E L Houcein 
  
E L Abdalaoui 
  
Professor J De 
  
Sam Lazaro 
  
A new class of rank one transformations with singular spectrum *

We introduce a new tool to study the spectral type of rank one transformations using the method of central limit theorem for trigonometric sums. We get some new applications.

Introduction

The purpose of this paper is to bring a new tool in the study of the spectral type of rank one transformations. Rank one transformations have simple spectrum and in [O] D.S. Ornstein, using a random procedure, produced a family of mixing rank one transformations. It follows that the Ornstein's class of transformations may possibly contain a candidate for Banach's well-known problem whether there exists a dynamical system (Ω, A, µ, T ) with simple Lebesgue spectrum. But, in 1993, J. Bourgain in [B] proved that almost surely Ornstein's transformations have singular spectrum. Subsequently, using the same method, I. Klemes [Kl] and I. Klemes & K. Reinhold [K-R] obtain that mixing staircase transformations of Adams [A] and Adams & Friedman [AF] have singular spectrum. They conjecture that all rank one transformations have singular spectrum.

Here we shall exhibit a new class of rank one transformations with singular spectrum. Our assumption include some new class of Ornstein transformations and a class of Creutz-Silva rank one transformations [C-S]. Our proof is based on techniques introduced by J. Bourgain [B] in the context of rank one transformations and developed by Klemes [Kl], Klemes-Rienhold [K-R], Dooley-Eigen [E-D], together with some ideas from the proof of the central limit theorem for trignometric sums. The fundamental key, as noted by Klemes [Kl], is the estimation of the L 1norm of a certain trigonometric polynomial (|P m | 2 -1) . We shall use the method of central limit theorem for trignometric sums to produce an estimate of this L 1norm.

Rank One Transformation by Construction

Using the cutting and stacking method described in [START_REF] Friedman | Introduction to ergodic theory[END_REF], [START_REF] Friedman | Replication and stacking in ergodic theory[END_REF], one can construct inductively a family of measure preserving transformations, called rank one transformations, as follows Let B 0 be the unit interval equipped with the Lebesgue measure. At stage one we divide B 0 into p 0 equal parts, add spacers and form a stack of height h 1 in the usual fashion. At the k th stage we divide the stack obtained at the (k -1) th stage into p k-1 equal columns, add spacers and obtain a new stack of height h k . If during the k th stage of our construction the number of spacers put above the j th column of the (k -1) th stack is a

(k-1) j , 0 ≤ a (k-1) j < ∞, 1 ≤ j ≤ p k , then we have h k = p k-1 h k-1 + p k-1 j=1 a (k-1) j . B k B k-1 p k-1 6 a (k-1) 1 a (k-1) 2 • • • • • • a (k-1) j • • • • • • a (k-1) p k-1 Figure 1 : k th -tower.
Proceeding in this way we get a rank one transformation T on a certain measure space (X, B, ν) which may be finite or σ-finite depending on the number of spacers added. The construction of a rank one transformation thus needs two parameters, (p k ) ∞ k=0 (parameter of cutting and stacking), and ((a

(k) j ) p k j=1 ) ∞ k=0 (parameter of spacers). Put T def = T (p k ,(a (k) j ) p k j=1 ) ∞ k=0
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dσ = W * lim n k=1 |P k | 2 dλ, (1.1) 
where

P k (z) = 1 √ p k   p k -1 j=0 z -(jh k + j i=1 a (k) i )   ,
λ denotes the normalized Lebesgue measure on the circle group T and W * lim denotes weak*limit in the space of bounded Borel measures on T.

The principal result of this paper is the following:

Theorem 2.1. Let T = T (p k ,(a (k) j ) p k j=1 ) ∞ k=0
be a rank one transformation such that,

(i) a (k) j+1 ≥ 2s k (j), j = 0, • • • , p k -1, with s k (j) = a (k) 1 + . . . + a (k) j , s k (0) = 0, (ii) s k (p k ) h k < 1 2 then the spectrum of T is singular.
We remark that the spectrum of rank one transformation is always singular if the cutting parameter p k is bounded. In fact, Klemes-Reinhold prove that if ∞ k=0 1 p k 2 = ∞ then the associated rank one transformation has singular spectrum.

Henceforth, we assume that the series ∞ k=0 1 p k 2 converges. We point out also that the condition (ii) of theorem 2.1 holds in the case of rank one transformations satisfying a restricted growth condition provided that min

1≤j≤p k (a (k) j ) = 0. Following Creutz-Silva [C-S], we say that a rank one transformation T = T (p k ,(a (k) j ) p k j=1 ) ∞ k=0 has restricted growth if p k i=1 a (k) j -min 1≤j≤p k (a (k) j ) h k + min 1≤j≤p k (a (k) j ) -----→ k→+∞ 0,
The proof of our main result is based on the method of J. Bourgain in [B]. We shall recall the main ideas of this method.

Proposition 2.2. The following are equivalent Prepared using etds.cls

E. H. El Abdalaoui (i) σ ⊥ λ (ii) inf{ k l=1 |P n l (z)| dλ, k ∈ N, n 1 < n 2 < . . . < n k } = 0. Now fix some subsequence N = {n 1 < n 2 < . . . < n k } , k ∈ N, m > n k and put Q (z) = k i=1 |P ni (z)| .
One can show, using the same arguments as in [EA], the following lemma.

Lemma 2.3.

Q(z) |P m (z)| dλ(z) ≤ 1 2 Qdλ + Q(z) |P m (z)| 2 dλ(z) - 1 8 Q |P m (z)| 2 -1 dλ(z) 2 . Proposition 2.4. lim m→∞ Q |P m (z)| 2 dλ(z)= Q dλ(z).
Proof : The sequence of probability measures |P m (z)| 2 dλ(z) converges weakly to the Lebsegue measure.

We have also the following proposition:

Proposition 2.5. There exist a subsequence of the sequence (||P m (z)| -1|) which converge weakly to some non-negative function φ which satisfies φ ≤2, almost surely with respect to the Lebesgue measure.

Proof : The sequence ||P m (z)| -1| is bounded in L 2 . It follows that there exist a subsequence which converges weakly to some non-negative L 2 function φ. Let ω be a non-negative continuous function, then we have

ω ||P m (z)| -1| dλ(z) ≤ ω |P m (z)| dλ(z) + ωdλ(z) ≤ ( ωdλ(z)) 1 2 ( ω |P m (z)| 2 dλ(z)) 1 2 + ωdλ(z).
Hence ωφdλ ≤ 2 ωdλ.

Since this holds for all non-negative continuous ω, we have φ ≤ 2 a.e.

Put α = φ dλ.

We shall prove the following:

Proposition 2.6. α⊥σ.

For the proof of the proposition 2.6 we need the following classical lemma [K-S].

Lemma 2.7. Let ρ, τ be two nonnegative finite measure on a measurable space X.

Then the following properties are equivalent : (i) ρ ⊥ τ (ii) Given ε > 0, there exists a nonnegative measurable function f on X such that f > 0, τa.e. and such that

f dρ) dτ f < ε. Proof of Proposition 2.6 : Let β 1 = inf{ Qdα, : Q = k i=1 |P ni (z)| , k ∈ N, n 1 < n 2 < • • • < n k } and β 2 = inf{ Qdλ, : Q = k i=1 |P ni (z)| , k ∈ N, n 1 < n 2 < • • • < n k }.
Then, for any Q, we have

Qdα ≥ β 1 , lim inf Q|P m |dλ ≥ β 2
Combine lemma 2.3, proposition 2.4 and proposition 2.5 and take the inf over all Q to obtain:

β 2 ≤ β 2 - 1 8 β 2 1
It follows that

β 1 = 0.
We claim:

β 1 = 0 implies k j=1 |P j |dα -----→ k→∞ 0. In fact, let N = {n 1 < n 2 < • • • < n k } ⊂ N * and N > n k .
Then, by Cauchy-Schwarz inequality, we have

N j=1 |P j |dα = j∈N |P j | j∈N |P j | j ∈N |P j |dα ≤   j∈N |P j |dα   1 2   j∈N |P j |dα j ∈N |P j | 2 dα   1 2 (1.2) But Prepared using etds.cls E. H. El Abdalaoui j∈N |P j | j ∈N |P j | 2 dα ≤ 2 j∈N |P j | j ∈N |P j | 2 dλ ≤ 2 N j=1 |P j | j ∈N |P j |dλ ≤ 2   N j=1 |P j | 2 dλ   1 2   j ∈N |P j | 2 dλ   1 2 ≤ 2 (1.3)
Combine (1.2) and (1.3) to get the claim. The proof of the proposition follows from lemma 2.7.

3. Estimation of L 1 -Norm of (|P m (z)| -1) and the Central Limit Theorem.

In this section we assume that for m sufficiently large

(i) a (m) j+1 ≥ 2s m (j), j = 0, • • • , p m -1, with s m (j) = a (m) 1 + . . . + a (m) j , s m (0) = 0, (ii) s m (p m ) h m < 1 2
Under the above assumptions, we shall proof the following:

Proposition 3.1. α ≥ Kλ, for some positive constant K.

The proof of the proposition is based on an estimate of

A ||P m | -1|dλ, where A
is a Borel set with λ(A) > 0. More precisely we shall study the stochastic behavior of the sequence |P m |. For that our principal strategy is based on the method of the central limit theorem for trigonometric sums. A nice account can be found in [K]. It is well-known that Hadamard lacunary trigonometric seires satisfies the central limit theorem [Z, p.263-264]. The central limit theorem for trigonometric sums has been studied by many authors, Zygmund and Salem [Z, p.263-264],

Erdös [E], J.P. Kahane [Ka], Berkers [Be], Murai [Mu], Takahashi [T], Fukuyama and Takahashi [F-T], and many others. The same method is used to study the asymptotic behavior of Riesz-Raikov sums [P].

Here, we shall prove the following:

Proposition 3.2. If (i) and (ii) hold then for any Borel subset A of T with λ(A) > 0, the distribution of the sequence of random variables

√ 2 √ pm pm-1
j=0 cos((jh m + s m (j))t) converges to the Gauss distribution. That is Prepared using etds.cls rank one transformations with singular spectrum

7 1 λ(A)    t ∈ A : √ 2 √ p m pm-1 j=0 cos((jh m + s m (j))t) ≤ x    -----→ m→∞ 1 √ 2π x -∞ e -1 2 t 2 dt def = N (]-∞, x]) .
(1.4)

The proof of proposition 3.2 is based on the idea of the proof of martingale central limit theorem due to McLeish [Mc]. The main ingredient is the following .

Lemma 3.3. For n ≥ 1, let U n , T n be random variables such that 1.

U n -→ a in probability.

2.

{T n } is uniformly integrable.

3.

{|T n U n |} is uniformly integrable. 4.

E(T n ) -→ 1. Then E(T n U n ) -→ a. Proof : Write T n U n = T n (U n -a) + aT n . As E(T n ) -→ 1, we need to show that E(T n (U n -a)) -→ 0.
Since {T n } is uniformly integrable, we have T n (U na) -→ 0 in probability. Also, both T n U n and aT n are uniformly integrable, and so the combination

T n (U n -a) is uniformly integrable. Hence, E(T n (U n -a)) -→ 0.
Let us recall the following expansion exp(ix) = (1 + ix) exp(-

x 2 2 + r(x)),
where |r(x)| ≤ |x| 3 , for real x.

Theorem 3.4. (1 + itX nj ), and

Let {X nj : 1 ≤ j ≤ k n , n ≥ 1}
U n = exp   - t 2 2 j X 2 nj + j r(tX nj )   . Suppose that 1. {T n } is uniformly integrable. 2. E(T n ) -→ 1. 3. j X 2 nj -→ 1 in probability. 4. max |X nj | -→ 0 in probability. Then E(exp(itS n )) -→ exp(- t 2 2 ).
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Proof : Let t be fixed. From condition (3) and ( 4),

| j r(tX nj )| ≤ |t| 3 j |X nj | 3 ≤ |t| 3 max j |X nj | j X 2 nj -----→ n→∞ 0 in probability. U n = exp   - t 2 2 j X 2 nj + j r(tX nj )   -→ exp(- t 2 
2 ) in probability as n -→ +∞. This verifies the condition (1) of Lemma 3.3 with a = exp(-t 2 2 ). It is easy to check that the conditions (2) ,( 3) and (4) of the lemma 3.3 hold. Thus

E (exp(itS n )) = E (T n U n ) -→ exp(- t 2 2 ).
Let m be a positive integer and put

W m def = i∈I ε i p i h m + i∈I ε i s m (p i ) : ε i ∈ {0, -1, 1}, I ⊂ {0, • • • , p m -1}, p i ∈ {0, • • • , p m -1}}. The element w = ( i∈I ε i p i )h m + i∈I ε i s m (p i ) is called a word.
We shall need the following combinatorial lemma.

Lemma 3.5. Under the assumptions (i) and (ii) of theorem 2.1, all the words of W m are distinct.

Proof : Let w, w ′ ∈ W m , write w = ( i∈I ε i p i )h m + i∈I ε i s m (p i ) w ′ = ( i∈I ′ ε ′ i p ′ i )h m + i∈I ε ′ i s m (p ′ i ). Then w = w ′ implies {( i∈I ε i p i ) -( i∈I ′ ε ′ i p ′ i )}h m = i∈I ′ ε ′ i s m (p ′ i ) - i∈I ε i s m (p i )
But the modulus of LHS is greater than h m and the modulus of RHS is less than 2

pm-1 j=0 a (m) j . It follows that i∈I ε i p i = ( i∈I ′ ε ′ i p ′ i ) and i∈I ε i s m (p i ) = i∈I ′ ε ′ i s m (p ′ i ).
Since from (i) we have s m (p + 1) ≥ 3s m (p), we get that the representation in the form i∈I ε i s m (p i ) is unique and the proof of the lemma is complete.

Proof of proposition 3.2 : Let A a Borel set, λ(A) > 0. Using the Helly theorem we may assume that the sequence √ 2 √ p m pm-1 j=0 cos((jh m + s m (j))t) converge in distribution. As is well-known, it is sufficient to show that for every real number x,

1 λ(A) A exp    -ix √ 2 √ p m pm-1 j=0 cos((jh m + s m (j))t)    dt -----→ m→∞ exp(- x 2 
2 ).

To this end we apply theorem 3.4. in the following context. The measure space is the given Borel set A of positive Lebesgue measure in the circle with the normalised measure and the random variables are given by

X mj = √ 2 √ p m cos((jh m + s m (j))t), where 0 ≤ j ≤ p m -1, m ∈ N.
It is easy to check that the variables {X mj } satisfy conditions (1) and ( 4). Further, condition (3) follows from fact that

2π 0 pm-1 j=0 X 2 mj -1 2 dt -----→ m→∞ 0.
It remains to verify comdition (2) of theorem 3.4. it is sufficient to show that

A pm-1 j=0 1 -ix √ 2 √ p m cos((jh m + s m (j))t) dt -----→ m→∞ λ(A). (1.5) Write Θ m (x, t) = pm-1 j=0 1 -ix √ 2 √ p m cos((jh m + s m (j))t = 1 + Nm w=1 ρ w (m) (x) cos(wt),
where

ρ w = 0 if w is not of the form ( i∈I ε i p i )h m + i∈I ε i s m (p i ), N m = p m (p m -1) 2 h m + s m (p m -1) + s m (p m -2) + • • • + 1.
We claim that it is sufficient to prove the following:

2π 0 R(t) pm-1 j=0 1 -ix √ 2 √ p m cos((jh m + s m (j))t) dt -----→ m→∞ 2π 0 R(t)dt, (1.6)
for any trigonometric polynomial R. In fact, assume that (1.6) holds and let ǫ > 0.

Then, by the density of trigonometric polynomials, one can find a trigonometric polynomial R ǫ such that

||χ A -R ǫ || 1 < ǫ, where χ A is indicator function of A. But pm-1 j=0 1 -ix √ 2 √ p m cos((jh m + s m (j))t) ≤    pm-1 j=0 1 + 2x 2 p m    1 2 , Since 1 + u ≤ e u , we get | Θ m (x, t) |≤ e x 2 .
(1.7)

Hence, according to (1.6), for m sufficiently large, we have

A Θ m (x, t)dt -λ(A) = | A Θ m (x, t)dt - 2π 0 Θ m (x, t)R ǫ (t)dt + 2π 0 Θ m (x, t)R ǫ (t)dt - 2π 0 R ǫ (t)dt + 2π 0 R ǫ (t)dt -λ(A)| < e x 2 ǫ + 2ǫ.
The proof of the claim is complete. It still remains to prove (1.6). Observe that The proof of the proposition 3.2. is complete.

2π 0 Θ m (x, t)R(t)dt = 2π 0 R(t)dt + Nm w=1 ρ w (m) (x) 2π 0 R(t) cos(wt)dt and for w = p i1 h m + s m (p i1 ) + r j=1 ε j {(p ij h m ) + s m (p ij )}, we have |ρ w (m) (x)| ≤ 2 1-r |x| r
Proof of proposition 3.1 : Let A be a Borel subset of T, and x ∈]1, +∞[, then, for any positive integer m, we have

A ||P m (θ)| -1|dλ(θ) ≥ {θ∈A : |Pm(θ)|>x} ||P m | -1|dλ(θ) ≥ (x -1)λ{θ ∈ A : |P m (θ)| > x} ≥ (x -1)λ{θ ∈ A : |ℜ(P m (θ))| > x}
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A φdλ ≥ (x -1){1 -N ([- √ 2x, √ 2x 
])}λ (A). Proof of theorem 2.1 : Follows easily from the proposition 2.6 combined with proposition 3.1.

Put K = (x-1){1-N ([- √ 2x, √ 2x 
Let us mention that the same proof works for the following more general statement.

Theorem 3.6.

Let T = T (p k ,(a (k) j ) p k j=1 ) ∞ k=0
be a rank one transformation such that,

(i) a (k) j+1 ≥ 2s k (j), j = 0, • • • , p k -1, with s k (j) = a (k) 1 + . . . + a (k) j , s k (0) = 0, (ii) s k (p k ) -p k min 1≤j≤p k (a (k) j ) h k + min 1≤j≤p k (a (k) j ) < 1 2
then the spectrum of T is singular.

Remark. We note that, in [B] and [Kl], the strategy of the authors is to show that the absolutely continuous measure β, obtained as the limit of some subsequence of the sequence (||P m | 2 -1|dλ) m≥0 , is equivalent to Lebesgue measure, in fact the authors prove that β ≥ Kλ, (E) for some K > 0. In the case of Ornstein transformations, the relation (E) hold almost surely.

Simple Proof Of Bourgain Theorem.

Bourgain Theorem deals with Ornstein transformations. In Ornstein's construction, the p k 's are rapidly increasing, and the number of spacers, a

i , 1 ≤ i ≤ p k -1, are chosen randomly. This may be organized in different ways as pointed out by J. Bourgain in [B]. Here we suppose that we are given two sequences (t k ), (p k ) of positive integers and a sequence (ξ k ) of probability measure such that the support

of each ξ k is a subset of X k = {- t k 2 , • • • , t k 2 }.
We choose now independently, according to ξ k , the numbers (x k,i ) p k -1 i=1 , and x k,p k is chosen deterministically in N.

We put, for 1 ≤ i ≤ p k , Prepared using etds.cls
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We have

h k+1 = p k (h k + t k ) + x k,p k . So the deterministic sequences of positive integers (p k ) ∞ k=0 , (t k ) ∞ k=0 and (x k,p k ) ∞ k=0
determine completely the sequence of heights (h k ) ∞ k=0 . The total measure of the resulting measure space is finite if

∞ k=0 t k h k + ∞ k=0 x k,p k p k h k < ∞.
(1.8)

We will assume that this requirement is satisfied. We thus have a probability space of Ornstein transformations Ω = ∞ l=0 X p l -1 l equipped with the natural probability measure P def = ⊗ ∞ l=1 P l , where P l def = ⊗ p l -1 j=1 ξ j ;

ξ j is the probability measure on X j . We denote this space by (Ω, A, P). So

x k,i , 1 ≤ i ≤ p k -1, is the projection from Ω onto the i th co-ordinate space of Ω k def = X p k -1 k , 1 ≤ i ≤ p k -1. Naturally each point ω = (ω k = (x k,i (ω)) p k -1 i=1 ) ∞ k=0
in Ω defines the spacers and therefore a rank one transformation T ω,x , where x = (x k,p k ). This construction is more general than the construction due to Ornstein [O] which corresponds to the case t k = h k-1 , ξ k is the uniform distribution on X k and p k >> h k-1 .

We recall that Ornstein in [O] proved that there exists a sequence (p k , x k,p k ) k∈N such that, T ω,x is almost surely mixing. Later in [Pr] Prikhod'ko obtains the same result for some special choice of the sequence of the distribution (ξ m ) and recently, using the idea of D. Creutz and C. E. Silva [C-S] one can extend this result to a large family of probability measures associated to Ornstein construction. In our general construction, according to (1.1) the spectral type of each T ω , up to a discrete measure, is given by

σ Tω = σ (ω) χB 0 = σ (ω) = W * lim N l=1 1 p l p l -1 p=0 z p(h l +t l )+x l,p 2 dλ.
With the above notations, we state Bourgain theorem in the following form: where

P def = ⊗ ∞ l=0 ⊗ p l -1 j=1 ξ l is the probability measure on Ω = ∞ l=0 X p l -1 l .
In the context of Ornstein's constrution, we state proposition 2.5 in the following form:

Proposition 4.2. There exist a subsequence of the sequence (||P m (z)| -1|) which converge weakly to some non-negative function φ(ω, θ) which satisfies φ ≤2, almost surely with respect the P λ.

Proof : Easy exercise.

Put, for any ω ∈ Ω α ω = φ(ω, θ)dλ.

We shall prove that α ω is equivalent to the Lebesgue measure for almost all ω. In fact, we have the following proposition:

Proposition 4.3. There exist an absolutely positive constant K such that for almost all ω we have α ω ≥ Kλ.

The proof is based on the following two lemmas. Proof : For any m ∈ N, we have

||P m | -|P ′ m ||dθdP ≤ |P m -P ′ m |dθdP = | P m dP|dθ ≤ | pm-1 p=0 1 √ p m z p(hm+tm)) || s∈Xm ξ m (s)z s |dz.
Hence by Cauchy-Schwarz inequality

||P m | -|P ′ m ||dθdP ≤ s∈Xm ξ(s) 2 -----→ m→∞ 0.
The proof of the lemma is complete.
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Now observe that we have

T | s∈Xm ξ m (s)z s | 2 dz = T | s∈Xm ξ m (s)z 2s | 2 dz = s∈Xm ξ(s) 2 -----→ m→∞ 0.
So, we may extract a subsequence (m k ) for which, for almost all t ∈ [0, 2π), we have

s∈Xm k ξ m k (s)e ist -----→ k→∞ 0 and s∈Xm k ξ m k (s)e is2t -----→ k→∞ 0 Define Θ def = {θ : s∈Xm k ξ m k (s)e isθ -----→ k→∞ 0 and s∈Xm k ξ m k (s)e is2t -----→ k→∞ 0} Choose m ∈ {m k }, t ∈ Θ and put, for j ∈ {0, • • • , p m -1}, Y m,j (ω) = cos((j(h m + t m ) + x m,j (ω))t) -cos((j(h m + t m ) + x m,j (ω))t)dP, Z m,j (ω) = 2 p m Y m,j (ω).
Lemma 4.5. For any fixed t ∈ Θ, the distribution of the sequence of random variables pm-1 j=0 Z m,j (ω) converges to the Gauss distribution. That is,

P    ω ∈ Ω : pm-1 j=0 Z m,j (ω) ≤ x    -----→ m→∞ 1 √ 2π x -∞ e -1 2 u 2 du def = N (] -∞, x]).
Proof : Since the random variables are independent, centred and uniformly bounded by 2 √ 2 √ p m , the conditions (1), ( 2) and (4) of the theorem 3.4 are satisfied.

We have also the following: Proof of theorem 4.1 : Follow easily from the proposition 4.3 combined with the proposition 2.6.

Remark. We point out that there exist a rank one mixing transformations on the space with finite measure satisfying the condition of theorem 3.6, In fact, following the notations of section 4, one may define the spacers in the Ornstein construction by a

(k) j = 3 j t k + x k,jx k,j-1 , and choose the sequence (t k ) k∈N such that the measure of dynamical system is finite. Thus the condition of theorem 3.6 hold and the class is mixing almost surely.

  be a triangular array of random variables. S n = kn j=1 X nj , T n = kn j=1

  ])}. Hence α(A) ≥ Kλ(A), for any Borel subset A of T which proves the proposition. Now, We give the proof of our main result.

  Theorem 4.1 ([EA-P-P]). For every choice of (p k ), (t k ), (x k,p k ) and for any family of probability measuresξ k on X k = {-t k , • • • , t k } of Z, k ∈ N * ,for which s∈Xm Prepared using etds.cls the associated generalized Ornstein transformations has almost surely singular spectrum. i.e., P{ω : σ (ω) ⊥ λ} = 1.

  follows that the variables {Z m,j } satisfy condition (3) of theorem 3.4. Thus all the conditions of theorem 3.4 hold and we conclude that the distribution of pm-1 j=0 Z m,j (ω) converges to normal distribution. Proof of proposition 4.3 : Let A be a Borel subset of T, C a cylinder set in Ω, and x ∈]1, +∞[, then, for any positive integer m, we have Prepared using etds.cls rank one transformations with singular spectrum 15 A×C ||P m (θ)| -1|dλ(θ)dP≥ P(C) A×Ω ||P ′ m (θ)| -1|dλ(θ)dP -||P m | -|P ′ )| > x}dλ -||P m | -|P ′ m ||dPdλLet m go to infinity and combine lemmas 4.4 and 4.5 to getA×C φdλdP ≥ (x -1){1 -N ([-√ 2x, √2x])}λ(A)P(C).Put K = (x -1){1 -N ([-√ 2x, √2x])}. Hence, for almost all ω, we have, for any Borel set A ⊂ T, α ω (A) ≥ Kλ(A), and the proof of the proposition is complete.
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