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Random models for audio signals expansion on

hybrid MDCT dictionaries

Matthieu Kowalski and Bruno Torrésani∗

Abstract

A new approach for signal expansion with respect to hybrid dictionaries, based upon probabilistic

modeling is proposed and studied, with emphasis on audio signal processing applications. The signal

is modeled as a sparse linear combination of waveforms, taken from the union of two orthonormal

bases, with random coefficients. The behavior of the analysis coefficients, namely inner products of the

signal with all basis functions, is studied in details, which shows that these coefficients may generally be

classified in two categories: significant coefficients versus unsignificant coefficients. Conditions ensuring

the feasibility of such a classification are given. When the classification is possible, it leads to efficient

estimation algorithms, that may in turn be used for de-noising or coding purpose. The proposed approach

is illustrated by numerical experiments on audio signals, using MDCT bases.

Index Terms

Sparse Representations, Non-linear signal approximation, Time-frequency decompositions, Denois-

ing.

I. INTRODUCTION

Sparse decomposition and approximation methods have recently exhibited a great potential for several

signal processing tasks, such as denoising, coding and compression, or source separation. Often, a
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dictionary of elementary waveforms is chosen, which respect to which signal expansions are seeked.

The dictionary has to be complete, but is often redundant, so that the expansion of the signal is not

unique, and sparsity is then used as a selection criterion.

In the context of audio signal processing, dictionaries constructed as unions of two (or more) orthonor-

mal bases of the signal space have been studied in more details (see for example [1]), and it has been

shown that such dictionaries may be used efficiently for signal coding for example. The rationale for

such a choice is the fact that audio signal generally feature significantly different components (termed

layers), which can hardly be accounted for by the same bases. Using two (or more) bases allow one

to encode separately the signal’s components that are coherent with the different bases. It also yields

a decomposition of the signal into different layers, for example the tonal, transient and residual layers

in [1], [2]). Standard choices for the bases are MDCT (modified discrete cosine transform) bases, and/or

wavelet bases. This is the way we shall follow in this paper. Notice that similar ideas have also found

their way in other applications, such as image processing (see for instance [3] and references therein).

Sparsity may be implemented in various ways. Let us quote among others variational approaches,

greedy algorithms (see e.g. [4]), or Bayesian formulations (see [5], [6]), these approaches being often

closely connected. In these situations, it may be shown that if the dictionary is sufficiently incoherent

(in our case, if the two bases are different enough, in a sense to be specified), the expansion may be

recovered if the signal indeed admits a sparse enough expansion.

Bayesian approaches have the advantage of relying on explicit signal and observation models, from

which MAP or MMSE estimates can be derived. The actual computation of these estimates then relies

either on classical descent techniques (when an equivalent variational formulation can be found), or on

more complex optimization schemes (for example, MCMC schemes) when the functional to be optimized

is more complex. Such approaches have been developed for audio signal regression and denoising using

a pair of MDCT bases [6]. It was shown there that these are indeed extremely promising approaches,

that unfortunately still require high computational power.

The approach we describe here is based upon simpler considerations, and the study of observed

coefficients, or analysis coefficients, i.e. inner products of the signal with the elements of the dictionary

(when the dictionary is redundant, these do not necessarily correspond to the coefficients yielding sparse

expansions, termed synthesis coefficients). When a signal model is specified sufficiently precisely, the

behavior of these coefficients may be suitably characterized, which leads to simple algorithms for the

identification.
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We focus here on a signal model of the form

x(t) =
∑

γ∈Γ

Xγcγuγ(t) ,

where Γ is some generic index set, the waveforms uγ form the dictionary labeled by Γ, the Xγ are Boolean

random variables controlling the sparsity of the expansion, and the coefficients cγ are independent normal

random variables. We provide a thorough analysis of the behavior of the analysis coefficients, and we

show that in such a context, under appropriate conditions, they may be (with good accuracy) modeled via

Gaussian mixture models. The latter may in turn be identified using appropriate estimation algorithms.

The conditions are mainly 1) the sparsity of the signal model (controlled by the distribution of the

Boolean variables Xγ), and 2) the incoherence of the dictionary (controlled by a series of weights, to be

introduced below).

When these conditions are fulfilled, the estimation algorithms yield good estimates for the significance

maps (i.e. the subset of the index set Γ within which Xγ = 1), and a corresponding subset of the

dictionary. We then show that the corresponding synthesis coefficients may be estimated by regression

(either standard L2 regression, or sparse regression), involving the estimated sub-dictionary.

We limit ourselves to simple random models for the significance map Γ: Bernoulli model and hierar-

chical Bernoulli model. The latter allows us to introduce structures in the coefficient domain, i.e. explicit

dependencies between neighboring (in the time-frequency domain) coefficients.

The theoretical analysis of this paper (provided in Section II) and the corresponding algorithms

(described in Section III, and in the appendix for more specific points) are illustrated by a number of

numerical results on audio signal denoising and coding (Section IV). We limit ourselves to a dictionary

built as the union of two MDCT bases with different time-frequency resolutions. The narrow band basis

(i.e. with long window) is used to estimate a tonal layer in the signal, and the wide band basis (i.e. small

window) is used to estimate the transient layer.

Our results show that the model above is generally adequate for describing audio signals, provided they

don’t contain random-like components (as do wind instruments for example). It provides results whose

quality is comparable with concurrent approaches, but generally requires much lower computational

power.
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II. HYBRID WAVEFORM SIGNAL MODELS

A. Generalities

Let H denote a (finite or infinite dimensional) separable Hilbert space, and let V = {vn, n ∈ I} and

U = {un, n ∈ I} be two orthonormal bases of H. Here, I denotes a generic index set (in the finite

dimensional situation, we denote I = {1, . . . N}). We denote by

D = V ∪ U

the dictionary made as the union of these two bases. D is clearly (over)complete in H, and any x ∈ H

admits infinitely many expansions in the form

x =
∑

n∈I

αnvn +
∑

m∈I

βmum ,

where αn, βm ∈ C are the synthesis coefficients. We are interested in sparse signals, i.e. signals x ∈ H

that may be written as

x =
∑

λ∈Λ

αλvλ +
∑

δ∈∆

βδuδ + r , (1)

where Λ,∆ are small subsets of the index set I , termed significance maps and r ∈ H is a small (possibly

vanishing) residual.

Given such a sparse signal, the non-uniqueness of its expansion with respect to the dictionary makes it

difficult to identify unambiguously the model (1). The approach we propose uses the analysis coefficients

an = 〈x, vn〉 , bm = 〈x, um〉 , (2)

and develops a strategy to estimate the relevant such coefficients, from which a sparse expansion may

be identified.

In this work, we limit ourselves to a specific pair of orthonormal bases: U is a local trigonometric (i.e.

an MDCT basis, see for example [7]) basis (tuned in such a way to achieve good frequency resolution),

and V is a local trigonometric basis with good time resolution. The index sets are then two-dimensional

(a time index and a frequency index), and we write them as such when necessary. Other choices for the

bases are possible (for example a combination of MDCT and wavelet bases, as in [1], [2]), as well as

extensions to frames (that would however require significant modifications).
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B. Random hybrid models

Let us now introduce an explicit model for the sparse signal in (1). The ingredients of such models

are essentially twofold: a model for the significance maps Λ and ∆, and, given the significance maps Λ

and ∆, a model for the coefficients {αλ, λ ∈ Λ} and {βδ, δ ∈ ∆}.

Definition 1: Given two orthonormal bases in H as above, a corresponding random hybrid model is

defined by

i. A discrete probability model for the significance maps. The corresponding probability measures for

the (random) maps Λ and ∆ will be denoted by PΛ and P∆, and the expectations by EΛ and E∆.

ii. A probability model for the synthesis coefficients {αλ, λ ∈ Λ} and {βδ, δ ∈ ∆}, conditional to the

significance maps. The corresponding probability measure and expectation will be denoted by P0 and

E0.

We shall denote by Xn and X̃n the indicator random variables, corresponding to the maps Λ and ∆, i.e.

Xn =

{

1 if n ∈ Λ

0 otherwise ,
X̃n =

{

1 if n ∈ ∆

0 otherwise.
(3)

and by pn and p̃n the membership probabilities

pn = PΛ {Xn = 1} , p̃n = P∆

{

X̃n = 1
}

. (4)

The corresponding signal model therefore takes the form

x =
∑

n∈I

Xnαnvn +
∑

m∈I

X̃mβmum + r . (5)

The simplest possible model for the significance maps is the Bernoulli model: given a fixed membership

probability pn = p ∀n, the index values n ∈ I are iid, and belong to Λ with probability p and to Λ

(the complementary set) with probability 1 − p. The membership probability for ∆ will be denoted by

p̃n = p̃ ∀n. More sophisticated models for the significance maps, which we term structured models, can

involve correlations between elements of the significance maps.

The simplest instance for coefficient models, to which we shall stick here, assumes that significant

coefficients are independent N (0, σ2
n) random variables, in other words their pdf (conditional to Λ and

∆) reads

ραn
(z|Λ) = (1 − Xn)δ0(z) + XnN (0, σ2

n) ,

ρβn
(z|∆) = (1 − X̃n)δ0(z) + X̃nN (0, σ̃2

n) .

The residual is modeled here as a Gaussian white noise, with variance s2.
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The variances σ2
n and σ̃2

n are coefficient dependent, as follows. We now specialize to the case where

the atoms un and vn are time-frequency atoms, i.e. n is actually a time-frequency index, namely a couple

n = (kn, νn) of integers. In this situation, we shall assume that the variances σn and σ̃n only depend on

the frequency index

σn = σνn
= σf(νn) , σ̃n = σ̃νn

= σ̃f̃(νn) , (6)

f and f̃ being fixed frequency profiles, that model “typical” decay of the coefficients with respect to

frequency, and σ, σ̃ being normalized so that f(νn) ≤ 1, f̃(νn) ≤ 1.

C. Behavior of the analysis coefficients

Given this hybrid waveform model, and a realization x of a corresponding signal, the parameters and

the significance maps may be estimated in a purely Bayesian framework by considering their posterior

probability distribution, conditional to the observation. This approach has proven efficient for audio signal

denoising, at the price of high computational costs [8].

In this work, we have chosen to stick to a simpler approach, based on the study of the analysis

coefficients, defined in (2), from which a sparse expansion of x with respect to the dictionary is estimated.

As a first step, let us start by studying the distribution of these analysis coefficients, conditional to the

significance maps. Setting ρn = 〈r, vn〉 and ρ̃n = 〈r, un〉, one easily sees that

an = 〈x, vn〉 = αnXn +
∑

m∈I

βmX̃m〈um, vn〉 + ρn (7)

bn = 〈x, un〉 = βnX̃n +
∑

m∈I

αmXm〈vm, un〉 + ρ̃n , (8)

i.e. that the analysis coefficients may be expressed as sums of independent Gaussian random variables.

Thus one can state

Proposition 1: Conditional to the significance maps, the ak and bk coefficients are zero-mean normal

random variables, with covariance matrices Ckℓ = E0 {akaℓ}, C̃kℓ = E0

{

bkbℓ

}

, given by

Ckℓ = (σ2
kXk + s2)δkℓ +

∑

m∈I

X̃mσ̃2
m〈vk, um〉〈um, vℓ〉 ,

C̃kℓ = (σ̃2
kX̃k + s2)δkℓ +

∑

m∈I

Xmσ2
m〈uk, vm〉〈vm, uℓ〉 .

In particular, the diagonal terms read

E0

{

|ak|
2
}

= σ2
kXk +

∑

m∈I

X̃mσ̃2
m|〈vk, um〉|2 + s2 . (9)
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Hence, the a (resp. b) coefficients are distributed according to a (random) mixture of (several) normally

distributed zero-mean random variables. The distribution of these is governed by the cross term in the

right hand side of the covariance coefficients in Proposition 1. Focusing on the diagonal terms of the

covariance matrix, let us introduce the following quantities

Definition 2: Let ∆ and Λ be two subsets of the index set I . For n ∈ I , the weighted projection

weights, or γ weights, are defined by

γ̃n(∆) =
∑

m∈I

X̃mf̃(νm)2|〈vn, um〉|2γn(Λ) =
∑

m∈I

Xmf(νm)2|〈un, vm〉|2 . (10)

with νm the frequency component of the time-frequency index m = (km, νm).

Notice that the γ weights are random variables. Their distributions will play a key role in the upcoming

analysis.

Remark 1: The γ weights are reminiscent of the Parseval weights

p̃n(∆) =
∑

m∈I

X̃m|〈vn, um〉|2 , pn(Λ) =
∑

m∈I

Xm|〈un, vm〉|2 .

introduced in [9], [10]. Indeed, in the simple case of constant variances σn = σ ∀n, one has γn(Λ) =

pn(Λ), and a similar expression for the γ̃ weights. The Parseval weights have a simple geometric

interpretation, namely pn(∆) is the norm of the orthogonal projection of vn onto the linear span of

{uδ, δ ∈ ∆}. The γ weights may be given a similar interpretation. Let us denote by M (resp. M̃) the

operator defined by a diagonal matrix in the V (resp. U) basis

Mvn = f(νn)vn , M̃un = f̃(νn)un . (11)

Then

γn(Λ) =
∑

m∈I

Xm|〈un, Mvm〉|2 =
∑

m∈I

Xm|〈Mun, vm〉|2 ,

(The last inequality being a consequence of the assumption f(ν) ≤ 1), and γn(Λ) is then the squared

norm of the orthogonal projection of Mun onto the linear span of the basis functions {vm,m ∈ Λ}. In

addition it follows from Parseval’s formula that for all n and Λ,

γn(Λ) ≤ ‖Mun‖
2 ≤ 1 ,

and a similar expression for γ̃n(∆).

M is a well-defined operator in the finite dimensional case. In infinite-dimension situations, i.e. for

continuous time signals, additional assumptions on the frequency profiles f , f̃ are needed to ensure the

boundedness of M.

April 10, 2007 DRAFT
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Remark 2: The diagonal terms (9) of the covariance matrix take the following form:

E0

{

|ak|
2
}

=











σ2
k + γ̃k(∆)σ̃2 + s2 if k ∈ Λ

γ̃k(∆)σ̃2 + s2 if k /∈ Λ

. (12)

Taking into account the γ weights leads to the following simple consideration on the behavior of

observed coefficients: if the distribution of the γ weights is peaked near a small value, then the coefficients

ak have a significantly different behavior depending on whether Xk vanishes or not. In addition, the

smaller the variance of the weights, the easier the discrimination between the two behaviors.

Characterizing the distribution of the γ weights is not an easy task (moment estimates in the case of

the Bernoulli model are provided below). Nevertheless, if we assume that the elements of the significance

map Λ (resp. ∆) are identically distributed, with P{n ∈ Λ} = p (resp. P{n ∈ ∆} = p̃), mean-field type

estimates, i.e. estimates for Λ or ∆ averages of the γ weights, may be obtained. For example, the first

moment of the γ weights reads

EΛ {γn(Λ)} = p ‖Mun‖
2 ; E∆ {γ̃n(∆)} = p̃ ‖M̃vn‖

2 . (13)

We give below the mean field estimates for the a coefficients, similar estimates may be derived for

the b coefficients.

Proposition 2: Assume that the elements of the significance map Λ are identically distributed, with

P{n ∈ ∆} = p̃. Then we have the mean field estimate

EΛ

{

E0

{

a2
k

}}

= σ2
kXk + p̃‖Muk‖

2σ̃2 + s2 .

Our goal will be to estimate the significance map ∆ from the analysis coefficients. In this respect, it is

convenient to normalize the analysis coefficients by the frequency profiles. In such a way, the variances

are stabilized, in the sense that the leading term below has constant variance σ2:

EΛ

{

E0

{

a2
k

f(νk)2

}}

= σ2Xk + p̃
‖Muk‖

2

f(νk)2
σ̃2 +

s2

f(νk)2
(14)

= σ2Xk + p̃ σ̃2
∑

m∈I

f̃(νm)2

f(νk)2
|〈vm, uk〉|

2 +
s2

f(νk)2
. (15)

We notice that the distribution of the renormalized coefficients is governed by the quantity
∑

m∈I
f̃(νm)2

f(νk)2 |〈vm, uk〉|
2.

Remark 3: This renormalization ensures that the leading term σ2Xk in (14) has a constant variance σ2.

The variance of the second term varies as a function of k. However, for suitable choices of the bases U

and V, and the frequency profiles f , f̃ , this dependence is weak enough to allow one to approximate the

mean field distribution of renormalized coefficients using a mixture of two or three Gaussian distributions.
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D. Significance maps estimation in the case of the Bernoulli model

Assume that the points of the index set are iid. Then the probability distribution of the significance

map is given by

P{∆} = p̃|∆|(1 − p̃)N−|∆| , P{Λ} = p|Λ|(1 − p)N−|Λ| ,

and the marginal distribution of the analysis coefficients takes the simple form

ρan
(ξ) = (1 − p)

∑

∆

P{∆}N (0, γ̃n(∆)σ̃2 + s2) + p
∑

∆

P{∆}N (0, σ2 + γ̃n(∆)σ̃2 + s2) . (16)

The distribution of the coefficients is thus a mixture of two Gaussian mixtures, whose behavior is governed

by the γ weights. Assume for the sake of simplicity that the distribution of the random variables γ̃n(∆)

is sharply concentrated near a small value, say the membership probability p̃ (see (13)). Then the two

Gaussian mixtures are zero-mean, and possess significantly different variances. In such situations, one

may attempt to separate them, in order to estimate those index values n that belong to the significance

map. The separation will be based on the amplitude of the coefficients: large coefficients will be assigned

to the significance map. We describe below how the corresponding threshold values are estimated.

As mentioned before, in the Bernoulli model, moment estimates of the distribution of the γ weights

may be obtained, in addition to the first given in (13). For the second moment one has

EΛ

{

γn(Λ)2
}

= p2
∑

m6=m′

σ2
mσ2

m′ |〈un, vm〉|2|〈un, vm′〉|2 + p
∑

m

σ4
m|〈un, vm〉|4

= (EΛ {pn(Λ)})2 + p(1 − p)
∑

m

σ4
m|〈un, vm〉|4 ,

hence

Var{γn(Λ)} = p(1 − p)
∑

m

f(νm)4|〈un, vm〉|4

= p(1 − p)
∑

m

|〈un, Mvm〉|4 . (17)

The third moment can also be calculated, and yields the skewness

S{γn(Λ)} =
E
{

γn(Λ)3
}

E {γn(Λ)2}3/2
=

1 − 2p
√

p(1 − p)

N
∑

k=1

|〈vk, Mun〉|
6

(

N
∑

k=1

|〈vk, Mun〉|4
)3/2

. (18)

Remark 4: As stressed in Remark 2 above, discriminating between the two types of analysis coefficients

is easier when the first and second order moments of the γ weights are small.
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1) The first moment is essentially controlled by the sparsity of the expansion, represented here by the

membership probability p. The sparser the significance maps, the smaller the γ weights.

2) The variance is controlled by the membership probability p and the incoherence of the dictionary.

Indeed, introducing B4 = supn

∑

m |〈un, Mvm〉|4, which may be seen as a generalization of the

4 − Babel function [11], we obtain Var{γn(Λ)} ≤ p(1 − p)B4.

3) The skewness is controlled by the position of p relative to 1/2.

The separation of Gaussian mixtures problem can be formulated as follows. Denote by Yn the MAP

estimate for Xn:

Yn =







1 if P{Xn = 1|an,∆} ≥ P{Xn = 0|an,∆}

0 otherwise
.

This MAP estimate for Xn will give a threshold adapted for each analysis coefficients, which corre-

spond to the intersection of the two Gaussian curves of the mixture. More precisely, we have:

P{Xn = q|an,∆} ∝ P{Xn = q}P{an|Xn,∆}

∝











p N (0, σ2
n + γ̃n(∆)σ̃2

n + s2) if q = 1

(1 − p) N (0, γ̃n(∆)σ̃2
n + s2) if q = 0

. (19)

Set for simplicity

wn;0 = γ̃n(∆)σ̃2 + s2 , wn;1 = wn;0 + σ2
n ,

then one can state

Proposition 3: 1) Assume the elements of the significance maps Λ (resp. ∆) are iid, with P{n ∈ Λ} =

p (resp. P{n ∈ ∆} = p̃). Assume the synthesis coefficients αn (resp. βn) are independent N (0, σ2
n)

(resp. N (0, σ̃2
n)) random variables. Then the MAP estimate Yn for Xn is given by:

Yn =







1 if |an| ≥ τn

0 otherwise
,

with τn =

√

2 wn;1wn;0

wn;1−wn;2
ln
[(

1−p
p

)(

wn;1

wn;2

)]

.

2) The type one and type two error probabilities read as follows

P{Yk = 0|Xk = 1} = p erf

(
√

wk;0

σ2
k

ln

[

p

1 − p

(

1 +
σ2

k

wk;0

)]

)

,

P{Yk = 1|Xk = 0} = (1 − p) erfc

(
√

(

1 +
wk;0

σ2
k

)

ln

[

1 − p

p

(

1 +
σ2

k

wk;0

)]

)

.

April 10, 2007 DRAFT



IEEE TRANS. ON SIGNAL PROCESSING 11

Proof: The intersection point τn of the two Gaussians N (0, wn;0) and N (0, wn;1), is given by

τ2
n =

2 wn;1wn;0

wn;1 − wn;2
ln

[(

1 − p

p

)(

wn;1

wn;2

)]

,

which proves the first part. For the second part, we simply observe that

P{Yk = 0|Xk = 1} = p erf







√

√

√

√

ln
[(

1−p
p

)(

wk;1

wk;0

)]

wk;1/wk;0 − 1







P{Yk = 1|Xk = 0} = (1 − p) erfc







√

√

√

√

ln
[(

1−p
p

)(

wk;1

wk;0

)]

1 − wk;0/wk;1







where erfc is the complementary error function [12].

Remark 5: The error probabilities for the significance map Λ are controlled by wn;0/σ2
k. Again, we

notice that the γ weights play a crucial role: the smaller γ̃k(∆) (and the noise variance), the lower the

error probabilities.

E. Structured models

1) Generalities: Unlike the Bernoulli model, structured significance maps models involve correlations

between significance map elements. For example, assuming U is an orthonormal basis of time-frequency

waveforms, correlations may be introduced between consecutive time indices, to model time persistence

properties of the corresponding (tonal) layer. Similarly, correlations between frequencies may be intro-

duced to model signal components with short duration, such as transients (frequency persistence). In such

situations, the marginal pdf of observed coefficients is still given by (16), but the probabilities are not as

simple as before.

Interestingly enough, due to the decorrelation of the α and β coefficients, the correlations in significance

maps do not show up in the second order moments of the observed coefficients a and b, i.e. in matrices C

and C̃. For instance, neither EΛ

{

CΛ
kℓ

}

nor E∆

{

CΛ
kℓ

}

involve the correlation functions of the significance

maps Γkℓ := EΛ {XkXℓ} or Γ̃kℓ := EΛ

{

X̃kX̃ℓ

}

.

2) Hierarchical Bernoulli model: Dependencies between neighboring coefficients may be introduced

in a simple way by replacing the above Bernoulli model with a hierarchical Bernoulli one. We present

the model in the framework of the transient layer modeling. The idea is to account for time values at

which no transient coefficient exist, and segment the time indices into transient and non transient ones.

Notice that a similar model could also be developed for the tonal significance map ∆.
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Let n = (k, ν) ∈ Λ = Λt × Λf a time-frequency index, with Λt (resp. Λf ) the time (resp. frequency)

index set. Let Xn denote the corresponding indicator random variables and Tkn
the time indicator random

variables. The random variables Xn are distributed following a Bernoulli law B(p1) conditionally to the

time indicator variables Tkn
which are distributed following a Bernoulli law B(p2). That can be written

as

X̃n ∼ B(p̃) ; Xk ∼ TkB(p2) + (1 − Tk)δ0 , with Tk ∼ B(p1) . (20)

To estimate the significance map, we first focus on the submap Λt. Instead of using as before the

analysis coefficients one by one, all coefficients on the same time index are collected into the following

quantity

ck =

|Λf |
∑

ν=1

a2
k,ν

w2
k,ν;0

=

|Λf |
∑

ν=1

[

αk,ν

wk,ν;0
Xk,ν +

1

wk,ν;0

∑

δ∈∆

βδ〈uδ, vk,ν〉 + ρk,ν

]2

. (21)

Let us set for simplicity π̃k,ν = 1
wkν;0

∑

δ∈∆

βδ〈uδ, vk,ν〉+ ρk,ν . We rewrite (21) to separate the coefficients

ck with k ∈ Λt from the others

ck =



















|Λf |
∑

ν=1

[

αk,ν

wk,ν;0
Xk,ν + π̃k,ν(∆)

]

if k ∈ Λt

|Λf |
∑

ν=1
π̃k,ν(∆)2 if k /∈ Λf

. (22)

The coefficients βδ are distributed according to a normal law N (0, σ̃2
δ ), and the coefficients ρk,ν according

to N (0, s2). Then, the coefficients π̃k,ν(∆) are normally distributed according to

π̃k,ν(∆) ∼ N






0,

∑

δ∈∆

σ̃2
δ |〈uδ, vk,ν〉|

2 + s2

wk,ν;0






∼ N (0, 1) .

In case k /∈ Λf , the coefficients ck are distributed according to a χ2 with |Λf | degrees of freedom.

Coefficients ck,ν , k ∈ Λt, are expected to take large values and appear as outliers for the above mentioned

χ2 distribution.

The main shortcoming of such an approach is that the significance map ∆ has to be known in order

to normalize the coefficients, and then to obtain the coefficients ck. To avoid this, we limit ourselves to
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approximations of the ck coefficients, and introduce new coefficients c′k:

c′k =

|Λf |
∑

ν=1

a2
k,ν

f(ν)2

=

|Λf |
∑

ν=1

[

αk,ν

f(ν)
Xk,ν +

∑

δ∈∆

βδ

f(ν)
〈uδ, vk,ν〉 +

ρk,ν

f(ν)

]2

=



















|Λf |
∑

ν=1

[

αk,ν

f(ν)Xk,ν + π̃′
k,ν(∆)

]2
if k ∈ Λt

|Λf |
∑

ν=1
π̃′

k,ν(∆)2 if k /∈ Λf

, (23)

with π̃′
k,ν =

∑

δ∈∆

βδ〈uδ,vk,ν〉+ρk,ν

f(ν) ∼ N
(

0, wk,ν;0

f(ν)

)

.

Although the variances of the πk,ν are different, the distribution of the {c′k,ν , k /∈ Λt} may be

approximated with a good accuracy by a two parameters χ2 law, and the coefficients {c′k,ν , k ∈ Λt},

may be seeked as outliers for that χ2 law.

After the pre-selection of analysis coefficients ak,ν , k ∈ Λt, the Bernoulli model is used to complete

the selection, and to obtain an estimate of the significance map.

Remark 6: An another point of view would amount is to normalize all the coefficients ck according

to their membership to the submaps Λt:

dk =

|Λf |
∑

ν=1

[

αk,ν

wk,ν;1
Xk,ν +

1

wk,ν;0

∑

δ∈∆

βδ〈uδ, vk,ν〉 + ρk,ν

]2

if k ∈ Λt ,

d′k =

|Λf |
∑

ν=1

[

1

wk,ν;0

∑

δ∈∆

βδ〈uδ, vk,ν〉 + ρk,ν

]2

if k /∈ Λt . (24)

In this case, we will obtain p1|Λt| coefficients dk distributed according to a χ2 with |Λf | degrees of

freedom, and (1 − p1)|Λt| coefficients d′k distributed according to the same χ2 as previously. A MAP

estimation, denoted by Zk for the random variables Tk can be formulated as follow

Zk =











1 if pχ2(dk) > (1 − p)χ2(d′k)

0 otherwise

. (25)

F. Variances estimation

If estimates are available for the significance maps, the γ weights can be estimated too. The next

proposition then gives powerful estimators for the parameters σ and σ̃.
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Proposition 4: Let p and p̃ denote the membership probabilities. Let an (resp. bn) be the analysis

coefficients and f(νn) (resp. f̃(νn)) the corresponding frequency profiles. Let

v1 =
1

|Λ|

∑

n∈Λ

a2
n

f(νn)2
, v2 =

1

|∆|

∑

n∈∆

b2
n

f̃(νn)2
.

Then, the estimates defined by

σ̂2 =
v1 − ǫ1v2

1 − ǫ1ǫ2
, ˆ̃σ2 =

v2 − ǫ2v1

1 − ǫ1ǫ2
(26)

with ǫ1 = 1
|Λ|

∑

n∈Λ
γ̃n(∆)
f(νn)2 and ǫ2 = 1

|∆|

∑

n∈∆
γn(Λ)

f̃(νn)2
, are convergent and unbiased.

Proof: First, the estimate for σ and σ̃ are unbiased: in matrix form, we have

E











v1

v2











=





1 ǫ1

ǫ2 1









σ2
1

σ2
2



 .

Solving the linear system shows that the above estimators σ̂2 and ˆ̃σ2 are unbiased.

To prove the convergence of the estimator, we just have to prove that the variance vanishes as the

number of observations goes to infinity

var{σ̂} =
var{v1} + ǫ21var{v2} − 2ǫ1cov{v1, v2}

(1 − ǫ1ǫ2)2
.

v1 (resp. v2) is the classical estimator for the expectation of
a2

n

f(νn)2 , n ∈ Λ (resp.
b2

m

f̃(νm)2
, m ∈ ∆ ). We

have then

var{v1} →
N→∞

0 , var{v2} →
N→∞

0 .

We just have to prove that the covariance cov{v1, v2} →
N→∞

0. For this, we need to compute for n ∈ Λ

and m ∈ ∆

E

{

a2
n

f(νn)2
b2
m

f̃(νm)2

}

= σ2σ̃2+σ2σ̃2 γm(∆)

f̃(νm)2
γ̃n(Λ)

f(νn)2
+σ4 〈vn, um〉2

f̃(νm)2
+σ̃4 〈um, vn〉

2

f(νn)2
+4σ2σ̃2〈um, vn〉

2 .

Then,

cov{v1, v2} = E{v1v2} − E{v1}E{v2}

= σ2σ̃2 + σ2σ̃2ǫ1ǫ2 + σ4ǫ2 + σ̃4ǫ1 +
4σ2σ̃2

|Λ||∆|

∑

n∈Λ

∑

m∈∆

〈um, vn〉
2 − (σ2 + ǫ1σ̃

2)(σ̃2 + ǫ2σ
2)

=
4σ2σ̃2

|Λ||∆|

∑

n∈Λ

∑

m∈∆

〈um, vn〉
2 ≤

4σ2σ̃2

|Λ||∆|

∑

n∈Λ

N
∑

m=1

〈um, vn〉
2 =

4σ2σ̃2

|∆|
→

N→∞
0 ,

(27)

which concludes the proof.
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G. Coefficients estimation

Estimation of the coefficients can be done after the estimation of the significance maps. This can be

done by regression, or “wiener type” algorithm. We postpone the discussion of this operation to the end

of section III.

III. ALGORITHMS

In this section we describe in some details all the algorithms deduced from the analysis of the model

in section II. We first develop mean-fields algorithms which will be used as initialization for iterative

algorithms described just after to estimate the significance maps. After this estimation, two methods

are presented to estimate the synthesis coefficients. Some more specific details on implementation are

provided at the end of the section.

In these practical applications, H is a finite dimensional space. We denote by N = dim(H) the length

of the signal.

A. Mean field algorithms

Initially, no information about the significance map is available. The mean field approximations natu-

rally yields estimates for the significance maps, that may used either directly (see the denoising appli-

cations in section IV-B), or as initialization for a more precise approach. The two significance maps are

estimated independently of each other.

1) Bernoulli model: It has been shown in section II-C that the distribution of the coefficients an and

bn can be approximated by a mixture of a small number of Gaussian distributions. The corresponding

estimation may be performed by a suitable EM type algorithm. A classification of the analysis coefficients

according to the estimated Gaussian gives the estimate of the significance map.

The EM algorithm we propose is slightly modified to be able to process in parallel on the renormalized

analysis coefficients and the original ones. This is necessary, in order to take the noise into account.

Indeed, as may be seen from equation (14), in the case k /∈ Λ and s2 >> σ̃2γ̃(∆)2, the Gaussian

distribution corresponding to the noise is deformed by the renormalization: it is therefore necessary

to work on the original analysis coefficients to estimate the parameters of this Gaussian distribution.

Theoretical aspects and technical details on this modified EM algorithm are provided in Appendix A.

According to Proposition 3, the classification of analysis coefficients is equivalent to an adaptive

thresholding: the largest coefficients are considered to correspond to the significance map, but the threshold

depends on the coefficients.
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The choice of the number of terms (two or three) to estimate in the Gaussian mixture with the EM

algorithm depends of the target application. When the distribution of coefficients is fitted using three

Gaussians, the third one corresponds to modeling of the noise, and the corresponding coefficients are not

taken into account. Therefore, this produces sparser significance maps.

1) Separation of a mixture of two Gaussian distributions:

a) A first large variance Gaussian function which corresponds to the analysis coefficients be-

longing to the significance map, and a second small variance one for the other ones. We use

on the renormalized analysis coefficients ak

f(νk) (see equation (14))

b) If the noise is expected to have a large variance, the Gaussian with large variance is estimated

on the renormalized analysis coefficients, and the Gaussian with small variance on the original

analysis coefficients (this Gaussian correspond to the noise).

2) Separation of a mixture of three Gaussian distributions. Compared to the first algorithm, a third

Gaussian distribution is added, with a very small variance. This Gaussian correspond to the noise

and will be estimated on the original analysis coefficients. This choice yields sparser maps.

A good practical strategy is to first attempt to separate three Gaussians distributions and, if the estimated

map does not contain enough coefficients to describe the signal accurately enough (for example, less than

0.1% of the size of the signal), turn to the “two Gaussians” model instead.

The Bernoulli estimation for the significance map yields quite satisfactory results for the tonal map.

For the transient significance map, the hierarchical Bernoulli estimate described below turns out to give

better estimations.

2) Hierarchical Bernoulli model: The coefficients c′k defined in equation (23) are used to obtain an

estimate of the transient submap Λt, through a statistical test. We showed in section II-E.2 that the

distribution of the c′k coefficients which do not correspond to the transient submap (this will be our null

hypothesis) can be approximated by a two parameters χ2 distribution. We use a goodness of fit test for

outliers detection, and thus to detect the coefficients c′k corresponding to the transient lines. The two

hypotheses of the test are

H0 :{c′1, . . . , c
′
K} follow a χ2 law

H1 :{c′1, . . . , c
′
K} do not follow a χ2 law

This test is used in a classification algorithm which proceed as follow. While the goodness of fit test

on the set of the c′k coefficients is rejected (the set does not follow a χ2 law), the largest coefficient is

rejected. The rejected coefficients are the ones corresponding to the transient lines.
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The goodness of fit test we choose is the Kuiper test. The latter is more suitable than a Kolmogorov

test, since it gives more importance to the tail of the distribution, where the interesting c′k coefficients

lie. A description and the significance level of different tests can be found in [13]. The statistical test is

done at the 1% significance level. Three cases have to be taken into account

• The test is accepted at the beginning. No coefficients correspond to a transient line. An empty set

is returned and there is no transient.

• The test is always rejected. All coefficients correspond to a transient line.

• The test is rejected during I iterations. It is the general situation, where I coefficients correspond

to a transient line.

Once selection of the transient lines is done, the selection in frequency can be done like in the previous

section.

3) Iterative mean-field algorithms: The mean field algorithms can be iterated on the residual obtained

after one pass of the algorithm. This can improve the estimate of the different layers.

B. Iterative adaptive thresholding Algorithms

The algorithms described in section III-A above rest on a mean field approximation of the γ weights,

which is used to compute coefficients thresholds. We now outline iterative algorithms that use estimates

from the previous iteration rather than mean field estimates. Mean field estimates are used as initializations.

1) Bernoulli model: A first estimate for the significance maps gives an estimate for the γ weights.

After that, one can estimate all the parameters of the model, thanks to proposition 4 in section II-F.

These estimates can be exploited in a CEM algorithm which uses the MAP estimate for Xn and

X̃n described in proposition 3 in section II-D. The algorithm can be summarized as follow. After an

initialization for the significance maps Λ and ∆ and the parameters p, p̃, σ and σ̃, the following fours

stages are iterated:

1) The γ weights are computed.

2) The maps are re-estimated using the estimators given in Proposition 3.

3) The parameters σ and σ̃ are re-estimated according to Proposition 4.

4) The parameters p and p̃ are re-estimated with p = |Λ|
N and p̃ = |∆|

N .

It is worth noticing that we do not have any estimate available for the noise variance s, which then

has to be known in advance. Alternatively, s may be used as a tuning parameters for the algorithm,

which controls sparsity for the maps. For the initialization, we used the estimates given by the algorithms

described in section III-A.
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2) Hierarchical Bernoulli model: An algorithm similar to the previous one was developed. The only

change is the estimation of the significance map Λ which uses first the MAP estimation formulated in

remark 6, section II-E.2. This first performs a classification of the analysis coefficients in time, and second

exploits the Bernoulli model to conclude the classification.

The parameter p1 is a tuning parameter of the algorithm: the smaller p1, the sparser the significance

maps. p2 is estimated by the EM algorithm used to conclude the classification.

C. Coefficients estimation

After the significance maps have been estimated, the corresponding significant coefficients may be

estimated, which amounts to a regression problem. We assume that the significance maps have been

suitably estimated. The estimation of the coefficients can be done using two different approaches:

• A mean-field approach, in which the coefficients are estimated by a minimization of the mean

squared error. This approach does not necessarily generate sparse expansions.

• By linear regression, which could improve sparsity if desired.

1) Regression approaches:

a) L2 regression: Estimation of the significance maps actually amounts to a dimension reduction. Let

x a signal, and Λ̂ and δ̂ be estimates for the significance maps. These estimates generate a subdictionary

D̂ = {uδ, δ ∈ δ̂} ∪ {vλ, λ ∈ Λ̂} of the complete waveform dictionary U ∪V, and we denote by HD̂ the

subspace of H spanned by D̂.

The easiest way to estimate the two layers xU and xV, is to compute an orthogonal projection of the

signal x onto HD̂

x̂ = argmin
y∈H

D̂

||x − y||2 . (28)

One can write

x̂ = x̂V + x̂U , (29)

with

x̂V =
∑

λ∈Λ̂

α̂λvλ , x̂U =
∑

δ∈∆̂

β̂δuδ . (30)

The estimates α̂λ and β̂δ for the coefficients are obtained by solving the linear system

G

(

α̂1, ..., α̂|Λ̂|, β̂1, ..., β̂|∆̂|

)T
=
(

a1, ..., a|Λ̂|, b1, ..., b|∆̂|

)T
, (31)

where G is the gram matrix of the dictionary D̂. The Gram matrix G is left invertible if and only if the

selected atoms form a frame their linear span Ĥ = span{D̂}, which is always true here.
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b) Sparse regression: To improve sparsity, the orthogonal projection may be replaced with a sparse

regression, for example performing

x̂ = argmin
y∈Ĥ

||x − y||22 + λ||y||1 , (32)

where λ is tuning parameter which acts on sparsity. Following Chen and Donoho in [14] for basis pursuit

denoising, we choose the default value λ = s

√

2 log(#D̂).

This sparse regression problem can be solved efficiently using appropriate fixed point algorithms, such

as the FOCUSS algorithm [15].

2) Wiener type algorithm: When the signal is not sparse enough, and so the significance maps are

too large, inverting the Gram matrix becomes computationally expensive. In such a case, a valuable

alternative is provided by a Wiener-type or mean-field method which minimizes the mean squared error

(conditional to the significance maps)

x̂ = argmin
y

E0

{

||x − y||2
}

, (33)

where the estimator y =
∑

λ∈Λ α̂λvλ +
∑

δ∈∆ β̂δuδ is seeked in the special form:

α̂ = tλα , β̂ = tδβ . (34)

The minimization may be performed explicitly, and yields estimates for αλ and βδ that take the form of

suitably weighted analysis coefficients

α̂λ =
σ2

σ2 + γλ(∆)σ̃2 + s2
aλ , β̂δ =

σ̃2

σ̃2 + γδ(Λ)σ2 + s2
bδ . (35)

Since the coefficient estimation is posterior to the significance map estimation, estimates for ∆ and Λ

are available, that can be used in this scheme. These estimates turn out to be poorer estimates, but easier

to compute.

D. Miscellaneous details on implementation

We give here additional details on a few practical aspects of the algorithm.

1) Structure of the Gram matrix, and inversion: A potential bottleneck is the computation of the γ

weights, which enter the computation of thresholds at each iteration. This requires an efficient computation

of the scalar products, which can be done as described below.

Remark 7: In the case of the union of two MDCT bases, the Gram matrix has a very specific structure.

Let {ak}k∈N a sequence of reals and {wn}n∈N a window of size δ ∈ R such as the sequence {un}n∈N

un(t) = wn(t) cos

[

π

δ
(ν +

1

2
)(t − am+r)

]

, ν ∈ N
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is the first MDCT basis. We denote by {vn}n∈N the second MDCT basis. One can state

〈um, vn〉 = 〈um+r, vn+kr〉 . (36)

This remark allows us to compute the Gram matrix in reasonable time. Furthermore, the fact that the U

and V basis functions are compactly supported yields extremely sparse matrices, which can be stored

with low memory requirement and access time.

Regarding the inversion of the Gram matrix, we notice that the Gram matrix is positive definite. This

ensures that its inversion may be done efficiently, using for example a conjugate gradient algorithm (see

for example [16]).

2) Segmentation of the signal: In practical situations, the algorithms cannot be applied to a long signal

as a whole, mainly for two reasons:

• The statistical properties of audio signals are generally (slowly) varying with time. The parameters

of the model cannot remain constant throughout signal, which therefore has to be segmented into

blocks so that the model can be considering stable within a given block.

• Most algorithms involved in our approach (like many audio signal processing algorithms) have

complexity O(N log N) or higher. Hence, a large signal cannot be processed as a whole.

Following standard practice, we therefore process long signals by first segmenting them into blocks (a

typical length of a block is one of two fifths of a second), and run the algorithm within each block.

Therefore, we obtain a set of parameters (variances, membership probabilities,...) for each block.

IV. NUMERICAL RESULTS

The model and corresponding algorithms were tested on different “classical” applications: signal

separation into two layers for single captor blind sources separation, denoising and audio coding. In

each case, we only report here on the results obtained with the best adapted version of the algorithm.

The parameters used for the algorithms are as follows. The sampling rate is 44100 Hz. Unless otherwise

specified, we used two MDCT bases, one with a 128 samples long window for modeling transients1, and

one with a 4096 samples window for modeling tonals. We segment of the signal to estimate the transient

layer on about 186 ms of signal. The tonal layer is usually estimated on all the signal. The frequency

1Even though the corresponding time length, about 3 µs, does not make sense from the perceptual point of view, we obtained

significantly better results with such a very short window, the reason being probably that the two windows have to be significantly

different to be able to discriminate between different layers.
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profiles used are the same for the two bases, and have the following form: f(ν) = 1
1+ ν

ν0

. We chose

ν0 = 500.

The algorithms are coded in MATLAB and performed on a 2x3GHz Linux PC with 2Go RAM.

All sound files corresponding to the examples of this section are available at

http://www.latp.univ-mrs.fr/˜kowalski/IEEE07.html.

A. Application to separation into two layers: transient + tonal

One of the first applications of signal expansions on unions of bases to audio signals was the transient+

tonal+noise separation [1]. This problem may be seen as a single sensor blind source separation problem,

the sources being the three layers: transient, tonal and noise.

We follow here these lines, and apply our approach to the problem of separating a “tonal” signal and

a more impulsive one from a single mixture. The separation of the two sources is done by the separation

in two layers of the signal: the tonal instrument will be recovered in the tonal layer, and the transient

instrument will be recovered in the transient layer.

This is illustrated on the following example: an instantaneous mixture of a trumpet signal (the tonal

one) and a castanets signal (the transient one). The mixture and the separation are provided in figure 1,

sound files are available at the web site given in the introduction of the section IV. We used The third

algorithm of the section III-A.1 with three iterations. The size of the window for the tonal MDCT basis

is 8192 samples (about 186 ms), and the size of the window for the transient MDCT basis is 128 samples

(about 3 ms). The mixture signal has 217 samples (about 3 sec of sound).

The main features of the estimation may be seen in the plots of the estimated layers. As may be seen

(and heard from the sound files), the separation is fairly satisfactory. Nevertheless, it clearly appears that

the estimated castanets signal lost its “tonal” part, which has been “captured” by the estimated trumpet

signal and sounds like artifacts. This is not surprising and correspond to the model.

An objective performance measure (which does unfortunately not make much sense for audio signals)

is provided by the signal to noise ratio (SNR). The SNR for the trumpet signal is 10.8 dB and the

castanets SNR equals 5.7 dB. The very low SNR obtained for the castanets signal is explained by the

loss of the tonal layer. Nevertheless, the interesting information for this signal lies in the transient layer

which is very well estimated.
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Fig. 1. Blind source separation of trumpet + castanets mixture. From top to bottom: original castanets signal, original trumpet

signal, mixture, estimate of the castanets signal, estimate of the trumpet signal, residual.

B. Application to denoising

Denoising is a natural application for this type of decomposition. Additive Gaussian white noise is a

standard benchmark, even though it is quite an idealistic situation. In such a case, the noise is not sparse

with respect to any basis, and is expected to be recovered in the residual r of equation (1).

The third algorithm of the section III-A.1 mixed with the second was tested on such artificial noisy

signal. Gaussian white noise was added to different types of signals, so as to obtain a 6 dB SNR. All
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signals have 218 samples (about 6 sec of sound). The results (output SNR) are summarized in tables I for

monophonic signals, and II for polyphonic signals (our algorithm is called Hybrid algorithm). SNRs are

always provided for the reconstruction tonals + transients. The restored signals are quite satisfactory.

The panpipe signal is especially interesting because of the blow. The blow can be seen like a non-sparse

residual in the model (1). As expected, the restored signal provide the panpipe without the blow which

has been captured by the residual.

To assert the quality of the results, we compared then to the results obtained with MCMC algorithms

provided in [8]. Gaussian white noise was added to the piano signal, so as to yield 10 dB input SNR.

The comparison is provided in table III. In terms of SNR, our results are of lower quality than those

obtained by the various MCMC algorithms. This is not surprising, since those approaches are supposed to

exploit the complete posterior distribution of synthesis coefficients, while ours relies on approximations.

However, let us recall that SNR is not a completely relevant measure of distortion for audio signals,

and that complementary evaluations have to be done by listening the signals. From the sound files, it

clearly appears that MCMC3 outperforms all other methods, at the price of high computational cost. Our

approach provides restored signals that are more pleasant to listen than the MCMC1 and MCMC2. MCMC1

and MCMC2 yield a lot of artifacts and “musical” noise, but our algorithm looses a little bit more high

frequencies.

In terms of computing time, our algorithm outperforms all the MCMC algorithms: less than five minutes

are needed to process one second of audio signal compared to several hours for the Bayesian+MCMC

approaches.

C. Application to audio coding

It has been shown with success that the decomposition into three layers can be useful for audio coding

in [17]. The CEM algorithm of the section III-B.1 is used with different value of σ0 to tune the sparseness of

the significance maps. We report here on numerical results obtained using the hierarchical Bernoulli model,

with either L2 regression or sparse regression, and compare them with two other approaches. Again, we

use the SNR as a comparison criterion. The two reference approaches are based on MDCT expansion,

followed by thresholding of MDCT coefficients, or thresholding of MDCT coefficients weighted by the

frequency profiles f(ν). The latter version is motivated by the fact that our approach uses frequency

profiles, that degrade the output SNR but produce better reconstructions from the audio point of view.

Therefore, it is more fair to compare the results of our approach with those obtained from weighted

MDCT thresholding.
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Signal SNR Figure

Panpipe 11.6 2

Glockenspiel 16.4 3

Xylophone 12.3 4

TABLE I

SNR AFTER DENOISING FOR SOME MONOPHONIC SIGNALS.

Signal SNR Figure

Jazz 16.2 5

Mamavatu 13.3 6

TABLE II

SNR AFTER DENOISING FOR SOME POLYPHONIC SIGNALS.

Algorithms SNR

MCMC 1 20.7

MCM 2 21.6

MCMC 3 21.6

Jeffrey’s + EM 15.3

Hybrid Algorithm 18.2

TABLE III

COMPARISON OF SNR BETWEEN DIFFERENT ALGORITHMS. LINES 1 TO 4 ARE TAKEN FROM [8].

Figure 7 shows the evolution of the SNR as a function of the percentage of retained coefficients

(size of the significance maps). As expected (see above) MDCT thresholding yields a significantly better

rate distortion curve, while weighted MDCT thresholding is comparable with the two versions of our

approach.

The right hand plot of figure 7 shows a zoom of the low rate part of the full plot. As may be seen,

for very low rate (less than 1% retained coefficients), our hybrid decompositions outperform weighted

MDCT thresholding.
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Fig. 2. Panpipe signal. From top to bottom: original signal, noisy signal, restored signal.

V. CONCLUSION

We have described in this article a family of random waveform models that aim at obtaining sparse

representations of audio signals. Compared to other works, the originality of this approach is to start from

a mathematical model of the signal able to reproduce the observed statistics of audio signals, like the

distribution of the analysis coefficients. We have focused on simple versions of the model, but extensions

to more complex situations (in particular more complex significance maps models) are also possible.

The theoretical study of these simple models yields practical algorithms which can be exploited in

application like denoising, or decomposition of the signal into layers. The simplicity of the model is

reflected by the simplicity of the algorithms themselves, which do not require complicated optimization

steps, and therefore need reasonable computing time (without paying special attention to optimization).

The mean-field type algorithms are equivalent to adaptive hard-thresholding algorithms, the thresholds

being obtained by likelihood maximization of the model. The iterative adaptive thresholding algorithms

yield thresholds adapted for each coefficient.

The numerical results presented in this paper show the effectiveness of our approach for audio signals.

Among the different algorithms presented, the “mean-field” algorithms are the most efficient, in term of

expected results, and computation time.

Further work will focus on more realistic models for the significance maps, including more complex
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Fig. 3. Glockenspiel signal. From top to bottom: original signal, noisy signal, restored signal.

structures for the maps and between maps. Indeed, although natural from the theoretical and algorith-

mical points of view, the assumption of independence of the tonal and transient layers is certainly not

realistic: a note begins by an attack, so a transient may generally be expected at the beginning of a

tonal component. However, extensions of the model in such ways will necessitate much more complex

estimation algorithms.

APPENDIX

A. Expectation Maximization Algorithm (EM)

Let {x1, x2, . . . , xn} denote the observed data, which are independent realizations of a random variable

X . The likelihood of the data, conditional to the model with parameter Θ is: L(Θ) = P(X|Θ).

As the realizations are independent, if f(.|Θ) denotes the pdf with parameter Θ, one can write:

L(Θ) =

n
∏

i

f(xi|Θ) . (37)

Assume the data follow a known mixture model, after a transformation φ of the coefficients conditionally

to their class membership. Denote the classes by {C1, . . . , Cc} and by x̃ = {x̃1, x̃2, . . . , x̃n} the observed

data after the transformation, which are the realization of the random variable X̃ defined by:

x̃i = φk(xi) if xi ∈ Ck ,
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Fig. 4. Xylophone signal. From top to bottom: original signal, noisy signal, restored signal.

with

φ : X ∈ R
N 7−→ X̃ = φ(X) ∈ R

N .

The random variable X is a partial observation. Let Z be a random variable corresponding to the

missing hidden data. This random variable show the class of the observation xi:










zi,k = 1 if xi ∈ Ck

zi,k = 0 otherwise

.

Denote by Y = (X, Z) the supplemented data and Ỹ = (X̃, Z) the transformed supplemented data. Let

πk = P{Z = k}, the complete log-likelihood is:

logL(Ỹ |Θ) = log(P (X̃, Z|Θ))

=

n
∑

i=1

c
∑

k=1

zi,k log(πkf(φk(xi)|θk)) . (38)

The zi,k, which represent the class of each xi, allow us to write the log-likelihood, depending of the

observed data xi, the transformations φk corresponding to the classes Ck, without knowing the partition.
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Fig. 5. Excerpt from a Norah Jones song. From top to bottom: original signal, noisy signal, restored signal.

The expectation state at the iteration i is:

Q(Θ|Θ̂(t)) = E{L(Θ)|X̃, Θ̂(t)}

=

n
∑

i=1

c
∑

k=1

E{zi,k|X̃, Θ̂(t)} log(πkf(φk(xi)|θk)) , (39)

ie estimate the mean of zi,k:

ẑ
(t)
i,k = E{Zi,k|X̃ = φk(xi), Θ̂

(t)} = P{Zi,k = 1|X̃ = φk(xi), Θ̂
(t)}

=
πkf(φk(xi), θk)

∑c
q=1 πqf(φq(xi), θq)

. (40)

The maximization state is classically obtained by solving the likelihood equations, depending of the

mixture model.
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