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Abstract

The object of the present paper is to show the existence and the
uniqueness of a reproductive strong solution of the Navier-Stokes equa-
tions, i.e. the solution u belongs to L (0,T;V) N L2 (0, T;H? (Q)) and
satisfies the property w (x,T) = u (z,0) = uo (x). One considers the
case of an incompressible fluid in two dimensions with nonhomogeneous
boundary conditions, and external forces are neglected.
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1 Introduction and notations

Let © be an open and bounded domain of R?, with a sufficiently smooth bound-
ary I'; and let us consider the Navier-Stokes equations:

a—vfyAerv.VerVp:O in Qr=Qx]0,T7Y,

ot

diveo =0 in Qr, (1)
v=g on Xp=Ix]0,T][,

v(0) = vo in Q.

where g , vg and T' > 0 are given.We suppose that :
divvg=0 in @, von=0 on T, (2)
and

gn=0 on . (3)

One is interested on one hand by the existence of strong solutions of system
(1). On the other hand, one seeks data conditions to establish the existence of a
reproductive solution generalizing the concept of a periodic solution. Kaniel and



Shinbrot [5] showed the existence of these solutions for system (1) in dimensions
2 and 3 with external forces but zero boundary condition i.e. g = 0. With
another approach using semigroups, one can also point out the work of Takeshita
[10] in dimension 2.

We need to introduce the following functional spaces, with r and s positive
numbers:

H"*(Qr) =L?(J0,T[; H"()) "H* (J0, T[; L*(%2))

These are Hilbert spaces for the norm

T 1/2
2 2
ol ary = | [ 10O e dt+ ol go riaecon
0
Let us recall that for s = 1, for example,
1/2

T
ov
ol gorzecan = | [ ('”“)”%”HE
0

2
dt
L2(Q)

In the same manner one defines spaces H™*(3r).
We now introduce the following spaces:

V={veD)? divv=0in Q},

H={vel?Q);dive=0in Q, vn=0on T},
V={veH}Q); divv=0in Q},

Let us recall that V is dense in H and V for their respective topologies.

Here, D(Q) is the class of C*° functions with compact support in Q. The
notations (.,.) et ((.,.)) indicate the scalar products in L*(Q) and in H}(Q)
respectively, and |.| et ||.|| the associated norms.

In the order to solve problem (1), we will have to remove boundary condition
g. and consider a new problem with zero boundary condition. We note that if
v € H*'(Qr) is solution of (1), then thanks to the Aubin compactness lemma
(see J.L. Lions [8], R. Temam [11] ) one will have

v e € (0, 7); H' (@) — ¢° ([0, 7); HY2(T))
So that a necessary condition for v to exist is that:

g(x,0)=vo(x), xel. (4)



Combining (2)-(4), one has:
gn=0 on I'x[0,T].

The following lemma allows us to state hypotheses on g (voir Lions-Magenes

7).
Lemma 1.1. Suppose that (4) takes place and let

ge H¥/23/4(Sy), vy € HY(Q). (5)
Then there exists a function R € H*1(Qr) such that

R=gon Xret R(0) =vpin (6)
and satisfying the estimates

IRllg20r) < C (I8lls/25/1(50) + [P0lez1 0y ) -0 (7)

We now consider the problem:

For a given g verifying (5), one seeks (u, ¢) which satisfies

0

a—?—u&u—i—Vq:O in Qr,

divu = div R in Qr, (8)
u=0 on Y7,

u(0)=0 in Q.

The following proposition holds (see Dautray-Lions [2], O. A. Ladyzhenskaya
[6], V.A. Solonnikov [9]) :

Proposition 1.2. We suppose that (5)holds,

divog=0 on Q, vo.m=0 in I'andgmn =0 in Xp. 9)

Then problem (8) has an unique solution (u, q) such that
u € H>Y(Q7), qge L? (O,T; Hl(Q)Q)
with the estimates

lellegs @y + Il 2oz @) < C (lglmnsragsn) + ol ) ) O
(10)
Thus the function defined by



G=R-u in Qr (11)

satisfies the estimates (7) and

div G =0 in Qr, (12)
G=g on X, (13)
G (x,0) = v (2,0) x €. (14)

This yields the following lemma:

Lemma 1.3. Let g and v satisfy (4), (5) and (9). Then there exists
G € H*Y(Qr) satisfying (12)-(14) and the estimate
1G etz () < € (9572573550 + w0l ey ) -0

Moreover, one has the next lemma

Lemma 1.4. Let € > 0,and let g and vy satisfy the hypotheses of lemma 1.5.
Then there exists G. € H*'(Qr) such that

div Gg =0 in QT,

G. =g on X,

1Ge (50l () < C G (5 0) g @)
and
Vo eV, b, G, (1),0)] < Hlet) [Volae
with

sup f(e,t) — 0 when ¢ — 0.
te[0,T

Moreover, there exists an increasing function L : RT — R™, not depending on
e, such that

3

Gl gy < T ( ) (Ilggs 271 sy + 100 s )

91l zs/2.5/4(50) + [[V0llg (@)
Proof.

i) Step 1 : One takes up again the Hopf construction (see Girault & Raviart
[4], Temam [11], Lions [8], Galdi [3] ).



i1) Step 2 : The open domain  being smooth, and since div G = 0in Q7 and
G.n =0 on T x [0,T], there exists, for all ¢ € [0,T[, a function ¢ depending
on x and t, such that

G=roty in Qx[0,T]

oY

with ¢ = 0 on I x [0,T[, v € L?(0,T; H3()), 3 € L? (0,T;H'(Q)) and
satisfying the estimate
1912 0,783 () + 1tz 0,080 ) < C G2 (1) - (15)

iii) Step 3 : Let
G*® =rot (6 ¢).

One deduces from the properties of 6., for j = 1,2:

g

s3] <0 (555

() + |w<:c,t>|) it pla) < 26(0)

and G5 =0 if p(x) > 20(e).
We note that

P e C([0,T];H*(Q) — C ([0,T];L>(Q)).
Therefore,

@l (SoHve@nl) i ) < 260

Thus, for all v € H}(Q),

1/2

U

||viG§HL2(Q)§C 1

+ / v2. |V dx
L2(Q)
(2)<26(c)

1/3

lviG5 I

o < C2 V0l + C Vol x | [ 190l ds

(2)<24(¢)



Setting
1/3

Ble.t) = / VoPde|

(2)<24(¢)

it’s clear that
lir%ﬂ(e, t) =0 uniformly on [0,T].
£—

The second inequality of lemma 1.4 is a consequence of Holder inequality. The
first inequality follows from Hardy inequality for H}(2)-functions and properties
of 6. .0

2 Existence of strong solutions

Let us make a change of the unknown function in problem (1), by setting

u=v— G, ug =vg — G (.,0),
where G. is the function given by lemma 1.4. Problem (1) then becomes:

0
AN +uVu+uVG, + G.Vu+Vp=f, in Qr

ot .
divu =0 - Qr o (16)
w=0 on ZT
u(0) = w5 "
with
0G, e
fe=- ot +vAG: — G:.VG:  and  uj =vo— G: (,0). (17)

We note that u§ € V and

Sz oy < C= (Iglersrzsagsr + ol ) - (18)

Moreover, f_ € L? (0,7;L?(2)) and

IFllzo,r2)) < Ce (H9||H3/2,3/4(2T) + lvoll g ) : (19)

Now we are able to announce and to establish the following theorem :



Theorem 2.1. Let vy and g satisfy the hypotheses of lemma 1.3. Then

problem (16) has a unique solution (w, p) such that
0
ue L2 (0,T; H2(Q)) N L= (0,T; V), a—lt‘ €L2(0,T;H), peL?(0,T;H'(Q)),

p being unique up to an L2 (0,T)-function of the single variable t.
Proof.

2.1 Approximate solutions

We use the Galerkin method. Let m € N* and ug,, € (w1, ws, ...,w,,) such that

Uom — ug in V), if m — oo,

where w; are the Stokes operator eigenfunctions . For each m, one defines an
approximate solution of (16) by :

wn(t) = 3 gyn(B),

(i, (1) s w5) + v (W () ;w;5)) + b (W (t) ;um (1) w;) (20)
+b (um (t) ’ Ga (t) ,’LUj) + b (GE (t) yUm (t) ,’LU]') = (.fa (t) ,’LU]')
U (0) = upm, j=1,....,m

This is a nonlinear differential system of m equations in m unknowns g;m,
j=1..m:
2ot (Wi, w;) giy )4V 220 (Wi w;5)) gim (042277121 b (Wi, wi,w;) Gim (t) gum (t) +
+ 2 [ (wi, G (8) w;) gim (8) + 0 (Ge (1) ;wiyw;) gim ()] = (f2 (8) w;),

7=1..m

2.2 Estimates I

Let us multiply (20) by g;m (t) and sum over j :

i [ (8) + v [l ()]* = = (wm (1), G () s (1) + (fo () 2 (1))

2dt
<|[fe OHwm @O + 16 (wm (@), G (1) ;um (1))|

One deduces from lemma 1.4 that :

1d 2,V 2 1 2 2
- ~ < .
5 e (O 45 s (O < oy £ (OF+5(6.0) s 0]
As sup f(e,t) — 0 when € — 0, for a fixed and small € > 0, one has:
t€[0,T]
d 2 14 2 1 2
= (¢ 2t O € —— HI?. 21
2 (00 + 5l O < s 12 ) 1)



Integrating (21) from 0 to s, one deduces that:
) < o + gy Iy 1 (OF
< " + gy I Olso e
< C. (Iglsr25r1(50) + 002 ) )
according to (18) and (20). Therefore
U, € L>(0,T;H), (22)
and {u,,} is an equibounded sequence in L°°(0,T; H).
Next, thanks to (21), one has:
w,, € L%0,T;V), (23)

and the sequence {u,} is equibounded in L?(0,T; V).

2.3 Estimates I1
Let us multiply (20) by A;jgjm(t) and sum over j :

5 e ()1 A ()1 b (g (1)t (1), A (1)) +

b(Ge (1) sum (1), A (1) + b (um (1), Ge (1), Aum (1) = (fe; Aum (t))( N
2

where A is the Stokes operator. Let us begin by considering the nonlinear terms.

For the first term, thanks to the Gagliardo-Nirenberg inequality one has

b Catm (8) st (£) - At ()] < [t (1) [0 [Vt (1) ) [ At (2)
< C o ()72 g (D] | At (1)
< Cllum O] + 5 [Aun (1)

In the same way,

1b(Ge () st (1), At ()] < [1Gz (1) [y [Vt (8)l| 03y [ At (1)
< ClIGe Dl @ 1um @I A, Olks
< C1Ge (Olliz: (o [l (DI + 3 [ A ()]

We remark that, according to lemma 1.4, one has:
1Gelporaniy < C (Igllsmsasy + 1ol -

So that
[b(Ge (t) st (£), At ()] < Cllum (8)]° + % | A, (1)



Finally,

b (wm (8), G: (1), Aum ()] < [lum () [|Laq) [[VGe (t)llm(mVlAum @)
< Cllum (B)I* 1Ge (8)llzz2 0y + 3 |Aum Ol

P+ A (O < 15, O HC [l O + e (O] (141G Ol (e))] -

O (8) = C [t O + (141G (o)) ] -
One knows that
om (t) € L' (0,T);
so that, according to the Gronwall lemma and (24), one has:
un, € L®(0,7;V)NL?(0,T;H?*(Q)), (25)
and {u,,} is an equibounded sequence in L> (0,T;V) N L? (0, T; H? ().

2.4 FEstimates 111

Let us multiply (20) by g/,,(t) and sum over j from 1 to m. Then

fur, ()17 = v (Auw, (8) ,uly, (£)) = b (w (8) s (1) ul, (1))
—0(Ge (8) um (1) sug, (1) = b (um (1), G (t) sy, (1)) + (F oup, (1))

From this, one deduces that
2
[, O < v[Aum ()] [ug, (8)] + Clltm (@)l|aq) [Vem ()L q) [, 0]

+ ClGe (DllLa (o) [Vm (Dl (q) @ ()]
+ Cllum @)llpa) IVGe O)llpaq) lwm O+ £ @) fuy, (0)]

Using the Gagliardo-Nirenberg inequality, estimates (25) and (19), and lemma
1.4 giving the estimate of G, one deduces that

w, € L*(0,T;H), (26)

m

and {u/,} is an equibounded sequence in L? (0,T; H).



2.5 Taking the limat.

It is a consequence of the above estimates that the sequence u,, has a subse-
quence u.,, the same notation being used to avoid unnecessary notation over-
load:

Uy, — u weakly™ in L*(0,T;V), (27)
Wy, — u weakly in L*(0,7;H*(Q)), (28)
ul, — u' weakly in L*(0,7;H) . (29)

But we have a compact embedding
{vel?(0,T;H>()NV), Ve L*(0,T;H)} < ) L2 (0,T;V)
compac

So that

W, — wstrongly  in L?(0,T;V) and a.e. in Qr (30)

Let mg be fixed and v € (w; wa, ...,Wy,) . Let m tend towards +oo in (20).
Then
(' (t),0) + v ((u(t)0) +b(u(t)u(t)v)+b(u(t),G. (1))
+b (GE (t) U (t) ,’U) = (fs (t) ,’U) )

This last relation being valid for all my, it remains true for all v € (w; wa, ..., wn) ,
Vm € N*.

Finally let v € V. There exists v, € (wy w3, ...,wy,) such that v,, — v in V
and

(u' (1), v) + v ((w(t) v)) +b(u(t) u(t)v)
+b(u(t), G (1) ,0) +b(Ge (1) u(t) v) = (f. (t)v) (31)

Now let us note that for all ¢ € [0,7],
U () > uw(t) weaklyin V,

and thus
U (0) = wom, — w(0)  weaklyin V.
Since
UQm — UG in V,
we have:

10



2.6 Existence of pressure.

From (31), one has, for all v € V,

(W' —vAu+ B(uu) + B(u,G.) + B(Geu) — fo , v)g-1qyxmy) = 0-

Consequently, there exists a unique function p of L? (0,T) satisfying (16) and
such that :
pe L*(0,T;H' (Q)).

This ends the proof of theorem 2.1.01

3 Uniqueness Theorem

Theorem 3.1 Problem (16) has a unique solution.
Proof.

Let uw and v be two solutions satisfying the hypotheses of theorem 2.1 and let
w = u — v. Then one has

68_11:} —vAw + w.Vu + v.Vw + w.VG, + G.Vw =0

Multiplying by w, we obtain
1d
2dt

wt) +vlw@®))’ = —(wVuw)— (v.Vww)

— (w.VG,w) — (G..Vw,w)

But b (v,w,w) = 0 and b (G.,w,w) = 0. This yields
1d
2dt

One then integrates with respect to t and we get

w)P+viw@®))’ = —bwuw)—b(w,G.w).

1
3 lw (t)]” + Vfot w (s)]*ds = — fg b(w,u,w) ds — fotb(w, G.,w) ds.

Since
o bwaaw)ds| < Oy llw ()l u () 1z ds
< G fslw(s)] Jw(s)]lu(s)lds
t 2 t 2 2
< g o llw I ds+Cs fo w ()] u(s)]" ds.
and, by the same way,
Jybw,Gew)ds < 2 [y lw(s)[*ds+ Ca [y [w (5)* VG (s)] ds.

it follows that

11



w () < Cs Jy lw () (IVGe () + [l (s)]7) ds

Thanks to the Gronwall lemma, one deduces w = 0.0

4 Existence of strong reproductive solution

We first recall results obtained by Kaniel et Shinbrot [5] in the study of the
following problem :

a—u—yAu—i—u.Vu—i—Vp:f in  Qr

ot

divu =0 in  Qr (32)
u=20 on X

u(0) = ug in  Q

where €2 is an open and bounded domain of R?, with a smooth boundary T'.
The following result establishes the property of a reproductive solution

Theorem 4.1. Let T >0, and f € Brr with f small enough. Then, there
exists an unique function ug, independent of t, with Vug € Br,r and such that
the solution of (32) reproduces its initial value at t =T :

u (xz,T) = u (x,0) = ug (x),

where

Brr = {ue L (0 TiL2(@) ¢ fullge o ruee < R}

We begin by recalling the following lemma.

Lemma 4.2. If

weL?(0,7;H*(Q)NV) and v’ € L? (0,T;H)

then
u € C([0,T];V)
and J
pn [ (B)[|* = =2 (« (t), Au(t)) .0
Now, let
voe H'(Q)NH, wo e HY(Q) NH, geH?3%%) (33)

12



with
gn=0on Xpr and wvo(x) =wo(x)=g(x,0 xzel. (34)

With these assumptions, it follows from theorem 2.1 that system (1), with data
(vo,9), (respectively (wo,g)), has an unique solution

v e L?(0,7;H?(Q)NH)NL> (0,7;H' () and v' € L?(0,T; H),

(respectively

w e L?(0,T;H?* () NnH) NL> (0,7;H' (2)) and w’ € L*(0,T;H)).

Let us now set z = v — w. Then

% —vAz+ wVz+zVv+ Vr =0 in Qr,

divz=0 in Qr, (35)
z=10 on 7,

z(0) = vo — wo in Q.

where r = p — ¢ (g being the pressure corresponding to w).

Lemma 4.3. If

max (119l e o, reens @) 19 e o, @) ) < M (36)
under the assumptions (33) and (34) with 0 < M << 1, then

<o
dt
and thus, for all t € [0,T7],

O + vz @)]* <0 (37)

[v(t) —w @) < [lvo — wol|exp (—v1). (38)
Proof.

Let P: L? (2) — H, be the orthogonal projection operator. Then
Vo e H,(Vr, ¢) =0.

In particular, let us multiply (35) by PAz = Az :
1d |z (®)|]> + v|Az)* = — (w.Vz,Az) — (z.Vv,Az)

13



But
(w0 VzA2)| - < [[wllyq) [Vl |4z
< C|wl||Az]

and
|(2.Vv,42)[ < [|z]|p (o (V] |Az]
< Cllv| |Az|*.
So that if
14
¢ (H”HLw(o,T;Hl(Q)) + Hw||L°°(O,T;H1(Q))) < 5
then
Lzl + v 2@ <0
dt -

and one deduces (38). O

4.1 The main result

Lemma 4.4. Suppose that g and v satisfy hypotheses (4)-(5) and (9). Let us
suppose moreover that f. € L> (0,T;L?(Q)) and that

lgllgs/2.3/4(50) + lvollg o) < @ (39)

1Fe e e < K (40)

with « > 0 and 0 < K << 1. Then, if u is the solution given by theorem 2.1,
one has:

sup ||V (t)lp2q) < M (41)
t€[0,T)

Remark 4.5. Let us recall that

Uy = Vg — GE (,0)
Consequently, if hypothesis (39) takes place, one has from lemma 1.4 :

ol < llwollg ) < vollmr @) + 1Ge (5 0)ll1 (g

< lvollsr ) + L (I19llgz/2.5/4 55y + 1vollgn g
<a(L+1)=MD

Proof of lemma 4.4. (see Batchi [5])

14



Let us multiply (16) by Aw and integrate on € :

ul? +v|Aul’ < [, f. Audz — [, (u.Vu). Auds
— Jo w.VG,) Audz — [, (G:.Vu) . Audx

MIII

But
o (w.5w) Au da| <l o ]| Au)
< C1 |lull [Aul?,
where C1 is such that [[ul|p« ) < C1 |Aul.
In the same way, one also has
| Jo (w.VG.) Audz| < Cy [|VGe |2 gy |Aul®
But thanks to the lemma 1.4, one knows that
G. € L (0,T; H! ()
and
IVGelliz@o) < C2l|Gellgza gy
< CoL (Iglegs 2511550y + 00511 )
< Csa.
It then follows that
’fg (G:.Vu) -AUdiU’ < ||G€||L4(Q) HVU||L4(Q) |Aul
< Cu[|Ge g o | Aul [ Vul|1hlg, [| V2
< Csa|u]'/? | Auf*/?
< Csan/Cg | Aul?,

1/2
L2(Q)

with ||u|| < Cs |Aul.
Thus,

Ll |Auf® < |£.] |Aul+Cy full [Aul*C)Caa | AuP+Cray/Co | Aul.
(42)

2dt

Let ¢ (t) = [lu (@)

i) Let us first suppose that ||ug| < M.

Let t9 > 0 be the smallest t > 0 such that ¢ (ty) = M. According to (41), one
then has

&.|Q‘

2w (Ol7=y, +vIAu (to)]* < K [Au (to)| + C1M |Au (to)|*
+C1Csar | Au (tg)|* 4+ C50/C | Au (1)) .

Let us choose o sufficiently small and K such that

1
2

1
%FM’ (ClM + C1Cza + 0504\/06) < 3—8V
6

15



Then

1d 9 2 v 1 3v 2
1§dE lw ()=, +v[Au(to)]” < g@M |[Aw (to)| + IAZ (to)]
2 2 v 12 2
%§ [w @)=, +v[Au(to)]” < 8Ce Il (to) | A (to)l + - | Au (to)]
2 2 v 2
S @I, +vAu () <2 lAu ()
Thus
d 2 2
@I, +vlAu ) <0
which implies that
d

7 w0z, <0
Consequently, there exists t* € [0, ¢o[ such that

¢ (t*) > ¢ (to), in contradiction with the definition of tg.
Therefore

Vi e [0,T], ¢(t) < M.

ii) Suppose now that ||ug| = M.

According to the above calculations, one verifies that ¢’ (0) < 0 and thus there
exists t* > 0 such that

Vit €10,t7], ¢ (t) < M.

Repeating the reasoning made in i), one shows that on [t*, T, ¢ (t) < M, and
this ends the proof.[]

Remark 4.6. From now on, we assume that g does not dependent on time.
More precisely, it is supposed that

ge H¥2(I'), gm=0onT. (43)
One recalls that vy € H! (Q2) satisfies

divvy=0inQ, wvpn=0onT (44)
and that

vg=g onl. (45)

16



One knows that there exists G € H?(Q) such that

divG=0 in €,
{ G=g on T, (46)
with
||G||H2(Q) <C HQHHS/z(r) : (47)

Processing as in lemma 1.4, one shows the existence, for all € > 0, of G, €
H? (Q) satisfying (44)-(47) and the estimates:

Yo € V, |b(v,Ge,v)| <ellg|? (48)

The right side f, in system (16) then becomes independent of time and satisfies
foe L= (0.1:02(@)%) (49)

In the same way, wug becomes
uy = vo — Ge (50)

with G, depends only on g.[]

4.2 Reproductive solution result

With these assumptions on g and vg, lemma 4.2 remains naturally valid and
one is able to establish the theorem which follows :

Theorem 4.7. Let ge H¥*(') such that gm=0 on T and

gz ) < @ (51)

with 0 < o << 1. Then, there exists vy € H' (Q) such that div vg =0 in Q
and vg =g on T, and such that the solution v = u + G, where w is given
by theorem 2.1, is reproductive:

Proof. Let G. € H? (Q2) be the extension of g satisfying(45)-(47) and
fe =vAG, — G..VG,

Let u§ = vg — G. € V and w € L? (0,T;H?(Q)) N L> (0,7 V) be the unique
solution of (16). We note that the function v = u + G is the unique solution
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of the initial problem (1). As in the proof of lemma 4.3, it is clear that if
lu§l| < M, then

sup [lu (t)]| <M
te[0,T]

provided that [|f_||z(q) is sufficiently small, which follows from (49).

Let us define the application

L: uf—u(,T)
BM — BM
where By ={z €V, |z|| < M};
u (., T) being the unique solution of (16) at t = T.

Moreover, as in remark 4.5, it is clear that if ||vg|| < « and ||Jwy]|| < « then

lugll < M and [lwg|| < M,

with  y§ = wo — G..

So that
Lug (t) —Ly§ (t) =wu(t) -y (1)
:u(t)st* (Y(t)st)
=v(t)-w(t),
and, according to lemma 4.2
[[Lug (t) — Ly§ (2)|] v (T) —w (T)]|

= |
< || vo — woll exp (—+T)
< |lug — y5llexp (=vT)

Thus L is a contraction and has a fixed point.[]
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