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Abstract

The object of the present paper is to show the existence and the
uniqueness of a reproductive strong solution of the Navier-Stokes equa-
tions, i.e. the solution u belongs to L

∞ (0, T ; V ) ∩ L
2
(

0, T ;H2 (Ω)
)

and
satisfies the property u (x, T ) = u (x, 0) = u0 (x). One considers the
case of an incompressible fluid in two dimensions with nonhomogeneous
boundary conditions, and external forces are neglected.

Key Words: Navier-Stokes equations, incompressible fluid, reproductive solu-
tion, nonhomogeneous boundary conditions.
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1 Introduction and notations

Let Ω be an open and bounded domain of R
2, with a sufficiently smooth bound-

ary Γ; and let us consider the Navier-Stokes equations:



















∂v

∂t
− ν△v + v.∇v + ∇p = 0 in QT = Ω × ]0, T [ ,

div v = 0 in QT ,

v = g on ΣT = Γ × ]0, T [ ,
v(0) = v0 in Ω.

(1)

where g , v0 and T > 0 are given.We suppose that :

div v0 = 0 in Ω, v0.n = 0 on Γ, (2)

and
g.n = 0 on ΣT . (3)

One is interested on one hand by the existence of strong solutions of system
(1). On the other hand, one seeks data conditions to establish the existence of a
reproductive solution generalizing the concept of a periodic solution. Kaniel and
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Shinbrot [5] showed the existence of these solutions for system (1) in dimensions
2 and 3 with external forces but zero boundary condition i.e. g = 0. With
another approach using semigroups, one can also point out the work of Takeshita
[10] in dimension 2.

We need to introduce the following functional spaces, with r and s positive
numbers:

Hr,s(QT ) = L2 (]0, T [ ;Hr(Ω)) ∩ Hs
(

]0, T [ ;L2(Ω)
)

These are Hilbert spaces for the norm

‖v‖
Hr,s(QT ) =





T
∫

0

‖v(t)‖2
Hr(Ω) dt+ ‖v‖2

Hs(]0,T [;L2(Ω))





1/2

.

Let us recall that for s = 1, for example,

‖v‖
H1(]0,T [;L2(Ω)) =





T
∫

0

(

‖v(t)‖2
L2(Ω) +

∥

∥

∥

∥

∂v

∂t

∥

∥

∥

∥

2

L2(Ω)

)

dt





1/2

.

In the same manner one defines spaces Hr,s(ΣT ).
We now introduce the following spaces:

V =
{

v ∈ D(Ω)2; div v = 0 in Ω
}

,

H =
{

v ∈ L2(Ω); div v = 0 in Ω, v.n = 0 on Γ
}

,

V =
{

v ∈ H1
0(Ω); div v = 0 in Ω

}

,

Let us recall that V is dense in H and V for their respective topologies.

Here, D(Ω) is the class of C∞ functions with compact support in Ω. The
notations (., .) et ((., .)) indicate the scalar products in L2(Ω) and in H1

0(Ω)
respectively, and |.| et ‖.‖ the associated norms.

In the order to solve problem (1), we will have to remove boundary condition
g. and consider a new problem with zero boundary condition. We note that if
v ∈ H2,1(QT ) is solution of (1), then thanks to the Aubin compactness lemma
(see J.L. Lions [8] , R. Temam [11] ) one will have

v ∈ C0
(

[0, T ] ;H1(Ω)
)

→֒ C0
(

[0, T ] ;H1/2(Γ)
)

So that a necessary condition for v to exist is that:

g (x,0) = v0 (x) , x ∈ Γ. (4)
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Combining (2)-(4), one has:

g.n = 0 on Γ × [0, T [ .

The following lemma allows us to state hypotheses on g (voir Lions-Magenes
[7]).

Lemma 1.1. Suppose that (4) takes place and let

g∈ H3/2,3/4(ΣT ), v0 ∈ H1(Ω). (5)

Then there exists a function R ∈ H2,1(QT ) such that

R =g on ΣT et R (0) = v0 in Ω, (6)

and satisfying the estimates

‖R‖
H2,1(QT ) ≤ C

(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

.� (7)

We now consider the problem:

For a given g verifying (5), one seeks (u, q) which satisfies



















∂u

∂t
− ν△u + ∇q = 0 in QT ,

div u = div R in QT ,

u = 0 on ΣT ,

u(0) = 0 in Ω.

(8)

The following proposition holds (see Dautray-Lions [2] , O. A. Ladyzhenskaya

[6] , V.A. Solonnikov [9]) :

Proposition 1.2. We suppose that (5)holds,

div v0 = 0 on Ω, v0.n = 0 in Γ, and g.n = 0 in ΣT . (9)

Then problem (8) has an unique solution (u, q) such that

u ∈ H2,1(QT ), q ∈ L2
(

0, T ;H1(Ω)2
)

with the estimates

‖u‖
H2,1(QT ) + ‖q‖L2(0,T ;H1(Ω)2) ≤ C

(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

.�

(10)
Thus the function defined by
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G = R − u in QT (11)

satisfies the estimates (7) and

div G = 0 in QT , (12)

G = g on ΣT , (13)

G (x,0) = v (x,0) x ∈ Ω. (14)

This yields the following lemma:

Lemma 1.3. Let g and v0 satisfy (4), (5) and (9). Then there exists
G ∈ H2,1(QT ) satisfying (12)-(14) and the estimate

‖G‖
H2,1(QT ) ≤ C

(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

.�

Moreover, one has the next lemma

Lemma 1.4. Let ε > 0,and let g and v0 satisfy the hypotheses of lemma 1.3.
Then there exists Gε ∈ H2,1(QT ) such that

div Gε = 0 in QT ,

Gε =g on ΣT ,

‖Gε (., 0)‖
H1(Ω) ≤ Cε ‖G (., 0)‖

H1(Ω)

and
∀v ∈ V , |b (v,Gε (t) ,v)| ≤ β(ε, t) ‖∇v‖2

L2(Ω)

with
sup

t∈[0,T ]

β(ε, t) → 0 when ε→ 0.

Moreover, there exists an increasing function L : R
+ → R

+, not depending on
ε, such that

‖Gε‖H2,1(QT ) ≤ L

(

ε

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

.

Proof.

i) Step 1 : One takes up again the Hopf construction (see Girault & Raviart
[4], Temam [11], Lions [8], Galdi [3] ).
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ii) Step 2 : The open domain Ω being smooth, and since div Gε = 0 in QT and
G.n = 0 on Γ × [0, T [ , there exists, for all t ∈ [0, T [, a function ψ depending
on x and t, such that

G = rot ψ in Ω × [0, T ]

with ψ = 0 on Γ × [0, T [, ψ ∈ L2
(

0, T ;H3(Ω)
)

,
∂ψ

∂t
∈ L2

(

0, T ;H1(Ω)
)

and

satisfying the estimate

‖ψ‖
L2(0,T ;H3(Ω)) + ‖ψt‖L2(0,T ;H1(Ω)) ≤ C ‖G‖

H2,1(QT ) . (15)

iii) Step 3 : Let
Gε = rot (θε ψ) .

One deduces from the properties of θε, for j = 1, 2:

∣

∣Gε
j(x, t)

∣

∣ ≤ C

(

ε

ρ (x)
|ψ(x, t)| + |∇ψ(x, t)|

)

if ρ(x) ≤ 2δ(ε)

and Gε
j = 0 if ρ(x) > 2δ(ε).

We note that

ψ ∈ C
(

[0, T ] ;H2(Ω)
)

→֒ C ([0, T ] ;L∞(Ω)) .

Therefore,

∣

∣Gε
j(x, t)

∣

∣ ≤ C

(

ε

ρ (x)
+ |∇ψ(x, t)|

)

if ρ(x) ≤ 2δ(ε).

Thus, for all v ∈ H1
0(Ω),

∥

∥viG
ε
j

∥

∥

L2(Ω)
≤ C









ε

∥

∥

∥

∥

vi

ρ

∥

∥

∥

∥

L2(Ω)

+







∫

ρ(x)≤2δ(ε)

v2
i . |∇ψ|2 dx







1/2








∥

∥viG
ε
j

∥

∥

L2(Ω)
≤ Cε ‖∇vi‖L2(Ω) + C ‖∇vi‖L2(Ω) ×







∫

ρ(x)≤2δ(ε)

|∇ψ|3 dx







1/3
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Setting

β(ε, t) =







∫

ρ(x)≤2δ(ε)

|∇ψ|3 dx







1/3

,

it’s clear that
lim
ε→0

β(ε, t) = 0 uniformly on [0, T ] .

The second inequality of lemma 1.4 is a consequence of Hölder inequality. The
first inequality follows from Hardy inequality for H1

0(Ω)-functions and properties
of θε .�

2 Existence of strong solutions

Let us make a change of the unknown function in problem (1), by setting

u = v − Gε, u0 = v0 − Gε (., 0) ,

where Gε is the function given by lemma 1.4. Problem (1) then becomes:



















∂u

∂t
− ν△u + u.∇u + u.∇Gε + Gε.∇u + ∇p = fε in QT

div u = 0 in QT

u = 0 on ΣT

u(0) = uε
0 in Ω

(16)

with

fε = − ∂Gε

∂t
+ ν△Gε − Gε.∇Gε and uε

0 = v0 − Gε (., 0) . (17)

We note that uε
0 ∈ V and

‖uε
0‖H1(Ω) ≤ Cε

(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

. (18)

Moreover, fε ∈ L2
(

0, T ;L2(Ω)
)

and

‖f ε‖L2(0,T ;L2(Ω)) ≤ Cε

(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

. (19)

Now we are able to announce and to establish the following theorem :
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Theorem 2.1. Let v0 and g satisfy the hypotheses of lemma 1.3. Then
problem (16) has a unique solution (u, p) such that

u∈ L2
(

0, T ;H2(Ω)
)

∩ L∞ (0, T ;V ) ,
∂u

∂t
∈ L2 (0, T ;H) , p ∈ L2

(

0, T ;H1(Ω)
)

,

p being unique up to an L2 (0, T )-function of the single variable t.

Proof.

2.1 Approximate solutions

We use the Galerkin method. Let m ∈ N
∗ and u0m ∈ 〈w1,w2, ...,wm〉 such that

u0m → uε
0 in V, if m→ ∞,

where wj are the Stokes operator eigenfunctions . For each m, one defines an
approximate solution of (16) by :























um(t) =
m
∑

j=1

gjm(t)wj

(u′
m (t) ,wj) + ν ((um (t) ,wj)) + b (um (t) ,um (t) ,wj)

+b (um (t) ,Gε (t) ,wj) + b (Gε (t) ,um (t) ,wj) = (fε (t) ,wj)
um(0) = u0m, j = 1, ...,m

(20)

This is a nonlinear differential system of m equations in m unknowns gjm,

j = 1, ...,m :
∑m

i=1 (wi,wj) g
′
im (t)+ν

∑m
i=1 ((wi,wj)) gim (t)+

∑m
i,l=1 b (wi,wl,wj) gim (t) glm (t) +

+
∑m

i=1 [b (wi,Gε (t) ,wj) gim (t) + b (Gε (t) ,wi,wj) gim (t)] = (fε (t) ,wj) ,
j = 1, ...,m

2.2 Estimates I

Let us multiply (20) by gjm(t) and sum over j :

1

2

d

dt
|um (t)|2 + ν ‖um (t)‖2

= −b (um (t) ,Gε (t) ,um (t)) + (fε (t) ,um (t))

≤ |fε (t)| ‖um (t)‖ + |b (um (t) ,Gε (t) ,um (t))|
One deduces from lemma 1.4 that :

1

2

d

dt
|um (t)|2+ν

2
‖um (t)‖2 ≤ 1

2νC2 (Ω)
|f ε (t)|2+β(ε, t) ‖um (t)‖2

.

As sup
t∈[0,T ]

β(ε, t) → 0 when ε→ 0, for a fixed and small ε > 0, one has:

d

dt
|um (t)|2 +

ν

2
‖um (t)‖2 ≤ 1

νC2 (Ω)
|fε (t)|2 . (21)

7



Integrating (21) from 0 to s, one deduces that:

|um(s)|2 ≤ |u0m|2 +
1

νC2 (Ω)

∫ s

0 |fε (t)|2 dt

≤ |uε
0|

2
+

1

νC2 (Ω)
‖fε (t)‖2

L2(0,T ;L2(Ω))

≤ Cε

(

‖g‖2
H3/2,3/4(ΣT ) + ‖v0‖2

H1(Ω)

)

according to (18) and (20). Therefore

um ∈ L∞(0, T ;H), (22)

and {um} is an equibounded sequence in L∞(0, T ;H).

Next, thanks to (21), one has:

um ∈ L2(0, T ;V ), (23)

and the sequence {um} is equibounded in L2(0, T ;V).

2.3 Estimates II

Let us multiply (20) by λjgjm(t) and sum over j :

1

2

d

dt
‖um (t)‖2

+ ν |Aum (t)|2 + b (um (t) ,um (t) , Aum (t))+

b (Gε (t) ,um (t) , Aum (t)) + b (um (t) ,Gε (t) , Aum (t)) = (f ε, Aum (t))
(24)

where A is the Stokes operator. Let us begin by considering the nonlinear terms.

For the first term, thanks to the Gagliardo-Nirenberg inequality one has

|b (um (t) ,um (t) , Aum (t))| ≤ ‖um (t)‖
L4(Ω) ‖∇um (t)‖

L4(Ω) |Aum (t)|
≤ C |um (t)|1/2 ‖um (t)‖ |Aum (t)|3/2

≤ C ‖um (t)‖4
+
ν

8
|Aum (t)|2 .

In the same way,

|b (Gε (t) ,um (t) , Aum (t))| ≤ ‖Gε (t)‖
L4(Ω) ‖∇um (t)‖

L4(Ω) |Aum (t)|
≤ C ‖Gε (t)‖

H1(Ω) ‖um (t)‖1/2 |Aum (t)|3/2

≤ C ‖Gε (t)‖4
H1(Ω) ‖um (t)‖2 +

ν

8
|Aum (t)|2 .

We remark that, according to lemma 1.4, one has:

‖Gε‖L∞(0,T ;H1(Ω)) ≤ C
(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

.

So that

|b (Gε (t) ,um (t) , Aum (t))| ≤ C ‖um (t)‖2
+
ν

8
|Aum (t)|2 .
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Finally,

|b (um (t) ,Gε (t) , Aum (t))| ≤ ‖um (t)‖
L4(Ω) ‖∇Gε (t)‖

L4(Ω) |Aum (t)|
≤ C ‖um (t)‖2 ‖Gε (t)‖2

H2(Ω) +
ν

8
|Aum (t)|2 .

Hence,

d

dt
‖um (t)‖2

+ν |Aum (t)|2 ≤ C

ν
|fε (t)|2+C

[

‖um (t)‖4
+ ‖um (t)‖2

(

1 + ‖Gε (t)‖2
H2(Ω)

)]

.

Let

σm (t) = C
[

‖um (t)‖2 +
(

1 + ‖Gε (t)‖2
H2(Ω)

)]

.

One knows that

σm (t) ∈ L1 (0, T ) ;

so that, according to the Gronwall lemma and (24), one has:

um ∈ L∞ (0, T ;V ) ∩ L2
(

0, T ;H2 (Ω)
)

, (25)

and {um} is an equibounded sequence in L∞ (0, T ;V ) ∩ L2
(

0, T ;H2 (Ω)
)

.

2.4 Estimates III

Let us multiply (20) by g′jm(t) and sum over j from 1 to m. Then

|u′
m (t)|2 = ν (Aum (t) ,u′

m (t)) − b (um (t) ,um (t) ,u′
m (t))

−b (Gε (t) ,um (t) ,u′
m (t)) − b (um (t) ,Gε (t) ,u′

m (t)) + (fε,u
′
m (t)) .

From this, one deduces that

|u′
m (t)|2 ≤ ν |Aum (t)| |u′

m (t)| + C ‖um (t)‖
L4(Ω) ‖∇um (t)‖

L4(Ω) |u′
m (t)|

+ C ‖Gε (t)‖
L4(Ω) ‖∇um (t)‖

L4(Ω) |u′
m (t)|

+ C ‖um (t)‖
L4(Ω) ‖∇Gε (t)‖

L4(Ω) |u′
m (t)| + |f ε (t)| |u′

m (t)|
Using the Gagliardo-Nirenberg inequality, estimates (25) and (19), and lemma
1.4 giving the estimate of Gε, one deduces that

u′
m ∈ L2 (0, T ;H) , (26)

and {u′
m} is an equibounded sequence in L2 (0, T ;H).

9



2.5 Taking the limit.

It is a consequence of the above estimates that the sequence um has a subse-
quence um, the same notation being used to avoid unnecessary notation over-
load:

um ⇀ u weakly* in L∞ (0, T ;V ) , (27)

um ⇀ u weakly in L2
(

0, T ;H2 (Ω)
)

, (28)

u′
m ⇀ u′ weakly in L2 (0, T ;H) . (29)

But we have a compact embedding
{

v ∈ L2
(

0, T ;H2 (Ω) ∩ V
)

, V ′ ∈ L2 (0, T ;H)
}

→֒
compact

L2 (0, T ;V )

So that

um → u strongly in L2 (0, T ;V ) and a.e. in QT (30)

Let m0 be fixed and v ∈ 〈w1,w2, ...,wm0
〉 . Let m tend towards +∞ in (20).

Then

(u′ (t) ,v) + ν ((u (t) ,v)) +b (u (t) ,u (t) ,v) + b (u (t) ,Gε (t) ,v)
+b (Gε (t) ,u (t) ,v) = (fε (t) ,v) ,

This last relation being valid for allm0, it remains true for all v ∈ 〈w1,w2, ...,wm〉 ,
∀m ∈ N

∗.

Finally let v ∈ V. There exists vm ∈ 〈w1,w2, ...,wm〉 such that vm → v in V

and

(u′ (t) ,v) + ν ((u (t) ,v)) + b (u (t) ,u (t) ,v)

+b (u (t) ,Gε (t) ,v) + b (Gε (t) ,u (t) ,v) = (fε (t) ,v) (31)

Now let us note that for all t ∈ [0, T ] ,

um (t) → u (t) weakly in V ,

and thus

um (0) = u0m → u (0) weakly in V .

Since
u0m → uε

0 in V ,

we have:
u (0) = uε

0.

10



2.6 Existence of pressure.

From (31), one has, for all v ∈ V ,

〈u′ − ν△u +B (u,u) +B (u,Gε) +B (Gε,u) − fε , v〉
H−1(Ω)×H

1

0
(Ω) = 0.

Consequently, there exists a unique function p of L2 (0, T ) satisfying (16) and
such that :

p ∈ L2
(

0, T ;H1 (Ω)
)

.

This ends the proof of theorem 2.1.�

3 Uniqueness Theorem

Theorem 3.1 Problem (16) has a unique solution.

Proof.

Let u and v be two solutions satisfying the hypotheses of theorem 2.1 and let
w = u − v. Then one has

∂w

∂t
− ν△w + w.∇u + v.∇w + w.∇Gε + Gε.∇w = 0

Multiplying by w, we obtain

1

2

d

dt
|w (t)|2 + ν ‖w (t)‖2 = − (w.∇u,w) − (v.∇w,w)

− (w.∇Gε,w) − (Gε.∇w,w)

But b (v,w,w) = 0 and b (Gε,w,w) = 0. This yields

1

2

d

dt
|w (t)|2 + ν ‖w (t)‖2

= −b (w,u,w) − b (w,Gε,w) .

One then integrates with respect to t and we get

1

2
|w (t)|2 + ν

∫ t

0 ‖w (s)‖2
ds = −

∫ t

0 b (w,u,w) ds−
∫ t

0 b (w,Gε,w) ds.

Since
∣

∣

∣

∫ t

0
b (w,u,w) ds

∣

∣

∣ ≤ C1

∫ t

0
‖w (s)‖

L4(Ω) ‖u (s)‖
L2(Ω) ds

≤ C2

∫ t

0
|w (s)| ‖w (s)‖ ‖u (s)‖ ds

≤ ν

2

∫ t

0 ‖w (s)‖2
ds+ C3

∫ t

0 |w (s)|2 ‖u (s)‖2
ds.

and, by the same way,
∫ t

0 b (w,Gε,w) ds ≤ ν

2

∫ t

0 ‖w (s)‖2
ds+ C4

∫ t

0 |w (s)|2 |∇Gε (s)|2 ds.

it follows that

11



|w (t)|2 ≤ C5

∫ t

0
|w (s)|2

(

|∇Gε (s)|2 + ‖u (s)‖2
)

ds

Thanks to the Gronwall lemma, one deduces w = 0.�

4 Existence of strong reproductive solution

We first recall results obtained by Kaniel et Shinbrot [5] in the study of the
following problem :



















∂u

∂t
− ν△u + u.∇u + ∇p = f in QT

div u = 0 in QT

u = 0 on ΣT

u(0) = u0 in Ω

(32)

where Ω is an open and bounded domain of R
3, with a smooth boundary Γ.

The following result establishes the property of a reproductive solution

Theorem 4.1. Let T >0, and f ∈ BR,T with f small enough. Then, there
exists an unique function u0, independent of t, with ∇u0 ∈ BR,T and such that
the solution of (32) reproduces its initial value at t = T :

u (x,T ) = u (x,0) = u0 (x) ,

where

BR,T =
{

u ∈ L∞
(

0, T ;L2 (Ω)
)

: ‖u‖
L∞(0,T ;L2(Ω)) ≤ R

}

.

We begin by recalling the following lemma.

Lemma 4.2. If

u ∈ L2
(

0, T ;H2 (Ω) ∩ V
)

and u′ ∈ L2 (0, T ;H)

then
u ∈ C ([0, T ] ;V )

and
d

dt
‖u (t)‖2

= −2 (u′ (t) ,△u (t)) .�

Now, let

v0 ∈ H1(Ω) ∩ H, w0 ∈ H1(Ω) ∩ H, g ∈ H3/2,3/4(ΣT ) (33)

12



with

g.n = 0 on ΣT and v0 (x) = w0 (x) = g (x, 0) x ∈ Γ. (34)

With these assumptions, it follows from theorem 2.1 that system (1), with data
(v0, g) , (respectively (w0, g)), has an unique solution

v ∈ L2
(

0, T ;H2 (Ω) ∩H
)

∩ L∞
(

0, T ;H1 (Ω)
)

and v′ ∈ L2 (0, T ;H) ,

(respectively

w ∈ L2
(

0, T ;H2 (Ω) ∩H
)

∩ L∞
(

0, T ;H1 (Ω)
)

and w′ ∈ L2 (0, T ;H) ).

Let us now set z = v − w. Then



















∂z

∂t
− ν△z+ w.∇z + z.∇v + ∇r = 0 in QT ,

div z = 0 in QT ,

z = 0 on ΣT ,

z(0) = v0 − w0 in Ω.

(35)

where r = p− q (q being the pressure corresponding to w).

Lemma 4.3. If

max
(

‖v‖
L∞(0,T ;H1(Ω)) , ‖w‖

L∞(0,T ;H1(Ω))

)

≤M (36)

under the assumptions (33) and (34) with 0 < M << 1, then

d

dt
‖z (t)‖2

+ ν ‖z (t)‖2 ≤ 0 (37)

and thus, for all t ∈ [0, T ] ,

‖v (t) − w (t)‖ ≤ ‖v0 − w0‖ exp (−νt) . (38)

Proof.

Let P: L2 (Ω) → H, be the orthogonal projection operator. Then

∀ϕ ∈ H, (∇r, ϕ) = 0.

In particular, let us multiply (35) by P△z = Az :
1

2

d

dt
‖z (t)‖2

+ ν |Az|2 = − (w.∇z,Az) − (z.∇v,Az)

13



But

|(w.∇z,Az)| ≤ ‖w‖
L4(Ω) ‖∇z‖

L4(Ω) |Az|
≤ C ‖w‖ |Az|2

and

|(z.∇v,Az)| ≤ ‖z‖
L∞(Ω) ‖v‖ |Az|

≤ C ‖v‖ |Az|2 .
So that if

C
(

‖v‖
L∞(0,T ;H1(Ω)) + ‖w‖

L∞(0,T ;H1(Ω))

)

≤ ν

2
then

d

dt
‖z (t)‖2

+ ν ‖z (t)‖2 ≤ 0

and one deduces (38). �

4.1 The main result

Lemma 4.4. Suppose that g and v0 satisfy hypotheses (4)-(5) and (9). Let us
suppose moreover that fε ∈ L∞

(

0, T ;L2 (Ω)
)

and that

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω) ≤ α (39)

‖f ε‖L∞(0,T ;L2(Ω)) ≤ K (40)

with α > 0 and 0 < K << 1 . Then, if u is the solution given by theorem 2.1,
one has:

sup
t∈[0,T ]

‖∇u (t)‖
L2(Ω) ≤M (41)

Remark 4.5. Let us recall that

u0 = v0 − Gε (., 0)

Consequently, if hypothesis (39) takes place, one has from lemma 1.4 :

‖u0‖ ≤ ‖u0‖H1(Ω) ≤ ‖v0‖H1(Ω) + ‖Gε (., 0)‖
H1(Ω)

≤ ‖v0‖H1(Ω) + L
(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

≤ α (L+ 1) = M.�

Proof of lemma 4.4. (see Batchi [5])
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Let us multiply (16) by Au and integrate on Ω :

1

2

d

dt
‖u‖2

+ ν |Au|2 ≤
∫

Ω fε .Audx −
∫

Ω (u.∇u) .Audx

−
∫

Ω
(u.∇Gε) .Audx−

∫

Ω
(Gε.∇u) .Audx

But
∣

∣

∫

Ω (u.∇u) .Au dx
∣

∣ ≤ ‖u‖
L∞(Ω) ‖u‖ |Au|

≤ C1 ‖u‖ |Au|2 ,
where C1 is such that ‖u‖

L∞(Ω) ≤ C1 |Au| .
In the same way, one also has

∣

∣

∫

Ω (u.∇Gε) .Audx
∣

∣ ≤ C1 ‖∇Gε‖L2(Ω) |Au|2

But thanks to the lemma 1.4, one knows that

Gε ∈ L∞
(

0, T ;H1 (Ω)
)

and

‖∇Gε‖L2(Ω) ≤ C2 ‖Gε‖H2,1(QT )

≤ C2L
(

‖g‖
H3/2,3/4(ΣT ) + ‖v0‖H1(Ω)

)

≤ C3α.

It then follows that
∣

∣

∫

Ω
(Gε.∇u) .Audx

∣

∣ ≤ ‖Gε‖L4(Ω) ‖∇u‖
L4(Ω) |Au|

≤ C4 ‖Gε‖H1(Ω) |Au| ‖∇u‖1/2
L2(Ω)

∥

∥∇2u
∥

∥

1/2

L2(Ω)

≤ C5α ‖u‖1/2 |Au|3/2

≤ C5α
√
C6 |Au|2 ,

with ‖u‖ ≤ C6 |Au| .
Thus,

1

2

d

dt
‖u‖2

+ν |Au|2 ≤ |fε| |Au|+C1 ‖u‖ |Au|2+C1C3α |Au|2+C5α
√

C6 |Au|2 .
(42)

Let ϕ (t) = ‖u (t)‖

i) Let us first suppose that ‖u0‖ < M.

Let t0 > 0 be the smallest t > 0 such that ϕ (t0) = M. According to (41), one
then has

1

2

d

dt
‖u (t)‖2

t=t0
+ ν |Au (t0)|2 ≤ K |Au (t0)| + C1M |Au (t0)|2

+C1C3α |Au (t0)|2 + C5α
√
C6 |Au (t0)|2 .

Let us choose α sufficiently small and K such that

K =
ν

8

1

C6
M,

(

C1M + C1C3α+ C5α
√
C6

)

≤ 3ν

8
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Then

1

2

d

dt
‖u (t)‖2

t=t0
+ ν |Au (t0)|2 ≤ ν

8

1

C6
M |Au (t0)| +

3ν

8
|Au (t0)|2

1

2

d

dt
‖u (t)‖2

t=t0
+ ν |Au (t0)|2 ≤ ν

8

1

C6
‖u (t0)‖ |Au (t0)| +

3ν

8
|Au (t0)|2

1

2

d

dt
‖u (t)‖2

t=t0
+ ν |Au (t0)|2 ≤ ν

2
|Au (t0)|2 .

Thus

d

dt
‖u (t)‖2

t=t0
+ ν |Au (t0)|2 ≤ 0

which implies that

d

dt
‖u (t)‖2

t=t0
≤ 0

Consequently, there exists t∗ ∈ [0, t0[ such that

ϕ (t∗) > ϕ (t0) , in contradiction with the definition of t0.

Therefore

∀t ∈ [0, T ] , ϕ (t) < M.

ii) Suppose now that ‖u0‖ = M.

According to the above calculations, one verifies that ϕ′ (0) < 0 and thus there
exists t∗ > 0 such that

∀t ∈ ]0, t∗] , ϕ (t) < M.

Repeating the reasoning made in i), one shows that on [t∗, T ], ϕ (t) < M, and
this ends the proof.�

Remark 4.6. From now on, we assume that g does not dependent on time.
More precisely, it is supposed that

g∈ H3/2 (Γ) , g.n= 0 on Γ. (43)

One recalls that v0 ∈ H1 (Ω) satisfies

div v0 = 0 in Ω, v0.n= 0 on Γ (44)

and that

v0 = g on Γ. (45)
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One knows that there exists G ∈ H2 (Ω) such that

{

div G = 0 in Ω,
G = g on Γ,

(46)

with

‖G‖
H2(Ω) ≤ C ‖g‖

H3/2(Γ) . (47)

Processing as in lemma 1.4, one shows the existence, for all ε > 0, of Gε ∈
H2 (Ω) satisfying (44)-(47) and the estimates:

∀v ∈ V , |b (v,Gε,v)| ≤ ε ‖g‖2
(48)

The right side f ε in system (16) then becomes independent of time and satisfies

fε ∈ L∞
(

0, T ;L2 (Ω)
2
)

(49)

In the same way, uε
0 becomes

uε
0 = v0 − Gε (50)

with Gε depends only on g.�

4.2 Reproductive solution result

With these assumptions on g and v0, lemma 4.2 remains naturally valid and
one is able to establish the theorem which follows :

Theorem 4.7. Let g∈ H3/2(Γ) such that g.n= 0 on Γ and

‖g‖
H3/2(Γ) ≤ α (51)

with 0 < α << 1 . Then, there exists v0 ∈ H1 (Ω) such that div v0 = 0 in Ω
and v0 = g on Γ, and such that the solution v = u + Gε where u is given
by theorem 2.1, is reproductive:

v (T ) = v (0) = v0.

Proof. Let Gε ∈ H2 (Ω) be the extension of g satisfying(45)-(47) and

f ε = ν△Gε − Gε.∇Gε

Let uε
0 = v0 −Gε ∈ V and u ∈ L2

(

0, T ;H2 (Ω)
)

∩L∞ (0, T ;V ) be the unique
solution of (16). We note that the function v = u + Gε is the unique solution
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of the initial problem (1). As in the proof of lemma 4.3, it is clear that if
‖uε

0‖ < M, then

sup
t∈[0,T ]

‖u (t)‖ ≤M

provided that ‖fε‖L2(Ω) is sufficiently small, which follows from (49).

Let us define the application

L : uε
0 −→ u (., T )

BM −→ BM

where BM = {z ∈V , ‖z‖ ≤M} ;

u (., T ) being the unique solution of (16) at t = T.

Moreover, as in remark 4.5, it is clear that if ‖v0‖ ≤ α and ‖w0‖ ≤ α then

‖uε
0‖ ≤M and ‖wε

0‖ ≤M,

with yε
0 = w0 − Gε.

So that
Luε

0 (t) − Lyε
0 (t) = u (t) − y (t)

= u (t) − Gε − (y (t) − Gε)
= v (t) − w (t) ,

and, according to lemma 4.2

‖Luε
0 (t) − Lyε

0 (t)‖ = ‖v (T ) − w (T )‖
≤ ‖ v0 − w0‖ exp (−νT )
≤ ‖uε

0 − yε
0‖ exp (−νT )

Thus L is a contraction and has a fixed point.�
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