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Abstract

In this paper, we propose a novel inference method for dynamic genetic networks which makes it
possible to face with a number of time measurements n much smaller than the number of genes p. The
approach is based on the concept of low order conditional dependence graph that we extend here in the
particular case of Dynamic Bayesian Networks. Most of our results are based on the theory of graphical
models associated with the Directed Acyclic Graphs (DAGs). In this way, we define a DAG G̃ which
describes exactly the full order conditional dependencies given the past of the process. Then, to face with
the large p and small n estimation case, we propose to approximate DAG G̃ by considering low order
conditional independencies. We introduce partial qth order conditional dependence DAGs and analyze
their probabilistic properties. In general, DAGs G(q) differ from G̃ but still reflect relevant dependence
facts for sparse networks such as genetic networks. By using this approximation, we set out a non-
bayesian inference method and demonstrate the effectiveness of this approach on both simulated and real
data analysis. The inference procedure is implemented in the R package ’G1DBN’ freely available from
the R archive (CRAN).
Keywords : conditional independence, Bayesian networks, directed acyclic graphs, dynamic networks
inference, time series modeling.

1 Introduction

The development of microarray technology allows to simultaneously measure the expression levels of many
genes at a precise time point. Thus it has become possible to observe gene expression levels across a whole
process like cell cycle or response to radiation or several treatments. The objective is now to recover gene
regulation phenomena from this data. We are looking for simple relationships such as ”gene i activates
gene j”. But we also want to capture more complex scenarios such as auto-regulations, feed-forward loops,
multi-component loops... as described by Lee et al. [17] in the transcriptional regulatory network of the yeast
Saccharomyces cerevisiae.

To such an aim, we both need to accurately take into account temporal dependencies and to face with
the dimension of the problem as the number p of observed genes is much higher than the number n of
observation time points. Moreover we know that most of the observed genes are not taking part to the
evolution of the system. So we want to determinate which are the few ”active” agents, that are the agents
being responsible for the evolution of the system and what are the relationships between them. In short, we
want to infer a network representing the dependence relationships which govern a multiple elements-system
from the observation of this system across short time series.

Such gene networks were firstly described by using static modeling and mainly non oriented networks.
One of the first tools used to describe interaction between genes is the relevance network [3] or correlation
network [34]. Better known as covariance graph [4] in the graphical models theory, this non directed graph
describes the pair-wise correlation between genes. Its topology is derived from the covariance matrix between
the gene expression levels; an undirected edge is drawn between two variables whenever they are correlated.
Nevertheless, the correlation between two variables may come from the linkage with other variables. This
creates spurious edges due to indirect dependence relationships.

Consequently, great interest has been taken in the concentration graph [16], also called covariance selection
model, which describes the conditional dependence structure between gene expression in Graphical Gaussian
Models (GGMs). Let Y = (Yi)1≤i≤p be a multivariate Gaussian vector representing the expression levels
of p genes. An undirected edge is drawn between two variables Yi and Yj whenever they are conditionally
dependent given the remaining variables. The standard theory of estimation in GGMs [42], [16] can be
exploited only when the number of measurements n is much higher than the number of variables p. This
ensures that the sample covariance matrix is positive definite with probability one. Nevertheless, in most of
the microarray gene expression data, we have to cope with the opposite situation (n << p). Thus, the growing
interest for ’small n, large p’ furthered the development of numerous alternatives (Schäfer and Strimmer [28]
[29] , Waddell and Kishino [40] [39], Toh and Horimoto [37] [38], Wu et al. [46], Wang et al. [41]). Even
though concentration graphs allow to point out some dependence relationships between genes, they do not
offer an accurate description of the interactions. Firstly, no direction is given to the interactions. Secondly,
some motifs containing cycles cannot be properly represented (see Figure 1).
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Figure 1: A biological regulation motif (left) and the corresponding concentration graph (right). For all i ≥ 3,
Yi is a Gaussian variable representing the expression level of gene Gi. Some cycles cannot be represented on
the concentration graph.

Contrary to the previous undirected graphs, Bayesian networks (BNs) [10] model directed relationships.
Based on a probabilistic measure, a BN representation of a model is defined by a Directed Acyclic Graph
(DAG) and the set of conditional probability distributions of each variable given its parents in the DAG [24].
Then the theory of graphical models [42, 6, 16] allows to derive conditional independencies from this DAG.
However the acyclicity constraint in static BNs is a serious restriction given the expected structure of genetic
networks.

Here comes the interest of Dynamic Bayesian networks (DBNs) first introduced for the analysis of gene
expression time series by Friedman et al. [11] and Murphy and Mian [21]. In DBNs, a gene is not anymore
represented by a single vertex but by as much vertices as time points in the experiment. A dynamic network
(Figure 2) can then be obtained by unfolding in time the initial cyclic motif in Figure 1 (left). The directions
according to the time guarantees the acyclicity of this dynamic network and consequently allows to define a
Bayesian network. The signs +/- showing the type of regulation in the biological motif do not appear in this
DAG but they can be derived from model parameters estimates.
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Figure 2: Dynamic network equivalent to the regulation motif in Figure 1 (left). Each vertex X i
t represents

the expression level of gene Gi at time t. This graph is acyclic and allows to define a Bayesian network.

The very high number p of genes simultaneously observed raises a dimension problem. Moreover, a
large majority of time series gene expression data contain no or very few repeated measurement(s) of the
expression level of the same gene at a given time. Hence, we assume that the process is homogeneous across
time. This consists of considering that the system is governed by the same rules during the whole experiment.
Consequently, the temporal dependencies are homogeneous: any edge is present during the whole process.
This is a strong assumption which is not necessarily satisfied. Nevertheless, this condition is necessary to
carry out estimation. Indeed, in that case, we observe n − 1 repeated measurements of the expression level
of each gene at two successive time points.

Up to now, various DBN representations based on different probabilistic models have been proposed
(discrete models [22, 47], multivariate auto-regressive process [23], State Space or Hidden Markov Models
[25, 45, 26, 2], nonparametric additive regression model [12, 13, 15, 35]). See also Kim et al. [14] for a review
of such models. Facing with as much diversity, we expose here sufficient condition such that a model admits
a DBN representation and we set out a straight interpretation in terms of dependencies between variables by
using the theory of graphical models for DAGs. Our DBN representation is based on a DAG G̃ (e.g. like the
DAG of Fig. 2) which describes exactly the full order conditional dependencies given all the remaining past
variables (see section 2). This approach extends the principle of the concentration graph showing conditional
independencies to the dynamic case.
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Even under homogeneity assumption, which enables to use the different time points as repeated measure-
ments of the same process, we still have to deal with the ’curse of dimension’ to infer the structure of DAG G̃.
The difficulty lies in facing with the large p and small n estimation case. Several inference methods have been
proposed for the estimation of the topology of the various graphs quoted above. Among others, Murphy [20]
implemented several bayesian structure learning procedures for dynamic models in the open-source Matlab
package BNT (Bayes Net Toolbox); Ong et al. [22] reduce the dimension of the problem by considering prior
knowledge; Perrin et al. [25] use an extension of the linear regression; Wu et al. [45] use factor analysis
and Beal et al. [2] develop a variational Bayesian method; Zou and Conzen [47] limit potential regulators
to the genes with either earlier or simultaneous expression changes and estimate the transcription time lag;
Opgen-Rhein and Strimmer [23] recently proposed a model selection procedure based on an analytic shrink-
age approach. However, a powerful approach based on the consideration of zero- and first-order conditional
independencies recently gained attention to model concentration graphs. When n << p, Wille et al. [44, 43]
propose to approximate the concentration graph by the graph G0−1 describing zero- and first-order condi-
tional independence. An edge between the variables Yi and Yj is drawn in the graph G0−1 if and only if, zero-
and first-order correlations between these two variables both differ from zero, that is, if the next conditions
are satisfied,

Corr(Yi, Yj) 6= 0 and ∀k ∈ {1, ..., p}\{i, j}, Corr(Yi , Yj |Yk) 6= 0, (1)

where Corr(Yi, Yj |Yk) is the partial correlation between Yi and Yj given Yk. Hence, whenever the possible
correlation between two variables Yi and Yj can be entirely explained by the effect of some variable Yk, no
edge is drawn between them.

This procedure allows a drastic dimension reduction: by using first order conditional correlations, esti-
mation can be carried out accurately even with a small number of observations. Even if the graph of zero-
and first-order conditional independence differs from the concentration graph in general, it still reflects some
measure of conditional independence. Wille et al. show through simulations that the graph G0−1 offers a good
approximation of sparse concentration graphs and demonstrate that both graphs even coincide exactly if the
concentration graph is a forest ([43], Corollary 1). This approach has also been used by Magwene and Kim
[18] and de la Fuente et al. [5] for estimating non-directed gene networks from microarray gene expression of
the yeast Saccharomyces cerevisiae. Roverato and Castelo [27] investigate such non directed qth order partial
independence graphs for q ≥ 1 and expose a sharp analysis of their properties. In this paper, we extend this
approach by defining qth order order conditional dependence DAGs G(q) for DBN representations. Then, by
basing on our results on these low order conditional dependence DAGs, we propose a novel inference method
for dynamic genetic networks which makes it possible to face with the ’small n, large p’ estimation case.

The remainder of the paper is organized as follows. In section 2, we expose sufficient conditions for a DBN
modeling of time series describing temporal dependencies. We notably show the existence of a minimal DAG
G̃ which allows such a DBN representation. To reduce the dimension of the estimation of the topology of G̃,
we propose to approximate G̃ by qth order conditional dependence DAGs G(q) and analyze their probabilistic
properties in section 3. From conditions on the topology of G̃ and faithfulness assumption, we establish
inclusion relationships between both DAGs G̃ and G(q). In section 4, we exploit our results on DAGs G(q)

to develop a non-bayesian estimation procedure. Finally, validation is obtained on both simulated and real
data in section 5. We notably expose our results for the analysis of two microarray time course data sets:
the Spellman’s yeast cell cycle data [32] and the diurnal cycle data on the starch metabolism of Arabidopsis
Thaliana collected by Smith et al. [31].

2 A DBN representation

Let P = {1 ≤ i ≤ p} describe the set of observed genes and N = {1 ≤ t ≤ n} the space of observation
times. In this paper, we consider a discrete-time stochastic process X = {X i

t ; i ∈ P, t ∈ N} taking real values
and assume the joint probability distribution P of the process X has density f with respect to Lebesgue
measure on R

p×n. We denote by Xt = {X i
t ; i ∈ P} the set of the p random variables observed at time t and

X1:t = {X i
s; i ∈ P, s ≤ t} the set of the random variables observed before time t.

In this section, we expose sufficient conditions under which the probability distribution P admits a BN
representation according to a dynamic network (e.g. in Figure 2). The main result is set out in Proposition 3;
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Table 1: Notations
P = {1 ≤ i ≤ p} set of observed genes,
Pi = P\{i}
N = {1 ≤ t ≤ n} time space,
X = {X i

t ; i ∈ P, t ∈ N} stochastic process (gene expression levels time series),
G = (X, E(G)) a DAG whose vertices are defined by X and edges by E(G) ⊆ X × X ,

G̃ the ”true” DAG describing full order conditional dependencies (Proposition 3),

G(q) qth order conditional dependence DAG (Definition 4).
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Figure 3: Moral graph of the DAG in Figure 2. For all t > 1, the parents of the variable X1
t are “married”,

that is connected by a non directed edge.

we show that it exists a BN representation according to a minimal DAG G̃ whose edges describe exactly the set
of direct dependencies between successive variables Xj

t−1, X
i
t given the past of the process. For an illustration,

minimal DAG G̃AR(1) is given in the particular case of an AR(1) model in subsection 2.4. The main interest
of a DBN representation is to derive conditional dependence relationships between the variables by using
the graphical theory associated with the DAGs. Note that, even though we need to consider a homogeneous
DBN for the inference of gene interaction networks, the general framework (sections 2 and 3) is developed
without assuming homogeneity.

2.1 Backgrounds

Let G = (X, E(G)) be a DAG whose vertices are the variables X = {X i
t ; i ∈ P, t ∈ N} and whose set of edges

E(G) is a subset of X ×X . We quickly recall here elements of the theory of graphical models associated with
the DAGs [16].

Definition 1 The parents of a vertex X i
t in G, denoted by pa(X i

t ,G), are the variables having an edge pointing
towards the vertex X i

t in G,

pa(X i
t ,G) := {Xj

s such that (Xj
s , X i

t) ∈ E(G); j ∈ P, s ∈ N}.

Proposition 1 (BN representation [24]) The probability distribution P of the process X admits a Bayesian
Network representation according to DAG G whenever its density f factorizes as a product of the conditional
density of each variable Xt

i given its parents in G,

f(X) =
∏

i∈P

∏

t∈N

f(X i
t |pa(X i

t ,G)).

Definition 2 (Moral graph) The moral graph Gm of DAG G is obtained from G by first ’marrying’ the
parents (draw an undirected edge between each pair of parents of each variable X i

t) and then deleting directions
of the original edges of G.

For an illustration, Figure 3 exposes the moral graph of the DAG in Figure 2.

Definition 3 (Ancestral set) The subset S is ancestral if and only if, for all α ∈ S, the parents of α satisfy
pa(α,G) ⊆ S. Hence, for any subset S of vertices, there is a smallest ancestral set containing S which is
denoted by An(S). Then GAn(S) refers to the graph of the smallest ancestral set An(S).
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Throughout this paper, a central notion is that of conditional independence of random variables. Let
PU,V,W be the joint distribution of three random variables (U, V, W ). We say that U is conditionally inde-
pendent of V given W under PU,V,W and write U ⊥⊥ V | W whenever the variable U does not depend on
V when considering the joint distribution PU,V,W . This result generalizes to sets of disjoint variables. Such
conditional independence relationships can be set from a BN representation by using the graphical theory
associated with the DAGs. Most of the results are based on the next proposition which is derived from the
Directed global Markov property [16].

Proposition 2 (Lauritzen [16], Corollary 3.23) Let P admit a BN representation according to G. Then,

E ⊥⊥ F | S,

whenever all paths from E to F intersect S in (GAn(E∪F∪S))
m, the moral graph of the smallest ancestral set

containing E ∪ F ∪ S. We say that S separates E from F .

2.2 Sufficient conditions for a DBN representation

Assumption 1 The stochastic process Xt is first-order markovian,

∀t ≥ 3, Xt ⊥⊥ X1:t−2 | Xt−1.

Assumption 2 For all t ≥ 1, the random variables {X i
t}i∈P are conditionally independent given the past of

the process X1:t−1, that is,

∀t ≥ 1, ∀i 6= j, X i
t ⊥⊥ Xj

t | X1:t−1.

We first assume that the observed process Xt is first-order markovian (Assumption 1). That is the
expression level of a gene at given time t only depends on the past through the expression level at the previous
time t − 1. Then we assume that the variables observed simultaneously are conditionally independent given
the past of the process (Assumption 2). In other words, we consider that time measurements are close enough
so that a gene expression level X i

t measured at time t is better explained by the previous time expression
levels Xt−1 than by some current expression level Xj

t .
From these two assumptions, we establish in the next lemma the existence of a DBN representation of

the distribution P according to DAG Gfull which contains all the edges pointing out from a variable observed
at some time t − 1 towards a variable observed at next time t. The direction of the edges according to the
time guarantees the acyclicity of Gfull.

Lemma 1 Under Assumptions 1 and 2, the probability distribution P admits a DBN representation, at least
according to the DAG Gfull = (X, {(Xj

t−1, X
i
t)}i,j∈P,t>1) having edges between any pair of successive variables.

Proof. From assumption 1, the density f of the joint probability distribution of the process X writes as
the product of conditional densities,

f(X) = f(X1)

n
∏

t=2

f(Xt|Xt−1), (2)

where f(Xt|Xt−1) refers to the density of the conditional probability distribution of Xt given Xt−1.
From Assumption 2, for all t > 1, the conditional density f(Xt|Xt−1) writes as the product of the

conditional density of each variable X i
t given the set of variables Xt−1 observed at the previous time,

f(Xt|Xt−1) =
∏

i∈P

f(X i
t |Xt−1). (3)

From equations (2) and (3), the density f writes as the product of the conditional density of each variable
X i

t given its parents in Gfull. From Proposition 1, the probability distribution P admits a BN representation
according to Gfull.
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Figure 4: Moral graph of the smallest ancestral set containing the variables X1
t+1, its parents in the DAG in

Figure 2 and X2
t . As the set (X1

t , X2
t ) blocks all paths between X3

t and X1
t+1, we have X1

t+1 ⊥⊥ X3
t | (X1

t , X2
t ).

2.3 Minimal DAG G̃

Lemma 2 Assume the joint probability distribution P of the process X has density f with respect to Lebesgue
measure on R

p×n. If P factorizes according to two different subgraphs of Gfull, G1 and G2, then P factorizes
according to G1 ∩ G2.

Lemma 3 (Conditional independence between non adjacent successive variables) Let G be a
subgraph of Gfull according to which the probability distribution P admits a BN representation. For any pair

of successive variables (Xj
t−1, X

i
t) which are non adjacent in G, we have

X i
t ⊥⊥ Xj

t−1 | pa(X i
t ,G) and X i

t ⊥⊥ Xj
t−1 | pa(X i

t ,G) ∪ S,

for all S subset of {Xk
u ; k ∈ P, u < t}.

The proof of these two lemmas is in Appendix. For an illustration of Lemma 3, assume P admits a BN
representation according to the DAG of Figure 2. There is no edge between X3

t and X1
t+1 in this DAG. Now

consider in Figure 4 the moral graph of the smallest ancestral graph containing X3
t , X1

t+1 and the parents
(X1

t , X2
t ) of X1

t+1. The set (X1
t , X2

t ) blocks all paths between X3
t and X1

t+1. From Proposition 2, we have
X1

t+1 ⊥⊥ X3
t | pa(X1

t+1,G).

It follows directly from Lemma 2 that, among the DAGs included in Gfull, it exists a minimal DAG, denoted

by G̃, according to which the probability distribution P factorizes. From Lemma 3, the set of edges of G̃ is
exactly the set of full order conditional dependencies given the past of the process as set up in the next
proposition.

Let Pj = P\{j}. We denote by X
Pj

t = {Xk
t ; k ∈ Pj} the set of p − 1 variables observed at time t.

Proposition 3 (BN representation according to G̃, the smallest subgraph of Gfull) Whenever As-
sumptions 1 and 2 are satisfied, the probability distribution P admits a BN representation according to DAG
G̃ whose edges describe exactly the full order conditional dependencies between successive variables Xj

t−1 and

X i
t given the remaining variables X

Pj

t−1 observed at time t − 1,

G̃ =

(

X,
{

(Xj
t−1, X

i
t); X i

t 6⊥⊥ Xj
t−1|X

Pj

t−1

}

i,j∈P,t∈N

)

,

Moreover, DAG G̃ is the smallest subgraph of Gfull according to which P admits a BN representation.

See Proof in Appendix. In DAG G̃, the set of parents pa(X i
t , G̃) of each variable X i

t is the smallest subset of
Xt−1 such that the conditional densities satisfy f(X i

t |pa(X i
t , G̃)) = f(X i

t |Xt−1). The set of parents of each
variable can be seen as the only variables on which this variable depends directly. So G̃ is the DAG we want
to infer to recover potential regulation relationships from gene expression time series. From Lemma 3, any
pair of successive variables (Xj

t−1, X
i
t) which are non adjacent in G̃ are conditionally independent given the

parents of X i
t ,

X i
t ⊥⊥ Xj

t−1 | pa(X i
t , G̃).

We will make use of this result in section 3 in order to define low order conditional independence DAGs for
the inference of G̃.
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2.4 DAG G̃AR(1) for an AR(1) process

Consider the following first order auto-regressive model,

AR(1) model

X1 ∼ N (µ1, Σ1) (4)

∀t > 1, Xt = AXt−1 + B + εt, εt ∼ N (0, Σ), (5)

∀s, t ∈ N, Cov(εt, εs) = δtsΣ, (6)

∀s > t, Cov(Xt, εs) = 0. (7)

where A = (aij)1≤i≤p,1≤j≤p is a p×p matrix, B = (bi)1≤i≤p is a column vector of size p, Σ = (σij)1≤i≤p,1≤j≤p

is the error covariance matrix and for all s, t in N , δts = 1l{s=t}. Equation (7) implies that the coefficient
matrices are uniquely determined from the covariance function of Xt.

This modeling assumes homogeneity across time (constant matrix A) and linearity of the dependency
relationships. From (5) and (7), the model is first order markovian and Assumption 1 is satisfied. From (6),
Assumption 2 is satisfied whenever the error covariance matrix Σ is diagonal. Considering non correlated
measurement errors between distinct genes is a strong assumption especially since microarray data contain
several sources of noise including block effects. Nevertheless, assuming Σ diagonal is still reasonable after a
normalization procedure.

From Proposition 3, the probability distribution of this AR(1) process factorizes according to a min-
imal DAG G̃AR(1) whose edges correspond to the non-zero coefficients of matrix A. Indeed, if matrix Σ

is diagonal, each element aij is the regression coefficient of the variable X i
t on Xj

t−1 given X
Pj

t−1, that is

aij = Cov(X i
t , X

j
t−1 | X

Pj

t−1)/V ar(Xj
t−1 | X

Pj

t−1). So the set of null coefficients of the matrix A exactly
describes the conditional independencies between successive variables,

if Σ is diagonal, we have aij = 0 ⇔
{

∀t > 1, X i
t ⊥⊥ Xj

t−1|X
Pj

t−1

}

.

So DAG G̃AR(1) has an edge between two successive variables Xj
t−1 and X i

t , for all t > 1, whenever the
coefficient aij of the matrix A differs from zero,

G̃AR(1) :=
(

X,
{

(Xj
t−1, X

i
t) such that aij 6= 0; t > 1, i, j ∈ P

})

. (8)

For an illustration, any AR(1) process whose matrix Σ is diagonal and matrix A has the following form,

A =







a11 a12 0

a21 0 0

0 a32 0







admits a BN representation according to the dynamic network of Figure 2 (p = 3).

3 Approximating G̃ with DAGs G(q)

From Proposition 3, reverse discovering the DAG G̃ requires to determine, for each variable X i
t , the set of

variables Xj
t−1 observed at time t− 1 which are conditionally dependent on X i

t given the remaining variables

X
Pj

t−1. Even under homogeneity assumption (see section 1), the available data of gene expression time series
do not allow such testing. We still have to face the ’curse of dimension’ as the number of genes p, is much
higher than the number of measurements n. By extending the approach proposed by Wille et al. [44, 43] to
DBNs, we propose here an original approach for the inference of dynamic networks of high size by considering
low order independencies.
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Figure 5: First-order conditional dependence DAG G(1) (obtained from the DAG in Figure 2). The spurious
dashed arrow may appear in G(1).

3.1 Definition

We approximate DAG G̃ of full order conditional dependence by the qth order conditional dependence graph
G(q) (with q < p). In DAG G(q), no edge is drawn between two successive variables Xj

t−1 and X i
t whenever it

exists a subset XQ
t−1 of q variables among the p − 1 variables X

Pj

t−1 such that Xj
t−1 and X i

t are conditionally

independent given this subset. In short, DAGs G(q) are defined as follows,

Definition 4 qth-order conditional dependence DAG G(q)

∀q < p, G(q) =

(

X,
{

(Xj
t−1, X

i
t); ∀Q ⊆ Pj , |Q| = q, X i

t 6⊥⊥ Xj
t−1|X

Q
t−1

}

i,j∈P,t∈N

)

.

Note that DAGs G(q) offer a way of producing some dependence relationships between the variables but
are not anymore associated with a BN representation which would call for more global relationships. However
DAG G̃, which allows a BN representation, corresponds to the (p − 1)th order conditional dependence DAG
G(p−1).

In general, DAGs G(q) differ from DAG G̃. For instance, the approximation of the DAG of Figure 2 by
the 1st order conditional dependence DAG may give birth to the spurious edge X3

t−1 → X1
t , for all t > 1 (see

Figure 5). Indeed, neither X1
t−1 nor X2

t−1 separates X1
t from X3

t−1 in the smallest moral graph containing

X1
t ∪ X3

t−1 ∪ X1
t−1 (resp. X1

t ∪ X3
t−1 ∪ X2

t−1). Nevertheless, if the vertices of G̃ have few parents, DAGs

G(q) can bring relevant information on the topology of G̃, even for small value of q. In the following, we give
characterizations of low order conditional dependence DAGs G(q) and analyze how good approximations they
do offer.

3.2 A restricted number of parents

In the known gene regulation mechanisms, some genes regulate many other genes (e.g. single input modules
in the transcriptional regulatory network of S. Cerevisiae [17]). Nevertheless, we do not expect a single gene
to be regulated by a lot of genes at the same time. So the number of parents in gene interaction networks is
expected to be relatively small. In this section, we analyze the properties of G(q) when the number of parents
in G̃ is lower than q.

Let us denote by Npa(X i
t , G̃) the number of parents of X i

t in the DAG G̃ and NMax
pa (G̃) the maximal

number of parents of any variable X i
t in G̃,

Npa(X i
t , G̃) =

∣

∣

∣pa(X i
t , G̃)

∣

∣

∣ , NMax
pa (G̃) = Max

i∈P,t∈N

(

Npa(X i
t , G̃)

)

.

The next results hold when the number of parents in G̃ is restricted.

Proposition 4 If Npa(X i
t , G̃) ≤ q then

{

(Xj
t−1, X

i
t) /∈ E(G̃)

}

⇒
{

(Xj
t−1, X

i
t) /∈ E(Gq)

}

.

Corollary 1 For all q ≥ NMax
pa (G̃), we have G̃ ⊇ G(q).

Proposition 5 Let X be a Gaussian process. If NMax
pa (G̃) ≤ 1 then G̃ = G(1).

9



Consider a variable X i
t having at most q parents in G̃ (q < p). Let Xj

t−1 be a variable observed at the

previous time t−1 and having no edge pointing towards X i
t in G̃. In the moral graph of the smallest ancestral

set containing X i
t ∪Xj

t−1∪pa(X i
t , G̃), the set of parents pa(X i

t , G̃) separates X i
t from Xj

t−1. From Proposition

2, we have X i
t ⊥⊥ Xj

t−1 | pa(X i
t , G̃). The number of parents pa(X i

t , G̃) is lower than q, so the edge Xj
t−1 → X i

t

is not in G(q). This establishes Proposition 4.
Consequently, if the maximal number of parents in G̃ is lower than q then G(q) is included in G̃ (Corollary

1). In that case, G(q) does not contain spurious edges.
The converse inclusion relationship is not true in general. Let Xj

t−1 → X i
t be an edge of G̃, then X i

t and

Xj
t−1 are conditionally dependent given the remaining variables X

Pj

t−1. It may however exist a subset of q

variables XQ
t−1, where Q is a subset of P\{j} of size q, such that X i

t and Xj
t−1 are conditionally independent

with respect to this subset XQ
t−1. Indeed, even though the topology of G̃ allows to establish some conditional

independencies, DAG G̃ does not necessary allow to derive all of them. Two variables can be conditionally
independent given a subset of variables whereas this subset does not separate these two variables in G̃.
Nevertheless, if each variable has at most one parent, the converse inclusion G̃ ⊆ G(1) is true if the process
is Gaussian and q = 1 (Proposition 5, see proof in Appendix). At a higher order, we need to assume that all
conditional independencies can be derived from G̃, that is P is faithful to G̃.

3.3 Faithfulness

Definition 5 (faithfulness, Spirtes [33]) A distribution P is faithful to a DAG G if all and only the
independence relationships true in P are entailed by G (as set up in Proposition 2).

Theorem 1 (Measure zero for unfaithful Gaussian (Spirtes [33]) and discrete (Meek [19]) dis-
tributions) Let πN

G (resp. πD
G ) be the set of linearly independent parameters needed to parametrize a multi-

variate normal distribution (resp. discrete distribution) P which admits a factorization according to a DAG
G. The set of distributions which are unfaithful to G is measure zero with respect to Lebesgue measure over
πN
G (resp. over πD

G ).

If distribution P is faithful to G̃, then any subset XQ
t−1 ⊆ Xt−1, with respect to which X i

t and Xj
t−1 are

conditionally independent, separates X i
t and Xj

t−1 in the moral graph of the smallest ancestral set containing

X i
t ∪Xj

t−1∪XQ
t−1. Under this assumption, we can derive interesting properties on G̃ from the topology of low

order dependence DAGs G(q). As there is no way to assess a probability distribution to be faithful to a DAG,
this assumption has often been criticized. Nevertheless, Theorem 1, established by Spirtes [33] for Gaussian
distribution and extended to discrete distribution by Meek [19], makes this assumption reasonable at least
in a measure-theoretic sense. Given that we consider a single distribution inherent to the studied process,
the distribution P is not necessary faithful to G̃. Nevertheless, this assumption appears very reasonable and
calls for careful interest. The next propositions are derived from faithfulness to G̃.

Proposition 6 Assume P is faithful to G̃. For all q < p, we have G̃ ⊆ G(q).

Proof. Let (Xj
t−1, X

i
t) ∈ E(G̃). Assume that (Xj

t−1, X
i
t) /∈ E(G(q)) then it exists a subset of q variables

XQ
t−1 with respect to which Xj

t−1 and X i
t are conditionally independent. From faithfulness, the subset XQ

t−1

separates Xj
t−1 and X i

t in the moral graph of the smallest ancestral set containing X i
t ∪ Xj

t−1 ∪ XQ
t−1. This

contradicts the presence of the edge (Xj
t−1, X

i
t) in G̃.

Corollary 2 Assume P is faithful to G̃. For all q ≥ NMax
pa (G̃), we have G̃ = G(q).

Proposition 7 Assume P is faithful to G̃. If Npa(X i
t ,G

(q)) ≤ q then (Xj
t−1, X

i
t) ∈ E(G(q)) ⇒ (Xj

t−1, X
i
t) ∈

E(G̃).

Proof. From faithfulness, G̃ ⊆ G(q). Then for all X i
t , Npa(X i

t , G̃) ≤ Npa(X i
t ,G

(q)) ≤ q. From

Proposition 4, (Xj
t−1, X

i
t) /∈ E(G̃) ⇒ (Xj

t−1, X
i
t) /∈ E(G(q)),that is (Xj

t−1, X
i
t) ∈ E(G(q)) ⇒ (Xj

t−1, X
i
t) ∈

E(G̃).
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Choose either LS, Huber or Tukey estimator and set the thresholds α1 and α2.

Step 1: inferring G(1).

For all i ∈ P,

For all j ∈ P, for all k 6= j, compute the p-value pij|k from (9),

S1(i, j) = Maxk 6=j(pij|k).

E(Ĝ(1)) = {(Xj
t−1, X

i
t )t>1; i, j ∈ P, such that S1(i, j) < α1}.

Step 2: inferring G̃ from Ĝ(1).

If NMax
pa (Ĝ(1)) ∼ n − 1, choose a higher threshold α1 and go to Step 1.

For all i such that Npa(Xi
t , Ĝ

(1)) ≥ 1, compute the p-value p
(2)
ij from (10).

S2(i, j) =

{

p
(2)
ij for all i, j ∈ P such that (Xj

t−1, X
i
t )t>1 ∈ Ĝ(1),

1 otherwise.

E(G̃) = {(Xj
t−1, X

i
t)t>1; i ∈ P, (i, j) ∈ P such that S2(i, j) < α2}.

Figure 6: Algorithm

Corollary 3 Assume P is faithful to G̃. For all q ≥ NMax
pa (G(q)), we have G̃ = G(q).

Even though we expect the number of parents in a gene interaction networks to be upper bounded, the
exact maximal number of parents NMax

pa (G̃) remains unknown. Nevertheless, if P is faithful to G̃, some edges

of G̃ can still be derived from the topology of qth order conditional dependence DAGs G(q) without knowing
the maximal number of parents in G̃. Indeed, from Proposition 7, the edges of DAG G(q) pointing towards a
variable having less than q parents in G(q) are edges of G̃ too.

4 Inferring G̃

We introduced and characterized the qth order dependence DAGs G(q), for all q < p, in dynamic modeling.
We now exploit our results to develop a non-bayesian inference method for DAG G̃. Let qmax be the maximal
number of parents in G̃. From Corollary 3, inferring G̃ amounts to inferring G(qmax). However, the inference
of G(qmax) requires to check, for each pair (i, j), if there exists a subset Q ⊆ Pj of dimension qmax such that

X i
t ⊥⊥ Xj

t−1|X
Q
t−1 for all t > 1. So, for each pair (i, j), there are

(

qmax

p−1

)

potential sets that can lead to
conditional independence. To test each conditional independence given any possible subset of qmax variables
is questionable both in terms of complexity and multiple testings.

To circumvent these issues, we propose to exploit the fact that the true model G̃ is a subgraph of G(1)

(Proposition 6) to develop an inference procedure. Indeed, the inference of G(1) is both the faster (complexity)
and the most accurate (number of tests). So we set out a two step procedure: first to infer G(1), second to
infer G̃ from the estimated DAG Ĝ(1). Nevertheless, DAG Ĝ(1) already offers a very good approximation of G̃
when it is sparse (see Figure 7, left). We develop here the 2 step-procedure which is summarized in Figure 6.

4.1 Step 1: inferring G(1)

We evaluate the likelihood of an edge (Xj
t−1, X

i
t) by measuring the conditional dependence between the

variables Xj
t−1 and X i

t given any variable Xk
t−1. Let aij|k be the partial regression coefficient defined as

follows,

X i
t = mijk + aij|kXj

t−1 + aik|jX
k
t−1 + ηi,j,k

t ,

where the rank of the matrix (Xj
t−1, X

k
t−1)t≥2 equals 2 and the errors {ηi,j,k

t }t≥2 are centered, have same
variance and are not correlated.

We chose to measure the conditional dependence between the variables Xj
t−1 and X i

t given any variable

Xk
t−1 by testing null assumption Hi,j,k

0 : “aij|k = 0”. To such an aim, we use one out of three M-estimators for
this coefficient: either the familiar Least Square (LS) estimator, the Huber estimator, or the Tukey bisquare
(or biweight) estimator. The two latter are robust estimators [9]. Then for each k 6= j, we compute the
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estimates âij|k according to one of these three estimators and derive the p-value pij,k from the standard
significance test:

under (Hi,j,k
0 ) : “aij|k = 0”,

âij|k

σ̂(âij|k)
∼ t(n − 4), (9)

where t(n − 4) refers to a student probability distribution with n − 4 degrees of freedom and σ̂(âij|k) is the
variance estimates for âij|k.

Thus, we assign a score S1(i, j) to each potential edge (Xj
t−1, X

i
t) equal to the maximum Maxk 6=j(pij|k)

of the p− 1 computed p-values, that is the most favorable result to 1st order conditional independence. This
procedure does not derive p-values for the edges but allows to order the possible edges of DAG G(1) according
to how likely they are. The smallest scores point out the most significant edges for G(1). The inferred DAG
Ĝ(1) contains the edges having a score below a chosen threshold α1. We compare the three estimators used
for the inference of G̃ in a simulation study in the next section (Figure 7, right).

4.2 Step 2: inferring G̃

We use the inferred DAG Ĝ(1) as a reduction of the search space. Indeed, from faithfulness, G̃ ⊆ G(1)

(Proposition 6). Moreover, when DAG G̃ is sparse, there are far fewer edges in G(1) than in the complete
DAG Gfull defined in subsection 2.2. Consequently, the number of parents of each variable in Ĝ(1) is much
lower than n. Then model selection can be carried out by using standard estimation and tests among the

edges of Ĝ(1). For each pair (i, j) such that the set of edges (Xj
t−1, X

i
t)t>1 is in Ĝ(1), we denote a

(2)
ij the

following regression coefficient,

X i
t = mi +

∑

j∈pa(Xi
t ,Ĝ(1))

a
(2)
ij Xj

t−1 + ηi
t,

where the rank of the matrix (Xj
t−1)t≥2,j∈pa(Xi

t ,Ĝ(1)) is |pa(X i
t , Ĝ

(1))| and the errors {ηi
t}t≥2 are centered, have

same variance and are not correlated. We assign to each edge of Ĝ(1) the score S2(i, j) equal to the p-value

p
(2)
ij derived from the significance test,

under (Hi,j
0 ) : “a

(2)
ij = 0”,

â
(2)
ij

σ̂(â
(2)
ij )

∼ t(n − 1 − |pa(X i
t , Ĝ

(1))|). (10)

The score S2(i, j) = 1 is assigned to the edges that are not in Ĝ(1). The smallest scores point out the
most significant edges. The inferred DAG for G̃ contains the edges whose score is below a chosen threshold
α2. We implemented this inference procedure and some analysis tools in the R package ’G1DBN’. It is
distributed under the terms of the GNU General Public License and freely available from the R package
archive (http://cran.r-project.org).

When G̃ is sparse, Step 1 of the procedure gives a good estimation of G̃ already (see ROC curves of Figure
7, left). Even better results can be obtained with the 2 step-procedure which requires to tune two parameters
α1 and α2. Parameter α1 is the selection threshold of the edges of Ĝ(1) in step 1 (that is the dimension
reduction threshold), whereas parameter α2 is the selection threshold for the edges of G̃ among the edges of
DAG Ĝ(1). We study the impact of these parameters on the accuracy of the procedure through simulations
in the next section.

5 Validation

5.1 Simulation study

We investigate the accuracy of the various approaches we proposed to recover DAG G̃ for a multivariate
AR(1) model. We randomly generate 100 sets of parameters (A[p×p], B, Σ) for p = 50. The gene regulation
networks are known to be sparse. In accordance with this biological knowledge, each matrix A contains

12



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Positive

T
r
u

e
 P

o
s
it
iv

e

n=50
n=40
n=30
n=20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Positive

T
r
u

e
 P

o
s
it
iv

e

Tukey − Step 2
Tukey − Step 1
OLS    − Step 2
OLS    − Step 1
Shrinkage
Lasso

Figure 7: ROC curves for the inference of G̃. Left: ROC curves obtained by G(1) approximation (Step 1) with
the Least Square estimator when n = 20 to 50. Right: improvement obtained with both robust estimation
and Step 2 of the procedure (α1 = 0.9, n = 50); comparison with Shrinkage and Lasso regression.

2 % of non zero coefficients (sampled from uniform distribution). While keeping the number of parents
low, this does not prevent it to be higher than one. Non zero coefficients were generated as follows, aij ∼
U([−1.5;−0.5] ∪ [0.5; 1.5]), and we drew the mean bi ∼ U(0, 1) and error variance σi ∼ U [0.03, 0.08] from
uniform distributions. Time series were simulated under the corresponding multivariate AR(1) models for
n = 20 to 50.

The left panel of Figure 7 displays the average ROC curves for the inference of DAG G̃ obtained by
G(1) approximation (Step 1) with the LS estimator for n = 20 to 50. We ordered the edges (i, j) according
to increasing maximal p-values Maxk 6=j(pij|k) for the significance tests of the partial regression coefficient
estimates (see section 4.1 for details). For a very low false positive (FP) rate, the true positive (TP) rate
rises 70 % for the longer time series. Even when n = 20, which is about the maximal length of the available
time series gene expression data, the TP rate reaches almost 60 % whereas the FP rate remains almost null.

These results can still be improved. As an illustration, the right panel of Figure 7 displays average ROC
curves obtained after the first or the second step of the procedure with either LS or Tukey bisquare estimates
when n = 50. The ROC curves obtained with Huber estimates are very close to the Tukey bisquare curves
and do not appear on this graph for sake of clarity. The solid black curve is the ROC curve obtained after
step 1 computed with the LS estimator. Still with Step 1 only, the Tukey estimator allows to obtain better
results (see the solid light line). In both cases, Step 2 (dotted lines) still higher the ROC curves for the first
selected edges. So both Step 2 and robust estimation allows to higher the ROC curves, at least while keeping
the FP rate very small. A similar improvement is obtained for others values of n.

We now recall the definitions:

TP= Nb of true positive edges
Nb of edges in the model , PPV=Nb of true positive edges

Nb of selected edges ,

and examine more precisely the interest of Step 2. We notably analyze the impact of both thresholds α1 and
α2. The first step (inference of G(1)) allows to obtain a good TP/FP ratio already. Nevertheless the Positive
Predictive Value (PPV) deteriorates very quickly when the threshold α1 increases. As an illustration, see the
dotted lines in the left panel of Figure 8 which shows the value of both the true positive rate and the PPV
after Step 1 according to the threshold α1. After Step 1 only, the PPV is high for small values of α1, but
then only a rather small percentage of edges is detected: for α1 = 0.05, PPV = 90% and TP = 60%. On the
contrary, when α1 is high, even though the PPV is very small, the TP rate can reach very high values (up
to 83 % for α1 = 0.9). Here comes the interest of the second step of the procedure. Indeed, even for high
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Figure 8: Left: TP rate (increasing curves) and PPV (decreasing curves) according to the threshold α1

(n=50). Right: PPV according to the number of parents in the simulation DAG in the particular case
α1 = 0.9, α2 = 0.05 (n=50).

value of α1, the number of edges in Ĝ(1) - and consequently the number of parents - is much lower than the
initial number of potential edges (Gfull). The dimension is then reduced in proportion and a second selection
step can be carried out by using standard significance tests (see section 4.2). As appearing in black solid
lines on Figure 8 (left), Step 2 allows to increase the PPV while the TP rate stays high. For α1 = 0.85 and
α2 = 0.01, the true positive rate and the PPV both reach 75%. Both thresholds have to be tuned according
to the objective.

Note that the procedure performs well even when there are several parents in the true DAG G̃. The right
panel of Figure 8 shows the positive predictive value (PPV) for the inferred DAG G̃ according to the number
of parents in the simulation model for α1 = 0.9 and α2 = 0.05. Up to 3 parents, the PPVs are comparable
and reach 70% on average.

Finally, we compare our approach with two reference methods for model selection in multivariate AR(1)
process: the shrinkage approach by Opgen-Rhein and Strimmer and the Lasso regression.

Opgen-Rhein and Strimmer [23] recently proposed a model selection procedure based on an analytic
shrinkage approach. The procedure first consists in computing the partial correlation coefficients from the
shrinkage estimates of the partial regression coefficients, and second in selecting the edges with a local false
discovery rate approach [7]. We carried out model selection in the simulated data with the R package they
implemented. The ROC curve obtained by this shrinkage approach appears in dashed line (- - -) in the right
panel of figure 7.

The L1 regression (Lasso) [36] combines shrinkage and model selection. This approach offers the advantage
that it automatically sets many regression coefficients to zero. We carried out Lasso regression with the
LARS package [8]. We chose the penalty by cross-validation. As proposed by Opgen-Rhein and Strimmer,
we computed partial correlation coefficients from the Lasso estimates and drew ROC curves by ordering the
edges according to the absolute value of the corresponding partial correlation coefficient. The ROC curve for
the Lasso approach appears in dashed-dotted line (-·-·) in the right panel of figure 7.

Our procedure outperforms these two approaches. When using the 2 step-procedure with robust estima-
tion, we reach 80% TP whereas the FP rate is almost null. The accuracy of our procedure comes from the
increase of precision thanks to the dimension reduction. Indeed, this selection approach is based on 1st order
conditional independence consideration. This allows to carry out significance testing in a model of dimension
4 (see section 4.1). This represents a drastic dimension reduction and makes the testing much more powerful.
Indeed, even if there are more edges in G(1) than in the true DAG G̃ (Proposition 6), Step 1 of the procedure
is very sensitive already (see Figure 7).

Even though the Shrinkage approach improves a lot the precision of the estimation of each partial corre-
lation coefficient in comparison with standard methods, to consider 1st order conditional independence seems
to be more powerful for the edge detection.

As for the Lasso, one major drawback lies in the fact that the edge selection is done vertex by vertex
whereas the DAG G̃ is globally but not uniformally sparse. As a consequence, the Lasso tends to uniformally
reduce the number of parents of each vertex instead of only keeping small the total number of edges.
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Table 2: First selected edges (α1 = 0.05) and validation (1/0=True/False regulation relationship).

TF Target p
(2)
ij Validation

FKH2 KIP2 6.53e-06 1
SWI4 SVS1 6.87e-06 1
SWI4 AXL2 2.81e-05 0
SWI4 RKM1 3.85e-05 0
FKH2 CDC5 5.13e-05 1
FKH2 OGG1 5.21e-05 0
SWI4 SMC3 7.96e-05 0
FKH2 CLB2 9.10e-05 1
FKH2 SRC1 9.73e-05 1
SWI4 MSH2 1.16e-04 0

Table 3: Results of the inference method applied to the 792 genes of Spellman’s yeast cell cycle data (α1 =
0.05). Tuning α2 allows to choose between TP rate and PPV.

α2 TP edges PPV
10−3 25 40 %
10−2 47 30 %
10−1 60 18 %

5.2 Analysis of microarray time course data sets

5.2.1 Spellman’s Yeast cell cycle data set

We apply the proposed method to the Saccharomyces cerevisiae cell cycle data collected by Spellman et al.
[32]. In the α Factor-based synchronization data (18 time points), we focus on the data set containing the
792 genes that demonstrated consistent periodic changes in transcription level. We only allow the 9 identified
Transcription Factors (ACE2, FKH1, FKH2, MBP1, MCM1, NDD1, SWI4, SWI5, SWI6) that have been
identified to have roles in regulating transcription of yeast genes [30] to be the possible regulators and try to
infer their targets. The score is computed from LS estimates as explained in the previous section. We set the
threshold α1 to 0.05 for the inference of G(1). The inferred DAG G(1) contains 324 edges. From this DAG,

we compute the p-value p
(2)
ij to infer the true DAG G̃. The first selected edges appear in Table 2. The 4th

column indicates whether or not a selected edge is a known regulation relationship. Validation is obtained
from both the Yeastract database [1] and the targets of the cell cycle activators identified by Simon et al.
[30].

For α2 = 0.001, this procedure allows to detect 25 known regulation relationships (TP edges) with a PPV
of 40%. The results for different values of α2 appear in Table 3. When increasing α2, more edges are detected
while the specificity stays acceptable comparative with other studies. Indeed, in one of the last in date DBN
inference approach applied to the yeast cell cycle, Zou and Conzen [47] reduced their analysis to a subset
of only 116 regulated genes and compare their approach with Murphy’s Bayesian Network Toolbox [21]. By
specifying the 9 identified TFs, Zou and Conzen correctly identify 46 edges with a PPV of 40% with their
own procedure whereas they only obtain 18 correct edges with a PPV of 11% with Murphy’s BNT.

5.2.2 Diurnal cycle on the starch metabolism of Arabidopsis Thaliana

We applied our inference procedure to expression time series data generated by Smith et al. [31] to investigate
the impact of the diurnal cycle on the starch metabolism of Arabidopsis Thaliana. We restricted our study to
the 800 genes selected by Opgen-Rhein and Strimmer [23] as having periodic expression profiles. The data are
available in the GeneNet R package at http://strimmerlab.org/software/genenet/html /arth800.html
or in a longitudinal format in our R package G1DBN (arth800line).

We choose a high 1st Step threshold α1 = 0.1 in order to maximize the chance that G(1) contains the true
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Table 4: List of the 5 proteins selected as parents which have been identified as Transcription Factor or DNA
binding.

Node Gene Name Description
73 AT2G43010-TAIR-G PIF4 (PHYTOCHROME INTERACTING FACTOR 4);

DNA binding / transcription factor; Isolated as a semidom-
inant mutation defective in red -light responses. Encodes
a nuclear localized bHLH protein that interacts with ac-
tive PhyB protein. Negatively regulates phyB mediated
red light responses.

242 AT1G05900-TAIR-G DNA binding / endonuclease; endonuclease-related, similar
to endonuclease III (Homo sapiens) GI:1753174; contains
Pfam profile PF00633: Helix-hairpin-helix motif

606 AT5G10400-TAIR-G DNA binding; histone H3, identical to several histone H3
proteins, including Zea mays SP—P05203, Medicago sativa
GI:166384, Encephalartos altensteinii SP—P08903, Pisum
sativum SP—P02300; contains Pfam profile PF00125 Core
histone H2A/H2B/H3/H4

725 AT5G65360-TAIR-G DNA binding; histone H3, identical to histone H3
from Zea mays SP—P05203, Medicago sativa GI:166384,
Encephalartos altensteinii SP—P08903, Pisum sativum
SP—P02300; contains Pfam profile PF00125 Core histone
H2A/H2B/H3/H4

788 At4g14410-MinT-G putative bHLH transcription factor (bHLH104)

DAG G̃. For a 2nd Step threshold α2 = 0.001, we obtain the DAG G̃ which appears in Figure 9. This DAG
contains 168 edges implicating 236 different genes. 100 nodes are parent, 159 are child, 23 are both parent
and child. The network differs from the network inferred by Opgen-Rhein and Strimmer [23] but we still
recover a network with a “hub” connectivity structure.

Among the ’parent’ nodes in the network G̃, the two proteins having the most ’children’ (node 799 and
628) are known to be implicated in the starch metabolism. Indeed, node 799, which has 11 ’children’ in
G̃, refers to DPE2 (DISPROPORTIONATING ENZYME 2), an essential component of the pathway from
starch to sucrose and cellular metabolism in leaves at night. Then node 628 (6 children in G̃) is a transferase
(At5g24300) implicated in the starch synthase. Node 702 which is an unknown protein (At5g58220) has also
6 children in G̃. These three nodes are dark-colored in the DAG of figure 9. The remaining ’parent’ nodes
have from 1 to 4 ’children’. Among them, two are already identified as TFs and three as DNA binding
proteins (see Table 4). These five nodes are light-colored in the DAG of figure 9. Finally a list of 28 unknown
proteins have been selected as parents in the inferred DAG G̃.

Complete results appear in the supplementary information available at http://stat.genopole. cnrs.fr/˜slebre/arth800DBN
This notably displays the complete list of the unknown proteins selected as parents in the inferred DAG (sec-
tion 2), the list of the parent nodes according to their number of target nodes (section 3) and the list of the
edges ordered by decreasing significance (section 4) and by increasing past node number (section 5). The de-
scription of the 800 genes can be obtained from the GeneNet R package or at http://stat.genopole.cnrs.fr/˜slebre/arth800d

6 Conclusion

In this paper, we first introduce a DBN modeling of gene expression time series which offers straight interpre-
tation in terms of conditional dependence between gene expression levels. Then we define and characterize
low order conditional dependence DAGs for dynamic networks. They offer a very good approximation of
sparse DAGs.

From these results, we develop a novel inference method for dynamic genetic networks which makes
it possible to face with the ’small n, large p’ estimation case. Our procedure proved to be powerful on
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Figure 9: Inferred DAG G̃ for α1 = 0.1, α2 = 0.001 (168 edges).
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both simulated and real data analysis. This approach based on the consideration of low order conditional
dependence notably outperforms model selection based on shrinkage or lasso estimates.

We point out that robust estimators appeared very efficient for the detection of the edges. An interesting
direction for further research lies in investigating which measures of the dependence in gene expression data
are the more pertinent.
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APPENDIX

Proof of Lemma 2. Consider a discrete-time stochastic process X = {X i
t ; i ∈ P, t ∈ N} whose joint

probability P distribution has the density f with respect to Lebesgue measure on R
p×n.

Let G1 and G2 be two different subgraphs of Gfull according to which the joint probability distribution P

factorizes. Let i in P , t in N , we consider the random variable X i
t .

We denote as follows,

• the following subsets of P ,

pa1 = {j ∈ P ; Xj
t−1 ∈ pa(X i

t ,G1)}

pa1 = P\{pa1}

pa2 = {j ∈ P ; Xj
t−1 ∈ pa(X i

t ,G2)}

pa2 = P\{pa2}

• and the densities of the joint or marginal probability distributions of (X i
t , Xt−1),

g : R
p+1 → R the density of the joint probability distribution of (X i

t , Xt−1),

gi the density of the probability distribution of X i
t ,

gP the density of the joint probability distribution of (Xt−1),

gi,pa1 the density of the joint probability distribution of (X i
t , X

pa1

t−1) = (X i
t , pa(X i

t ,G1)),

gi,pa2 the density of the joint probability distribution of (X i
t , X

pa2
t−1) = (X i

t , Xt−1\{pa(X i
t ,G2)}),

etc...

In the following, y ∈ R, x = (x1, ..., xp) ∈ R
p and we denote by xpa1 = {xj ; j ∈ pa1} ∈ R

|pa1| (Thus
x = (xpa1 , xpa1

) = (xpa2 , xpa2
) ∈ R

p). As the probability distribution P factorizes according to G1, we derive
from the DAG theory the conditional independence,

X i
t ⊥⊥ X

pa1
t−1|X

pa1

t−1,

that is,

∀y ∈ R, ∀x ∈ R
p,

g(y, x)

gP (x)
=

gi,pa1(y, xpa1)

gpa1(xpa1)
.

Equivalent results can be derived from the factorization according to G2 giving,

∀y ∈ R, x ∈ R
p, N gi,pa2(y, xpa2) =

gi,pa1(y, xpa1)

gpa1(xpa1)
gpa2(xpa2).

By taking the integral with respect to xpa2∩pa1
, we write for all y ∈ R, for all xpa1∪pa2 ∈ R

|pa1∪pa2|,
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∫

gi,pa2(y, xpa2)d(xpa2∩pa1
) =

∫

gi,pa1(y, xpa1)

gpa1(xpa1 )
gpa2(xpa2 )d(xpa2∩pa1

)

gi,pa1∩pa2(y, xpa1∩pa2) =
gi,pa1(y, xpa1)

gpa1(xpa1)
gpa1∩pa2(xpa1∩pa2)

Finally we have,

∀y ∈ R, ∀x ∈ R
p,

g(y, x)

gP (x)
=

gi,pa1∩pa2(y, xpa1∩pa2)

gpa1∩pa2(xpa1∩pa2)
,

that is the conditional density of the probability distribution of X i
t given Xt−1 is the conditional density of

the probability distribution of X i
t given Xpa1∩pa2

t−1 . Then P factorizes according to G1 ∩ G2.

Proof of Lemma 3. Assume P admits a BN representation according to G, a subgraph of Gfull. Let

Xj
t−1 and X i

t be two non adjacent vertices of G (there is no edge between them in G) and consider the moral

graph (G
An(Xi

t∪X
j

t−1∪pa(Xi
t ,G)))

m of the smallest ancestral set containing the variables X i
t , Xj

t−1 and the

parents pa(X i
t ,G) of X i

t in G. As DAG G is a subgraph of Gfull, the set of parents pa(X i
t ,G) blocks all paths

between Xj
t−1 and X i

t in the moral graph (G
An(Xi

t∪X
j

t−1∪pa(Xi
t ,G)))

m. From Proposition 2, this establishes

the conditional independence X i
t ⊥⊥ Xj

t−1 | pa(X i
t ,G).

This result holds for the conditioning according to any subset S ⊆ {Xk
u ; k ∈ P, u < t}.

Proof of Proposition 3.

First, we show that P admits a BN representation according to G̃. Let i, j ∈ P such that X i
t ⊥⊥ Xj

t−1|X
Pj

t−1,
then we have,

f(X i
t |Xt−1) = f(X i

t |X
Pj

t−1).

Under Assumptions 1 and 2, from Lemma 1 and Proposition 1, P admits a BN representation according
to the DAG (X, E(Gfull) \ (Xj

t−1, X
i
t)) which has the edges of Gfull except for the edge (Xj

t−1, X
i
t). This

holds for any pair of successive variables that are conditionally independent. Consequently, from Lemma 2,
P admits a BN representation according to the intersection of the DAG (X, E(Gfull) \ (Xj

t−1, X
i
t)) for any

pair (X i
t , X

j
t−1) such that X i

t ⊥⊥ Xj
t−1|X

Pj

t−1, that is DAG G̃.

Second, DAG G̃ cannot be reduced. Indeed, let (X l
t−1, X

k
t ) be an edge of G̃ and assume that P admits a

BN representation according to G̃\(X l
t−1, X

k
t ), that is G̃ reduced from the edge (X l

t−1, X
k
t ). From Lemma 3,

we have Xk
t ⊥⊥ X l

t−1|X
Pl

t−1, which contradicts (X l
t−1, X

k
t ) ∈ V (G̃) (i.e. Xk

t 6⊥⊥ X l
t−1|X

Pl

t−1).

Proof of Proposition 5.
First, from Corollary 1, G̃ ⊇ G(1).
Second, let X be a Gaussian process and (Xj

t−1, X
i
t) ∈ E(G̃), then according to Proposition 3, X i

t 6⊥⊥

Xj
t−1 | X

Pj

t−1. Since X is Gaussian, this implies Cov(X i
t , X

j
t−1|X

Pj

t−1) 6= 0.

Now assume that it exists k 6= j, such that X i
t ⊥⊥ Xj

t−1 | Xk
t−1 ie (Xj

t−1, X
i
t) /∈ E(G(1)). We are going

to prove that this contradicts Cov(X i
t , X

j
t−1|X

Pj

t−1) 6= 0. Let l be an element of P\{j, k}. The conditional

covariance Cov(ij|k, l) = Cov(X i
t , X

j
t−1 |Xk

t−1, X
l
t−1) writes,

Cov(ij|k, l) = Cov(X i
t , X

j
t−1 |Xk

t−1) −
Cov(X i

t , X
l
t−1 |Xk

t−1)Cov(Xj
t−1, X

l
t−1|X

k
t−1)

V ar(X l
t−1|X

k
t−1)

,

= Cov(X i
t , X

j
t−1 |Xk

t−1) ×

[

1 −
(Cov(Xj

t−1, X
l
t−1|X

k
t−1))

2

V ar(Xj
t−1|X

k
t−1)V ar(X l

t−1|X
k
t−1)

]
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−
Cov(Xj

t−1, X
l
t−1|X

k
t−1)Cov(X i

t , X
l
t−1 |Xk

t−1, X
j
t−1)

V ar(X l
t−1|X

k
t−1)

.

However both terms in the latter expression of Cov(ij|k, l) are null:

• since X i
t ⊥⊥ Xj

t−1 | Xk
t−1, then Cov(X i

t , X
j
t−1 |Xk

t−1) = 0,

• as NMax
pa (G̃) ≤ 1, Xj

t−1 is the only parent of X i
t in G̃. So the variable Xj

t−1 and thus also the set

(Xj
t−1, X

k
t−1) blocks all paths between X l

t−1 and X i
t in the moral graph of the smallest ancestral set

containing X i
t∪Xj,k,l

t−1 . Then we have, X i
t ⊥⊥ X l

t−1 |
{

Xj
t−1, X

k
t−1

}

, that is Cov(X i
t , X

l
t−1 |X

k
t−1, X

j
t−1) =

0.

Then Cov(ij|k, l) = 0. By induction, we obtain Cov(X i
t , X

j
t−1|X

Pj

t−1) = 0 leading to a contradiction with

(Xj
t−1, X

i
t) ∈ E(G̃). Therefore (Xj

t−1, X
i
t) ∈ G(1) and G̃ ⊆ G(1).
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