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Geometric Invariant Theory and

Generalized Eigenvalue Problem

N. Ressayre∗

March 2, 2009

Abstract

Let G be a connected reductive subgroup of a complex connected
reductive group Ĝ. Fix maximal tori and Borel subgroups of G and Ĝ.
Consider the cone LR(G, Ĝ) generated by the pairs (ν, ν̂) of dominant
characters such that Vν is a submodule of Vν̂ (with usual notation).
Here we give a minimal set of inequalities describing LR(G, Ĝ) as a
part of the dominant chamber.

In way, we obtain results about the faces of the Dolgachev-Hu’s
G-ample cone and variations of this cone.

1 Introduction

In this article, we are mainly interested in the faces of the G-ample cone as
defined by Dolgachev-Hu in [DH98]. In this introduction we start by the
end: we firstly explain the applications to the generalized Horn’s problem.

Let G be a connected reductive subgroup of a connected reductive group
Ĝ both defined over an algebraic closed field K of characteristic zero. We
consider the following question:

What irreducible representations of G appear in a given irreducible
representation of Ĝ ?

Once maximal tori (T ⊂ T̂ ) and Borel subgroups (B ⊃ T and B̂ ⊃ T̂ )
fixed, the question is to understand the set LR(G, Ĝ) of pairs (ν, ν̂) of dom-
inant character of T × T̂ such that the G-module associated to ν can be
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G-equivariantly embedded in the Ĝ-module associated to ν̂. By a result of
M. Brion and F. Knop (see [É92]), LR(G, Ĝ) is a finitely generated sub-
monoid of the character group of T × T̂ . Our purpose is to study the linear
inequalities satisfied by this monoid. More precisely, we consider the convex
cone LR(G, Ĝ) generated by LR(G, Ĝ): this cone is characterized by finitely
many inequalities. It occurs that the interior of LR(G, Ĝ) is non empty if
and only if no non trivial connected normal subgroup of G is normal in Ĝ:
for simplicity, we assume, from now on that LR(G, Ĝ) has non empty in-
terior. Our first result is a list of inequalities which characterize LR(G, Ĝ)
as a part of the dominant cone. Such a list was already obtained in [BS00].
Whereas the Berenstein-Sjamaar’s list is redundant, our list is proved to be
irredundant.

To make our statements more precise, we introduce notation. Consider
the natural paring 〈· , ·〉 between one parameter subgroups and characters
of tori T or T̂ . Let W (resp. Ŵ ) denote the Weyl group of T (resp. T̂ ). If
λ is a one parameter subgroup of T (or so of T̂ ), we denote by Wλ (resp.
Ŵλ) the stabilizer of λ for the natural action of the Weyl group on the set
of one parameter subgroups. For w ∈ W/Wλ and ŵ ∈ Ŵ/Ŵλ, we consider
the following linear form on the character group X(T × T̂ ) of T × T̂ :

ϕλ,w,ŵ : (ν, ν̂) 7→ 〈ŵλ, ν̂〉 + 〈wλ, ν〉.

In fact, all the inequalities in Theorem A below have the following form
ϕλ,w,ŵ ≥ 0. We need some notation to explain which triples (λ,w, ŵ) appear.

Let P (λ) denote the usual parabolic subgroup of G associated to λ (see
Section 3.7). The cohomology group H∗(G/P (λ), Z) is freely generated by
the Schubert classes [Λw] parametrized by the elements w ∈ W/Wλ. We
will consider Ĝ/P̂ (λ), [Λŵ] as above but with Ĝ in place of G. Consider
also the canonical G-equivariant immersion ι : G/P (λ) −→ Ĝ/P̂ (λ); and
the corresponding morphism in cohomology ι∗.

Let g and ĝ denote the Lie algebras of G and Ĝ. Let ρ, ρ̂ and ρ̂λ be the
half-sum of positive roots of G, Ĝ and the centralizer Ĝλ of λ in Ĝ. Let
λ1, · · · , λn be the set of indivisible dominant one parameter subgroups of T
orthogonal to an hyperplane generated by weights of T in ĝ/g.

We can now state one of our main results:

Theorem A We assume that no ideal of g is an ideal of ĝ. Then, LR(G, Ĝ)
has non empty interior in X(T × T̂ ) ⊗ Q.

A dominant weight (ν, ν̂) belongs to LR(G, Ĝ) if and only if for all i =
1, · · · , n and for all pair of Schubert classes ([Λw], [Λŵ]) of G/P (λi) and
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Ĝ/P̂ (λi) associated to a pair (w, ŵ) ∈ W/Wλi
× Ŵλi

such that

(i) ι∗([Λŵ]).[Λw] = [pt] ∈ H∗(G/P (λ), Z), and

(ii) 〈wλi, ρ〉 + 〈ŵλ̂i, ρ̂〉 = 〈λi, ρ〉 + 〈λi, 2ρ̂
λi − ρ̂〉,

we have

〈wλi, ν〉 + 〈ŵλi, ν̂〉 ≥ 0. (1)

In [BS00], Berenstein and Sjamaar showed that (ν, ν̂) belongs to LR(G, Ĝ)
if and only if 〈wλi, ν〉 + 〈ŵλi, ν̂〉 ≥ 0 for all i = 1, · · · , n and for all pair of
Schubert classes ([Λw], [Λŵ]) such that ι∗([Λŵ]).[Λw] = d.[pt] for some posi-
tive integer d. In the case when G is diagonally embedded in Gs, Kapovich-
Leeb-Millson already proved that one may assume that d = 1. Again in the
case when G is diagonally embedded in Gs, Belkale and Kumar obtained
the same inequalities as in Theorem A in [BK06].

In some sense, our second main result asserts that Theorem A is optimal:

Theorem B In Theorem A, Inequalities (1) are pairwise distinct and no
one can be omitted.

This result was known is some particular cases. Indeed, Knutson, Tao
and Woodward shown in [KTW04] the case when G = SLn is diagonally
embedded in SLn × SLn using combinatorial tools. Using the interpretation
of the Littlewood-Richardson coefficients as structure coefficient of the co-
homology ring of the Grassmann varieties, Belkale made a geometric proof
of Knutson-Tao-Woodward’s result (see [Bel07]). Using explicit calculation
with the help of a computer, Kapovich, Kumar and Millson proves the case
when G = SO(8) is diagonally embedded in G × G in [KKM06]. Our proof
is different and uses Geometric Invariant Theory.

Let ([Λw], [Λŵ]) be a pair of Schubert classes in G/P (λi) such that
ι∗([Λŵ]).[Λw] = d.[pt] ∈ H∗(G/P (λ), Z) for some positive integer d. By
[BS00], the set of (ν, ν̂) ∈ LR(G, Ĝ) such that 〈wλi, ν〉 + 〈ŵλi, ν̂〉 = 0 is a
face of LR(G, Ĝ). Theorem B shows that if (w, ŵ) does not satisfy Condi-
tions (i) and (ii) of Theorem A then the codimension of this face is greater
than one. We can improve this statement:

Theorem C Let us fix a λi. Let ([Λw], [Λŵ]) be a pair of Schubert varieties
in G/P (λi) such that ι∗([Λŵ]).[Λw] = d.[pt] ∈ H∗(G/P (λ), Z) for some
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positive integer d. We assume that there exists a pair of dominant weights
(ν, ν̂) ∈ LR(G, Ĝ) such that 〈wλi, ν〉 + 〈ŵλi, ν̂〉 = 0 and such that ν is
strictely dominant.

Then, d = 1 and 〈wλ, ρ〉 + 〈ŵλ̂, ρ̂〉 = 〈λ, ρ〉 + 〈λ, 2ρ̂λ − ρ̂〉.
In particular, the set of (ν, ν̂) ∈ LR(G, Ĝ) such that 〈wλi, ν〉+〈ŵλi, ν̂〉 =

0 is a face of codimension one.

Theorems A and B can be thought as a description of the faces of codi-
mension one of LR(G, Ĝ) which intersect the interior of the dominant cham-
ber. In Theorem 9 below, we study the smaller faces of LR(G, Ĝ). To avoid
some notation in the introduction, we only state our results about these
faces in the case when G is diagonally embedded in Gs for an integer s ≥ 2;
that is, in the case of decomposition of the tensor product (see Section 8.3
for a more general result).

If α is a simple root of G, ωα∨ denote the corresponding fundamental
weight. If I is a set of simple roots, P (I) denote the standard parabolic
subgroup associated to I and WI its Weyl group. In [BK06], Belkale and
Kumar defined a new product ⊙0 on the cohomology groups H∗(G/P, Z).

Theorem D We assume that G is semisimple diagonally embedded in Ĝ =
Gs for an integer s ≥ 2.

(i) Let I be a set of d simple roots and (w1, · · · , ws+1) ∈ (W/WI)
s+1 such

that [Λw1] ⊙0 · · · ⊙0 [Λws+1 ] = [Λe] ∈ H∗(G/P (I), Z). Then, the set of
(ν1, · · · , νs+1) ∈ LR(G,Gs) such that

∀α ∈ I
∑

i

〈ωα∨ , w−1
i νi〉 = 0,

is a face of codimension d of LR(G,Gs).

(ii) Any face of LR(G,Gs) intersecting the interior of the dominant cham-
ber of Gs+1 is obtained in this way.

If there is a lot of literature on the faces of codimension one, I do not
know any other result about smaller faces even in the case of Horn’s conjec-
ture that is for SLn ⊂ SLn×SLn. Moreover, Theorem D gives an application
of Belkale-Kumar’s product ⊙0 for any G/P whereas in [BK06] only the case
when P is maximal is used.

Let us explain the starting point of the proofs of Theorems A to D. Con-
sider the variety X = G/B×Ĝ/B̂ endowed with the diagonal action of G. To
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any character (ν, ν̂) of T × T̂ , one associates a G-linearized line bundle L(ν,ν̂)

on X such that H0(X,L(ν,ν̂)) = Vν̂ ⊗ Vν . Hence, (ν, ν̂) belongs to LR(G, Ĝ)
if and only if a positive power of L(ν, ν̂) admit a non zero G-invariant section.
If L(ν, ν̂) is ample this is equivalent to saying that X admit semistable points
for L(ν, ν̂). So, one can use classical results of Geometric Invariant Theory as
Hilbert-Mumford’s Theorem and Luna’s Slice Etale Theorem. This method
was already used in [Kly98, BS00, BK06].

We obtain results in the following more general context. Consider a
connected reductive group G acting on a normal projective variety X. To
any G-linearized line bundle L on X we associate the following open subset
Xss(L) of X:

Xss(L) =
{

x ∈ X : ∃n > 0 and σ ∈ H0(X,L⊗n)G such that σ(x) 6= 0
}

.

The points of Xss(L) are said to be semistable for L. Note that if L is not
ample, this notion of semistability is not the standard one. In particular,
the quotient πL : Xss(L) −→ Xss(L)//G is a good quotient, if L is ample;
but not in general. In this context, we ask for:

What are the L’s with non empty set Xss(L) ?

Let us fix a freely finitely generated subgroup Λ of the group PicG(X) of G-
linearized line bundles on X. Let ΛQ denote the Q-vector space containing Λ
as a lattice. Consider the convex cones T CG

Λ(X) (resp. ACG
Λ(X)) generated

in ΛQ by the L’s (resp. the ample L’s) in Λ which have non zero G-invariant
sections. By [DH98] (see also [Res00]), ACG

Λ (X) is a closed convex rational
polyhedral cone in the dominant cone of ΛQ. We are interested in the faces
of ACG

Λ(X) and T CG
Λ(X).

We are now going to define the notion of well covering pair which will
play a central role in this work. Let λ be a one parameter subgroup of G
and C be an irreducible component of its fix points. Consider C+ = {x ∈
X | limt→0 λ(t)x ∈ C} and the natural G-equivariant map η : G ×P (λ)

C+ −→ X. The pair (C, λ) is said to be well covering if η induces an
isomorphism over an open subset of X intersecting C. The pair is said to
be dominant if η is dominant.

For L ∈ PicG(X), we denote by µL(C, λ) the integer giving the action of
λ on the restriction of L on C. We now state a first description of ACG

Λ(X):
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Theorem E An ample G-linearized line bundle L ∈ Λ belongs to ACG
Λ(X)

if and only if for all well covering pair (C, λ) with a dominant one parameter
subgroup λ of T we have µL(C, λ) ≤ 0.

Let (C, λ) be a well covering pair. Theorem E shows that the set of
L ∈ ACG

Λ(X) such that µL(C, λ) = 0 is a face of ACG
Λ(X). We obtained

several relations between the faces of ACG
Λ(X) and pairs (C, λ). Firstly, for

L in the boundary of ACG
Λ(X), we describes the quotient variety Xss(L)//G

in terms of covering pair:

Theorem F We assume that X = G/B × Y , for a normal projective G-
variety Y . Let (C, λ) be a dominant pair and L be an ample G-linearized line
bundle on X such that µL(C, λ) = 0. Consider the action of the centralizer
Gλ of λ in G on C and the associated set of semistable points Css(L, Gλ).
We assume that Xss(L) is not empty.

Then,

(i) Xss(L)//G is isomorphic to Css(L, Gλ)//Gλ; and,

(ii) (C, λ) is well covering.

Actually, Theorem F is a key point in the proof of Theorem C.

We already noticed that to any dominant pair, one can associate a face
(eventually empty) of ACG

Λ (X). Conversely, we have:

Theorem G Let F be a face of ACG
Λ(X).

Then, there exists a well covering pair (C, λ) such that F is the set of
the L’s in ACG

Λ(X) such that µL(C, λ) = 0.

We now assume that Λ⊗Q = PicG(X)⊗Q. Notice that if Pic(X) is not
finitely generated it can be replaced by the Neron-Severi group (see [DH98]).
We denote T CG

Λ(X) by T CG(X). We are interested in a kind of converse of
Theorem G. So, we fix a well covering pair (C, λ).

Theorem H With above notation, consider the linear map ρ induced by the
restriction:

ρ : PicG(X) ⊗ Q −→ PicGλ

(C) ⊗ Q.

Then, the subspace of PicG(X) ⊗ Q spanned by the L ∈ T CG(X) such that
µL(C, λ) = 0 is the pullback by ρ of the intersection of the image of ρ and

T CGλ

(C).
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By induction, Theorem H will allow us to prove Theorem B. Indeed, it
will be used to prove that the set of L ∈ LR(G, Ĝ) which realize a given
equality in Theorem A is of codimension one.

In this article, we are mainly interested in the cones LR(G, Ĝ) which
are examples of cones SACG

Λ(X). Other interesting examples will be studied
elsewhere. For example, if Y is any G-variety endowed with an G-linearized
line bundle L the moment polytope P (Y,L) is an affine section of a cone
SACG

Λ(X). These polytopes are studied from symplectic point of view (see
[Ver96]) or from an algebro-geometric point of view in [Bri99, Man97].

In Section 2, we fix notation about parabolic fiber products and prove
a useful result on their linearized Picard group. Section 3 is concerned by
the Hilbert-Mumford’s numerical criterion of semistability. In Section 4,
we recall some useful results about the Bialinicki-Birula’s cells. Section 5
recalls a useful consequence of Luna’s Slice Etale Theorem. In Section 6,
we introduce the notion of well covering pair and prove their first relations
with the G-cones. In Section 7, our general results about the faces of the G-
cones are obtained. In Section 8, we apply our results to the cone LR(G, Ĝ)
essentially by making more explicit the notion of well covering pair.

Convention. The ground field K is assumed to be algebraic closed of char-
acteristic zero. The notation introduced in the environments “Notation.”
are fixed for all the sequence of the article.

2 Preliminaries on parabolic fiber products

Notation. Let K∗ denote the multiplicative group of K. If G is an affine
algebraic group, X(G) denotes the group of characters of G; that is, of al-
gebraic group homomorphisms from G on K∗. If G acts algebraically on a
variety X, X is said to be a G-variety. As in [MFK94], we denote by PicG(X)
the group of G-linearized line bundles on X. If L ∈ PicG(X), H0(X,L) de-
notes the G-module of regular sections of L.

In this section we collect some useful properties of the fiber product. Let
us fix a reductive group G and a parabolic subgroup P of G.
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2.1 Construction

Let Y be a P -variety. Consider over G × Y the action of G × P given by
the formula (with obvious notation):

(g, p).(g′, y) = (gg′p−1, py).

Since the quotient map G −→ G/P is a Zariski-locally trivial principal P -
bundle; one can easily construct a quotient G×P Y of G × Y by the action
of {e} × P . The action of G × {e} induces an action of G on G ×P Y .
Moreover, the first projection G × Y −→ G induces a G-equivariant map
G ×P Y −→ G/P which is a locally trivial fibration with fiber Y .

The class of a pair (g, y) ∈ G×Y in G×P Y is denoted by [g : y]. If Y is
a P -stable locally closed subvariety of a G-variety X, it is well known that
the map

G ×P Y −→ G/P × X
[g : y] 7−→ (gP, gy)

is an immersion; its image is the set of the (gP, x) ∈ G/P × X such that
g−1x ∈ Y .

Let ν be a character of P . If Y is the field K endowed with the action of
P defined by p.τ = ν(p−1)τ for all τ ∈ K and p ∈ P , G×P Y is a G-linearized
line bundle on G/P . We denote by Lν this element of PicG(G/P). In fact,
the map X(P ) −→ PicG(G/P), ν 7−→ Lν is an isomorphism.

Let B be a Borel subgroup of G contained in P , and T be a maximal
torus contained in B. Then, X(P ) identifies with a subgroup of X(T ) which
contains dominant weights. For ν ∈ X(P ), Lν is generated by its sections if
and only if it has non zero sections if and only if ν is dominant. Moreover,
H0(G/P,Lν) is the dual of the simple G-module of highest weight ν. For ν
dominant, Lν is ample if and only if ν cannot be extended to a subgroup of
G bigger than P .

2.2 Line bundles

We are now interested in the G-linearized line bundles on G ×P Y .

Lemma 1 With above notation, we have:

(i) The map L 7−→ G ×P L defines a morphism

e : PicP(Y) −→ PicG(G ×P Y).
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(ii) The map ι : Y −→ G ×P Y, y 7−→ [e : y] is a P -equivariant immer-
sion. We denote by ι∗ : PicG(G ×P Y) −→ PicP(Y) the associated
restriction homomorphism.

(iii) The morphisms e and ι∗ are the inverse one of each other; in partic-
ular, they are isomorphisms.

(iv) For any L ∈ PicG(G ×P Y), the restriction map from H0(G ×P Y,L)
to H0(Y, ι∗(L)) induces a linear isomorphism

H0(G ×P Y,L)G ≃ H0(Y, ι∗(L))P .

Proof. Let M be a P -linearized line bundle on Y . Since the natural
map G × M −→ G ×P M is a categorical quotient, we have the following
commutative diagram:

G ×M - G ×P M

G × Y
?

- G ×P Y.

p
?

Since G −→ G/P is locally trivial, the map p endows G ×P M with a
structure of line bundle on G×P Y . Moreover, the action of G on G×P M
endows this line bundle with a G-linearization. This proves Assertion (i).
The second one is obvious.

By construction, the restriction of G ×P M to Y is M. So, ι∗ ◦ e is the
identity map. Conversely, let L ∈ PicG(G ×P Y). Then, we have:

e ◦ ι∗(L) ≃ {(gP, l) ∈ G/P × L : g−1l ∈ L|Y }.

The second projection induces an isomorphism from e ◦ ι∗(L) onto L. This
ends the proof of Assertion (iii).

The map H0(G ×P Y,L)G −→ H0(Y, ι∗(L))P is clearly well defined and
injective. Let us prove the surjectivity. Let σ ∈ H0(Y, ι∗(L))P . Consider the
morphism

σ̂ : G × Y −→ G ×P L
(g, y) 7−→ [g : σ(y)].

Since σ is P -invariant, so is σ̂; and σ̂ induces a section of G×P L over G×P Y
which is G-invariant and extends σ. �
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3 Numerical criterion of Hilbert-Mumford

Notation. If x is a point of a G-variety, we will denote by Gx its isotropy
subgroup and by G.x its orbit.

We will use classical results in Geometric Invariant Theory (GIT) about
the numerical criterion of Hilbert-Mumford. In this section, we present these
results and give some useful complements. Let us fix a connected reductive
group G acting on an irreducible projective algebraic variety X.

3.1 Convex geometry

In this subsection, we recall some useful facts about polytopes. Let E be
an Euclidean space whose the scalar product is denoted by 〈· , ·〉 and norm
‖ · ‖. A polytope in E is the convex hull of finitely many points. Let P
be a polytope which does not contain 0. The real infx∈P ‖x‖ is called the
distance from 0 to P and denoted by d(O,P). The orthogonal projection
theorem asserts that there exists a unique x0 ∈ P such that d(0,P) = ‖x0‖.
Moreover,

d(0,P) = sup
y∈E−{0}

inf
x∈P

〈y, x〉

‖y‖
,

and x′
0 = x0

‖x0‖
is the unique vector with norm 1 such that

d(0,P) = inf
x∈P

〈x′
0, x〉.

In particular, the set of x ∈ P such that 〈x′
0, x〉 = d(0,P) is a face of P; we

call it the face viewed from 0 and denote it by F(0).
We will use the following easy fact:

Lemma 2 Let r be a positive integer. We consider the map which associate
to any element x = (x1, · · · , xr) of Er their convex hull Conv(x1, · · · , xr) =
P(x).

Then, the set U of x ∈ Er such that 0 6∈ P(x) is open in Er. To any
such x, we associate the set I(x) of the i’s such that xi belongs to the face of
P(x) viewed from 0. Then, there exists an open neighborhood U of x such
that for any x′ ∈ U we have I(x′) ⊂ I(x).

Proof. The only point is that the application which maps x to the orthog-
onal projection of 0 on P(x) is continuous. �
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3.2 An Ad Hoc notion of semistability

As in the introduction, for any G-linearized line bundle L on X, we consider
the following set of semistable points:

Xss(L) =
{

x ∈ X : ∃n > 0 and σ ∈ H0(X,L⊗n)G such that σ(x) 6= 0
}

.

To precise the acting group, we sometimes denote Xss(L) by Xss(L, G).
The subset Xss(L) is open and stable by G. A point x which is not

semistable is said to be unstable; and, we set Xus(L) = X − Xss(L).

Remark. Note that this definition of Xss(L) is NOT standard. Indeed,
one usually imposes that the open subset defined by the non vanishing of σ
to be affine. This property which is useful to construct a good quotient is
automatic if L is ample but not in general; hence, our definition coincides
with the usual one if L is ample.

If L is ample, there exists a categorical quotient:

π : Xss(L) −→ Xss(L)//G,

such that Xss(L)//G is a projective variety and π is affine. A point x ∈
Xss(L) is said to be stable if Gx is finite and G.x is closed in Xss(L). Then,
for all stable point x we have π−1(π(x)) = G.x; and the set Xs(L) of stable
points is open in X.

The following lemma is easy and well known. It will be very useful here.

Lemma 3 Let L be an G-linearized line bundle on X and x ∈ X be a point
semistable for L.

Then, the restriction of L to G.x is of finite order.

Proof. Let us recall that for any L ∈ PicG(G.x), the action of Gx on the
fiber over x in L determines a character µL(x,Gx) of Gx. Moreover, the
map L 7→ µL(x,Gx) is an injective homomorphism.

Now, let L be a G-linearized line bundle on X such that the character
µL(x,Gx) is of infinite order. It remains to prove that x is unstable for L.
Let σ be a G-invariant section of L⊗n for some n > 0. Then σ(x) is a Gx

fix point of the fiber in L⊗n over x. Since, n.µL(x,Gx) is non trivial, σ(x)
must be zero. So, x is unstable. �
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3.3 The functions µ•(x, λ)

Let L ∈ PicG(X). Let x be a point in X and λ be a one parameter subgroup
of G. Since X is complete, limt→0 λ(t)x exists; let z denote this limit.
The image of λ fixes z and so the group K∗ acts via λ on the fiber Lz.
This action defines a character of K∗, that is, an element of Z denoted by
µL(x, λ). One can immediately prove that the numbers µL(x, λ) satisfy the
following properties:

(i) µL(g · x, g · λ · g−1) = µL(x, λ) for any g ∈ G;

(ii) the map L 7→ µL(x, λ) is a homomorphism from PicG(X) to Z;

(iii) for any G-variety Y and for any G-equivariant morphism f : X −→ Y ,
µf∗(L)(x, λ) = µL(f(x), λ), where x ∈ X and L is a G-linearized line
bundle on Y .

A less direct property of the function µL(x, λ) is

Proposition 1 Let L, x, λ and z be as above. Let x̃ be a non zero point in
the fiber in L over x. We embed X in L by the zero section. Then, we have

(i) if µL(x, λ) > 0, then λ(t)x̃ tends to z when t → 0;

(ii) if µL(x, λ) = 0, then λ(t)x̃ tends to a non zero point z̃ in the fiber in
L over z when t → 0;

(iii) if µL(x, λ) < 0, then λ(t)x̃ has no limit in L when t → 0.

Proof. Set V = {λ(t).x | t ∈ K∗} ∪ {z}: it is a locally closed subvariety of
X stable by the action of K∗ via λ. Moreover, z is the unique closed orbit
of K∗ in V . So, [Res00, Lemma 7] implies that PicK∗

(V) is isomorphic to
X(K∗); and finally that for all L ∈ PicG(X) the restriction L to V is the
trivial line bundle endowed with the action of K∗ given by µL(x, λ). The
proposition follows immediately. �

The numbers µL(x, λ) are used in [MFK94] to give a numerical criterion
for stability with respect to an ample G−linearized line bundle L:

x ∈ Xss(L) ⇐⇒ µL(x, λ) ≤ 0 for all one parameter subgroup λ,
x ∈ Xs(L) ⇐⇒ µL(x, λ) < 0 for all non trivial λ.

A line bundle L over X is said to be semiample if a positive power of
L is base point free. With our notion of semistability, Hilbert-Mumford’s
theorem admits the following direct generalization:
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Lemma 4 Let L be a G-linearized line bundle over X and x a point in X.
Then,

(i) if x is semistable for L, µL(x, λ) ≤ 0 for any one parameter subgroup
λ of G;

(ii) for a one parameter subgroup λ of G, if x is semistable for L and
µL(x, λ) = 0, then limt→0 λ(t)x is semistable for L;

(iii) if in addition L is semiample, x is semistable for L if and only if
µL(x, λ) ≤ 0 for any one parameter subgroup λ of G.

Proof. Assume that x is semistable for L and consider a G-invariant section
σ of L⊗n which does not vanish at x. Since λ(t)σ(x) = σ(λ(t)x) tends to
σ(z) when t → 0, Proposition 1 shows that µL(x, λ) ≤ 0. If in addition
µL(x, λ) = 0, Proposition 1 shows that σ(z) is non zero; and so that z is
semistable for L. This proves the two first assertions.

Assume now that L is semiample. Let n be a positive integer such
that L⊗n is base point free. Let V denote the dual of the space of global
sections of L⊗n: V is a finite dimensional G-module. Moreover, the usual
map φ : X −→ P(V ) is G-equivariant. Let Y denote the image of φ and M
denote the restriction of O(1) to Y .

Then L⊗n is the pullback of M by φ. Since X is projective, φ in-
duces isomorphisms from H0(Y,M⊗k) onto H0(X,M⊗nk) (for all k). So,
Xss(L) = φ−1(Y ss(M)). We deduce the last assertion of the lemma by ap-
plying Hilbert-Mumford’s criterion to Y and M and Property (iii) of the
functions µ•(x, λ). �

Remark.

(i) If L is ample, Assertion (ii) of Lemma 4 is Lemma 3 in [Res00].

(ii) The proof of Assertion (iii) shows that a lot of properties of semista-
bility for an ample line bundle are also available for semiample line
bundles (see Propositions 2 and 3, and Theorems 1 and 2 below).

3.4 Definition of the functions M•(x)

Notation. Let Γ be any affine algebraic group. The neutral component of
Γ is denoted by Γ◦. Let Y (Γ) denote the set of one parameter subgroups
of Γ; that is, of group homomorphisms from K∗ in Γ. Note that if Γ◦ is a
torus, Y (Γ) is a group.

13



If Λ is an abelian group, we denote by ΛQ (resp. ΛR) the tensor product
of Λ with Q (resp. R) over Z.

Let T be a maximal torus of G. The Weyl group W of T acts linearly
on Y (T )R. Since W is finite, there exists a W -invariant Euclidean norm
(defined over Q) ‖ · ‖ on Y (T )R. On the other hand, if λ ∈ Y (G) there
exists g ∈ G such that g · λ · g−1 ∈ Y (T ). Moreover, if two elements of
Y (T ) are conjugate by an element of G, then they are by an element of the
normalizer of T (see [MFK94, Lemma 2.8]). This allows to define the norm
of λ by ‖λ‖ = ‖g · λ · g−1‖.

Let L ∈ PicG(X). One can now introduce the following notation:

µL(x, λ) = µL(x,λ)
‖λ‖ , ML(x) = sup

λ∈Y (G)
µL(x, λ).

In fact, we will see in Corollary 1 that ML(x) is finite.

3.5 M•(x) for a torus action

Notation. If Y is a variety, and Z is a part of Y , the closure of Z in Y will
be denote by Z. If Γ is a group acting on Y , Y Γ denote the set of fix point
of Γ in Y .

If V is a finite dimensional vector space, and v is a non zero vector in V ,
[v] denote the class of v in the projective space P(V ). If V is a Γ-module,
and χ is a character of Γ, we denote by Vχ the set of v ∈ V such that
g.v = χ(g)v for all g ∈ Γ.

In this subsection we assume that G = T is a torus. Let z be a point
of X fixed by T . The action of T on the fiber Lz over the point z in the
T -linearized line bundle L define a character µL(z, T ) of T ; we obtain a
morphism

µ•(z, T ) : PicT(X) −→ X(T).

For any point x in X, we denote by PL
T (x) the convex hull in X(T )R of the

characters −µL(z, T ) for z ∈ T.x
T
.

The following proposition is an adaptation of a result of L. Ness and
gives a pleasant interpretation of the number ML(x):

Proposition 2 Let L be a semiample T -linearized line bundle on X. With
the above notation, we have:
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(i) The point x is unstable if and only if 0 does not belong to PL
T (x). In

this case, ML(x) is the distance from 0 to PL
T (x).

(ii) If x is semistable, the opposite of ML(x) is the distance from 0 to the
boundary of PL

T (x).

(iii) There exists λ ∈ Y (T ) such that µL(x, λ) = ML(x). If moreover λ is
indivisible, we call it an adapted one parameter subgroup for x.

(iv) If x is unstable, there exists a unique adapted one parameter subgroup
for x.

Proof. Since L is semiample, there exist a positive integer n, a T -module
V , and a T -equivariant morphism φ : X −→ P(V ) such that L⊗n =
φ∗(O(1)). Since µ•(z, T ) is a morphism, we have: PL⊗n

T (x) = nPL
T (x) for

all x. Moreover, µL⊗n
(x, λ) = nµL(x, λ), for all x and λ; so, ML⊗n

(x) =
nML(x). As a consequence, it is sufficient to prove the proposition for L⊗n;
in other words, we may assume that n = 1.

Let us recall that:
V =

⊕

χ ∈ X(T )

Vχ.

Let x ∈ X and v ∈ V such that [v] = φ(x). There exist unique vectors
vχ ∈ Vχ such that v =

∑

χ vχ. Let Q be the convex hull in X(T )R of the
χ’s such that vχ 6= 0. It is well known (see [Oda88]) that the fixed point

of T in T.[v] are exactly the [vχ]’s with χ vertex of Q. Moreover, T acts
by the character −χ on the fiber O(1)[vχ] over [vχ] in O(1). One deduces

that Q = PL
T (x). So, it is sufficient to prove the proposition with Q in

place of PL
T (x) and φ(x) = x (because of our non-standard definition of

semistability): this is a statement of [Nes78]. �

3.6 Properties of M•(x)

Notation. We will denote by PicG(X)+ (resp. PicG(X)++) the set of semi-
ample (resp. ample) G-linearized line bundles on X.

An indivisible one parameter subgroup λ of G is said to be adapted for x
and L if and only if µL(x, λ) = ML(x). Denote by ΛL(x) the set of adapted
one parameter subgroups for x.

Using the fact that any one parameter subgroup is conjugated to one in
a given torus, Proposition 2 implies easily
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Corollary 1 (i) The numbers ML(x) are finite (even if L is not semi-
ample, see Proposition 1.1.6 in [DH98]).

(ii) If L is semiample, ΛL(x) is not empty.

Now, we can reformulate the numerical criterion for stability: if L is
semiample, we have

Xss(L) = {x ∈ X : ML(x) ≤ 0}, Xs(L) = {x ∈ X : ML(x) < 0}.

The following proposition is a result of finiteness for the set of func-
tions M•(x). It will be used to understand how Xss(L) depends on L (see
Lemma 6 below).

Proposition 3 When x varies in X, one obtains only a finite number of
functions M•(x) : PicG(X)+ −→ R.

Proof. Let T be a maximal torus of G. Consider the partial forgetful
map rT : PicG(X) −→ PicT(X). Since M•(x) = maxg∈G M rT (•)(g.x), it is
sufficient to prove the proposition for the torus T .

If z and z′ belong to the same irreducible component C of XT , the
morphisms µ•(z, T ) and µ•(z′, T ) are equal: we denote by µ•(C, T ) this
morphism.

By Proposition 2, ML(x) only depends on PL
T (x), which only depends

on the set of irreducible components of XT which intersects T.x. Since, XT

has finitely many irreducible components, the proposition follows. �

Remark. Proposition 3 implies that the open subsets of X which can be
realized as Xss(L) for some semiample G-linearized line bundle L on X is
finite. This is a result of Dolgachev and Hu (see Theorem 3.9 in [DH98]; see
also [Sch03]).

3.7 Adapted one parameter subgroups

To describe ΛL(x), we need some additional notation. To the one parameter
subgroup λ of G, we associate the parabolic subgroup (see [MFK94]):

P (λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.

The unipotent radical of P (λ) is

U(λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 = e
}

.
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Moreover, the centralizer Gλ of the image of λ in G is a Levi subgroup of
P (λ). For p ∈ P (λ), we set p = limt→0 λ(t).p.λ(t)−1. Then, we have the
following short exact sequence:

1 - U(λ) - P (λ)
p 7→ p- Gλ - 1.

For g ∈ P (λ), we have µL(x, λ) = µL(x, g·λ·g−1). The following theorem
due to G. Kempf is a generalization of the last assertion of Proposition 2.

Theorem 1 (see [Kem78]) Let x be an unstable point for a semiample G-
linearized line bundle L. Then:

(i) All the P (λ) for λ ∈ ΛL(x) are equal. We denote by PL(x) this sub-
group.

(ii) Any two elements of ΛL(x) are conjugate by an element of PL(x).

We will also use the following theorem of L. Ness.

Theorem 2 (Theorem 9.3 in [Nes84]) Let x and L be as in the above theo-
rem. Let λ be an adapted one parameter subgroup for x and L. We consider
y = limt→0 λ(t) · x. Then, λ ∈ ΛL(y) and ML(x) = ML(y).

3.8 Stratification of X induced from L

Let L be an ample G-linearized line bundle on X. If d > 0 and 〈τ〉 is a
conjugacy class of one parameter subgroups of G, we set:

SL
d,〈τ〉 =

{

x ∈ X : ML(x) = d and ΛL(x) ∩ 〈τ〉 6= ∅
}

.

If T is the set of conjugacy classes of one parameter subgroups, the previous
section gives us the following partition of X:

X = Xss(L) ∪
⋃

d>0, 〈τ〉∈T

SL
d,〈τ〉. (2)

W. Hesselink showed in [Hes79] that this union is a finite stratification by
G-stable locally closed subvarieties of X. We will call it the stratification
induced from L.

To describe the geometry of these stratum, we need additional notation.
For λ ∈ 〈τ〉, we set:

SL
d,λ := {x ∈ SL

d,〈τ〉 : λ ∈ ΛL(x)},

17



and
ZL

d,λ := {x ∈ SL
d,λ : λ(K∗) fixes x}.

By Theorem 2, we have the map

pλ : SL
d,λ −→ ZL

d,λ, x 7−→ lim
t→0

λ(t).x.

The proof of the following result can be found in [Kir84, Section 1.3].

Proposition 4 With above notation, if d is positive, we have:

(i) ZL
d,λ is open in Xλ and stable by Gλ;

(ii) SL
d,λ = {x ∈ X : limt→0 λ(t).x ∈ ZL

d,λ} and is stable by P (λ);

(iii) there is a birational morphism G ×P (λ) SL
d,λ −→ SL

d,〈λ〉, which is an

isomorphism if SL
d,〈λ〉 is normal.

3.9 A description of ZL
d,λ

Let λ be a one parameter subgroup of G. Let Z denote the neutral compo-
nent of the center of Gλ and Gss be the maximal semisimple subgroup of Gλ.
The product induces an isogeny Z×Gss −→ Gλ. Let T1 be a maximal torus
of Gss. Set T = Z.T1. Note that T is a maximal torus of Gλ and G. Let
S be the subtorus of Z such that Y (S.T1)R is the hyperplane of Y (T )R or-
thogonal to λ. Set Hλ = S.Gss. The map Gm ×Hλ −→ Gλ, (t, h) 7−→ λ(t)h
is an isogeny.

Theorem 3 (Ness-Kirwan) Let L be an ample G-linearized line bundle
on X. The one parameter subgroup λ is assumed to be indivisible. Let
x ∈ Xλ be such that µL(x, λ) > 0.

Then, λ is adapted to x and L if and only if x is semistable for L and
the action of Hλ.

Theorem 3 is a version of [Nes84, Theorem 9.4]. Whereas the Ness’ proof
works without changing, the statement in [Nes84] is not correct. In [Kir84,
Remark 12.21], F. Kirwan made the above correction.
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3.10 The open stratum

Let L be an ample G-linearized line bundle on X. We denote by X◦(L) the
open stratum of Stratification 2. We have the following characterization of
X◦(L):

Lemma 5 If Xss(L) 6= ∅, set d0 = 0; else, set d0 = minx∈X ML(x). Then,
X◦(L) is the set of x ∈ X such that ML(x) ≤ d0.

Proof. If d0 = 0, ML(x) ≤ 0 if and only if x ∈ Xss(L) = X◦(L). We now
assume that d0 > 0.

Up to changing L by a positive power, one may assume that there exists
a G-module V such that X is contained in P(V ) and L is the restriction of
the G-linearized line bundle O(1).

Let us fix the positive real d and a one parameter subgroup λ such
that X◦(L) = SL

d,〈λ〉. For i ∈ Z, set Vi = {v ∈ V |λ(t)v = tiv}. Set

V + = ⊕i>d‖λ‖, C = P(Vd‖λ‖) ∩ X and C+ = P(Vd‖λ‖ ⊕ V +) ∩ X.

We first prove that d = d0; that is, that ML(x) ≥ d for all x ∈ X.
Consider the morphism η : G×P (λ) C+ −→ X. Since G/P (λ) is projective,

η is proper; but, the image of η contains SL
d,〈λ〉; so, η is surjective. Let x ∈ X.

There exists g ∈ G such that gx ∈ C+. Then, ML(x) ≥ µ̄L(gx, λ) ≥ d.
Conversely, let x ∈ X be such that ML(x) = d0. Let g ∈ G such that

gx ∈ C
+
. Let v1 ∈ Vd‖λ‖ and v2 ∈ V + such that gx = [v1 + v2]. Since

µ(gx, λ) ≤ d0, v1 is non zero; so, µ(gx, λ) = d0 = ML(x). In particular, λ is
adapted to x and L; that is, x ∈ X◦(L). �

We will need the following result of monotonicity for the function L 7→
X◦(L):

Lemma 6 With above notation, there exists an open neighborhood U of L
in Λ++

Q such that for all L′ ∈ U , X◦(L′) ⊂ X◦(L).

Proof. By Proposition 3 and Lemma 5, there exists only finitely many
open subsets of X which are of the form X◦(M) for some ample M. Let
X◦

1 , · · · ,X◦
s those which are not contained in X◦(L). For each i, fix xi ∈

X◦
i − X◦(L). It remains to prove that for each i, there exists Ui such that

xi 6∈ X◦(L′) for all L′ ∈ Ui. Indeed, U = ∩iUi will work.
Set d0 be as in Lemma 5. Since xi ∈ X◦(L′), ML(x) > d0. Let e be such

that ML(x) > e > d0. By Proposition 3, there exists an open neighborhood
U ′ of L such that minx∈X ML′

(x) > e for all L′ ∈ U ′. Moreover, there exists
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U ′′, such that ML′
(xi) < e for all L′ ∈ U ′. Lemma 5 implies that for all

L′ ∈ U ′ ∩ U ′′, xi 6∈ X◦(L′). �

4 Bialynicki-Birula cells

4.1 Bialynicki-Birula’s theorem

Notation. Let X be a G-variety, H be a subgroup of G and λ be a one
parameter subgroup of G. The centralizer of H in G (that is, the set of fix
point of H acting on G by conjugacy) will be denoted by GH . The set of
fix points of the image of λ will be denoted by Xλ; the centralizer of this
image will be denoted by Gλ.

If Y is a locally closed subvariety of X, and L is a line bundle on X, L|Y

will denote the restriction of L to Y .

Let X be a complete G-variety. Let λ be a one parameter subgroup of
G. Let C be an irreducible component of Xλ. Since Gλ is connected, C is
a Gλ-stable closed subvariety of X. We set:

C+ := {x ∈ X : lim
t→0

λ(t)x ∈ C}.

Then, C+ is a locally closed subvariety of X stable by P (λ). Moreover, the
map pλ : C+ −→ C, x 7−→ limt→0 λ(t)x is a morphism satisfying:

∀(l, u) ∈ Gλ × U(λ) pλ(lu.x) = lpλ(x).

Let x ∈ Xλ. We consider the natural action of K∗ induced by λ on
the Zariski tangent space TxX of X at x. We consider the following K∗-
submodules of TxX:

TxX>0 = {ξ ∈ TxX : limt→0 λ(t)ξ = 0},
TxX<0 = {ξ ∈ TxX : limt→0 λ(t−1)ξ = 0},
TxX0 = (TxX)λ, TxX≥0 = TxX>0 ⊕ TxX0 and TxX≤0 = TxX<0 ⊕ TxX0.

A classical result of Bialynicki-Birula (see [BB73]) is

Theorem 4 Assuming in addition that X is smooth, we have:

(i) C is smooth and for all x ∈ C we have TxC = TxX0;

(ii) C+ is smooth and irreducible and for all x ∈ C we have TxC+ =
TxX≥0;

(iii) the morphism pλ : C+ −→ C induces a structure of vector bundle on
C with fibers isomorphic to TxX>0.
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4.2 Line bundles on C+

We will need some results about the line bundles on C+. Let L be a P (λ)-
linearized line bundle on C+. Since limt→0 λ(t).x belongs to C, the number
µL(x, λ) is well defined, for x ∈ C+. Moreover, since C is irreducible,
µL(x, λ) does not depend on x ∈ C+; we denote by µL(C, λ) this integer.

Proposition 5 We assume that X is smooth. Then, we have:

(i) The restriction map PicP(λ)(C+) −→ PicGλ
(C) is an isomorphism.

Let L ∈ PicP(λ)(C+).

(ii) If µL(C, λ) 6= 0, H0(C,L|C)λ = {0}.

(iii) If µL(C, λ) = 0, the restriction map induces an isomorphism from

H0(C+,L)P (λ) onto H0(C,L|C)G
λ

. Moreover, for any σ ∈ H0(C+,L)P (λ),
we have:

{x ∈ C+ : σ(x) = 0} = pλ
−1({x ∈ C : σ(x) = 0}).

Proof. Since pλ is P (λ)-equivariant, for any M ∈ PicGλ
(C), p∗λ(M) is

P (λ)-linearized. Since pλ is a vector bundle, p∗λ(L|C) and L are isomorphic

as line bundles without linearization. But, X(P (λ)) ≃ X(Gλ), so the P (λ)-
linearizations must coincide; and p∗λ(L|C) and L are isomorphic as P (λ)-
linearized line bundles. Assertion (i) follows.

Assertion (ii) is a direct application of Lemma 3.
Let us fix L ∈ PicP(λ)(C+) and denote by p : L −→ C+ the projection.

We assume that µL(C, λ) = 0. Let σ ∈ H0(C+,L)P (λ). We just proved that

L ≃ p∗λ(L|C) = {(x, l) ∈ C+ × L|C : pλ(x) = p(l)}.

Let p2 denote the projection of p∗λ(L|C) onto L|C .
For all x ∈ C+ and t ∈ K∗, we have:

σ(λ(t).x) =

(

λ(t).x, p2(σ(λ(t).x))

)

= λ(t).

(

x, p2(σ(x))

)

since σ is invariant,

=

(

λ(t).x, p2(σ(x))

)

since µL(C, λ) = 0.

We deduce that for all x ∈ C+, σ(x) = (x, σ(pλ(x))). Assertion (iii) follows.
�
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5 A theorem by Luna

Notation. If H is a closed subgroup of an affine algebraic group G, NG(H)
denote the normalizer of H in G.

We will use the following interpretation of a result of Luna:

Proposition 6 Let L be an ample G-linearized line bundle on an irreducible
projective G-variety X. Let H be a reductive subgroup of G. Let C be
an irreducible component of XH . Then, the reductive groups (GH)◦ and
NG(H)◦ act on C.

Let x be a point in C. Then, the following are equivalent:

(i) x is semistable for L.

(ii) x is semistable for the action of (GH)◦ on C and the restriction of L.

(iii) x is semistable for the action of NG(H)◦ on C and the restriction of
L.

Proof. [LR79, Lemma 1.1] shows that (GH)◦ and NG(H)◦ are reductive.
Changing L by a positive power if necessary, one may assume that X in
contained in P(V ) where V is a G-module and L = O(1)|X . Let v ∈ V such

that [v] = x. Let us recall that in this case x ∈ Xus(L) if and only if G.v
contains 0.

Let χ be the character of H such that hv = χ(h)v for all h ∈ H.
If χ is of infinite order, so is its restriction to the connected center Z

of H. Then, Z.v = K∗v and 0 ∈ (GH)◦.v. In this case, x belongs to no
semistable set of the proposition.

Let us now assume that χ is of finite order. Changing L by a positive
power if necessary, one may assume that χ is trivial, that is H fixes v. In
this case, [Lun75, Corollary 2 and Remark 1] shows that

0 ∈ G.v ⇐⇒ 0 ∈ NG(H)◦.v ⇐⇒ 0 ∈ (GH)◦.v.

The proposition follows. �

6 First descriptions of the G-cones

6.1 Definitions

Let us recall from the introduction that Λ is a freely finitely generated
subgroup of PicG(X) and ΛQ is the Q-vector space containing Λ as a lattice.
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Since Xss(L) = Xss(L⊗n), for any G-linearized line bundle and any positive
integer n, we can define Xss(L) for any L ∈ ΛQ. The central object of this
article is the following total G-cone:

T CG
Λ (X) = {L ∈ ΛQ : Xss(L) is not empty}.

Since the tensor product of two non zero G-invariant sections is a non zero
G-invariant section, T CG

Λ(X) is a convex cone.
Consider the convex cones Λ+

Q and Λ++
Q generated respectively by the

semiample and ample elements of Λ. For all L ∈ Λ+
Q (resp. Λ++

Q ), there

exists a positive integer n such that L⊗n is a semiample (resp. ample) G-
linearized line bundle on X in Λ. So, any set of semistable points associated
to a point in Λ+

Q (resp. Λ++
Q ) is in fact a set of semistable point associated

to a semiample (resp. ample) G-linearized line bundle. We consider the
following semiample and ample G-cones:

SACG
Λ(X) = T CG

Λ(X) ∩ Λ+
Q and ACG

Λ(X) = T CG
Λ (X) ∩ Λ++

Q .

By [DH98] (see also [Res00]), ACG
Λ(X) is a closed convex rational polyhedral

cone in Λ++
Q .

6.2 Well covering pairs

Here comes a central definition in this work:

Definition. Let λ be a one parameter subgroup of G and C be an irreducible
component of Xλ. Set C+ := {x ∈ X | limt→0 λ(t)x ∈ C}. Consider the
following G-equivariant map

η : G ×P (λ) C+ −→ X

[g : x] 7−→ g.x.

The pair (C, λ) is said to be covering (resp. dominant) if η is birational
(resp. dominant). It is said to be well covering if η induces an isomorphism
from G×P (λ) Ω onto an open subset of X for an open subset Ω of C+ inter-
secting C.

Let us recall that µ•(C, λ) denote the common value of the µ•(x, λ), for
x ∈ C+. The first relation between covering pairs and the G-cones is the
following

Lemma 7 Let (C, λ) be a dominant pair and L ∈ T CG
Λ(X). Then, µL(C, λ) ≤

0.
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Proof. Since Xss(L) is a G-stable non empty open subset of X and (C, λ)
is covering, there exists a point x ∈ C+ semistable for L. Since x ∈ C+,
µL(x, λ) = µL(C, λ). But, since x ∈ Xss(L) Lemma 4 shows that µL(x, λ) ≤
0. �

Proposition 4 allows us to give a first description of the cone ACG
Λ(X):

Proposition 7 We assume that X is normal. Let T be a maximal torus of
G and B be a Borel subgroup containing T .

Then, the cone ACG
Λ(X) is the set of the L ∈ Λ++

Q such that for all well
covering pair (C, λ) with a dominant one parameter subgroup λ of T we have
µL(C, λ) ≤ 0.

Proof. Lemma 7 shows that ACG(X) is contained is the part of Λ++
Q defined

by the inequalities µL(C, λ) ≤ 0 of the proposition.
Conversely, let L ∈ Λ++

Q such that Xss(L) is empty. Consider the open

stratum SL
d,〈τ〉 in X. Let λ be a dominant one parameter subgroup of T in

the class 〈τ〉. Since SL
d,〈τ〉 is open in X, it is normal and irreducible. Now,

Proposition 4 implies that ZL
d,λ is open in an irreducible component C of

Xλ. It shows also that SL
d,λ is open in C+ and intersects C. Finally, the

last assertion of Proposition 4 shows that (C, λ) is well covering. Moreover,
µL(C, λ) = d > 0. �

7 Faces of the G-ample cone and well covering

pairs

Definition. Let ϕ be a linear form on ΛQ which is non negative on ACG
Λ(X).

The set of L ∈ ACG
Λ(X) such that ϕ(L) = 0 is called a face of ACG

Λ(X).
Note that a face can be empty or equal to ACG

Λ(X). A face different from
ACG

Λ(X) is said to be strict.

Lemma 7 implies that for any dominant pair (C, λ), by intersecting
ACG

Λ(X) with the hyperplane with equation µ•(C, λ) = 0, one obtain a
face of ACG

Λ(X) (eventually empty): this face is said to be associated to
(C, λ). The proof of Proposition 7 and Lemma 6 imply easily (see the proof
of Theorem 6 below) that for any codimension one face F of ACG

Λ(X), there
exist a well covering pair (C, λ) whose associated face is F . The aim of this
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section is to prove that the relations between faces and well covering pairs
are much more deeper.

7.1 Dominant pairs and quotient varieties

The following theorem is a description of the quotient variety associated to
a point in ACG

Λ(X) which belongs to a face associated to a dominant pair.

Theorem 5 Let (C, λ) be a dominant pair and L be an ample G-linearized
line bundle on X such that µL(C, λ) = 0. Consider the action of Gλ on C
and the associated set of semistable points Css(L, Gλ). Then, Css(L, Gλ) =
Xss(L, G)∩G. Consider the morphism θ which makes the following diagram
commutative:

Css(L|C , Gλ) ⊂ - Xss(L)

Css(L|C , Gλ)//Gλ

πC

?
θ- Xss(L)//G.

π

?

Then, θ is finite and surjective.

Proof. The first assertion in a direct consequence of Proposition 6. Since
Css(L, Gλ)//Gλ is projective, to prove the second one, it is sufficient to prove
that θ is dominant and its fibers are finite.

Since (C, λ) is dominant, C+ must intersect Xss(L). Let x ∈ C+ ∩
Xss(L). Set z = limt→0 λ(t)x. By Assertion (ii) of Lemma 4, z is semistable
for L. So, C intersects Xss(L). Moreover, we just proved that π(C+ ∩
Xss(L)) = π(Css(L, Gλ)). It follows that θ is dominant.

Let ξ ∈ Xss(L)//G. Let Oξ be the unique closed G-orbit in π−1(ξ). The
points in the fiber θ−1(ξ) correspond bijectively to the closed Gλ-orbits in
π−1(ξ)∩C. But, [Lun75, Corollary 2 and Remark 1] implies that these orbits
are contained in Oξ. We conclude that θ−1(ξ) is finite, by using a result of
[Ric82] which implies that Oλ

ξ contains only finitely many Gλ-orbits. �

7.2 From faces to well covering pairs

Notation. If λ is a one parameter subgroup of G, Imλ will denote its im-
age. If F is a convex cone in a vector space, 〈F〉 will denote the subspace
spanned by F . The dimension of 〈F〉 will be called the dimension of F .
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Let L be an ample line bundle in Λ without semistable point. Let d be
the positive real number and λ be a one parameter subgroup of G such that
X◦(L) = SL

d,〈λ〉.

Lemma 8 With above notation, ZL
d,λ (see Section 3.8) is irreducible; and

the closure C of ZL
d,λ is an irreducible component of Xλ.

The pair (C, λ) is covering. It is well covering, if, in addition, X is
normal. Moreover, the conjugacy class of the pair (C, λ) only depends on L.

Proof. Since SL
d,〈λ〉 is open in X, it is irreducible. But, P (λ) is connected, so

the last assertion of Proposition 4 implies that SL
d,λ is irreducible. It follows

that ZL
d,λ is irreducible. Since ZL

d,λ is open in Xλ its closure is an irreducible

component of Xλ.
The fact that (C, λ) is covering (resp. well covering, if X is normal) is a

direct consequence of Proposition 4.
The last assertion is obvious since λ is unique up to conjugacy. �

Lemma 8 implies that the linear form µ•(C, λ) on ΛQ only depends on
L. We set:

H(L) = {L ∈ ΛQ : µL(C, λ) = 0} and H(L)>0 = {L ∈ ΛQ : µL(C, λ) > 0}.

By Proposition 4, the pair (C, λ) is dominant. So, Lemma 7 implies that
H ∩ ACG

Λ(X) is a face of ACG
Λ(X): this face is denoted by F(L) and called

the face viewed from L.
The aim of this section is to prove

Theorem 6 Any strict face F of ACG
Λ(X) is viewed from some ample point

in Λ with no semistable point.

We start by proving Lemmas 9, 10 and 11 about the function L 7→
F(L). Consider the subgroup Hλ of Gλ defined in Section 3.9. Consider the

morphism of restriction p : Λ −→ PicHλ

(C).

Lemma 9 With above notation, F(L) equals the intersection Λ++
Q ∩H(λ)∩

p−1(ACHλ

(C)).

Proof. Let M belong to the intersection of the lemma. There exists x ∈ C
which is semistable for the action of Hλ and L. Since M ∈ H(L), λ acts
trivially on M|C ; so x is semistable for Gλ. Proposition 6 shows that x is

semistable for G and M. So, M ∈ ACG
Λ(X).
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Conversely, let M ∈ F(L). Since (C, λ) is covering, Xss(M) intersects
C+. But µM(C, λ) = 0; so, Assertion (ii) of Lemma 4 shows that C inter-

sects Xss(L). So, p(M) ∈ ACHλ

p(Λ)(C). �

Lemma 10 Let L′ ∈ H(λ)>0. We assume that p(L′) ∈ ACHλ

(C). Then,
the face of ACG

Λ(X) viewed from L′ equals those viewed from L. More pre-
cisely, the pair (C, λ) satisfies Lemma 8 for L′.

Proof. Let x ∈ C+ such that limt→0 λ(t)x ∈ Css(p(L′),Hλ). Note that the
set of such x’s is open is C+. By Theorem 3, λ is adapted to x and L′. Since
(C, λ) is covering, SL′

µL′
(x,λ),〈λ〉

= X◦(L′). The lemma follows. �

Lemma 11 There exists an open neighborhood U of L such that for any L′

in U , L′ has no semistable point and the face of ACG
Λ(X) viewed from L′ is

contained in those viewed from L.
If in addition p(L′) has no semistable point, we have F(L′) is the set of

M ∈ H(λ) such that p(M) belongs to the face of ACHλ

p(Λ)(C) viewed from

p(L′).

Proof. Let T be a maximal torus of G containing the image of λ. By
Lemma 2, there exists an open neighborhood U of L such that for any L′ in
U we have:

For any x ∈ C+ ∩ X◦(L), the face of PL′

T (x) viewed from 0 is contained in
the hyperplane 〈λ, ·〉 = µL′

(x, λ).

Let us fix L′ ∈ U and x ∈ C+ ∩ X◦(L) such that z = limt→0 λ(t).x belongs
to C◦(L′,Hλ). By [Kir84, Lemma 12.19], there exists a one parameter
subgroup adapted to z and L′ which commutes with λ. So, there exists
h0 ∈ Hλ and a one parameter subgroup ζ of T which is adapted to h0z and
L′. Since h0x ∈ C+ ∩ X◦(L), the orthogonal projection of 0 on PL′

T (h0x)
belongs to PL′

T (h0z). In particular, limt→0 ζ(t)h0x = limt→0 ζ(t)h0z =: z′.
Let Hζ the subgroup of Gζ defined in Section 3.9. Since ζ is adapted to h0z
and L′, Theorem 3 implies that z′ is semistable for the action Hζ and L′.
So, by Theorem 3 again, ζ is adapted for h0x and L′.

One easily checks that C◦(L′,Hλ) = C◦(L′, Gλ). Let d be such that
C◦(L′, Gλ) = SL′

d′,〈ζ〉. So, for any z′ ∈ C◦(L′,Hλ), there exists h′ ∈ Hλ such

that ζ is adapted to h′z′ and L′. So, we just proved that for any x in a
nonempty open subset of C+, ζ is adapted to h.x for some h ∈ H. Since
G.C+ contains an open subset of X, we can deduce that X◦(L′) = SL′

d′,〈ζ〉.
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Note that the equality limt→0 ζ(t)h0x = limt→0 ζ(t)h0z implies that ZL′

d′,ζ is

contained in C. Let Cζ denote the closure of ZL′

d′,ζ .

Since PL′

T (h0z) is contained in the hyperplane 〈λ, ·〉 = µL′
(z, λ) > 0,

there exists a one parameter subgroup λ1 of T ∩ Hλ such that ζ = λ + λ1.
Since z is semistable for the action of Hλ and L, 0 belongs to PL

T∩Hλ(h0z).
We deduce that λ1 tends to 0 when L′ tends to L.

Since Cζ ⊂ C, there exists a positive constant c such that:

µ•(Cζ , ζ) = c.µ•(Cζ , λ1 + λ) = c.(µ•(Cζ , λ1) + µ•(C, λ)).

In particular, µ•(Cζ , ζ) tends to µ•(C, λ) when L′ tends to L. Up to changing
U , we may assume that F(L′) ⊂ F(L) for any L′ ∈ U .

Now, Lemma 9 implies that for any L′ ∈ U , F(L′) is the set of M ∈ Λ+

such that M ∈ H(λ) and p(M) ∈ F(p(L′)). The lemma is proved. �

We are now ready to prove the theorem.

Proof.[of Theorem 6] We will prove the following assertion, by induction
on the codimension codimΛ(F) of F in Λ:

Let X be a not necessarily normal variety. Let G, Λ and F as in the
theorem. Let U be an open subset of ΛQ intersecting F . Then, there exists
L ∈ U such that F(L) = F .

Let M be a point in the relative interior of F ∩ U . By Lemma 6, there
exists L ∈ U without semistable point and such that X◦(L) ⊂ Xss(M). Let
(C, λ) associated to L as in Lemma 8. Since C intersects X◦(L) it intersect
Xss(M); so, µM(C, λ) = 0 and M ∈ F(L). Since M belongs to the relative
interior of F , we deduce that F ⊂ F(L).

If codimΛ(F) = 1 then F = F(L), and the theorem is proved. Let us
now assume that codimΛ(F) ≥ 2.

By Lemma 9, F ∩ U is a face of U ∩ H(L) ∩ p−1(ACHλ

p(Λ)(C)). So, there

exists a face F̃1 of p−1(ACHλ

p(Λ)(C)) such that F = Λ++
Q ∩H(L)∩ F̃1. Let us

assume that F̃1 is of maximal dimension among such faces. Since H(L)>0 ∩

p−1(ACHλ

p(Λ)(C)) is non empty (it contains L !), we may assume that F̃1

intersects H(L)>0. Let F1 denote the unique face of ACHλ

p(Λ)(C) such that

F̃1 = p−1(F1).
Since F̃1 intersects H(L)>0, Lemma 10 allows to move L on F̃1 without

changing F(L) nor (C, λ). From now on, we assume that L ∈ F̃1.
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Up to restricting U if necessary, we may assume it satisfies Lemma 11 and
it is contained in H(L)>0. Since F ⊂ F̃1 ∩H(L) and F̃1 intersects H(L)>0,
we have: codimΛ(F̃1) < codimΛF . But, codimΛ(F̃1) = codimp(Λ)(F1).
Moreover, p is linear and so open. We apply the induction to the action
of Hλ on C, the face F1 and the open subset p(U) of p(Λ)Q: there exists
L′ in U such that F(p(L′)) = F1. Lemma 11 implies now that F(L′) = F . �

Theorem 6 can be restated in terms of well covering pairs:

Corollary 2 Let F be a face of ACG
Λ(X) of codimension r in Λ. Then,

there exists a r-dimensional torus S in G, a one parameter subgroup λ of S
and an irreducible component C of XS such that:

(i) C is an irreducible component of Xλ;

(ii) the pair (C, λ) is covering (respectively, well covering if X is normal);

(iii) F is the face of ACG
Λ(X) associated to (C, λ).

Proof. Let L be an ample line bundle on X without semistable point and
such that F is viewed from L. Let d be the positive number and λ be a
one parameter subgroup of G such that SL

d,〈λ〉 is open in X. Let C be the

closure of ZL
d,λ.

By Lemma 8, it remains to prove that there exits a torus S of dimension
r containing the image of λ and acting trivially on C. The proof of the
existence of such a S can easily be integrated in the induction of the proof
of Theorem 6. �

7.3 From well covering pairs to faces of total G-cone

In Corollary 2, starting with a face of ACG(X) we have constructed a well
covering pair. Conversely, in the following theorem, we start with a well
covering pair and study the associated face of T CG(X).

Theorem 7 Let X be a projective G-variety. We assume the rank of PicG(X)
is finite and consider T CG(X). Let (C, λ) be a well covering pair. Consider
the linear map ρ induced by the restriction:

ρ : PicG(X)Q −→ PicGλ

(C)Q.

Then, the subspace of PicG(X)Q spanned by the L ∈ T CG(X) such that
µL(C, λ) = 0 is the pullback by ρ of the intersection of the image of ρ and

T CGλ

(C).
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Proof. Let L ∈ T CG(X) such that µL(C, λ) = 0. Since Xss(L) is open and
G-stable, and (C, λ) is covering, there exists x ∈ C+ semistable for L. Set
z = limt→0 λ(t)x. Since µL(x, λ) = 0, Lemma 4 shows that z is semistable

for L. This implies that the restriction of L belongs to T CGλ

(C). This
proves that the first subspace of the theorem is contained in the second one.

We denote by F the pullback by ρ of the subspace spanned by T CGλ

(C).
Let L1, . . . , Ln ∈ PicG(X) which span F and whose the restrictions to C

belong to T CGλ

(C). Denote by Mi the restriction of Li to C. For each i,
let us fix a non zero regular Gλ-invariant section σi of Mi.

Consider the G-linearized line bundle G ×P (λ) pλ
∗(Mi) on G ×P (λ) C+

with notation of Section 4. Since η∗(Li) and G ×P (λ) pλ
∗(Mi) have the

same restriction to C, Lemma 1 and Proposition 5 show that η∗(Li) =
G×P (λ) pλ

∗(Mi). Moreover, since µMi(C, λ) = 0, Proposition 5 shows that
σi admits a unique P (λ)-invariant extension to a section σ′

i of pλ
∗(Mi). On

the other hand, Lemma 1 shows that σ′
i admits a unique G-invariant exten-

sion σ̃i from C+ to G ×P (λ) C+. So, we obtain the following commutative
diagram:

Li
� η∗(Li) = G ×P (λ) pλ

∗(Mi) � pλ
∗(Mi) - Mi

X
?

� η
G ×P (λ) C+

?

σ̃i

6

� C+
?

σ′
i

6

pλ - C
?

σi

6

Since η is birational, σ̃i descends to a rational G-invariant section τi of Li.
Let X◦ be a G-stable open subset of X such that η induces an isomorphism
from η−1(X◦) onto X◦. Since (C, λ) is well covering, we may (and shall)
assume that X◦ intersects C. Let Ej be the irreducible components of
codimension one of X−X◦. For any j we denote by aj the maximum of 0 and
the −νEj

(τi)’s with i = 1, . . . , n. Consider the line bundle L0 = O(
∑

ajEj)
on X. Since the Ej’s are stable by the action of G, L0 is canonically G-
linearized. By construction, the τi’s induce G-invariant regular sections τ ′

i

of L′
i := Li⊗L0. Moreover, since no Ej contains C, the restriction of τ ′

i to C
is non zero. In particular, the L′

i’s belong to T CG(X) and their restrictions

belong to T CGλ

(C). Moreover, replacing L0 by L⊗2
0 if necessary, we may

(and shall) assume that the L′
i’s span F . This ends the proof of the theorem.

�
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7.4 If X = G/B × Y . . .

In this section, we will explain how Theorems 5 and 6 can be improved when
X = G/B × Y for a G-variety Y .

Complement to Theorem 5.

Theorem 8 We use notation of Theorem 5, assuming in addition that X =
G/B×Y with a normal projective G-variety Y . We also assume that Xss(L)
is not empty.

Then, θ is an isomorphism and (C, λ) is a well covering pair.

Proof. Since X is normal, so is Xss(L)//G. But, Theorem 5 shows that θ
is finite; it is sufficient to prove that it is birational. Since the base field has
characteristic zero, it is sufficient to prove that θ is bijective to obtain the
first assertion.

Let ξ ∈ Xss(L)//G and O denote the only closed G-orbit in π−1(ξ). As
noticed during the proof of Theorem 5, θ−1(ξ) correspond bijectively with
the set of Gλ-orbits in O ∩ C.

Consider the first projection p1 : X −→ G/B and fix x ∈ O ∩C. Let B
denote the stabilizer in G of p1(x). Since O is closed in π−1(ξ), it is affine and
so, Gx is reductive. But, Gx is contained in B, so Gx is diagonalisable. Let T
be a maximal torus of G such that Gx ⊂ T ⊂ B. Consider the G-equivariant
morphisms q : O −→ G/T, x 7→ T/T and q̂ : G/T −→ G/B, T/T 7→ B/B
unduced by these inclusions; we have, p1 = q̂ ◦ q.

We claim that q̂−1(GλB/B)λ = GλT/T . Since Gλ is connected, each
irreducible component of q̂−1(GλB/B)λ is Gλ-stable, and so, it maps onto
GλT/T . In particular, it intersects q̂−1(B/B) = B/T . But, B/T is iso-
morphic to the Lie algebra of the unipotent radical of B as a T -variety; in
particular, (B/T )λ is irreductible and so is q̂−1(GλB/B)λ. The claim now
follows from [Ric82].

Note that C is the product of one irreducble component of (G/B)λ and
one of Y λ; this implies that p1(C) = GλB/B. So, O ∩ C is contained in
p−1
1 (GλB/B)λ and so in O ∩ q−1(GλT/T ). But, since T is contained in Gλ,

q−1(GλT/T ) = Gλx. It follows that O ∩ C = Gλ.x; and so, that θ−1(ξ) is
reduced to one point. This ends the proof of the first assertion.

Consider η : G×P (λ)C
+ −→ X. We claim that for any x ∈ C+∩Xss(L),

η−1(x) is only one point. Since η is dominant and the ground field has
characteristic zero, the claim implies that η is birational. Since Xss(L) ∩ C
is non empty, the claim implies that η is bijective over on open subset of
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X intersecting C. Since X is normal, Zariski’s main Theorem (see [GD66,
§8.12]) implies that (C, λ) is well covering.

Let us prove the claim. Let g ∈ G such that g−1x ∈ C+. We have to
prove that g ∈ P (λ). Set x′ = g−1x, z = limt→0 λ(t)x and z′ = limt→0 λ(t)x′.
Obviously x′ ∈ Xss(L), and by Assertion (ii) of Lemma 4, z, z′ ∈ Xss(L) as
well. It is also clear that π(x) = π(x′) = π(z) = π(z′) =: ξ.

Let x0 ∈ C ∩ π−1(ξ) whose the orbit is closed in Xss(L). Set H = Gx0 .
Consider Σ (resp. ΣC) the set of y in X (resp. C) such that x0 is contained
in the closure of H.y (resp. Hλ.y). By [Lun73] (see also [PV91]), π−1(ξ) ≃
G×H Σ and π−1

C (θ−1(ξ)) ≃ Gλ×Hλ ΣC . Consider the natural G-equivariant
morphism γ : G ×H Σ −→ G/H. Since π−1(ξ) ∩ C = π−1

C (θ−1(ξ)), it
equals Gλ.ΣC . So, γ(C ∩ π−1(ξ)) = GλH/H. Since γ is “continuous” and
G-equivariant, we deduce that limt→0 λ(t)γ(x) and limt→0 λ(t)γ(x′) belong
to GλH/H. Lemma 12 below proves that there exists p and p′ in P (λ) such
that γ(x) = pH/H and γ(x′) = p′H/H. Since gx′ = x, we have g ∈ pHp′−1.
But, H is a reductive subgroup (since G.x0 is closed in the affine variety
π−1(ξ)) contained in a Borel subgroup of G (since X = G/B × Y ) and con-
taining the image of λ: it follows that H ⊂ Gλ. Finally, g ∈ P (λ). �

It remains to prove the following lemma. In fact, it is an adaptation of
the main result of [Ric82]:

Lemma 12 Let O be any G-homogeneous space. Let λ be a one parameter
subgroup of G. Let C be an irreducible component of fixed points of λ in O.
Set C+ := {x ∈ O : limt→0 λ(t)x exists and belongs to C}.

Then, C+ is a P (λ)-orbit.

Proof. Let x ∈ C. The differential of the map g 7→ g.x induces a surjective
linear map φ : g −→ TxO. Since x is fixed by λ, λ acts on TxO; it also
acts by the adjoint action on g, and φ is equivariant. In particular, the
restriction of φ, φ̄ : g≥0 −→ (TxO)≥0 is also surjective. But, on one hand
(TxO)≥0 = TxC+ by Theorem 4 and on the other hand g≥0 is the Lie algebra
of P (λ). One can conclude that TxC+ = TxP (λ)x. Since P (λ)x is smooth,
this implies that P (λ)x is open in C+. Since C+ is irreducible, it contains
a unique open P (λ)-orbit O0 which contains C.

Note that C+−O0 is P (λ)-stable and closed in C+. Since for any y ∈ C+

limt→0 λ(t)y ∈ C ⊂ O0, this implies that C+ −O0 is empty. �

Remark. Here, is an example which proves that the assumption on X
is useful. Let V be a vector space of dimension 2. Make the group G =
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K∗ × SL(V ) acting on X = P(K ⊕ V ⊕ V ) by:

(t, g).[τ : v1 : v2] = [τ, gv1, t
2gv2]. (3)

Consider (with obvious notation), the following one parameter subgroup

λ(t) = (t−1,

(

t−1 0
0 t

)

. Note that C = {[1 : 0 : 0]} is an irreducible

component of Xλ. Formula 3 gives also a linearization L of the bundle
O(1). Then, µL(C, λ) = 0, the map η associated to (C, λ) is birational, but
the fiber over the only point of C is P1: so (C, λ) is covering but not well
covering.

Our assumption on Λ. We call a subgroup Γ′ of an abelian group Γ
cofinite if Γ/Γ′ is finite. The following definition is an adaptation of those
of Dolgachev and Hu (see [DH98]).

Definition. The subgroup Λ is said to be abundant if for any x in X such
that Gx is reductive, the image of the restriction Λ −→ PicG(G.x) is cofinite.

The main example of abundant subgroups comes from the case when
X = G/B × Y .

Proposition 8 Let X = G/B ×Y for a G-variety Y . Let π : X −→ G/B
denote the projection map and π∗ : PicG(G/B) −→ PicG(X) the associated
homomorphism.

Then, any subgroup Λ of PicG(X) containing the image of π∗ is abundant.

Proof. Let x = (y, gB/B) ∈ G/B × Y . Changing x by g−1x, we assume
that g = e. Let χ ∈ X(Gx). Note that Gx = By. Since the restriction map
X(B) −→ X(By) is surjective, there exists ν ∈ X(B) such that ν|By

= χ.
The restriction of π∗(Lν) to G.x equals Lχ; the proposition follows. �

The next statement is a precision of Corollary 2.

Corollary 3 Let X = G/B × Y for a normal G-variety Y . We assume
that Λ ⊂ PicG(X) is abundant. Let F be a face of ACG

Λ(X) of codimension
r in Λ. Then, there exists a r-dimensional torus S in G, a one parameter
subgroup λ of S and an irreducible component C of XS such that:

(i) for generic x ∈ C, we have G◦
x = S;
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(ii) C is an irreducible component of Xλ;

(iii) the pair (C, λ) is covering (respectively, well covering if X is normal);

(iv) F is the face of ACG
Λ(X) associated to (C, λ).

Proof. We just have to prove that if (C, λ) and S satisfy Corollary 2, they
also satisfy the first assertion.

Let L be an ample G-linearized line bundle on X and x be a semistable
point for L. We claim that Gx is diagonalizable. Consider π : Xss(L) −→
Xss(L)//G. Let y be a point in the closure of G.x such that G.y is closed
in Xss(L). Since G.y is closed in π−1(π(y)), it is affine; so, Gy is reductive.
But Gy is contained in a Borel subgroup of G; so, Gy is diagonalizable. By
Luna’s Slice Theorem, π−1(π(y)) ≃ G ×Gy Σ for an affine Gy variety Σ.
Since x ∈ π−1(π(y)), we deduce that Gx is conjugated to a subgroup of Gy.
In particular, Gx is diagonalizable.

Let us fix a point x in the (finite) intersection of the set Xss(L) ∩ C
for L ∈ F . Consider ρ : Λ −→ X(Gx). Since Λ is abundant and Gx

diagonalizable, the rank of ρ equal the dimension of Gx. Since F is contained
in the kernel of ρ, the dimension of Gx is less or equal to r. Since S ⊂ Gx,
it follows that G◦

x = S. �

8 If X = G/Q × Ĝ/Q̂. . .

8.1 Interpretations of the G-cones

From now on, we assume that G is a connected reductive subgroup of a
connected reductive group Ĝ. Let us fix maximal tori T (resp. T̂ ) and Borel
subgroups B (resp. B̂) of G (resp. Ĝ) such that T ⊂ B ⊂ B̂ ⊃ T̂ ⊃ T . Let
Q (resp. Q̂) be a parabolic subgroup of G (resp. Ĝ) containing B (resp.
B̂); let L (resp. L̂) denote the Levi subgroup of Q (resp. Q̂) containing T
(resp. T̂ ).

In this section, X denote the variety G/Q × Ĝ/Q̂ endowed with the
diagonal action of G. We will apply the results of Section 7 to X with
Λ = PicG(X). The cones T CG(X), SACG(X) and ACG(X) will be denoted
without the Λ in subscribe.

Let us describe PicG(X)Q. Consider the natural action of G×Ĝ on X. By
applying the construction of Section 2.1 to the G×Ĝ-homogeneous space X,

one obtains the following isomorphism X(Q)×X(Q̂) −→ PicG×Ĝ(X), (ν, ν̂) 7−→
L(ν, ν̂).
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Lemma 13 The following short sequence is exact

0 - X(Ĝ)Q

ν̂ 7→ L(−ν̂|Q, ν̂|Q̂)
- PicG×Ĝ(X)Q

r∆G
Q- PicG(X)Q

- 0

where the second linear map is induced by the restriction r∆G of the action
of G × Ĝ to G diagonally embedded in G × Ĝ.

Proof. Let χ and χ̂ be characters of G and Ĝ respectively. The trivial

bundle on X linearized by (χ, χ̂) belongs to PicG×Ĝ(X). The image of this
line bundle in PicG(X) is the trivial line bundle linearized by the character
χ+ χ̂|G of G. In particular, any G-linearization of the trivial bundle belongs

to the image of r∆G.
Let L ∈ PicG(X). Let L′ ∈ Pic(X) obtained from L by forgetting the

action of G. By [FHT84], there exists a G × Ĝ-linearization M of L′⊗n

for a positive integer n. Then M∗ ⊗ L⊗n is the trivial line bundle over X;
so, it belongs to the image r∆G. Finally, L⊗n belongs to the image of the
restriction. This ends the proof of the surjectivity of r∆G

Q .

Let L in the kernel of r∆G. Since L is trivial as a line bundle, there exists
characters χ and χ̂ of G and Ĝ such that L = L(χ, χ̂). The G-linearization
of this last character is trivial if and only if χ + χ̂|G is trivial. This ends the
proof of the lemma. �

Proposition 9 (i) T CG(X) = SACG(X) is a closed convex polyhedral
cone.

(ii) Let (ν, ν̂) ∈ X(Q)Q×X(Q̂)Q. Then r∆G
Q (L(ν,ν̂)) ∈ T CG(X) if and only

if ν̂ and ν are dominant and for n big enough Vnν ⊗ Vnν̂ contains non
zero G-invariant vectors.

(iii) If ACG(X) is non empty, its closure in PicG(X)Q is SACG(X).

(iv) If Q and Q̂ are Borel subgroups of G and Ĝ then ACG(X) is non
empty.

Proof. Since X is homogeneous under the action of G × Ĝ and since any
line bundle has a linearizable power, every bundle with a non zero section
is semiample. Hence, T CG(X) = SACG(X). Lemma 4 and Proposition 3
implies that only finitely many non empty open subsets of X are of the form
Xss(L) with L ∈ PicG(X). Let x be a point in the intersection of these
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subsets. Lemma 4 shows that SACG(X) is the set of points L ∈ PicG(X)Q

semiample such that µL(x, λ) ≤ 0 for all one parameter subgroup λ of G.
In particular, SACG(X) is a closed convex cone.

Let now ν and ν̂ be characters of Q and Q̂. If ν or ν̂ is not dominant
then L(ν,ν̂) has no regular section. Else, Borel-Weil’s theorem shows that

H0(X,L(ν,ν̂)) is isomorphic as a G × Ĝ-module to V ∗
ν ⊗ V ∗

ν̂ . The second
assertion of the proposition follows.

The third assertion is satisfied since the ample cone in PicG(X) is the
interior of the semiample cone.

Let w0 be the longest element of W . Assume that Q = B and Q̂ = B̂
are Borel subgroups of G and Ĝ. Let ν̂0 be any character of B̂ such that
Lν̂0 is ample over Ĝ/B̂. Let ν be any dominant weight of the G-module V ∗

ν̂0
.

Then, r∆G(L(−w0ν,ν̂0)) belongs to SACG(X).
Let ν0 be any character of B such that Lν0 is ample over G/B. Since the

restriction K[Ĝ] −→ K[G] is surjective, Frobenius’s theorem implies that V ∗
ν0

is contained in an irreducible Ĝ-module V ∗
ν̂ . Then, r∆G(L(−w0ν0,ν̂)) belongs

to SACG(X).
Since SACG(X) is convex, it contains r∆G(L(−w0(ν0+ν),ν̂+ν̂0)). But the

line bundle L(−w0(ν0+ν),ν̂+ν̂0) is ample. The last assertion is proved. �

8.2 Covering and well covering pairs

Notation. Let W and Ŵ denote the Weyl groups of G and Ĝ. If P is a
parabolic subgroup of G containing T , WP denote the Weyl group of the
Levi subgroup of P containing T . This group WP is canonically embedded
in W .

In this subsection, we fix two parabolic subgroups Q and Q̂ of G and
Ĝ containing respectively B and B̂. We will explain how to find the well
covering pairs in the case when X = G/Q × Ĝ/Q̂.

8.2.1 — Let λ be a one parameter subgroup of T and so of T̂ . We can
describe the fix point set Xλ:

Xλ =
⋃

w ∈ WP (λ)\W/WQ

ŵ ∈ ŴP̂ (λ)\Ŵ/ŴQ̂

GλwQ/Q × ĜλŵQ̂/Q̂.
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For (w, ŵ) ∈ WQ\W/WP (λ) × ŴQ̂\Ŵ/ŴP̂ (λ), we set

C(w, ŵ) = Gλw−1Q/Q × Ĝλŵ−1Q̂/Q̂.

Note that, for later use, we have introduced −1 in this definition. Note also
that

C+(w, ŵ) = P (λ)w−1Q/Q × P̂ (λ)ŵ−1Q̂/Q̂.

8.2.2 — Let P be a parabolic subgroup of G. We consider the coho-
mology ring H∗(G/P, Z) of G/P . Here, we use singular cohomology with
integers coefficients. If V is a closed subvariety of G/P , we denote by [V ]
the Poincaré dual class in H∗(G/P, Z).
Notation. The elements of W/WP will be denoted w as elements of W :
in other word, the notation do not distinguish a class and a representative.
Each times we use this abuse the reader has to check that the considered
quantities does not depend on the representative.

If w ∈ W/WP , we denote the corresponding Schubert variety BwP/P
by ΛP

w . We denote by [ΛP
w ] the Poincaré dual class in H∗(G/P, Z) of Λw. We

also denote by [pt] the Poincaré dual class of the point; note that, [pt] = [Λe].
Let us recall that

H∗(G/P, Z) =
⊕

w∈W/WP (λ)

Z[ΛP
w ].

We use similar notation for Ĝ/P̂ .
We now consider the case when P = P (λ) and P̂ = P̂ (λ). Since P =

G∩P̂ (λ), G/P (λ) identifies with the orbit by G of P̂ (λ)/P̂ (λ) in Ĝ/P̂ (λ); let
ι : G/P (λ) −→ Ĝ/P̂ (λ) denote this closed immersion. The map ι induces
a map ι∗ in cohomology:

ι∗ : H∗(Ĝ/P̂ (λ), Z) −→ H∗(G/P (λ), Z).

To simplify notation, we set P = P (λ) and P̂ = P̂ (λ).

Lemma 14 For (w, ŵ) ∈ WQ\W/WP × ŴQ̂\Ŵ/ŴP̂ .
Then the following are equivalent:

(i) the pair (C(w, ŵ), λ) is covering,

(ii) ι∗([Q̂ŵP̂ /P̂ ]).[QwP/P ] = [pt].
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Proof. Consider the map:

η : G ×P C+(w, ŵ) −→ X.

Since the characteristic of K is zero, η is birational if and only if for x in
an open subset of X, η−1(x) is reduced to a point. Consider the projection
π : G ×P C+(w, ŵ) −→ G/P . For any x in X, π induces an isomorphism
from η−1(x) onto the following locally closed subvariety of G/P : Fx :=
{hP ∈ G/P : h−1x ∈ C+(w, ŵ)}.

Let (g, ĝ) ∈ G × Ĝ and set x = (gQ/Q, ĝQ̂/Q̂) ∈ X. We have:

Fx = {hP/P ∈ G/P : h−1gQ/Q ∈ Pw−1Q/Q and h−1ĝQ̂/Q̂ ∈ P̂ ŵ−1Q̂/Q̂}

= {hP/P ∈ G/P : h−1 ∈ (Pw−1Qg−1) ∩ (P̂ ŵ−1Q̂ĝ−1)}

= ι(gQwP/P ) ∩ (ĝQ̂ŵP̂ /P̂ ).

Let us fix g arbitrarily. By Kleiman’s Theorem (see [Kle74]), there exists

an open subset of ĝ’s in Ĝ such that the intersection gQwP/P ∩ ĝQ̂ŵP̂ /P̂
is transverse. Moreover (see for example [BK06]), one may assume that

(gQwP/P ) ∩ (ĝQ̂ŵP̂ /P̂ ) is dense in gQwP/P ∩ ĝQ̂ŵP̂ /P̂ . We deduce that
the following are equivalent:

(i) for generic ĝ, Fx is reduced to a point,

(ii) ι∗([Q̂ŵP̂ /P̂ ]).[QwP/P ] = [pt].

Since η is G-equivariant, the above Condition (i) is clearly equivalent to
the fact that η is birational. �

8.2.3 — Notation. From now on, g and b will denote the Lie algebras
of G and B, R will denote the set of roots of g and R+ those of positive
ones. We denote by ρ the half sum of the positive roots of g. We will also
use the following similar notation for Ĝ: ĝ, b̂, R̂, R̂+, ρ̂.

Let w ∈ W/WP and consider the associated B-orbit in G/P . We define
γP

w to be the sum of the weights of T in the normal space at wP/P of

BwP/P in G/P . Similarly, we define γ̂P̂
ŵ .

Lemma 15 We assume that P is standard (that is, contain B, that is, λ
dominant). We keep above notation. Then, γP

w is the sum of the weights of
T in g/(b + w.p).

Let w̃ be the longest element in the class w ∈ W/WP . We have:

γP
w = −(ρ + w̃ρ).
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Proof. Consider the map G −→ G/P, g 7→ gwP/P and its tangent map
ϕ : g −→ TwP/P G/P . Since ϕ is T -equivariant, surjective and b + w.p =

ϕ−1(TwP/P BwP/P ), γP
w is the sum of the weights of T in g/(b + w.p).

Consider the G-equivariant surjective map π : G/B −→ G/P . The
definition of w̃ implies that π(w̃B/B) = wP/P and Bw̃B/B is open in
π−1(BwP/P ). It follows that γP

w is the sum of the weights of T in the
normal space at w̃B/B of Bw̃B/B in G/B; that is, the sum of the weights
of T in g/(b + w̃.b). Since the sum of all the roots is zero, we obtain that

−γP
w =

∑

α∈R+∪w̃R+ α

= 1
2

(

∑

α∈R+ α +
∑

α∈w̃R+ α +
∑

α∈R+\w̃R+ α +
∑

α∈w̃R+\R+ α
)

= 1
2

(

2ρ + 2w̃ρ +
∑

α∈R+\w̃R+ α +
∑

α∈w̃R+\R+ α
)

= ρ + w̃ρ

where the last equality holds since R+\w̃R+ = −(w̃R+\R+). �

Remark. In [BK06], Belkale and Kumar defined characters χw−1 for w of
minimal length its coset in WP \W . We have γB,P

w−1 = −w̃−1wP (χw−1), where
wP denote the longest element of WP .

8.2.4 — Let us fix again a dominant one parameter subgroup λ of T ,
w ∈ W and ŵ ∈ Ŵ .

To simplify notation, we set P = P (λ), C = C(w, ŵ) and C+ =
C+(w, ŵ). Consider

η : G ×P C+ −→ X = G/Q × Ĝ/Q̂.

Notation. If Y is a smooth variety of dimension n, T Y denotes its tan-
gent bundle. The line bundle

∧n T Y over Y will be called the determinant
bundle and denoted by DetY . If ϕ : Y −→ Y ′ is a morphism between
smooth variety, we denote by Tϕ : T Y −→ T Y ′ its tangent map, and by
Detϕ : DetY −→ DetY ′ its determinant.

Consider the restriction of Tη to C+:

Tη|C+ : T (G ×P C+)|C+ −→ T (X)|C+ ,

and the restriction of Detη to C+:

Detη|C+ : Det(G ×P C+)|C+ −→ Det(X)|C+ .
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Since η is G-equivariant, the morphism Detη|C+ is P -equivariant; it can
be thought as a P -invariant section of the line bundle Det(G ×P C+)∗|C+ ⊗

Det(X)|C+ over C+. We denote by LP,w,ŵ this last P -linearized line bundle
on C+.

Lemma 16 We assume that P,Q, P̂ and Q̂ are standard. Let (w, ŵ) ∈
W/WP × Ŵ/ŴP̂ be such that BwP/P and B̂Ŵ P̂ /P̂ are open in QwP/P

and Q̂Ŵ P̂ /P̂ respectively. Let w̃ (resp. ˜̂w) be the longest element in the
class of w (resp. ŵ) in W/WP (resp. Ŵ/ŴP̂ ).

Then, the torus T acts on the fiber over the point (w̃−1Q/Q, ˜̂w
−1

Q̂/Q̂)
in LP,w,ŵ by the character

rT ( ˜̂w
−1

γP̂
ŵ ) + w̃−1γP

w − γP
e .

Proof. If Z is a locally closed subvariety of a variety Y and z is a point of
Z, we denote by NY

z (Z) the quotient TzY/TzZ of the tangent spaces at z
of Y and Z. If V is a T -module StT(V) denote the multiset of the weights
of T in V . Let χ denote the character of the action of T on the fiber over

the point x = (w̃−1Q/Q, ˜̂w
−1

Q̂/Q̂) in LP,w,ŵ. Let p denote the Lie algebra
of P .

Since η induces the identity on C+ (canonically embedded in G×P C+),
we have:

χ = −
∑

α∈StT(N
G×PC+

x (C+))

α +
∑

α∈StT(NX
x (C+))

α.

Moreover, we have the following T -equivariant isomorphisms:

NG×P C+

x (C+) ≃ g/p ≃ NG
e (P ) ≃ g/p,

NX
x (C+) ≃ N

Ĝ/Q̂

˜̂w
−1

Q̂/Q̂
(P̂ ŵ−1Q̂/Q̂) ⊕ N

G/Q
w̃−1Q/Q

(Pw−1Q/Q)

≃ N
Ĝ/B̂

˜̂w
−1

B̂/B̂
(P̂ ˜̂w

−1
B̂/B̂) ⊕ N

G/B
w̃−1B/B

(Pw−1B/B)

≃ ĝ/(p̂ + ˜̂w
−1

b̂) ⊕ g/(p + w̃−1b)

Now, the lemma is direct consequence of Lemma 15. �

Notation. With notation of Lemma 16, we set θP
w = w̃−1γP

w and θP̂
ŵ =

˜̂w
−1

γP̂
ŵ .

One can now describe the well covering pairs of X:
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Proposition 10 Let λ be a dominant one parameter subgroup of T . Let
(w, ŵ) ∈ W/WP × Ŵ/ŴP̂ be such that BwP/P and B̂ŵP̂ /P̂ are open in

QwP/P and Q̂ŵP̂ /P̂ respectively.
The following are equivalent:

(i) The pair (C(w, ŵ), λ) is well covering.

(ii)
ι∗([ΛP̂

ŵ ]) . [ΛP
w ] −[ΛP

e ] = 0, and

〈ŵλ, γP̂
ŵ 〉+〈wλ, γP

w 〉−〈λ, γP
e 〉= 0.

Proof. By Lemma 14, we may (and shall) assume that (C(w, ŵ), λ) is
covering. Note that wλ is well defined, since WP is precisely the stabilizer
of λ in W . We chose w̃ and ˜̂w as in Lemma 16. Note that

〈λ, rT ( ˜̂w
−1

γP̂
ŵ ) + w̃−1γP

w − γP
e 〉 = 〈ŵλ, γP̂

ŵ 〉 + 〈wλ, γP
w 〉 − 〈λ, γP

e 〉.

In particular, by Lemma 16, 〈ŵλ, γP̂
ŵ 〉 + 〈wλ, γP

w 〉 − 〈λ, γP
e 〉 = 0 if and only

if λ acts trivially on the restriction of LP,w,ŵ to C(w, ŵ).
Assume that (C(w, ŵ), λ) is well covering. Then Detη|C is non identically

zero. Since Detη|C is a Gλ-invariant section of LP,w,ŵ|C , λ which fixes point

wise C has to act trivially on LP,w,ŵ|C (see for example Lemma 3).

Conversely, assume Condition (ii) satisfied. By Lemma 16, this implies

that µ
LP,w,ŵ|C (C, λ) = 0. But, since η is birational, Detη is G-invariant and

non zero; hence, Detη|C+ is P -invariant and non zero. So, Proposition 5
show that the restriction of Detη|C is non identically zero. Since η is bira-
tional, this implies that η is an isomorphism over an open subset intersecting
C. �

8.3 The case X = G/B × Ĝ/B̂

8.3.1 — We denote by LR(G, Ĝ) the cone of the pairs (ν, ν̂) ∈ X(T )Q ×
X(T̂ )Q such that for a positive integer n, nν̂ and nν are dominant weights
such that Vnν ⊗ Vnν̂ contains non zero G-invariant vectors.

From now on, X = G/B×Ĝ/B̂. By Proposition 9, a point (ν, ν̂) belongs
to LR(G, Ĝ) if and only if r∆G(L(ν,ν̂)) belongs to T CG(X) = SACG(X).

8.3.2 — Consider the G-module ĝ/g. Let χ1, · · · , χn be the set of the
non trivial weights of T on ĝ/g. For I ⊂ {1, · · · , n}, we will denote by TI

the neutral component of the intersection of the kernels of the χi’s with
i ∈ I. A subtorus of the form TI is said to be admissible. The subtorus
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TI is said to be dominant if Y (TI)Q is spanned by its intersection with the
dominant chamber of Y (T )Q. Notice that the set of the χi’s being stable by
the action of W , any admissible subtorus is conjugated by an element of W
to a dominant admissible subtorus. A one parameter subgroup of T is said
to be admissible if its image is.

To each χi, we associate the hyperplane Hi in Y (T )Q spanned by the
λ ∈ Y (T ) such that χ ◦ λ is trivial. The Hi’s form an W -invariant arrange-
ment of hyperplane in Y (T )Q. Moreover, Y (TI)Q is the intersection of the
Hi’s with i ∈ I.

To simplify, in the following statement we assume that ACG(X) has a
non empty interior in PicG(X)Q. In fact, this assumption is equivalent to
say that no ideal of g is an ideal of ĝ.

Theorem 9 We assume that no ideal of g is an ideal of ĝ.

(i) The interior of LR(G, Ĝ) in X(T )Q × X(T̂ )Q is not empty.

(ii) Let F be a face of LR(G, Ĝ) of codimension r which intersects the in-
terior of the Weyl chamber. Then there exists a dominant admissible
subtorus TI (with I ⊂ {1, · · · , n}) of T of dimension r, a dominant in-
divisible one parameter subgroup λ of TI , and an irreducible component
C(w, ŵ) of Xλ (and XTI ) such that:

(a) ι∗([Λ
P̂ (λ)
ŵ ]).[Λ

P (λ)
w ] = [Λ

P (λ)
e ] ∈ H∗(G/P (λ), Z),

(b) rT (θ̂
P̂ (λ)
ŵ ) + θ

P (λ)
w − θ

P (λ)
e is trivial on TI , and

(c) F is the set of (ν, ν̂) ∈ LR(G, Ĝ) such that 〈wλ, ν〉+ 〈ŵλ, ν̂〉 = 0.

(iii) Conversely, let λ be a dominant one parameter subgroup of T and C =
C(w, ŵ) be an irreducible component Xλ. Set I = {i = 1, · · · , n | χ ◦
λ is trivial} and denote by r the dimension of TI . If

(a) ι∗([Λ
P̂ (λ)
ŵ ]).[Λ

P (λ)
w ] = [Λ

P (λ)
e ] ∈ H∗(G/P (λ), Z) and

(b) rT (θ̂
P̂ (λ)
ŵ ) + θ

P (λ)
w − θ

P (λ)
e is trivial on TI ,

then the set of (ν, ν̂) ∈ LR(G, Ĝ) such that 〈wλ, ν〉 + 〈ŵλ, ν̂〉 = 0 is a
face of LR(G, Ĝ) of codimension r.

Proof. By [MR08, Corollaire 1], the codimension of ACG(X) in PicG(X)Q

is the dimension of the generic isotropy of T acting on ĝ/g. This generic
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isotropy is also the kernel of the action of T on Ĝ/G. So, it is contained
in

⋂

ĝ∈Ĝ ĝGĝ−1. Since this group is distinguish in Ĝ and G, it is finite by

assumption. Hence, the interior of ACG(X) in PicG(X)Q is non empty.

Let F be a face of ACG(X) of codimension r. Let S be a torus in G,
λ be an indivisible one parameter subgroup of S and C be an irreducible
component of XS satisfying Corollary 3. Up to conjugacy, we may assume
that S is contained in T and λ is dominant.
Claim 1. The subtorus S is admissible.

Notice that C is isomorphic to the variety of the complete flags GS × ĜS

and S is the isotropy of a general point in C. Hence, S is the isotropy in BS

of a general point in ĜS/B̂S , that is, by Bruhat’s Theorem, of a general point
in B̂S/T̂ S . Since US acts freely on B̂S/T̂ S , S is conjugated to the isotropy
in T of a general point in ÛS/US which is isomorphic to ûS/uS . Finally,
on may assume that S is the isotropy of a general point in ĝS/gS = (ĝ/g)S ;
that is, since S is diagonalizable, that S is the kernel of the action of T on
(ĝ/g)S . Then, S is admissible.

Let I ⊂ {1, · · · , n} such that S = TI . Since (C, λ) is well covering,
Proposition 10 shows that w, ŵ and λ satisfy Conditions (ii)a and (ii)b of
the theorem. Assertion (ii) follows.

Conversely, let w, ŵ, λ and I as in Assertion (iii) of the theorem. By
Proposition 10, (C(w, ŵ), λ) is a well covering pair. By Lemma 7, the set
of L ∈ T CG(X) such that µL(C, λ) = 0 is a face F ′ of T CG(X) eventually
empty. It remains to prove that the codimension of F ′ equal the dimension
r of TI .

Consider the linear map ρ induced by the restriction: ρ : PicG(X)Q −→

PicGλ
(C(w, ŵ))Q. We firstly prove the

Claim 3. ρ is surjective.
Let x be a point in C(w, ŵ). Let (B̂1, B1) denote the isotropy of x in

G × Ĝ. Let L ∈ PicGλ
(C(w, ŵ)). By Lemma 13 applied to C, there exists

characters ν̂ and ν of B̂λ
1 and Bλ

1 and a positive integer n such that L⊗ is
the restriction of the Gλ × Ĝλ-linearized line bundle L(ν,ν̂). But, ν and ν̂

can be extended to characters ν ′ and ν̂ ′ of B1 and B̂1. Then, L⊗n is the
image by ρ of r∆G(Lν′,ν̂′).

By Claim 3 and Theorem 7, it remains to prove that T CGλ

(C(w, ŵ)) has
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codimension r in PicGλ

(C(w, ŵ))Q. By [MR08, Corollaire 1], this codimen-
sion is the dimension of the kernel of the action of T over ĝλ/gλ = (ĝ/g)λ.
By definition TI is the neutral component of this kernel. �

Corollary 4 We assume that no ideal of g is an ideal of ĝ. Any dominant
weight (ν, ν̂) belongs to LR(G, Ĝ) if and only if

〈wλ, ν〉 + 〈ŵλ, ν̂〉 ≥ 0,

for all indivisible dominant admissible one parameter subgroup λ of T and
for all (w, ŵ) ∈ W/WP (λ) × Ŵ/ŴP̂ (λ) such that

(i) ι∗([Λ
P̂ (λ)
ŵ ]).[Λ

P (λ)
w ] = [Λ

P (λ)
e ] ∈ H∗(G/P (λ), Z), and

(ii) 〈ŵλ, γ
P̂ (λ)
ŵ 〉 + 〈wλ, γ

P (λ)
w 〉 = 〈λ, γ

P (λ)
e 〉.

Moreover, the above inequalities are pairwise distinct and no one can be
omitted.

Proof. By Proposition 7, the cone SACG(X) is characterized as a part of the
dominant chamber by the inequalities µL(C, λ) ≤ 0, for all well covering pair
(C, λ) with a dominant one parameter subgroup λ of T . Since SACG(X) has
non empty interior, it is sufficient to keep only the inequalities corresponding
to faces of codimension one. By the theorem, all these inequalities are in
the corollary. The first part of the corollary is proved.

Consider an inequality 〈wλ, ν〉 + 〈ŵλ, ν̂〉 ≥ 0 as in the statement of the
corollary. By Theorem 9, the set (ν, ν̂) such that 〈wλ, ν〉 + 〈ŵλ, ν̂〉 = 0 is a
face F of codimension one of LR(G, Ĝ). This inequality cannot be omitted
unless F is a face of the dominant chamber in X(T )Q × X(T̂ )Q. It is easy
to check that this is not possible.

It remains to prove that these inequalities are pairwise distinct. But the
stabilizer in W (resp. Ŵ ) of λ ∈ Y (T ) (resp. λ ∈ Y (T̂ )) is precisely WP (λ)

(resp. ŴP̂ (λ)). It follows that the inequalities of the corollary are pairwise
distinct. �

8.3.3 — Corollary 4 gives a minimal list of inequalities which determine
LR(G, Ĝ) as a part of the dominant chamber. In [BS00], Berenstein-Sjamaar
gave another list containing redundant inaqualities. An hyperplane given by
one redundant inequality cannot intersect LR(G, Ĝ) along a face of codi-
mension one containing pairs of strictely dominant weights. We now want
to understand better this intersection.
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Let us fix an indivisible dominant admissible one parameter subgroup
λ. Let (Λw, Λŵ) be a pair of Schubert varieties in G/P (λ) and Ĝ/P̂ (λ)
such that ι∗([Λŵ]).[Λw] = d.[pt] ∈ H∗(G/P (λ), Z) for some positive integer
d. By [BS00], for all (ν, ν̂) ∈ LR(G, Ĝ), we have 〈wλ, ν〉 + 〈ŵλ, ν̂〉 ≥ 0. In
particular, the set F of (ν, ν̂) ∈ LR(G, Ĝ) such that 〈wλ, ν〉 + 〈ŵλ, ν̂〉 = 0
is a face of LR(G, Ĝ).

Theorem 10 With above notation, we assume that d 6= 1 or that 〈ŵλ, γ
P̂ (λ)
ŵ 〉+

〈wλ, γ
P (λ)
w 〉 6= 〈λ, γ

P (λ)
e 〉.

Then, the face F does not contain any weight (ν, ν̂) with ν strictly dom-
inant.

Proof. Set x = (wB/B, ŵB̂/B̂). Let C denote the irreducible component
of Xλ containing x. By absurd, we assume that F contains a weight (ν, ν̂)
with ν strictly dominant. According to Proposition 10, it remains to prove
that (C, λ) is well covering to obtain a contradiction.

Consider the parabolic subgroup of Ĝ containing B̂ such that L(ν,ν̂) is

an ample line bundle on G/B × Ĝ/Q̂ (denoted X from now on). Consider
the natural G × Ĝ-equivariant morphism p : X −→ X. Set x = p(x).

Let C denote the irreducible component of X
λ

containing x and C
+

the
corresponding Bialinicki-Birula cell.

Since C (resp. C
+
) is an orbit of Gλ × Ĝλ (resp. P (λ) × P̂ (λ)), we

have p(C) = C and p(C+) = C
+
. Since ι∗([Λŵ]).[Λw] = d.[pt], the proof

of Lemma 14 shows that (C, λ) is dominant. We deduce that (C, λ) is
dominant. Now, Theorem 8 implies that (C, λ) is well covering.

Let y ∈ C general and g ∈ G such that g−1y ∈ C+. Since p(C) = C,

p(y) is general in C. But, (C, λ) is well covering and g−1p(y) ∈ C
+
; so,

g ∈ P (λ). This proves that (C, λ) is well covering. �

8.4 Application to the tensor product

8.4.1 — In this section, G is assumed to be semisimple. We also fix an
integer s ≥ 2 and set Ĝ = Gs, T̂ = T s and B̂ = Bs. We embed G di-
agonally in Ĝ. Then SACG(X) ∩ X(T )s+1 identifies with the (s + 1)-uple
(ν1, · · · , νs+1) ∈ X(T )s+1 such that the for n big enough nνi’s are dominant
weights and Vnν1 ⊗ · · · ⊗ Vnνs+1 contains a non zero G-invariant vector.

The set of weights of T in ĝ/g is simply the root system Φ of G. Let ∆
be the set of simple roots of G for T ⊂ B. Let I be a part I of ∆. Let L(I)
denote the Levi subgroup of G containing T and having ∆− I as its simple
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roots. Let TI denote the neutral component of the center of L(I); TI is
dominant. Note that the dimension of TI is the cardinality of I. Moreover,
all dominant admissible subtorus of T is obtained in such a way. We will
also denote by P (I) the standard parabolic subgroup with Levi subgroup
L(I). We denote by WI the Weyl group L(I).

Let λ be a dominant one parameter subgroup of T . For (w1, ŵ) =
(w1, · · · , ws+1) ∈ W ×Ŵ = W s+1, and (ν, ν̂) = (ν1, · · · , νs+1) ∈ PicG(X)Q =
X(T)s+1

Q we have:

• rT (ŵν̂) =
∑s+1

i=2 wiνi, and rT (θ̂
P̂ (λ)
ŵ ) =

∑s+1
i=2 θ

P (λ)
wi ,

• ι∗([Λ
P̂ (λ)
ŵ ]) = [Λ

P (λ)
w2 ]· · · · ·[Λ

P (λ)
ws+1 ],

In [BK06], Belkale and Kumar defined a new product denoted ⊙0 on
the cohomology groups H∗(G/P, Z) for any parabolic subgroup P of G. By
Proposition 17 of [BK06], this product ⊙0 has the following very interesting
property.

For wi ∈ W/WP (I), the following are equivalent:

(i) [Λ
P (I)
w1 ]. · · · .[Λ

P (I)
ws+1 ] = [Λ

P (I)
e ] and,

the restriction of θ
P (I)
w1 + · · · + θ

P (I)
ws+1 − θ

P (I)
e to TI is trivial;

(ii) [Λ
P (I)
w1 ] ⊙0 · · · ⊙0 [Λ

P (I)
ws+1] = [Λ

P (I)
e ].

Using this result of Belkale and Kumar our Theorem 9 gives the following
corollary. If α is a root of G, α∨ denote the corresponding coroot. If α is a
simple root, ωα∨ denote the corresponding fundamental weight.

Corollary 5 (i) A point (ν1, · · · , νs+1) ∈ X(T )s+1
Q belongs to the cone

LR(G,Gs) if and only if

(a) each νi is dominant; that is 〈α∨, νi〉 ≥ 0 for all simple root α.

(b) for all simple root α; for all (w1, · · · , ws+1) ∈ (W/WP (α))
s+1 such

that [Λ
P (α)
w1 ]⊙0· · ·⊙0[Λ

P (α)
ws+1 ] = [Λ

P (α)
e ] ∈ H∗(G/P (α), Z), we have:

∑

i

〈wiωα∨ , νi〉 ≥ 0.

(ii) We assume either that s ≥ 3 or g does not contain any factor of
rank one. In the above description of LR(G,Gs), the inequalities are
pairwise distinct and no one can be omitted (neither in (i)a nor (i)b).
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(iii) Let F be a face of LR(G,Gs) of codimension d which intersects the
interior of the dominant chamber. There exist a subset I of d simple
roots and and (w1, · · · , ws+1) ∈ (W/WI)

s+1 such that:

(a) [Λ
P (I)
w1 ] ⊙0 · · · ⊙0 [Λ

P (I)
ws+1] = [Λ

P (I)
e ] ∈ H∗(G/P (I), Z),

(b) the subspace spanned by F is the set (ν1, · · · , νs+1) ∈ X(T )s+1
Q

such that:
∀α ∈ I

∑

i

〈wiωα∨ , νi〉 = 0.

(iv) Conversely, let I be a subset of d simple roots and (w1, · · · , ws+1) ∈

(W/WI)
s+1 such that [Λ

P (I)
w1 ]⊙0· · ·⊙0[Λ

P (I)
ws+1 ] = [Λ

P (I)
e ] ∈ H∗(G/P (I), Z).

Then, the set of (ν1, · · · , νs+1) ∈ LR(G,Gs) such that

∀α ∈ I
∑

i

〈wiωα∨ , νi〉 = 0,

is a face of codimension d of LR(G,Gs).

Proof. Equations (i)a are all different and are not repeated in Equa-
tions (i)b. Moreover, by [MR08, Proposition 7] they define codimension
one faces of LR(G,Gs).

The rest of the corollary is a simple rephrasing of Theorem 9 and Corol-
lary 4. �

Remark. The description of the smaller faces of CG((G/B)s+1) gives an ap-
plication of the Belkale-Kumar product ⊙0 for all the complete homogeneous
spaces.
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[Lun75] D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29
(1975), no. 3, 231–238.

[Man97] Laurent Manivel, Applications de Gauss et pléthysme, Ann. Inst.
Fourier (Grenoble) 47 (1997), no. 3, 715–773.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant
theory, 3d ed., Springer Verlag, New York, 1994.

[MR08] Pierre-Louis Montagard and Nicolas Ressayre, Sur des
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