q.
From Proposition 4, (Xj

t−1, X
i
t) /∈ E(G̃) ⇒ (Xj

t−1, X
i
t) /∈ E(G(q)),that is (Xj

t−1, X
i
t) ∈

E(G(q)) ⇒ (Xj
t−1, X

i
t) ∈ E(G̃).

Corollary 3 Assume P is faithful to G̃. For all q ≥ NMax
pa (G(q)), we have G̃ = G(q).

From Proposition 6, whenever P is faithful to G̃, DAG G(q) contains DAG G̃. Then deriving
Corollary 1 from Proposition 6 and Corollary 2, we show that both DAG G(q) and DAG G̃
exactly coincide if any node of G̃ has less than q parents. Even though we expect the number
of parents in a gene interaction networks to be upper bounded, the exact maximal number of
parents NMax

pa (G̃) remains mostly unknown. However, we establish in Proposition 7, that the

edges of DAG G(q) pointing towards a variable having less than q parents in G(q) are edges of
G̃ too. Thus, if P is faithful to G̃, the knowledge of the topology of DAG G(q) only allows us
to ascertain some edges of DAG G̃.

4 G1DBN, a procedure for DBNs inference

We introduced and characterized the qth order dependence DAGs G(q), for all q < p, for
dynamic modeling. We now exploit our results to develop a non-Bayesian inference method
for DAG G̃. Let qmax be the maximal number of parents in G̃. From Corollary 3, inferring
G̃ amounts to inferring G(qmax). However, the inference of G(qmax) requires to check, for each
pair (i, j), if there exists a subset Q ⊆ Pj of dimension qmax such that X i

t ⊥⊥ Xj
t−1|X

Q
t−1

for all t > 1. So, for each pair (i, j), there are
(

qmax

p−1

)

potential sets that can lead to
conditional independence. To test each conditional independence given any possible subset
of qmax variables is questionable both in terms of complexity and multiple testings.

To circumvent these issues, we propose to exploit the fact that the true DAG G̃ is a
subgraph of G(1) (Proposition 6) to develop an inference procedure for G̃. Indeed, the inference
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of G(1) is both the faster (complexity) and the most accurate (number of tests). Thus we
introduce a 2 step-procedure for DBN inference. In the first step, we infer the 1st order
dependence DAG G(1), then we infer DAG G̃ from the estimated DAG Ĝ(1). This 2 step-
procedure, summarized in Figure 6, is implemented in a R package ’G1DBN’ [19] freely
available from the Comprehensive R Archive Network.

4.1 Step 1: inferring G(1)

We evaluate the likelihood of an edge (Xj
t−1, X

i
t) by measuring the conditional dependence

between the variables Xj
t−1 and X i

t given any variable Xk
t−1. Assuming linear dependencies,

we consider the partial regression coefficient aij|k defined as follows,

X i
t = mijk + aij|kX

j
t−1 + aik|jX

k
t−1 + ηi,j,k

t ,

where the rank of the matrix (Xj
t−1, X

k
t−1)t≥2 equals 2 and the errors {ηi,j,k

t }t≥2 are centered,
have same variance and are not correlated.

We measure the conditional dependence between the variables Xj
t−1 and X i

t given any

variable Xk
t−1 by testing null assumption Hi,j,k

0 : “aij|k = 0”. To such an aim, we use one out
of three M-estimators for this coefficient: either the familiar Least Square (LS) estimator, the
Huber estimator, or the Tukey bisquare (or biweight) estimator. The two latter are robust
estimators [10]. Then for each k 6= j, we compute the estimates âij|k according to one of
these three estimators and derive the p-value pij,k from the standard significance test:

under (Hi,j,k
0 ) : “aij|k = 0”,

âij|k

σ̂(âij|k)
∼ t(n− 4), (7)

where t(n− 4) refers to a student probability distribution with n− 4 degrees of freedom and
σ̂(âij|k) is the variance estimates for âij|k.

Thus, we assign a score S1(i, j) to each potential edge (Xj
t−1, X

i
t) equal to the maximum

Maxk 6=j(pij|k) of the p− 1 computed p-values, that is the most favorable result to 1st order
conditional independence. This procedure does not derive p-values for the edges but allows
to order the possible edges of DAG G(1) according to how likely they are. The smallest scores
point out the most significant edges for G(1). The inferred DAG Ĝ(1) contains the edges having
a score below a chosen threshold α1.

4.2 Step 2: inferring G̃ from G(1)

We use the inferred DAG Ĝ(1) as a reduction of the search space. Indeed, from faithfulness,
we know that G̃ ⊆ G(1) (Proposition 6). Moreover, when DAG G̃ is sparse, there are far fewer
edges in G(1) than in the complete DAG Gfull defined in Subsection 2.1.2. Consequently, the

number of parents of each variable in Ĝ(1) is much smaller than n. Then model selection
can be carried out using standard estimation and tests among the edges of Ĝ(1). For each
pair (i, j) such that the set of edges (Xj

t−1, X
i
t)t>1 is in Ĝ(1), we denote by a

(2)
ij the regression

coefficient,
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Choose either LS, Huber or Tukey estimator and set the thresholds α1

and α2.

Step 1: inferring G(1).

For all i ∈ P,

For all j ∈ P, for all k 6= j, compute the p-value pij|k from (7),

S1(i, j) = Maxk 6=j(pij|k).

E(Ĝ(1)) = {(Xj
t−1,X

i
t)t>1; i, j ∈ P, such that S1(i, j) < α1}.

Step 2: inferring G̃ from Ĝ(1).

If NMax
pa (Ĝ(1)) ∼ n− 1, choose a higher threshold α1 and go to Step 1.

For all i such that Npa(X
i
t , Ĝ

(1)) ≥ 1, compute the p-value p
(2)
ij from (9).

S2(i, j) =

{

p
(2)
ij for all i, j ∈ P such that (Xj

t−1,X
i
t)t>1 ∈ Ĝ

(1),

1 otherwise.

E(G̃) = {(Xj
t−1,X

i
t)t>1; i ∈ P, (i, j) ∈ P such that S2(i, j) < α2}.

Figure 6: Outline of the 2 step-procedure G1DBN for DBN inference.

X i
t = mi +

∑

j∈pa(Xi
t ,Ĝ

(1))

a
(2)
ij Xj

t−1 + ηi
t, (8)

where the rank of the matrix (Xj
t−1)t≥2,j∈pa(Xi

t ,Ĝ(1)) is |pa(X i
t , Ĝ

(1))| and the errors {ηi
t}t≥2 are

centered, have the same variance, and are not correlated. We assign to each edge of Ĝ(1) a
score S2(i, j) equal to the p-value p

(2)
ij derived from the significance test,

under (Hi,j
0 ) : “a

(2)
ij = 0”,

â
(2)
ij

σ̂(â
(2)
ij )
∼ t(n− 1− |pa(X i

t , Ĝ
(1))|). (9)

The score S2(i, j) = 1 is assigned to the edges that are not in Ĝ(1). The smallest scores
indicate the most significant edges. The inferred DAG for G̃ contains those edges whose
score is below a chosen threshold α2.

When G̃ is sparse, Step 1 of G1DBN inference procedure gives already a good estimation of
G̃ (see Percision-Recall curves obtained for simulated data in Figure 7). Even better results
can be obtained with the 2 step-procedure which requires to tune two parameters α1 and α2.
Parameter α1 is the selection threshold of the edges of Ĝ(1) in Step 1 (that is the dimension
reduction threshold), whereas parameter α2 is the selection threshold for the edges of G̃
among the edges of DAG Ĝ(1).

4.3 Choice of the thresholds

The choice of thresholds is often something non trivial, especially when using multiple testing.
However, Step 1 of the procedure is conservative by construction. Indeed, the definition of
score S1 (equal to the maximum of p− 1 p-values computed for testing 1st-order conditional
independence) clearly supports the acceptation of the null assumption, i.e. the absence of an
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edge. Standard approaches for multiple testing correction do not apply to choose threshold
α1. Thus we introduce a heuristic approach to choose α1 threshold in Subsection 5.3.2.

The choice of α2 threshold is less problematic. Indeed, the second Step of the inference
procedure is a standard multivariate regression. Then the usual thresholds 1%, 5% or 10 %
can be chosen or even lower threshold when a low number of edges is wanted. However, this
implies the computation of multiple testing (as many tests as are edges in DAG G(1)). Then
a set of predictions is expected to be false predictions and it is interesting to control it. It
is possible for instance to control the chance of any false positives as Bonferroni or random
field methods do. For a more comprehensive approach, we chose to control the expected
proportion of false positives edges, i.e. the False Discovery Rate (FDR) with the approach
introduced by Benjamini and Hochberg [2] summarized as follows. Let m be the number of
remaining edges after Step 1, then Step 2 requires to compute m tests. Choose a maximal
FDR level q and order the set of m observed p-values: p(1) ≤ · · · ≤ p(i) ≤ · · · ≤ p(m). Then

reject the null assumption (H
(i)
0 : ”Edge i is not DAG G̃”) for all i ≤ k where k is defined as

follows,

k = max

{

i : p(i) ≤
i

m
q

}

.

If no such i exists, reject no hypothesis. Benjamini and Hochberg (1995) showed that this
procedure ensures the FDR is lower than qm0

m
≤ q where m0 is the number of true null

hypotheses.

4.4 Complexity of the algorithm

The complexity of this algorithm is O(p3). Note however that the score for the edges of
each target gene can be computed separately. Thus parallel run is straightforward and is
made possible with the R package ’G1DBN’ by specifying a target gene in the function
DBNScoreStep1 for Step 1 computation.

All the computations were performed on Redhat WS 4 AMD opteron 270 (2GHz). The
computation time mostly depends on the number of TF genes, i. e. the genes allowed to be
parents in the DAG to be inferred. For an illustration based on DBNs inference performed
from a real data set by Spellman [34] containing 786 target genes in Section 5.3.1, the
computation of Step 1 required 7 minutes when allowing only 18 genes to be TFs (resp.
4 minutes with the lasso [39] and 7 seconds with the shrinkage procedure [27], which are
two alternative approaches for DBN inference introduced in Section 5.1). When all the 786
genes can be TFs, the computation was parallel run and required 19 minutes by target gene
(resp. 8 minutes by target gene with the lasso and 5 minutes for the whole set of 786 target
genes with the shrinkage procedure). Step 2 is very quick and did not require more than
5 seconds in both studies. Even though the G1DBN procedure is slower than the others,
inference with G1DBN for a data set containing 800 genes is fully computable, especially
when parallel running.
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Figure 7: Percision-Recall (PR) curves obtained for network inference from simulated data
(n = 20). Left: Comparison of the inference procedures: G1DBN (LS or Tukey), shrinkage
and lasso. Step 2 of the G1DBN approach drastically improves the results (threshold α1 =
0.7). Right: Impact of noisy data, simulated using a non diagonal matrix Σ with either
Gaussian or uniform noise, on the G1DBN procedure (Step 2) computed with LS estimates.

5 Validation

5.1 Evaluation and comparison

The criterion used to evaluate the performance of DBN inference procedures is the Precision-
Recall (PR) curve as plotted in Figure 7. In PR curves, the precision, equal to the Positive
Predictive Value (PPV), is displayed on the ordinate and the recall, equal to the sensitivity,
on the abscissa. We recall here the next definitions,

PPV =
TP

TP + FP
Sensitivity =

TP

TP + FN

where TP refers to the number of true positive edges, i.e. the number of edges which are
selected by the inference procedure and actually belongs to the true DAG (either the DAG
used for simulating the data or the validation DAG established from biological knowledge);
FP refers to the number of false positive edges, i.e. the edges which are selected by the
procedure but are not in the true DAG and FN refers to the number of false negative edges,
i.e. the number of edges which are not selected by the procedure but are in the true DAG.
PR curves are drawn by first ordering the edges by decreasing significance, and then by
computing the PPV and sensitivity for the first selected edge and for each newly included
edge successively.

We compare the G1DBN inference procedure with two reference methods for model selec-
tion for multivariate AR(1) process: the shrinkage approach by Opgen-Rhein and Strimmer
[27] and the lasso (for Least Absolute Shrinkage and Selection Operator) introduced by Tib-
shirani [39]. Opgen-Rhein and Strimmer recently proposed a model selection procedure based
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Figure 8: PPV and sensitivity according to the number of parents in the simulation matrix
A obtained with G1DBN inference procedure with LS estimates (thresholds α1 = 0.7, α2 =
0.01).

on an analytic approach using James-Stein-Type shrinkage. The procedure consists of first
computing the partial correlation coefficients, r(X i

t , X
j
t−1|X

Pj

t−1), from the shrinkage estimates
of the partial regression coefficients, and second, selecting the edges with a local false discov-
ery rate approach [8]. Shrinkage inference is performed using the R functions implemented
by Opgen-Rhein and Strimmer, available on request from the authors.

The lasso (also called L1 shrinkage) combines shrinkage and model selection. The lasso
estimates are obtained by minimizing the residual sum of squares subject to the sum of
the absolute values of the coefficients being less than a constant. This approach offers the
advantage that it automatically sets many regression coefficients to zero. We carried out the
lasso with the LARS package developped by Efron et al. [9]. Edges are ordered by decreasing
absolute value of the partial regression coefficient lasso estimates.

5.2 Simulation study

As the discovery of genetic regulatory interaction is a field in progress, validation of predic-
tions made on real gene expression data is only partial, which may render the estimation
of true and false positive detection rate not fully reliable [13]. Thus we first investigate the
accuracy of G1DBN, shrinkage and lasso and inference procedure using simulated data. We
randomly generated 100 time series according to a multivariate AR(1) model defined by pa-
rameters (A[p×p], B, Σ) for p = 50 genes. Since gene regulation networks are sparse, each
matrix A contains 5 % of non zero coefficients. While keeping the number of parents low,
this does not prevent a vertex to have more than one parent. Non zero regression coeffi-
cients aij, mean coefficients bi and error variances σi were drawn from uniform distributions
(aij, bi ∼ U([−0.95;−0.05]∪ [0.05; 0.95]), σi ∼ U [0.03, 0.08]). Then time series were generated
under the corresponding multivariate AR(1) models for n = 20 to 50.

In this paper, we show the results obtained with n = 20, which is a length one can
expect from existing gene expression time series. The left panel of Figure 7 displays the
average Precision Recall (PR) curves obtained with the various inference approaches (see PR
curve definition in Subsection 5.1). We plotted the PR curves obtained with the G1DBN
procedure after both Step 1 (dashed lines) and Step 2 (solid lines); with either LS (black
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lines) or Tukey bisquare (light blue lines) estimates. The PR curves obtained with Huber
estimates are very similar to the Tukey bisquare curves and do not appear for sake of clarity.
Step 1 computed with the LS estimator gives a very high PPV for the very first selected
edges. Initially, the PPV is greater than 95% while sensitivity goes up to 20%, but then
the PPV decreases almost linearly against the sensitivity. However, Step 2 of the G1DBN
procedure drastically improves the results. It allows to maintain the PPV greater than 95
% while sensitivity goes up to 50%. PR curves computed with the Tukey estimator led to
comparable results. By basing on these simulated datasets, the G1DBN inference procedure
clearly outperforms the lasso (dotted line) and the shrinkage approach (dashed-dotted line)
gives results comparable to the first step of the G1DBN procedure only. The results of the
three methods are naturally improved for greater values of n but their relative perfomances
are preserved (curves not shown).

We also investigated the impact of the violation of the assumptions on the noise distri-
bution: Gaussian distribution and diagonal covariance matrix. Thus we performed DBN
inference on simulated data where the error covariance matrix Σ is not diagonal (3% of the
coefficients outside the diagonal differ from 0) and the noise distribution is either Gaussian
or uniform (U ∼ ([−2; 2])). As shown on the right panel of Figure 7, the accuracy of the
G1DBN procedure (Step 2) is not strongly affected in both cases. However, it is difficult
to get rid of the 1st order Markov Assumption. Indeed, in order to face the dimension, the
approach is dedicated to the inference of constant time delayed dependence relationships
only. When simulating an AR(2) model, the 2-order time dependencies existing in the model
are missed. However, the 1-order time dependencies existing in the model are still recovered.
Then, when considering a 2nd order Markov process, an approximation can still be performed
by successively inferring 1- and 2-order time dependencies.

Note that the procedure also performs well when the number of parents in the true DAG G̃
is greater than one. Figure 8 displays the positive predictive value (PPV) and the sensitivity
according to the number of parents in the simulation model. The number of parents of each
gene i is the number of non zero coefficient of ith row of matrix A. The PPV is very stable and
greater than 80% whatever the number of parents is. The sensitivity, even though decreasing
when the number of parents increases, is still greater than 50% up to 3 parents. We chose a
low α2 threshold (α2 = 0.01) in order to be confident in the selected edges. When choosing α2

thresholds greater the results are overall similar but with lower PPV and higher sensitivity.

5.3 Analysis of microarray time course data sets

5.3.1 Spellman’s Yeast cell cycle data set

We apply the G1DBN inference procedure to the Saccharomyces cerevisiae cell cycle data
collected by Spellman et al. [34]. In the α Factor-based synchronization data (18 time
points), we focus on the data set containing the 792 genes that demonstrated consistent
periodic changes in transcription level. Out of this dataset, 6 gene expression profiles are
duplicated (YCL014W, YCL061C, YCL063W, YJL019W, YML034W). We computed the
mean expression profile of the duplicated genes and reduced the dataset to 786 genes. Then we
included 4 genes (coding for FKH2, MBP1, MCM, SWI6) that are among the 9 transcription
factors (TFs) pointed out by Lee et al. [21] as being responsible for the cell cycle regulation
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Figure 9: Zoom on Precision-Recall (PR) curves obtained from various inference procedures
in two analyses carried out on Spellman’s Saccharomyces cerevisiae cell cycle dataset (786
genes). Left: the set of putative TFs is reduced to 18 genes identified as potential TFs in
[42]; Right: all the 786 genes are eligible for being TFs. The horizontal dashed line, referred
to as ”Chance”, represents the PR curve we can expect to obtain by selecting the edges at
random (9% of validated edges in the 18 TFs case, 0.0026 % in the 786 TFs case).

and are missing in this dataset.
The validation of the edges is obtained from the Yeastract database [38], a curated repos-

itory currently listing more than 30990 regulatory associations between TFs and target genes
in Saccharomyces cerevisiae, based on more than 1000 bibliographic references. We took out
of the dataset 4 genes (YCL013W, YCL022C, YCLX09W, YCRX05W) that were unknown
to this database. The final dataset which contains the expression of the 786 genes is available
online at [20].

We carry out two surveys on this dataset. First, we allow only a subset of 18 genes to be
putative TFs (i. e. to have edges pointing out towards other genes in DAG G̃) and look for
their target genes. These 18 genes (coding for proteins ACE2, FKH1, FKH2, GAT3, MBP1,
MCM1, MIG2, NDD1, PHD1, RAP1, RME1, STB1, SUT1, SWI4, SWI5, SWI6, TEC1 and
YOX1) consist of the overlap between the 786 genes under study and the 50 genes identified
as putative TFs in a recent study by Tsai et al. [42]. Then we extend the search for TFs to
the whole dataset of 786 genes in a second survey.

In both cases, we compute the score S1, i.e. the maximal p-value for first order conditional
independence, for each edge (Step 1). We set a threshold α1 according to guidelines detailed
in Subsection 5.3.2 (α1 = 0.1 for the 18 TF-survey, α1 = 0.05 for the 786 TF-survey). Edges
whose score is below α1 stand for the edges of DAG G(1), describing the first order conditional
dependencies. Second, for each gene i, we consider the regression model defined by equation
(8) where the predictors are the parents of gene i in DAG G(1). We compute the score S2,

i.e. the p-value, p
(2)
ij , for each regression coefficient (Step 2), thus obtaining the score of the

edges of the full order conditional dependencies DAG G̃.
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Figure 10: DAG containing the 18 first selected edges with G1DBN with LS estimates in the
18 TF-survey of S. cerevisiae cell cycle (PPV=60%). Colored nodes represent the TFs and
the blue edges are validated by the Yeastract database.

The results of the G1DBN inference procedure, after both Step 1 and Step 2, are compared
with the shrinkage approach by Opgen-Rhein and Strimmer and the lasso, introduced in
Subsection 5.1. Figure 9 displays the PR curves obtained with each procedure in the two
different surveys (Left: 18 TFs, Right: 786 TFs). The horizontal dashed line, referred to
as ”Chance”, represents the PR curve which we can expect to obtain by selecting the edges
at random (respectively 9% of validated edges in the 18 TFs case, 0.26 % in the 786 TFs
case). In both cases, the 2-Step G1DBN procedure outperforms the other approaches in
terms of PPV and sensitivity (according to Yeastract validation). Note however that, the
shrinkage approach outperforms the lasso when considering 18 TFs only but the lasso give
better results when all the 786 genes can be elected as TFs.

Surprisingly, the PR curves obtained with G1DBN using robust estimates failed to im-
prove the results (compared to the LS estimates). Not plotted for sake of clarity, PR curves
obtained with Huber estimates are similar to these obtained with LS estimates and Tukey
estimates performed slightly worse.

In the 18 TF-survey, the first few selected edges are biologically validated (PPV=1).
When considering the 18 first selected edges, the PPV is still 60 %. The corresponding
inferred DAG appears in Figure 10, where the blue edges are validated by Yeastract. The
first detected TFs are the genes coding for proteins FKH2, NDD1, RAP1 and SWI4. In
particular, the proteins FKH2 (known as a TF with a major role in the expression of G2/M
phase genes) and SWI4 (TF regulating late G1-specific transcription of targets) are pointed
out as being essential TFs; they have the most target genes and the high majority (73%) of
these regulatory relationships is listed in Yeastract.

As introduced in Subsection 4.3, we chose α2 threshold in order to keep the False Discovery
Rate (FDR) smaller than 1% with the approach by Benjamini and Hochberg [2]. This lead to
α2 = 0.0059. The corresponding inferred DAG is shown Figure 11. The two proteins FKH2
and SWI4 are still part of the TFs having the most targets, together with NDD1, which is
an essential component of the activation of the expression of a set of late-S-phase-specific
genes and TEC1, a transcription factor required for full Ty1 expression and Ty1-mediated
gene activation (Ty transposable-element own for causing cell-type-dependent activation of
adjacent-gene expression). The set of selected TFs is listed in Table 2, where the third
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Figure 11: Inferred DAG G̃ with G1DBN with LS estimates, for α1 = 0.1, α2 = 0.0059
(ensuring FDR< 0.01) in the 18 TF-survey of the S. cerevisiae cell cycle. The colored nodes
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Table 2: List of the 16 genes identified as TFs with G1DBN with LS estimates, α1 = 0.1 and
α2 = 0.0059 (ensuring FDR< 0.01) in the 18 TF-survey of the S. cerevisiae cell cycle. The
second and third columns respectively describe the number of inferred target genes and the
number of validated targets via Yeastract. These 16 TFs are the parents (colored nodes) in
the DAG of Figure 11.

TF Nb of Targets Validated
FKH2 64 17
NDD1 51 0
TEC1 38 5
SWI4 26 12
ACE2 25 0
SUT1 20 0
SWI5 19 1
PHD1 18 4
YOX1 17 2
MIG2 11 0
RAP1 9 1
MBP1 4 0
GAT3 2 0
SWI6 2 0
MCM1 1 0
STB1 1 0

column indicates the number of validated edges out of the selected ones. Except for NDD1,
for which no target gene is listed in yeastract, one forth of the targets genes of the top four
TFs are validated.

In the second survey including all the 786 genes as putative TFs, the dimension is far
higher and the results are consequently more restricted. Indeed, in the PR curves of the right
panel of Figure 9, the PPV doesn’t exceed 12.5% (obtained with the 2nd step of G1DBN
procedure). However, this is still a subtantial result as compared with the proportion of
validated edges (0.26%). In order to keep the FDR smaller than 0.01, we chose α2 = 0.0067
by following the Benjamini and Hochberg approach [2]. The inferred DAG for the 786 TF-
survey contains 437 genes and 380 edges. This DAG, as well as the list of its edges and the
list of the genes selected as TFs, is available in online supplementary information [20].

5.3.2 A heuristic approach for the choice of α1 threshold

As the score S1 is not a usual statistical value, standard approaches to choose α1 threshold
cannot be used (see Subsection 4.3). Thus we introduce a heuristic approach to choose α1

threshold. We carried out inference with G1DBN for different values of α1, ranging from
0.01 to the maximal possible value allowing the number of parents in DAG G(1) to be small
enough as compared to the number of time points (α1 = 0.9 for the 18 TF-survey, α1 = 0.5
for the 786 TF-survey). For real data, the best results are obtained for small values of α1,
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thus substantially reducing the number of edges, but it is not entirely clear how small α1

should be. Thresholds giving relevant results differ according to the data. However a gene
is expected to have a limited number of TFs. Then a good manner to choose α1 is to base
on the distribution of the number of parents in the DAG G(1) (obtained by keeping only the
edges with a score S1 lower than α1). Indeed, in the two studies performed here on the yeast
cell cycle, the results of Step 2 are clearly related to the distribution of the number of parents
in the DAG G(1) (inferred after Step 1). The PR curves obtained for distributions generating
significantly different PR curves are shown in Figures 12 and 13, respectively for the 18 TF
and 786 TF-survey. Let us call q-parent genes the genes having q parents, i.e. the genes
having q incoming edges in DAG G(1). The distinctive distributions have either a dominating
number of 0 parent-genes, 1 parent-genes or 2 parent-genes. The right panel of the Figures
12 and 13 displays the distribution of the number of parents in the inferred DAG G(1) for the
various values of α1.
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Figure 12: Impact of α1 threshold in the 18 TF-survey on the yeast cell cycle. Left: PR
curves obtained after the Step 2 of G1DBN for various values of α1. Right: The distribution
of the number of parents in DAG G(1) according to the various α1 values.

Note that the value of α1 corresponding to a particular distribution differs in the two
studies, but the PR curves are related to the distribution in the same manner. In both cases
when the number of 0-parent genes clearly dominates, the PPV is great for the very first
edges only. When the number of 1 parent-genes dominates, the PR curve is already slightly
lower and clearly falls down when the number of 2 parent-genes dominates. However, in
both the 18 TF and the 786 TF-survey, the PR curve is overall greater when the number
of 0 parent-genes dominates but the number of 1 parent-genes remains far greater than the
other, i.e. almost as great for the 18 TF-survey or half as great when allowing the whole set
of 786 genes to be TFs. The corresponding PR curves and distributions are black plotted in
Figures 12 and 13.

This does not account for a theoretical proof but still represents an empirical result
observed twice in studies with different number of putative TFs. Up to now, this heuristic

24



0.000 0.002 0.004 0.006 0.008 0.010

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Sensitivity

P
P

V

Step2 − alpha1=0.03
Step2 − alpha1=0.05
Step2 − alpha1=0.13
Step2 − alpha1=0.2
Step1 only
Chance

0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha1= 0.03

Nb of parents

D
en

si
ty

0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha1= 0.05

Nb of parents

0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha1= 0.13

Nb of parents

0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha1= 0.2

Nb of parents

Figure 13: Impact of α1 threshold in the 786 TF-survey on the yeast cell cycle. Left: PR
curves obtained after the Step 2 of G1DBN for various values of α1. Right: The distribution
of the number of parents in DAG G(1) according to the various α1 values.

approach remains the best guideline to choose α1 threshold according to the expectation:
when an overall greatest PPV is wanted, α1 threshold is chosen so that, in the DAG G(1)

inferred after Step 1, the number of 0 parent-genes dominates but the number of 1 parent-
genes is still far greater than the rest. When only a very small number of edges is wanted,
α1 threshold can be chosen so that the number of 0 parent-genes clearly dominates. Note
however that the step 1 performs already well for a small number of TF.

Table 3: List of the 9 proteins selected as parents in the DAG of Figure 14 which have been
identified as Transcription Factor or DNA binding by A. thaliana.

Node Gene Name Description
26 AT2G45820-TAIR-G DNA binding
73 AT2G43010-TAIR-G PIF4; DNA binding / transcription factor

242 AT1G05900-TAIR-G DNA binding / endonuclease
249 AT1G01250-TAIR-G DNA binding / transcription factor
509 AT4G31720-TAIR-G TAFII15; transcription factor
570 At3g57600-MinT-G AP2 transcription factor
606 AT5G10400-TAIR-G DNA binding
725 AT5G65360-TAIR-G DNA binding
788 At4g14410-MinT-G putative bHLH transcription factor
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Figure 14: Inferred DAG G̃ with G1DBN with LS estimates from the data by Smith et al. [33]
to investigate starch metabolism of A. thaliana (α1 = 0.1, α2 = 0.005 such that FDR< 0.01)
The dark colored nodes are the three nodes with the most targets, two out of them are known
for being implicated in starch metabolism. The light colored nodes are parent nodes already
identified as TF or DNA binding protein (see Table 3). This network contains 277 genes and
206 edges.
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5.3.3 Diurnal cycle on the starch metabolism of Arabidopsis Thaliana

We applied our G1DBN inference procedure to the expression time series data generated by
Smith et al. [33] to investigate the impact of the diurnal cycle on the starch metabolism of
Arabidopsis Thaliana. We restricted our study to the 800 genes selected by Opgen-Rhein and
Strimmer [27] as having periodic expression profiles. The data are available in the GeneNet
R package at http://strimmerlab.org/software/genenet/html/ar th800.html or in our
R package G1DBN (arth800line).

Using the heuristic approach introduced in the previous subsection, we choose threshold
α1 = 0.02 allowing the distribution of the number of parents in the DAG G(1) having the
number of 0-parent genes to dominate and the number of 1-parent genes to be half as large.
We set α2 = 0.005 in order to maintain the False Discovery Rate smaller than 0.01 by using
the approach by Benjamini and Hochberg [2] (See Subsection 4.3 for details). We obtain the
DAG G̃ plotted in Figure 14 containing 206 edges implicating 277 different genes.

This DAG differs from the one inferred by Opgen-Rhein and Strimmer [27]. However we
may notice that the edges selected by the three inference procedures discussed in this section
differ somewhat. See the proportion of common edges selected by the various approaches
in Appendix B. The three approaches may, in fact, yield complementary information or
insights.

However we still recover a network with a “hub” connectivity structure. Among the
’parent’ nodes in the DAG G̃, two nodes (799 and 628) out of the three having the most
target refers to proteins that are known to be implicated in starch metabolism. Indeed, node
799, which has 14 ’target’ nodes in G̃, refers to DPE2 (DISPROPORTIONATING ENZYME
2), which is an essential component of the pathway from starch to sucrose and cellular
metabolism in plant leaves at night. Node 628 (6 targets in G̃) is a transferase (At5g24300)
implicated in the starch synthase. Node 702, which is an unknown protein (At5g58220),
has also 6 targets in G̃. These three nodes are dark-colored in the DAG of figure 14. The
remaining ’parent’ nodes have from 1 to 4 targets. Among them, 9 genes, listed in Table 3,
have already been identified as TFs or as DNA binding proteins. These 9 nodes are light-
colored in the displayed DAG. Finally a list of 37 unknown proteins have been selected as
parents in the inferred DAG G̃. Potentially implicated in the regulation machinery of starch
metabolism, these proteins represent a subset of genes which is relevant for further analyses.

See all the details on the inferred network displayed in Figure 14 in the online supplemen-
tary information available at [20]. In particular, the description of the 800 genes, the list of
the 37 unknown proteins selected as parents in the inferred DAG, the list of the parent nodes
according to their number of target nodes and the list of the edges ordered by decreasing
significance are listed.

6 Discussion and conclusion

As more and more gene expression time series are available, the need for efficient tools to
analyze such data has become imperious. In this paper, we first determine sufficient condi-
tions for a Dynamic Bayesian Network modeling for gene expression time series which offers
straightforward interpretation: the edges of the DAG G̃ defining this DBN exactly describe
the set of conditional dependencies between successive gene expression levels. Having defined
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and characterized low order conditional dependence DAGs for DBNs, we point out relevant
characteristics for the approximation of sparse DAGs. In particular, under faithfulness as-
sumption, DAG G̃ is included in the 1st order conditional dependence DAG G(1).

From these results, we develop G1DBN, a novel procedure for DBNs inference, which
makes it possible to face the ’small n, large p’ estimation case occuring with genetic time
series data. Based on the consideration of low order conditional dependencies, the G1DBN
procedure proved to be powerful on both simulated and real data analysis. In particular,
this approach outperforms previous model selection approaches using shrinkage or lasso es-
timates, respectively. The shrinkage approach considerably improves the precision of the
overall estimation of the partial correlation coefficients when the number of observations n
is small compared to the number of genes p (with respect to standard methods). However,
considering 1st order conditional independence proved to be more efficient in terms of PPV
and sensitivity on both simulated and real data analysis. As for the lasso, one might notice
that a drawback lies in the fact that the edge selection is done vertex by vertex whereas the
DAG G̃ is globally sparse but not uniformally. As a consequence, the lasso tends to unifor-
mally reduce the number of parents of each vertex instead of only keeping the total number
of edges contained.

The power of the G1DBN procedure comes from the accuracy improvement of the testing
made possible by the dimension reduction. Indeed, as the first step selection is based on 1st

order conditional independence consideration, significance tests are performed in a model of
dimension 4 (see Section 4.1). This represents a drastic dimension reduction as compared
to full order independence testing and makes the testing much more accurate. Thus, even if
there are more edges in the DAG G(1) than in the true DAG G̃ (Proposition 6), Step 1 of the
procedure is already very predictive.

Throughout the analyses performed for this paper, we point out two major directions for
further research. On the one hand, we noticed than the edges selected by the three inference
procedures differ somewhat (see Appendix B). A further relevant study would consist of
analyzing in which way these DBN inference procedures could have different strenghts and
may be complementary. On the other hand, the use of robust estimators like Huber or
Tukey bisquare did not allow a noticeable improvement of the inference approach on the
analysis of real data. Another interesting survey lies in the investigation of which measures
of dependence, like non linear or other robust estimates, are the more pertinent to analyze
gene expression data.
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APPENDIX

A Some more proofs

Proof of Lemma 1. From assumption 1, the density f of the joint probability distribution of
the process X writes as the product of conditional densities,

f(X) = f(X1)

n
∏

t=2

f(Xt|Xt−1), (10)

where f(Xt|Xt−1) refers to the density of the conditional probability distribution of Xt given Xt−1.
From Assumption 2, for all t > 1, the conditional density f(Xt|Xt−1) writes as the product of

the conditional density of each variable Xi
t given the set of variables Xt−1 observed at the previous

time,

f(Xt|Xt−1) =
∏

i∈P

f(Xi
t |Xt−1). (11)

From equations (10) and (11), the density f writes as the product of the conditional density
of each variable Xi

t given its parents in Gfull. From Proposition 1, the probability distribution P

admits a BN representation according to Gfull.

Proof of Lemma 2. Consider a discrete-time stochastic process X = {Xi
t ; i ∈ P, t ∈ N}

whose joint probability P distribution has the density f with respect to Lebesgue measure on R
p×n.

Let G1 and G2 be two different subgraphs of Gfull according to which the joint probability
distribution P factorizes. Let i in P , t in N , we consider the random variable Xi

t .

We denote as follows,

• the following subsets of P ,

pa1 = {j ∈ P ;Xj
t−1 ∈ pa(Xi

t ,G1)}

pa1 = P\{pa1}

pa2 = {j ∈ P ;Xj
t−1 ∈ pa(Xi

t ,G2)}

pa2 = P\{pa2}

• and the densities of the joint or marginal probability distributions of (Xi
t ,Xt−1),

g : R
p+1 → R the density of the joint probability distribution of (Xi

t ,Xt−1),

gi the density of the probability distribution of Xi
t ,

gP the density of the joint probability distribution of (Xt−1),

gi,pa1 the density of the joint probability distribution of (Xi
t ,X

pa1
t−1) = (Xi

t , pa(Xi
t ,G1)),

gi,pa2 the density of the joint probability distribution of (Xi
t ,X

pa2
t−1) = (Xi

t ,Xt−1\{pa(Xi
t ,G2)}),

etc...
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In the following, y ∈ R, x = (x1, ..., xp) ∈ R
p and we denote by xpa1 = {xj ; j ∈ pa1} ∈ R

|pa1|

(Thus x = (xpa1 , xpa1
) = (xpa2 , xpa2

) ∈ R
p). As the probability distribution P factorizes according

to G1, we derive from the DAG theory the conditional independence,

Xi
t ⊥⊥ X

pa1
t−1|X

pa1
t−1,

that is,

∀y ∈ R,∀x ∈ R
p,

g(y, x)

gP (x)
=

gi,pa1(y, xpa1)

gpa1(xpa1)
.

Equivalent results can be derived from the factorization according to G2 giving,

∀y ∈ R, x ∈ R
p, N gi,pa2(y, xpa2) =

gi,pa1(y, xpa1)

gpa1(xpa1)
gpa2(xpa2).

By taking the integral with respect to xpa2∩pa1
, we write for all y ∈ R, for all xpa1∪pa2 ∈ R

|pa1∪pa2|,

∫

gi,pa2(y, xpa2)d(xpa2∩pa1
) =

∫

gi,pa1(y, xpa1)

gpa1(xpa1)
gpa2(xpa2)d(xpa2∩pa1

)

gi,pa1∩pa2(y, xpa1∩pa2) =
gi,pa1(y, xpa1)

gpa1(xpa1)
gpa1∩pa2(xpa1∩pa2)

Finally we have,

∀y ∈ R,∀x ∈ R
p,

g(y, x)

gP (x)
=

gi,pa1∩pa2(y, xpa1∩pa2)

gpa1∩pa2(xpa1∩pa2)
,

that is the conditional density of the probability distribution of Xi
t given Xt−1 is the conditional

density of the probability distribution of Xi
t given Xpa1∩pa2

t−1 . Then P factorizes according to G1∩G2.

Proof of Lemma 3. Assume P admits a BN representation according to G, a subgraph of Gfull.

Let Xj
t−1 and Xi

t be two non adjacent vertices of G (there is no edge between them in G) and consider
the moral graph (G

An(Xi
t∪X

j
t−1∪pa(Xi

t ,G)))
m of the smallest ancestral set containing the variables Xi

t ,

Xj
t−1 and the parents pa(Xi

t ,G) of Xi
t in G. As DAG G is a subgraph of Gfull, the set of parents

pa(Xi
t ,G) blocks all paths between Xj

t−1 and Xi
t in the moral graph (G

An(Xi
t∪X

j
t−1∪pa(Xi

t ,G)))
m. From

Proposition 2, this establishes the conditional independence Xi
t ⊥⊥ Xj

t−1 | pa(Xi
t ,G).

This result holds for the conditioning according to any subset S ⊆ {Xk
u ; k ∈ P, u < t}.

Proof of Proposition 3.

First, we show that P admits a BN representation according to G̃. Let i, j ∈ P such that

Xi
t ⊥⊥ Xj

t−1|X
Pj

t−1, then we have,

f(Xi
t |Xt−1) = f(Xi

t |X
Pj

t−1).

Under Assumptions 1 and 2, from Lemma 1 and Proposition 1, P admits a BN representation
according to the DAG (X,E(Gfull) \ (Xj

t−1,X
i
t)) which has the edges of Gfull except for the edge

(Xj
t−1,X

i
t). This holds for any pair of successive variables that are conditionally independent.
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Consequently, from Lemma 2, P admits a BN representation according to the intersection of the

DAG (X,E(Gfull) \ (Xj
t−1,X

i
t)) for any pair (Xi

t ,X
j
t−1) such that Xi

t ⊥⊥ Xj
t−1|X

Pj

t−1, that is DAG G̃.

Second, DAG G̃ cannot be reduced. Indeed, let (X l
t−1,X

k
t ) be an edge of G̃ and assume that P

admits a BN representation according to G̃\(X l
t−1,X

k
t ), that is G̃ reduced from the edge (X l

t−1,X
k
t ).

From Lemma 3, we have Xk
t ⊥⊥ X l

t−1|X
Pl

t−1, which contradicts (X l
t−1,X

k
t ) ∈ V (G̃) (i.e. Xk

t 6⊥⊥

X l
t−1|X

Pl

t−1).

Proof of Proposition 5.

First, from Corollary 1, G̃ ⊇ G(1).
Second, let X be a Gaussian process and (Xj

t−1,X
i
t) ∈ E(G̃), then according to Proposition 3,

Xi
t 6⊥⊥ Xj

t−1 | X
Pj

t−1. Since X is Gaussian, this implies Cov(Xi
t ,X

j
t−1|X

Pj

t−1) 6= 0.

Now assume that it exists k 6= j, such that Xi
t ⊥⊥ Xj

t−1 | X
k
t−1 ie (Xj

t−1,X
i
t) /∈ E(G(1)). We are

going to prove that this contradicts Cov(Xi
t ,X

j
t−1|X

Pj

t−1) 6= 0. Let l be an element of P\{j, k}. The

conditional covariance Cov(ij|k, l) = Cov(Xi
t ,X

j
t−1 |X

k
t−1,X

l
t−1) writes,

Cov(ij|k, l) = Cov(Xi
t ,X

j
t−1 |X

k
t−1)−

Cov(Xi
t ,X

l
t−1 |X

k
t−1)Cov(Xj

t−1,X
l
t−1|X

k
t−1)

V ar(X l
t−1|X

k
t−1)

,

= Cov(Xi
t ,X

j
t−1 |X

k
t−1) ×

[

1−
(Cov(Xj

t−1,X
l
t−1|X

k
t−1))

2

V ar(Xj
t−1|X

k
t−1)V ar(X l

t−1|X
k
t−1)

]

−
Cov(Xj

t−1,X
l
t−1|X

k
t−1)Cov(Xi

t ,X
l
t−1 |X

k
t−1,X

j
t−1)

V ar(X l
t−1|X

k
t−1)

.

However both terms in the latter expression of Cov(ij|k, l) are null:

• since Xi
t ⊥⊥ Xj

t−1 | X
k
t−1, then Cov(Xi

t ,X
j
t−1 |X

k
t−1) = 0,

• as NMax
pa (G̃) ≤ 1, Xj

t−1 is the only parent of Xi
t in G̃. So the variable Xj

t−1 and thus also the

set (Xj
t−1,X

k
t−1) blocks all paths between X l

t−1 and Xi
t in the moral graph of the smallest

ancestral set containing Xi
t ∪ Xj,k,l

t−1 . Then we have, Xi
t ⊥⊥ X l

t−1 |
{

Xj
t−1,X

k
t−1

}

, that is

Cov(Xi
t ,X

l
t−1 |X

k
t−1,X

j
t−1) = 0.

Then Cov(ij|k, l) = 0. By induction, we obtain Cov(Xi
t ,X

j
t−1|X

Pj

t−1) = 0 leading to a contra-

diction with (Xj
t−1,X

i
t) ∈ E(G̃). Therefore (Xj

t−1,X
i
t) ∈ G

(1) and G̃ ⊆ G(1).
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B Comparison of the first selected edges according to the chosen

inference procedure
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Figure 15: Proportion of shared edges among the 10, 100 and 200 first selected edges (from left
to right) using different inference procedures from the yeast cell cycle data (18 TFs authorized
only). Huber (resp. Tukey) refers to G1DBN with Huber (resp. Tukey) estimates.
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Figure 16: Proportion of shared edges among the 10, 100 and 200 first selected edges (from
left to right) using different inference procedure from the yeast cell cycle data (all 786 TFs
authorized).
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Figure 17: Proportion of shared edges among the 10, 100 and 200 first selected edges (from
left to right) using different inference procedures from A. thaliana data (800 genes).
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