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Introduction

The problem which one proposes to study here is that modelling a laminar flow inside a two-dimensional plane channel with periodic section. Let Ω be an open bounded connected lipschtzian of R 2 (see figure hereafter), where

Γ 0 = {0} × ]-1, 1[ and Γ 1 = {1} × ]-1, 1[ .

One defines the space

V = v ∈ H 1 (Ω) ; div v = 0, v = 0 on Γ 2 , v | Γ 0 = v | Γ 1
and for λ ∈ R given, one considers the problem (S) Initially one proposes to study the problem (P) . One has it Theorem 2.1 Problem (S) has an unique solution u ∈ V. Moreover, there is a constant C (Ω) > 0 such that:

               Find u ∈ V, such that ∀v ∈ V,
u H 1 (Ω) ≤ λC (Ω) . (1) 
Proof: Let us note initially that space V provided the norm H 1 (Ω) 2 being a closed subspace of H 1 (Ω) 2 is thus an Hilbert space. Let us set

a (u,v) = Ω ∇u.∇v dx, l (v) = λ +1 -1 v 1 (1, y) dy.
It is clear, thanks to the Poincaré inequality, that the bilinear continuous form is V -coercive. It is easy to also see that l ∈ V ′ . One deduces from Lax-Milgram Theorem the existence and uniqueness of u solution of (S) . Moreover,

Ω |∇u| 2 dx ≤ λ √ 2 +1 -1 |u 1 (1, y)| 2 dy 1/2 , i.e. ∇u 2 L 2 (Ω) ≤ λ √ 2 u L 2 (Γ) ≤ λ √ 2 u H 1/2 (Γ) ≤ λC 1 (Ω) u H 1 (Ω)
Thus there is the estimate [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF].

We now will give an interpretation of the problem (S) . One introduces the space

V = v ∈ D (Ω) 2 ; div v = 0 .
Let u be the solution of (S) . Then, for all v ∈ V, one has :

-∆u, v D ′ (Ω)×D(Ω) = 0.
So that thanks to De Rham Theorem, there exists p ∈ D ′ (Ω) such that

-∆u + ∇p = 0 in Ω. (2) 
Moreover, since ∇p ∈ H -1 (Ω) 2 , it is known that there exists q ∈ L 2 (Ω) such that (see [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF])

∇q = ∇p in Ω. (3) 
The open Ω being connected, there exists C ∈ R such that p = q + C, what means that p ∈ L 2 (Ω). Let us recall that (see [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF])

inf K ∈ R p + K L 2 (Ω) ≤ C ∇p H -1 (Ω) 2 .
One deduces from the estimate (1) and from (2) that inf

K ∈ R p + K L 2 (Ω) ≤ C ∆u H -1 (Ω) 2 ≤ C u H 1 (Ω) 2 ≤ λC (Ω) . Since u ∈ H 1 (Ω) 2 and 0 = -∆u + ∇p ∈ L 2 (Ω) 2 , it is shown that - ∂u ∂n + pn ∈ H -1/2 (Γ) 2 and one has the Green formula: for all v ∈ V Ω (-△u + ∇p) .v dx = Ω ∇u.∇v dx + - ∂u ∂n + pn, v , (4) 
where the bracket represents the duality product H -1/2 (Γ) × H 1/2 (Γ) . Moreover, as p ∈ L 2 (Ω) and △p = 0 in Ω, one has p ∈ H -1/2 (Γ) . Consequently, one has therefore ∂u ∂n ∈ H -1/2 (Γ) 2 . The function u being solution of (S) , for all v ∈ V one has:

∂u ∂n -pn,v = λ +1 -1 v 1 (1, y) dy, (5) 
i.e.

∂u ∂x -pe 1 ,v Γ 1 + - ∂u ∂x + pe 1 ,v Γ 0 = λe 1, v Γ 1 . (6) 
where

e 1 = (1, 0). i) Let µ ∈ H 1/2
00 (Γ 1 ) and let us set

µ 2 =                µ on Γ 0 ∪ Γ 1 0 on Γ 2 and µ =         0 µ 2        
where (see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF])

H 1/2 00 (Γ 1 ) = ϕ ∈ L 2 (Γ 1 ); ∃ v ∈ H 1 (Ω), with v| Γ 2 = 0, v| Γ 0 ∪Γ 1 = ϕ .
It is checked easily that

µ ∈ H 1/2 (Γ) 2 and Γ µ.n dσ = 0.
So that there exists v ∈ H 1 (Ω) 2 satisfying (see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF])

div v = 0 in Ω and v = µ on Γ.
In particular v ∈ V and according to [START_REF] Temam | Navier-Stokes Equations.Theory and Analysis[END_REF], one has

∂u 2 ∂x , µ Γ 1 = ∂u 2 ∂x , µ Γ 0 , which means that ∂u 2 ∂x | Γ 1 = ∂u 2 ∂x | Γ 0 . (7) 
One deduces now from ( 6) that for all v ∈ V,

∂u 1 ∂x -p, v 1 Γ 1 + - ∂u 1 ∂x + p, v 1 Γ 0 = λ, v 1 Γ 1 . (8) 
But, div u = 0 and

u 2 | Γ 1 = u 2 | Γ 0 , one thus has ∂u 2 ∂y | Γ 1 = ∂u 2 ∂y | Γ 0 and ∂u 1 ∂x | Γ 1 = ∂u 1 ∂x | Γ 0 . (9) 
Consequently, thanks to (8) one has:

-p, v 1 Γ 1 + p, v 1 Γ 0 = λ, v 1 Γ 1 (10) ii) Let ν ∈ H 1/2
00 (Γ 1 ) and let us set

ν 1 =                ν on Γ 0 ∪ Γ 1 0 on Γ 2 and ν =         ν 1 0        
.

One easily checks that

ν ∈ H 1/2 (Γ) 2 and Γ ν.n dσ = 0. So that there exists v ∈ H 1 (Ω) 2 satisfying div v = 0 in Ω and v = ν on Γ.
In particular v ∈ V and according to ( 14), one has

-p, ν Γ 1 + p, ν Γ 0 = λ, ν Γ 1 i.e. p |Γ 1 = p |Γ 0 -λ (11) 
where the equality takes place with the H 1/2 sense. In short, if u ∈ H 1 (Ω) 2 is solution of (S) , then there exists p ∈ L 2 (Ω) , unique with an additive constant such that: 12)-( 16), then u is solution of (S). Thus it Theorem 2.2 The problem ( 12)-( 16) has an unique solution (u, p) ∈ H 1 (Ω) 2 × L 2 (Ω) up to an additive constant for p. Moreover, u verifies (S) and

-∆u + ∇p = 0 in Ω, ( 12 
) div u = 0 in Ω, (13) 
u = 0 on Γ 2, u| Γ 1 = u | Γ 0 , ( 14 
)
∂u ∂x | Γ 1 = ∂u ∂x | Γ 0 , (15) 
p |Γ 1 = p |Γ 0 -λ. ( 16 
) It is clear that if (u, p) ∈ H 1 (Ω) 2 × L 2 (Ω) checks (
u H 1 (Ω) + p L 2 (Ω)/ R ≤ λC (Ω) .
Remark 1 The pressure verifies the relation ( 16), which means that p satisfies the relation of Patankar et al. [START_REF] Patankar | Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross sectional area[END_REF] .

Navier-Stokes Equations

One takes again the assumptions of the Stokes problem given above. For λ ∈ R

given, the one considers the following problem

(N S)                Find u ∈ V, such that ∀v ∈ V, Ω ∇u.∇v dx + b (u, u, v) = λ +1 -1 v 1 (1, y) dy with b (u, v, w) = Ω (u.∇) v.w dx
With an aim of establishing the existence of the solutions of the problem (N S) , one uses the Brouwer fixed point theorem (see [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites nonlinéaires[END_REF], [START_REF] Temam | Navier-Stokes Equations.Theory and Analysis[END_REF]). One will show it Theorem 3.1 The problem (N S) has at least a solution u ∈ V. Moreover, u checks the estimate [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF].

Proof: To show the existence of u, one constructs the approximate solutions of the problem (N S) by the Galerkin method and then thanks to the arguments of compactness, one makes a passage to the limit.

i) For each fixed integer m ≥ 1, one defines an approximate solution u m of (N S) by

u m = m i=1 g im w i , with g im ∈ R ((u m , w i )) + b (u m , u m , w i ) = λn, w i Γ 1 , i = 1, ..., m (17) 
where V m = w 1 , ..., w m vector spaces spanned by the vectors w 1 , ..., w m and {w i } is an Hilbertian basis of V which is separable. Let us note that (17) is equivalent to:

∀v ∈ V m , ((u m , v)) + b (u m , u m , v) = λ +1 -1 v 1 (1, y) dy. (18) 
With an aim to establish the existence of the solutions of the problem u m , the operator as follows is considered

P m : V m → V m u -→ P m (u) defined by ∀u, v ∈ V m , ((P m (u) , v)) = ((u, v)) + b (u, u, v) -λ +1 -1 v 1 (1, y) dy.
Let us note initially that P m is continuous and

∀u ∈ V, b (u, u, u) = 0.
Indeed, thanks to the Green formula, one has

b (u, u, u) = -1 2 Ω |u| 2 div u dx + 1 2 Γ (u.n) |u| 2 dσ = 0.
But, div u = 0 in Ω and

Γ (u.n) |u| 2 dσ = Γ 0 (u.n) |u| 2 dσ + Γ 1 (u.n) |u| 2 dσ.
since the external normal to Γ 0 is opposed to that of Γ 1 and u ∈ V .

Thanks to Brouwer Theorem, there exists u m satisfying (18) and

u m H 1 (Ω) ≤ λC (Ω) . (19) 
ii) We can extract a subsequence u ν such that As for the Stokes problem, one shows the existence of p ∈ L 2 (Ω) , unique except for an additive constant, such that

                                       -∆u + (u.∇) u+∇p = 0 in Ω, div u = 0 in Ω, u = 0 on Γ 2 , u| Γ 1 = u | Γ 0 .
It is checked finally that

∂u ∂x | Γ 1 = ∂u ∂x | Γ 0 , p |Γ 1 = p |Γ 0 -λ.
Remark 2 i) Theorem 3.1 of problem (N S) takes place in three dimension.

ii) One can show that the solution (u, p) belongs to H 2 (Ω) 2 × H 1 (Ω).
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