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Abstract

We present in this note the existence and uniqueness results for the Stokes and

Navier-Stokes equations which model the laminar flow of an incompressible

fluid inside a two-dimensional channel of periodic sections. The data of the

pressure loss coefficient enables us to establish a relation on the pressure and

to thus formulate an equivalent problem.

Keywords : Navier-Stokes equations, incompressible fluid, bidimensional chan-

nel, periodic boundary conditions, pressure loss.
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1 Introduction

The problem which one proposes to study here is that modelling a laminar

flow inside a two-dimensional plane channel with periodic section. Let Ω be

an open bounded connected lipschtzian of R
2 (see figure hereafter), where

Γ0 = {0} × ]−1, 1[ and Γ1 = {1} × ]−1, 1[ .

One defines the space

V =
{

v ∈ H1 (Ω) ; div v = 0, v = 0 on Γ2, v|Γ0
= v|Γ1

}

and for λ ∈ R given, one considers the problem

(S)































Find u ∈ V, such that

∀v ∈ V,

∫

Ω
∇u.∇v dx = λ

∫ +1

−1
v1 (1, y) dy.
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Figure 1. Geometry of channel

2 Resolution of the problem (S)

Initially one proposes to study the problem (P) . One has it
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Theorem 2.1 Problem (S) has an unique solution u ∈ V. Moreover, there is

a constant C (Ω) > 0 such that:

‖u‖
H1(Ω) ≤ λC (Ω) . (1)

Proof: Let us note initially that space V provided the norm H1 (Ω)2 being a

closed subspace of H1 (Ω)2 is thus an Hilbert space. Let us set

a (u,v) =
∫

Ω
∇u.∇v dx, l (v) = λ

∫ +1

−1
v1 (1, y) dy.

It is clear, thanks to the Poincaré inequality, that the bilinear continuous form

is V -coercive. It is easy to also see that l ∈ V ′. One deduces from Lax-Milgram

Theorem the existence and uniqueness of u solution of (S) . Moreover,

∫

Ω
|∇u|2 dx ≤ λ

√
2

(∫ +1

−1
|u1 (1, y)|2 dy

)1/2

,

i.e.

‖∇u‖2
L2(Ω) ≤ λ

√
2 ‖u‖L2(Γ) ≤ λ

√
2 ‖u‖H1/2(Γ)

≤ λC1 (Ω) ‖u‖H1(Ω)

Thus there is the estimate (1).�

We now will give an interpretation of the problem (S) . One introduces the

space

V =
{

v ∈ D (Ω)2 ; div v = 0
}

.

Let u be the solution of (S) . Then, for all v ∈ V, one has :

〈−∆u, v〉D′(Ω)×D(Ω) = 0.

So that thanks to De Rham Theorem, there exists p ∈ D′ (Ω) such that

−∆u + ∇p = 0 in Ω. (2)
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Moreover, since ∇p ∈ H−1 (Ω)2
, it is known that there exists q ∈ L2 (Ω) such

that (see [1])

∇q = ∇p in Ω. (3)

The open Ω being connected, there exists C ∈ R such that p = q + C, what

means that p ∈ L2 (Ω). Let us recall that (see [1])

inf
K ∈ R

‖p + K‖L2(Ω) ≤ C ‖∇p‖H−1(Ω)2 .

One deduces from the estimate (1) and from (2) that

inf
K ∈ R

‖p + K‖L2(Ω) ≤C ‖∆u‖H−1(Ω)2 ≤ C ‖u‖H1(Ω)2 ≤ λC (Ω) .

Since u ∈ H1 (Ω)2 and 0 = −∆u+∇p ∈ L2 (Ω)2
, it is shown that −∂u

∂n
+pn

∈ H−1/2 (Γ)2 and one has the Green formula: for all v ∈ V

∫

Ω
(−△u + ∇p) .v dx =

∫

Ω
∇u.∇v dx +

〈

−∂u

∂n
+ pn, v

〉

, (4)

where the bracket represents the duality product H−1/2 (Γ)×H1/2 (Γ) . More-

over, as p ∈ L2 (Ω) and △p = 0 in Ω, one has p ∈ H−1/2 (Γ) . Consequently,

one has therefore
∂u

∂n
∈ H−1/2 (Γ)2

. The function u being solution of (S) , for

all v ∈ V one has:

〈

∂u

∂n
− pn,v

〉

= λ

∫ +1

−1
v1 (1, y) dy, (5)

i.e.
〈

∂u

∂x
− pe1,v

〉

Γ1

+

〈

−∂u

∂x
+ pe1,v

〉

Γ0

= 〈λe1,v〉Γ1
. (6)

where e1 = (1, 0).

i) Let µ ∈ H
1/2
00 (Γ1) and let us set

4



µ2 =































µ on Γ0 ∪ Γ1

0 on Γ2

and µ =

















0

µ2

















where (see [2])

H
1/2
00 (Γ1) =

{

ϕ ∈ L2(Γ1); ∃ v ∈ H1(Ω), with v|Γ2
= 0, v|Γ0∪Γ1

= ϕ
}

.

It is checked easily that

µ ∈ H1/2 (Γ)2 and
∫

Γ
µ.n dσ = 0.

So that there exists v ∈ H1 (Ω)2 satisfying (see [3])

div v = 0 in Ω and v = µ on Γ.

In particular v ∈ V and according to (6), one has

〈

∂u2

∂x
, µ

〉

Γ1

=

〈

∂u2

∂x
, µ

〉

Γ0

,

which means that

∂u2

∂x
|Γ1

=
∂u2

∂x
|Γ0

. (7)

One deduces now from (6) that for all v ∈ V,

〈

∂u1

∂x
− p, v1

〉

Γ1

+

〈

−∂u1

∂x
+ p, v1

〉

Γ0

= 〈λ, v1〉Γ1
. (8)

But, div u = 0 and u2|Γ1
= u2 |Γ0

, one thus has

∂u2

∂y
|Γ1

=
∂u2

∂y
|Γ0

and
∂u1

∂x
|Γ1

=
∂u1

∂x
|Γ0

. (9)

Consequently, thanks to (8) one has:

〈−p, v1〉Γ1
+ 〈p, v1〉Γ0

= 〈λ, v1〉Γ1
(10)
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ii) Let ν ∈ H
1/2
00 (Γ1) and let us set

ν1 =































ν on Γ0 ∪ Γ1

0 on Γ2

and ν =

















ν1

0

















.

One easily checks that

ν ∈ H1/2 (Γ)2 and
∫

Γ
ν.n dσ = 0.

So that there exists v ∈ H1 (Ω)2 satisfying

div v = 0 in Ω and v = ν on Γ.

In particular v ∈ V and according to (14), one has

〈−p, ν〉Γ1
+ 〈p, ν〉Γ0

= 〈λ, ν〉Γ1

i.e.

p|Γ1
= p|Γ0

− λ (11)

where the equality takes place with the H1/2 sense. In short, if u ∈ H1 (Ω)2 is

solution of (S) , then there exists p ∈ L2 (Ω) , unique with an additive constant

such that:

−∆u + ∇p = 0 in Ω, (12)

div u = 0 in Ω, (13)

u = 0 on Γ2, u|Γ1
= u |Γ0

, (14)

∂u

∂x
|Γ1

=
∂u

∂x
|Γ0

, (15)

p|Γ1
= p|Γ0

− λ. (16)

It is clear that if (u, p) ∈ H1 (Ω)2 ×L2 (Ω) checks (12)-(16), then u is solution
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of (S). Thus it

Theorem 2.2 The problem (12)-(16) has an unique solution (u, p) ∈ H 1 (Ω)2×

L2 (Ω) up to an additive constant for p. Moreover, u verifies (S) and

‖u‖
H1(Ω) + ‖p‖L2(Ω)/ R

≤ λC (Ω) . �

Remark 1 The pressure verifies the relation (16), which means that p satisfies

the relation of Patankar et al.[5] .

3 Navier-Stokes Equations

One takes again the assumptions of the Stokes problem given above. For λ ∈ R

given, the one considers the following problem

(NS)































Find u ∈ V, such that

∀v ∈ V,

∫

Ω
∇u.∇v dx + b (u, u, v) = λ

∫ +1

−1
v1 (1, y) dy

with

b (u, v, w) =
∫

Ω
(u.∇) v.w dx

With an aim of establishing the existence of the solutions of the problem

(NS) , one uses the Brouwer fixed point theorem (see [4], [6]). One will show

it

Theorem 3.1 The problem (NS) has at least a solution u ∈ V. Moreover, u

checks the estimate (1).
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Proof: To show the existence of u, one constructs the approximate solutions of

the problem (NS) by the Galerkin method and then thanks to the arguments

of compactness, one makes a passage to the limit.

i) For each fixed integer m ≥ 1, one defines an approximate solution um of

(NS) by

um =
m

∑

i=1

gimwi, with gim ∈ R

((um, wi)) + b (um, um, wi) = 〈λn, wi〉Γ1
, i = 1, ..., m

(17)

where Vm = 〈w1, ..., wm〉 vector spaces spanned by the vectors w1, ..., wm and

{wi} is an Hilbertian basis of V which is separable. Let us note that (17) is

equivalent to:

∀v ∈ Vm, ((um, v)) + b (um, um, v) = λ

∫ +1

−1
v1 (1, y) dy. (18)

With an aim to establish the existence of the solutions of the problem um, the

operator as follows is considered

Pm : Vm → Vm

u 7−→ Pm (u)

defined by

∀u, v ∈ Vm, ((Pm (u) , v)) = ((u, v)) + b (u, u, v) − λ

∫ +1

−1
v1 (1, y) dy.

Let us note initially that Pm is continuous and

∀u ∈ V, b (u, u, u) = 0.
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Indeed, thanks to the Green formula, one has

b (u, u, u) = −1
2

∫

Ω
|u|2 div u dx +

1

2

∫

Γ
(u.n) |u|2 dσ = 0.

But, div u = 0 in Ω and

∫

Γ
(u.n) |u|2 dσ =

∫

Γ0

(u.n) |u|2 dσ +
∫

Γ1

(u.n) |u|2 dσ.

since the external normal to Γ0 is opposed to that of Γ1 and u ∈ V .

Thanks to Brouwer Theorem, there exists um satisfying (18) and

‖um‖H1(Ω) ≤ λC (Ω) . (19)

ii) We can extract a subsequence uν such that

uν ⇀ u weakly in V,

and thanks to the compact imbedding of V in L2 (Ω)2
, we obtain

∀v ∈ V , ((u, v)) + b (u, u, v) = λ

∫ +1

−1
v1 (1, y) dy.

As for the Stokes problem, one shows the existence of p ∈ L2 (Ω) , unique

except for an additive constant, such that















































































−∆u + (u.∇) u+∇p = 0 in Ω,

div u = 0 in Ω,

u = 0 on Γ2,

u|Γ1
= u |Γ0

.
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It is checked finally that

∂u

∂x
|Γ1

=
∂u

∂x
|Γ0

,

p|Γ1
= p|Γ0

− λ.

Remark 2 i) Theorem 3.1 of problem (NS) takes place in three dimension.

ii) One can show that the solution (u, p) belongs to H 2 (Ω)2 × H 1 (Ω).
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