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Abstract: We study the positivity of the second shape derivative around an

equilibrium for a 2-dimensional functional involving the perimeter of the shape

and its the Dirichlet energy under volume constraint. We prove that, generally,

convex equilibria lead to strictly positive second derivatives. We also exhibit

some examples where strict positivity of the second order derivative holds at an

equilibrium while existence of a minimum does not.
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1 Introduction

In this paper, we are interested in studying the positivity of the second

derivative of some shape functionals at equilibrium shapes. We also exhibit

some simple functionals for which strict positivity may not imply that these

equilibria are local minima.

We mainly consider shape functionals involving at the same time geometric

terms, like the perimeter or the measure of the shape, and also the solution of

the Dirichlet problem on these shapes. We concentrate on minimization prob-

lems with prescribed measure (frequent in applications). Thus, we discuss the

positivity of the second derivative of the following two-dimensional functional,

defined on open subsets ω of
�2

ω ⊂
�2 → E(ω) = J(ω) + τP (ω) − ΛS(ω), (1.1)

where τ > 0, Λ ∈
�
, S(ω) denotes the Lebesgue measure of ω, P (ω) denotes the

perimeter of ω and J(ω) =
∫

ω
1
2 |∇uω|

2 − f uω is the Dirichlet energy associated

with the solution of the Dirichlet problem

uω ∈ H1
0 (ω), −∆uω = f in ω, (1.2)
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and f :
�2 →
�

is a given function. Here, the constant Λ is to be understood

as a Lagrange multiplier for the minimization of J(ω) + τ P (ω) among the sets

with prescribed measure S(ω) = S0. Note that, according to (1.2)

J(ω) = −
1

2

∫

ω

|∇uω|
2 = −

1

2

∫

ω

f uω. (1.3)

We are interested in the positivity of the second derivative of E(·) around

critical shapes, that is shapes Ω for which the solution of (1.2) satisfies also

1

2
|∇uΩ|

2 − τC + Λ = 0 on ∂Ω, (1.4)

where C denotes the curvature of ∂Ω. This is the Euler-Lagrange equation of

the considered minimization problem (see Section 2).

We will prove that, under natural assumptions, any convex equilibrium is

”stable” in the sense that its second derivative is strictly positive. This remains

true for shapes close to convex shapes (see Section 3). Besides this kind of

results, the study of the positivity of the second derivative is interesting for

itself: it involves a peculiar quadratic form on a space of functions defined on

the boundary of Ω (here H1(∂Ω)). Note that stability analysis had been made

for this problem in the case τ = 0 (”no surface tension”) in [7], [8].

Unfortunately, in shape optimization, when positivity or ”coercivity” occurs,

it generally does in a weaker norm than the norm for which the functional is

actually twice differentiable. In the examples above, coercivity occurs in H1

while second order Taylor formulas are valid only in spaces like C2 or even C2,α.

In general, this is not sufficient to guarantee that there is a local minimum, even

in the stronger norm. However, for shape optimization of the type considered

here, the situation is slightly better and, as proved in [5],[4], positivity does

imply existence of a strict local minimum with respect to the stronger norms

of C2-type, whence the interest of studying positivity. It is likely that this

minimum is local for a weaker norm, but it is not yet understood how much

”weaker” this norm may be.

As a contribution to the latter question, we give next ”bad” examples

where positivity of the second derivative occurs while ”small” perturbations

may strictly decrease the energy. This is done for simple functionals of the

form F (ω) =
∫

ω
g(uω) and around circles. Perturbations, although ”small”, are

rather irregular since they consist in modifying the circle into ”close” annuli.

In particular, they cannot be represented as normal perturbations to the circle.

This says that the second classical shape derivative does not provide all informa-

tion about existence of minima and should probably include extra information

coming from the so-called topological derivative (see e.g. [16]).

Section 2 is devoted to the computation of the second derivatives of the

functionals of type (1.1). This is not a quite easy step in general. We mainly

refer to [17] where the structure of any second shape derivative is given. This a

priori knowledge helps quite a lot for the computations. Section 3 concerns the

study of the positivity of the second derivative of the functionals (1.1). Section

4 concerns the particular case where the equilibrium shape is a disk (in which
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case a more complete analysis may be made). Section 5 describes two examples

where strict positivity does not imply existence of a local minimum.

2 Computation of the second derivative of E(·)

We consider the functional E(·) given by (1.1-1.2) and we assume that f is

regular (to make it simple, we will assume that it is at least bounded and in

C1(
�2)). As proved in several places (see e.g. [8],[7],[19],[15]), this functional

is twice differentiable around regular enough shapes Ω. Sharp differentiability

may be obtained in Hölder spaces of type C2,α, α ∈ (0, 1). Since, we are mainly

interested here in structures of derivatives, we will make it simple and work

in C3-spaces. We denote by Θ3 the space of functions θ ∈ C3(
�2,�2) whose

derivatives up the the third order are bounded. This space is equipped with its

natural norm. Then the mapping

E : θ ∈ Θ3 → E
(
(I + θ)(Ω)

)
, (2.1)

is twice differentiable at θ = 0 (here I denotes the identity in Θ3).

We will compute these derivatives around a regular shape Ω that we will

assume to be a bounded open subset of
�2 with regular boundary Γ = ∂Ω, say

of class C5 at least. For this, let us first recall the structure of the first and second

(Fréchet) shape derivatives in general. It is well-known for first derivatives from

the pioneer paper by Hadamard [13]. It may also be found for the second

derivative under different forms in several papers (see [15],[18],[6],[2],[19],[17]).

Here, we use the notations and results of [17], Theorem 2.1 and Corollaries

2.4,2.9. We state it for our functional E(·), but it is the same for any regular

functional. We denote by ν the normal unit exterior derivative to Γ = ∂Ω. The

Fréchet-derivatives of E(·) at θ = 0 will be described by their action on arbitrary

regular displacements ξ, η ∈ Θ3.

Lemma 2.1 There exists a continuous linear map l1 from C3(Γ) into
�

such

that, for all ξ ∈ Θ3,

E ′(0)(ξ) = l1(ξ · ν).

There exists a continuous bilinear symmetric map l2 from C3(Γ) × C3(Γ) into�
such that for all ξ, η ∈ Θ3,

E ′′(0)(ξ, η) = l2(ξ · ν, η · ν) − l1(ξ
τ · Dτν ητ + ν · Dτ ξ ητ + ν · Dτη ξτ ),

where ξτ = ξ − (ξ · ν)ν denotes the tangential component of ξ and where Dτξ =

D(ξτ ) denotes the matrix of the derivatives of ξτ .

If Ω is a critical shape, that is l1 = 0, then the second derivative depends only

on l2 and on the normal components of the displacements of ξ, η at the boundary

Γ. It is also the case for any Ω if ξ, η are normal to Γ (since ξτ = ητ = 0). As a

consequence of this structure theorem, to obtain full information on derivatives,

it is sufficient to identify l1, l2. This may be done by using specific variations
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of the form t → E(Ωt) where t tends to 0 and where the Ωt’s are well-chosen

perturbations of Ω (chosen to allow as simple computations as possible).

One may for instance choose Ωt = Tt(Ω) where Tt :
�2 →
�2 is defined

as follows and based on displacements which are normal to Γ: For any regular

function h : Γ →
�
, we denote by h̃ a regular extension of h to

�2 and by ν̃ a

regular unitary extension of ν to
�2(see e.g. [12] for details). Now set

∀x ∈
�2, ∀t ≥ 0 : Ttx = x + t h̃(x)ν̃(x),

Ωt = Tt(Ω), e(t) = E(Tt(Ω)) = E(Ωt).

}
(2.2)

Then, since e(t) = E(t h̃ν̃), by the chain rule and Lemma 2.1, we obtain

e′(0) = l1(h), e′′(0) = l2(h, h). (2.3)

Now, we can describe explicitly e′(0), e′′(0) in our case. We use the following

notations:

u = uΩ, β = ∇u · ν = ∂u/∂ν.

We denote by h′ the derivative with respect to the length parameter on Γ and

by D is the pseudo-differential operator on Γ which, to each regular function

h : Γ →
�
, associates the trace on Γ of ∂H/∂ν where H is the harmonic

extension of h to Ω. In particular, we have

∫

Γ

hDh =

∫

Ω

|∇H|2. (2.4)

It easily follows from this identity that D extends to a continuous operator from

H1/2(Γ) into H−1/2(Γ). Recall also that C denotes the curvature of Γ seen from

inside Ω.

Theorem 2.2

e′(0) = l1(h) =

∫

Γ

(−
1

2
β2 + τC − Λ)h, (2.5)

e′′(0) = l2(h, h) =

∫

Γ

βhD(βh) + (Cβ2/2 − ΛC + f β)h2 + τh′2. (2.6)

Remark 2.1 If Ω is a critical shape for ω → J(ω) + τP (ω) (see 1.1) under the

constraint S(ω) = S0, then there exists a real number Λ such that l1 ≡ 0, that

is

−
1

2
β2 + τC − Λ = 0 on Γ, (2.7)

which is the relation (1.4) announced in the introduction (note that, since u = 0

on Γ, then |∇u| = |∂u/∂ν| = |β|). In (2.6), we may replace β by its expression

given in (2.7). As a consequence, around an equilibrium, the expression of e′′(0)

depends only on the geometry of Ω, on Λ and on the data τ, f .
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The result of Theorem 2.2 will be obtained by differentiating each of the

three terms in the total energy E. Most of the needed computations are avail-

able in the literature under various forms. We will mainly refer to [17] where

the three terms of our functional E(·) are considered and we will indicate the

necessary additional information.

Proof of Theorem 2.2: According to Lemma 2.1, let us denote by lSi , lPi , lMi , i =

1, 2 the linear and bilinear forms respectively describing the first and second

derivatives of each of the functionals

Ω → S(Ω), P (Ω),

∫

Ω

|∇uΩ|
2.

Note that, by (1.1), (1.3), for i = 1, 2

li = −
1

2
lMi + τ lPi − ΛlSi . (2.8)

By [17], Proposition 5.1, we have

lS1 (h) =

∫

Γ

h, lS2 (h, h) =

∫

Γ

Ch2, (2.9)

lP1 (h) =

∫

Γ

Ch, lP2 (h, h) =

∫

Γ

|∇τh|2

where ∇τ denotes the tangential gradient,

lM1 (h) =

∫

Γ

|∇u|2h, lM2 (h, h) =

∫

Γ

−2ω(h)
∂ω(h)

∂ν
+ h2[2

∂u

∂ν

∂2u

∂ν2
+ C(

∂u

∂ν
)2],

where ω(h) is the solution of

∆ω(h) = 0 in Ω, ω(h) = −h
∂u

∂ν
on Γ. (2.10)

Formula (2.5) follows from these expressions together with (2.8), as well as

formula (2.6) with the extra help of the following technical lemma:

Lemma 2.3

|∇τh|2 = h′2, (2.11)

ω(h)
∂ω(h)

∂ν
= βhD(βh), (2.12)

∂u

∂ν

∂2u

∂ν2
= −Cβ2 − fβ. (2.13)

Proof: To obtain (2.11), recall that the tangential gradient is given by

∇τh = ∇h̃ − (∇h̃ · ν̃)ν̃.

Let s → X(s) be a parametrization of Γ in terms of the length parameter s.

Then, X ′(s) is a unit vector tangent to Γ at X(s) so that

∇τh · X ′(s) = ∇h̃ · X ′(s) =
d

d s
h̃(X(s)) =

d

d s
h(X(s)),
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and |∇τh|2 = |∇τh · X ′(s)|2 = h′(s)2 if we simply set h(s) = h(X(s)).

For (2.12), we introduce the solution ut of the Dirichlet problem:

−∆ut = f in Ωt, ut = 0 on ∂Ωt or ut(Tt(x)) = 0 on Γ. (2.14)

By differentiating this system with respect to t at t = 0, we obtain

∆(∂t|t=0
ut) = 0 in Ω, ∂t|t=0

ut = −h
∂u

∂ν
on Γ. (2.15)

It follows that:

∂t|t=0
ut = ω(h) and ∂ω(h)/∂ν = D(−βh), whence (2.12).

To obtain (2.13), we may argue as in [7],[8]) using local coordinates. Assume

that (0, 0) ∈ Γ and Γ is defined as the graph of a regular fonction θ : ]−η, η[→
�

satisfying θ(0) = θ′(0) = 0. Moreover, Ω is locally below the graph of θ (so that

∂/∂ν = ∂/∂y). Then, differentiating twice u(x, θ(x)) = 0 with respect to x, we

obtain:

ux(x, θ(x)) + uy(x, θ(x))θ′(x) = 0,

uxx(x, θ(x)) + 2uxy(x, θ(x))θ′(x) + uyy(x, θ(x))θ′
2
(x) + uy(x, θ(x))θ′′(x) = 0.

We deduce that at x = 0 (recall that u is at least C2)

uxx(0, 0) + uy(0, 0)θ′′(0) = 0

which, together with −∆u = f on Ω implies that, on the boundary

∂u

∂ν

∂2u

∂ν2
= uy uyy = uy(−uxx − f) = (uy)2θ′′(0) − f uy.

Since C is the curvature of Γ seen from below, we have C = −θ′′(0) at the origin,

whence (2.13).

3 Positivity of second derivative

We use here the notations of Section 2. Let (Ω, u = uΩ) be a regular equi-

librium (or a critical shape) for the minimization of

ω → J(ω) + τP (ω) = −
1

2

∫

ω

|∇uω|
2 + τP (ω)

under the constraint S(ω) = S0 where S0 is given. This means that there

exists a real number Λ (a Lagrange multiplier) such that the derivative of

E(·) = J(·) + τP (·) − ΛS(·) vanishes at Ω. With the previous notations and

definitions (1.1,2.1), we have E ′(0) = 0: according to Section 2, this means that
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(2.7) holds on Γ = ∂Ω, that is β2 = 2(τC − Λ).

A necessary second order condition: Assume now that J(·) + τP (·) has

a local minimum at Ω among the regular domains ω satisfying the measure

constraint S(ω) = S0. Then θ ∈ Θ3 → (J + τP )((I + θ)(Ω)) has a minimum at

θ = 0 on the manifold of θ’s such that S
(
(I +θ)(Ω)

)
= S(Ω). As a consequence,

the second derivative of the full Lagrangian θ → (J + τP − ΛS)
(
(I + θ)(Ω)

)
is

nonnegative on the hyperplane of linearized constraints, that is on {ξ ∈ Θ3;
∫
Γ

ξ·

ν = 0}. This means that, for all h ∈ C3(Γ) such that
∫
Γ

h = 0, the quadratic

form

Q(h) =

∫

Γ

βhD(βh) + (τC − 2Λ)Ch2 + f βh2 + τh′2 (3.1)

is nonnegative.

Remark 3.1 Since Ω is bounded and regular, we may assume that its boundary

is the union of disjoint regular Jordan curves Γi, i = 1, ...p (a Jordan curve is,

by definition, the one-to-one continuous image of the unit circle; in particular,

it is a closed curve). Choosing in (3.1) test-functions h vanishing on all Γi but

one, we obtain that, for all i = 1, ...p and for all h ∈ C3(Γi) with
∫
Γi

h = 0, we

have

Qi(h) =

∫

Γi

βhD(βh) + (τC − 2Λ)Ch2 + f βh2 + τh′2 ≥ 0. (3.2)

Remark 3.2 In the expression of Qi, we must remember that the operator D

depends on the set Ω and not only on Γi. Note that, by (2.4) and classical

Poincaré inequality, there exists δ > 0, depending only on Ω, such that

∀h ∈ Z1
0 (Γ),

∫

Γ

hDh =

∫

Γ

|∇H|2 ≥ δ‖h‖2
L2(Γ). (3.3)

Therefore, the contribution of the term hDh helps making Q positive in any

case.

The coercivity question: We will now concentrate on the study of the posi-

tivity of the quadratic form h → Q(h) for functions h satisfying
∫
Γ

h = 0 when

Γ is a regular Jordan curve. Then Ω is the simply connected interior of Γ.

Obviously, Q(·) is continuous on the functional space H1(Γ) and the H1-

norm clearly appears as the ”optimal” one for this continuity and also for the

question of positivity or ”coercivity”. Therefore, the natural question is to

decide whether or not Q(·) is coercive on the space

Z1
0 (Γ) = {u ∈ H1(Γ) :

∫

Γ

h = 0}

that is

∃η > 0;∀h ∈ Z1
0 (Γ), Q(h) ≥ η‖h‖2

H1(Γ). (3.4)
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As explained in the introduction, if H1-coercivity holds, then the functional

J(·) has a strict local minimum at Ω at least in a C2,α-topology, i.e. among

C2,α-perturbations of Ω preserving the volume.

We will mainly concentrate on the case where

S
(
{x ∈
�2; uΩ(x) 6= 0 a.e. }

)
= S(Ω) = S0,

f is compactly supported in Ω,

Γ is a regular Jordan curve with interior Ω.



 (3.5)

The first condition is just a way to say that the constraint S(Ω) = S0 is

”saturated”, otherwise we would work with the smaller open subset Ω′ =

{x ∈
�2;uΩ(x) 6= 0}. The second condition is natural in applications (see

[14],[7],[8],[3]). More comments will be made later on the case where f does not

vanish around Γ (see Remark 3.7).

Two families of situations: It turns out that there will be two rather different

families of situations: indeed, the equilibrium condition (2.7) writes

τC − Λ =
1

2
|∇u|2 ≥ 0 on Γ, (3.6)

so that, if Cm := minΓ C, then

τCm ≥ Λ.

But the situation will be different depending on whether this inequality is strict

or not. If there exists a point of Γ at which ∇u = 0, then necessarily τ Cm = Λ.

This is necessarily the case if, for instance,
∫
Ω

f = 0 (Γ being a Jordan curve).

Indeed, if ∇u did not vanish on Γ, then, we would have

∫

Γ

|∇u| = |

∫

Γ

∇u · ν| = |

∫

Ω

∆u| = |

∫

Ω

f | = 0,

which would be a contradiction with ∇u 6= 0 on Γ. In some applications, like

the shaping of liquid metals by electromagnetic devices, this case τCm = Λ

turns out to be more ”physical” since, in two-dimensional models, it is natural

to assume that the distribution of currents f satisfies
∫
Ω

f = 0 (see [7],[8],[14]).

A first case: τ Cm = Λ (and (3.5) ). Then, the form Q writes

Q(h) = τ

∫

Γ

γhD(γh) + (C − 2Cm)Ch2 + h′2, (3.7)

where γ2 = 2(C − Cm).

A main remark is that, in this situation, the positivity of Q, and consequently

the stability of Ω, depend only on the geometry of the boundary Γ.

Positivity may be obtained in the following case. We denote by L(Γ) the

length of Γ. We recall that C denotes the curvature of the Jordan curve Γ seen

from inside Ω.
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Theorem 3.1 Assume τCm = Λ. Then, if Γ is a convex Jordan curve (i.e.

Cm ≥ 0), or, more generally, if Γ is a Jordan curve satisfying

Cm > −2π/L(Γ), (3.8)

then, H1-coercivity condition (3.4) holds.

Remark 3.3 The case where Γ is a circle will be considered in Section 4. Note

that, under the above assumptions, Γ cannot be a circle. Indeed,

β2 = 2(τC − Λ) = 0, C ≡ Cm, τCm − Λ = 0,

imply that 0 ≡ β = ∂u/∂ν on Γ. But the three conditions ”u = 0,∇u = 0

on Γ and ∆u = 0 in a neighborhood of Γ” (see (3.5)) would imply that u be

identically equal to 0 in a neighborhood of Γ which is not the case by (3.5).

Remark 3.4 Recall that, since Γ is a Jordan curve and since C is its curvature

seen from inside Γ, then
∫
Γ
C = 2π. This implies

2π =

∫

Γ

C ≥ L(Γ)Cm. (3.9)

Here, this inequality is strict since Γ is not a circle. Therefore, under the

assumptions of above Theorem, we even have

C2
m < 4π2/L2(Γ). (3.10)

To prove Theorem 3.1, we use the following lemma:

Lemma 3.2

∀h ∈ Z1
0 (Γ),

∫

Γ

h′2 ≥
4π2

L2(Γ)

∫

Γ

h2. (3.11)

Proof: Let

λ = inf{

∫

Γ

h′2;h ∈ H1(Γ),

∫

Γ

h = 0,

∫

Γ

h2 = 1}.

By compactness of the embedding of H1(Γ) into L2(Γ), a minimizing subse-

quence in above definition converges to u ∈ Z1
0 (Γ) realizing the infimum. Dif-

ferentiating

t →

∫

Γ

(u′ + th′)2∫
Γ
(u + th)2

,

at t = 0 leads, in a classical way, to the fact that λ is the smallest posi-

tive eigenvalue of u → −u′′ on [0, L(Γ)] with periodic conditions. We easily

check that corresponding eigenfunctions are cos 2πs/L(Γ), sin 2πs/L(Γ), so that

λ = 4π2/L2(Γ). Assertion (3.11) follows.

Proof of Theorem 3.1: By (3.7,3.3), we have

Q(h) ≥ τ

∫

Γ

[2δ(C − Cm) + (C − 2Cm)C]h2 + h′2.
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Since the function x → 2δ(x−Cm)+ (x− 2Cm)x is increasing on [Cm,+∞[, this

implies

Q(h) ≥ τ

∫

Γ

h′2 − C2
mh2. (3.12)

According to (3.10), let ε > 0 such that (1 − ε)(2π/L)2 = C2
m. Then, by (3.12)

and Lemma 3.2

Q(h) ≥ τ

∫

Γ

εh′2 = τε‖h‖2
H1(Γ).

Second case: τCm > Λ (and (3.5)).

Theorem 3.3 Assume τCm > Λ. If Γ is a convex Jordan curve, or more

generally if

Cm > −min{δ, 2π/L(Γ)}, (3.13)

then H1-coercivity condition (3.4) holds.

Proof of Theorem 3.3 Set δ̂ = min{δ, 2π/L(Γ)} (recall that δ is defined in

(3.3)). Then, using (3.1), (3.3) and (3.6), we have

Q(h) ≥

∫

Γ

[2 δ̂(τC − Λ) + (τC − 2Λ)C]h2 + τh′2. (3.14)

The function x → ψ(x) = 2δ̂(τx − Λ) + (τx − 2Λ)x + τ δ̂2 is stricly increasing

on [Λ/τ,+∞[. Note that ψ(−δ̂) = 0. Let ε > 0 be such that Cm ≥ ε− δ̂ and let

ε̂ be so that ψ(ε − δ̂) = ε̂τ δ̂2(> 0). By Lemma 3.2 and the various definitions

δ̂, ε, ε̂, we have

Q(h) ≥

∫

Γ

[2δ̂(τC − Λ) + (τC − 2Λ)C + τ(1 − ε̂)δ̂2]h2 + ε̂τh′2 ≥

∫

Γ

ε̂τh′2.

Remark 3.5 The assumption (3.13) in Theorem 3.3 is probably not optimal to

obtain positivity. However, if Γ is too far from a convex curve, then positivity

may fail.

Proposition 3.4 There exist non convex analytic Jordan curves Γ for which

the associated quadratic form Q has directions of instability when τ is small

enough.

Proof: Assume that Γ is not convex so that Cm and Λ are strictly negative

(0 > τCm > Λ). The function β = {2(τC − Λ)}1/2 converges in C1 to the

constant function (2|Λ|)1/2 as τ tends to 0. As a consequence, for h ∈ H1/2(Γ),

βh tends to (2|Λ|)1/2h in H1/2(Γ) and D(βh) tends to (2|Λ|)1/2Dh in H−1/2(Γ).

Then, Q(h) tends to Q0(h) given by

Q0(h) = 2|Λ|

∫

Γ

hDh + Ch2.
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To conclude, it is sufficient to prove that we may choose Γ and h ∈ H1/2(Γ)

with
∫
Γ

h = 0 and such that Q0(h) < 0.

We identify
�2 with the complex plane�. Let Φ be a conformal mapping

from the unit disk Ω0 onto Ω which sends the unit circle Γ0 on Γ in a one-to-one

way. Since Γ is analytic, Φ extends to a very regular function on Γ. If we denote

by D0 the operator D when Γ is replaced by Γ0, and if h̃ := h ◦ Φ, then

D0h̃ = [Dh ◦ Φ]|Φ′|,

so that

Q0(h) = 2|Λ|

∫

Γ0

h̃D0h̃ + [C ◦ Φ]|Φ′|h2.

It is sufficient to prove that we may choose the function [C ◦ Φ]|Φ′| (i.e. Γ) in

such a way that the above expression for Q0 becomes negative for some h.

Choose for instance Φ′(z) = e−az2

. It can be checked that, for 0 < a <

2.478, Φ is one-to-one from the unit disk into its image (since Φ is locally

injective and the image of the unit circle has no double point). For θ ∈ [0, 2π],

C
(
Φ(eiθ)

)
|Φ′(eiθ| is given as the real part of

1 + eiθΦ
′′

(eiθ)/Φ′(eiθ) = 1 − 2a cos 2θ.

For this choice, since D0(cos θ) = cos θ, we find

Q0(cos(·)) = 2|Λ|

∫ 2π

0

cos2 θ[2 − 2cos θ] = 2|Λ|π(2 − a).

Therefore, any value a ∈ (2, 2.478) gives the desired example.

Remark 3.6 From the analysis in [14], we prove that, for a given analytic

closed Jordan curve, and for τ,Λ given such that 0 < τ,Λ < τCm, we may find

a function f compactly supported inside Γ such that Γ be an equilibrium shape

for the corresponding functional E(·). Therefore, it makes sense to analyze the

stability of the given analytic Jordan curve Γ in terms of the parameters τ,Λ.

Remark 3.7 About the influence of f : From the previous remark, we see

that the case of f being compactly supported in Ω is actually very general.

Now that we have analyzed the form Q without the term in f , we might want

to understand the influence of adding it: it writes
∫
Γ

fβh2 where β = ∂u/∂ν.

If, for instance, f ≥ 0, then u ≥ 0 so that β ≤ 0 and
∫
Γ

fβh2 ≤ 0. This suggests

that the presence of f makes Q ”less positive”. We could state results involving

the respective values of Cm and f , but, in any case, a convex curve will not be

stable for all f ’s. A very detailed analysis of this is made in the next Section

where Γ is a disk, in which case precise explicit computations can be made.

Remark 3.8 If ∂Ω is the disjoint union of convex Jordan curves (which indeed

happens in applications), then stability condition (3.4) holds.
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4 The particular case of the disk

We assume in all this section that the equilibrium shape Ω is the unit disk.

We are able to precisely study the positivity of the second derivative through

the use of Fourier series expansions. Note that, if the solution uΩ is radial

(u = u(r)), then the disk is indeed an equilibrium shape since we then have on

the boundary Γ:

|∇u|2 = u′(1)2 = constant,

so that by setting Λ = τ −u′(1)2/2, we do have the equilibrium condition (2.7).

Here β = u′(1), β2 = 2(τ − Λ).

Note that u is radial as soon as f is itself radial: this will be assumed in this

section: f = f(r).

The second derivative writes (see (3.1))

Q(h) =

∫

Γ

β2hD(h) + [τ − 2Λ + βf(1)]h2 + τh′2. (4.1)

For h given in Z1
0 (Γ), we introduce its Fourier’s series expansion

h = h(θ) =
∑

n≥1

(an cos nθ + bn sinnθ) (4.2)

(Here a0 = 0 since
∫
Γ

h = 0).

Lemma 4.1

Q(h) = π
∑

n≥1

[τn2 + β2n + (τ − 2Λ + βf(1))](a2
n + b2

n), (4.3)

where β = −
∫ 1

0
rf(r)dr, β2 = 2(τ − Λ).

Proof: By direct integration, we obtain r u′(r) = −
∫ r

0
sf(s) ds, whence the

expression of β.

To compute Dh, we first note that the harmonic extension of h on the disk

is given by
∑

n≥1 rn(an cos nθ + bn sin nθ) so that

Dh(θ) =
∑

n≥1

n(an cos nθ + bn sin nθ).

Easy computations lead to
∫

Γ

hD(h) = π
∑

n≥1

n(a2
n +b2

n),

∫

Γ

h2 = π
∑

n≥1

(a2
n +b2

n),

∫

Γ

h′2 = π
∑

n≥1

n2(a2
n +b2

n).

We combine these equalities according to (4.1) to obtain (4.3).

To state the positivity result, we introduce the expression

σ = 2
[ ∫ 1

0

rf(r) dr
]2

− f(1)

∫ 1

0

rf(r) dr.
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Theorem 4.2 If σ > 0, H1-coercivity (3.4) holds and more precisely

Q(h) ≥ π min{σ, τ}
∑

n≥1

n2(a2
n + b2

n). (4.4)

If σ < 0, the disk is unstable.

If σ = 0, then Q in nonnegative on Z1
0 (Γ); moreover, there exists δ > 0 such

that, for all h ∈ Z1
0 (Γ) with a1 = b1 = 0, we have

Q(h) ≥ δπ
∑

n≥2

n2(a2
n + b2

n). (4.5)

Remark 4.1 When f is constant, since the functional E(·) is invariant by

translations, one cannot expect coercivity in the directions of translations, i.e,

on the subspace of Z1
0 (Γ) spanned by {cosθ, sinθ}. We check that, in this case,

σ = 0. However, above theorem says that H1-stability nevertheless holds for

deformations leaving invariant the center of the disk (a1 = 0, b1 = 0).

Remark 4.2 If f is compactly supported in the disk, then f(1) = 0 and σ ≥ 0;

since it cannot be 0 (see Remark 3.3), the disk is always stable, no matter the

radial distribution of ”charges” (or ”current”) inside the disk. On the other

hand, if f(1) is large compared to
∫ 1

0
rf(r) dr, then instabilities appear. If

we refer to the underlying application arising in the electromagnetic shaping of

liquid metals, having f(1) 6= 0 means that we have inductors touching the liquid

metal at its boundary. We do believe that this may create instabilities.

Remark 4.3 Note that σ depends only on f . Therefore, if σ > 0, stability

holds no matter the value of τ > 0. If τ = 0, then coercivity still occurs, but

only in the norm H1/2(Γ) (see the expression of R(n) in the following proof).

We refer to [8],[7],[5] for results in this case.

Proof of Theorem 4.2: Note that τ − 2Λ = −τ + β2. The sequence

n → R(n) := τn2 + β2n + (−τ + β2 + βf(1))

is increasing, so that R(n) > 0 for any n ≥ 1 as soon as R(1) > 0, that is when

σ = 2β2 + βf(1) > 0.

More precisely, since the mapping

n → (τ − min{τ, σ})n2 + β2n,

is increasing, we even have

∀n ≥ 1, R(n) ≥ min{σ, τ}n2,

which proves coercivity of Q for the H1-norm in Z1
0 (Γ).

On the other hand, if σ < 0, R(1) < 0, so that instability occurs at least in

the direction of the subspace spanned by {cosθ, sinθ}.
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Now, if σ = 0, R(1) = 0 and ∀n ≥ 2,R(n) > 0 so that Q is nonnegative.

More precisely, if δ = min{(3τ + β2)/4, τ}, then

∀n ≥ 2, R(n) = τn2 + β2n − τ − β2 ≥ δn2.

This proves the coercivity of Q for the H1-norm on the subspace of h ∈ Z1
0 (Γ)

such that a1 = b1 = 0.

5 Some counterexamples

Let g :
�
→
�

be a function of class C2. We consider the shape functional

ω →
∫

ω
g(uω) under the constraint S(ω) = S0, where u = uω is simply the

so-called stress function, solution of

−∆u = 1 in ω, u = 0 on ∂ω.

We introduce the corresponding Lagrangian

L(ω) =

∫

ω

g(uω) − ΛS(ω)

where Λ is the Lagrange multiplier. According to the structure Theorem 2.1,

we denote by lL1 , lL2 the forms defining the first and second derivatives of L at

the unit disk Ω with its boundary Γ. We denote u = uΩ.

Lemma 5.1 For all h ∈ C3(Γ),

lL1 (h) =

∫

Γ

(g(
1

4
) − Λ)h,

lL2 (h, h) =
1

4

∫

Ω

g′′(u)H(h)2 +

∫

Γ

[g(
1

4
) − Λ +

1

2
g′(0)]h2 − 2[g(

1

4
) − g(0)]hD(h),

where D(h) is defined as in the previous sections and H(h) denotes the harmonic

extension of h to the unit disk Ω. If moreover Ω is an equilibrium shape (i.e.lL1 ≡

0) and if h is given by

h =
∑

n≥1

(an cos nθ + bn sin nθ), (5.1)

then

lL2 (h, h) = π

+∞∑

n=2

n(a2
n + b2

n)
[ ∫ 1

0

g′(u)r2n−1dr + 2[g(0) − g(
1

4
)]
]
. (5.2)

We postpone the proof of this lemma which requires some serious computa-

tions (as often for second shape derivatives). We will give all necessary details

even if similar computations may be found here and there in the literature (see

e.g. [1],[11],[9],[10]).
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According to the expression of lL1 , the disk Ω is a critical shape of L(·) when

we choose Λ := g( 1
4 ) and therefore a critical shape of ω →

∫
ω

g(uω) under the

constraint S(ω) = S(Ω).

We will denote Q(h) = lL2 (h, h). A main remark is that Q vanishes on the

subspace spanned by {cosθ, sinθ} (i.e such that a1 = b1 = 0). This comes from

the fact that the minimization problem is invariant by translations (here f ≡ 1).

It is clear on the expression (5.2) that Q is continuous for the norm of

H1/2(Γ). Thus the optimal space to look for the coercivity of Q is here

Z
1/2
00 = {h ∈ H1/2(Γ);

∫

Γ

h = 0,

∫

Γ

h cosθ = 0,

∫

Γ

h sinθ = 0}.

Note that by the results in [5], [4], this coercivity implies the existence of a local

minimum for regular (e.g. C3) perturbations of Ω preserving the volume and

the barycentre.

We will also look at an example where coercivity occurs only for the L2 norm.

For a ∈ (0, 1), we introduce the sets

Ωa = Ω\{(x, y) ∈
�2;x2 + y2 = a2}.

Obviously, Ωa has the same Lebesgue measure and the same center as the disk

Ω itself. We will look at variations of a →
∫
Ωa

g(uΩa
) for a close to 1 and for

a close to 0: in these cases, the Ωa’s are ”close” to Ω but, obviously are not

”regular” perturbations of Ω.

Theorem 5.2 There exists a function g and η > 0 such that

∀h ∈ Z
1/2
00 , Q(h) ≥ η‖h‖2

L2(Γ)

and such that, for a ∈ (0, 1) close enough to 1

L(Ωa) < L(Ω).

There exists a function g and η > 0 such that

∀h ∈ Z
1/2
00 , Q(h) ≥ η‖h‖2

H1/2(Γ)

and such that, for a ∈ (0, 1) close enough to 0

L(Ωa) < L(Ω).

Remark 5.1 As announced in the introduction, these examples prove that,

although the second shape derivative at the unit disk is strictly positive, there

are open subsets, ”close” to the unit disk (in some sense) and satisfying the

constraints, for which the functional is strictly less than for the disk.

The second example is somehow more satisfactory since the coercivity holds

in the natural space H1/2. But, in this case, even the first derivative is patholog-

ical: note that the functional is not differentiable with respect to the parameter
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a at a = 0, although the classical first shape derivative does vanish for the disk.

This shows that the so-called ”topological” derivative should be also taken into

account to decide about the existence of a true minimum.

The first example is more regular in a way, since the first derivative with

respect to a does exist and vanishes at a = 1. Here again, the classical derivative

turns out to be insufficient to decide about minima.

Remark 5.2 It is easy see that we may perturb the first example to obtain a

similar counterexample with an annulus close to the disk Ω and of the form

Ωa,b,c = {x ∈
�2; |x| ∈ [0, a) ∪ (b, c)},

where a, b, c are close to 1, a < b < c and c2 − b2 + a2 = 1. Note that Ωa,b,c are

then even C∞ shapes!

Proof: Let Ca = (a2 − 1)/4 ln a. Then ua = uΩa
is given by

∀a ∈]0, 1[: ua(r) =





a2 − r2

4
if 0 ≤ r < a,

1 − r2

4
+ Ca ln r if a < r ≤ 1.

and u1(r) = (1 − r2)/4,∀r ∈ [0, 1].

First example: Let c ∈
�

and g(x) = −x2 + cx. By (5.2),

Q(h) = −
π

2

∑

n≥2

[ 1

2n + 2
− c + n(c −

1

4
)
]
(a2

n + b2
n). (5.3)

An explicit computation of J(u1) and J(ua) gives

1

2π
[J(u1) − J(ua)] =

(1 − a2)Ca

4
(c −

3(1 + a2)

8
+ Ca), (5.4)

so that, as a tends to 1, if c 6= 1/4,

J(u1) − J(ua) ∼
π

2
(1 − a)(c −

1

4
).

Let us precisely choose c = 1/4. Then,

Q(h) =
π

2

∑

n≥2

(
1

4
−

1

2n + 2
)(a2

n + b2
n) ≥

π

24

∑

n≥2

(a2
n + b2

n).

On the other hand, from (5.4), we see that, as a tend to 1

J(u1) − J(ua) ∼ π(1 − a)2/8,

so that J(u1) > J(ua) when a is close to 1.

Second example: Note first that, for all choice of g, we have

d

da
J(ua) = π

∫ a

0

g′(ua)a r dr + 2πC ′
a

∫ 1

a

g′(ua)r ln r dr,
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so that, as a tends to 0

d

da
J(ua) ∼

π

2a(ln a)2

∫ 1

0

g′(u0)r ln r dr. (5.5)

The second example consists in choosing g in such a way that g(0) = 0 and

∫ 1

0

g′(u0)r ln rdr < 0,

∫ 1

0

g′(u0)r
2n−1dr − 2g(

1

4
) ≥ η > 0, ∀n ≥ 2. (5.6)

For this, we choose α > 0, b ∈ (0, 1/4) such that

α b > 1,
1

4b
>

α

4
− 1 >

−1

ln(1 − 4b)
, (5.7)

(this is for instance realized by α = 10, b = 1/8), and we set g(0) = 0 and

g′(s) =




−α if 0 ≤ s ≤ b,

4(αb − 1)/(1 − 4b) if b ≤ s ≤
1

4
.

We check that the sequence

n ≥ 1 → αn =
1

2n
[(α − 4)(1 − 4b)(n−1) − α],

is stricly increasing and that

∀n ≥ 2,

∫ 1

0

g′(u0)r
2n−1dr = αn, 2 g(1/4) = α1 = −2,

∫ 1

0

g′(u0)r ln rdr = (
α

4
− 1) ln(1 − 4b) + 1.

We verify that assumption (5.7) implies (5.6).

Since g in only Lipschitz continuous, we may approximate g by C∞-functions

gp converging uniformly on (0, 1/4) to g as p → +∞ and such that g′p is uni-

formly bounded and converges a.e. to g′. Then, inequalities (5.6) are satisfied

by gp for p large enough.

Proof of Lemma 5.1: We use the same normal deformations as in (2.2) which

are of the form

Ttx = x + tξ(x), ξτ = 0, ξ · ν = h, Ωt = Tt(Ω).

Then, if l(t) = L(Ωt), we have (see (2.3))

lL1 (h) = l′(0), lL2 (h, h) = l′′(0).

Since, we already know the derivatives of S(·), we only have to compute e′(0), e′′(0)

where e(t) =
∫
Ωt

g(ut) and ut is solution of

−∆ut = 1 in Ωt, ut = 0 on ∂Ωt. (5.8)
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We have u0(r) = u(r) = (1 − r2)/4, ∇u = −ν/2 on Γ. Note that ∂t|t=0
ut is

solution of

∆(∂t|t=0
ut) = 0 in Ω, ∂t|t=0

ut =
1

2
h on Γ. (5.9)

Thus, with the notation of Lemma 5.1, ∂t|t=0
ut = 1

2H(h). Differentiating twice

at the boundary leads also to

∂2
tt|t=0

ut = −2h
∂(∂t|t=0

ut)

∂ν
+

1

2
h2 = −hD(h) + h2/2 on Γ. (5.10)

We will repeatedly use the following classical derivation formula which is

valid for regular f : [0, 1] ×
�2 →
�

d

dt

∫

Ωt

f(t) =

∫

Ωt

[
∂f

∂t
(t) + ∇ · (f(t)ξ ◦ Π(t))] (5.11)

where Π(t) := (I + tξ)−1. We apply it to e(t).

e′(t) =

∫

Ωt

g′(ut)∂tut +

∫

Ωt

∇ · (g(ut)ξ ◦ Π(t)). (5.12)

In particular,

e′(0) =

∫

Ω

g′(u)∂t|t=0
ut + g(0)

∫

Γ0

h. (5.13)

Let us introduce the solution p of the adjoint problem

−∆p = g′(u) in Ω, p = 0 on Γ,

which satisfies

p′(1) = −

∫ 1

0

rg′((1 − r2)/4) dr = 2[g(0) − g(1/4)]. (5.14)

We have
∫

Ω

g′(u)∂t|t=0
ut = −

∫

Ω

∆p(∂t|t=0
ut) = −

∫

Γ

(∂t|t=0
ut)p

′(1). (5.15)

Now, the first part of Lemma 5.1 follows from (5.13,5.15,5.14,5.9,2.9).

Differentiating (5.12) at t = 0 leads to

e′′(0) =

∫

Ω

g′′(u)(∂t|t=0
ut)

2 +

∫

Ω

g′(u)∂2
tt|t=0

u(t)

+

∫

Γ

hg′(u)∂t|t=0
ut +

d

dt |t=0

∫

Ωt

∇ · (g(ut)ξ ◦ Π(t)). (5.16)

For the last integral I4 of (5.16), we obtain by using (5.11), integration by

parts and ∂t|t=0

(ξ ◦ Π(t)) = −Dξ ξ:

I4 =

∫

Γ

ν · [g′(0)ξ∂t|t=0

ut − g(0)Dξ ξ] + h∇ · (g(u)ξ).
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But, recall that ξ = h̃ν̃ where the norm of ν̃ is equal to 1, so that, on Γ

ν · Dν̃ = 0, ν · Dξ · ν −∇ · ξ = −h∇ · ν̃ = −h.

Adding everything yields

I4 =
d

dt |t=0

∫

Ωt

∇ · (g(ut)ξ ◦ Π(t)) = g(0)

∫

Γ

h2. (5.17)

For the third integral of (5.16), we have

∫

Γ

hg′(u)∂t|t=0
ut =

1

2
g′(0)

∫

Γ0

h2. (5.18)

For the second integral of (5.16), by double integration by parts and using

(5.10,5.14), we obtain

∫

Ω

g′(u)∂2
tt|t=0

ut = −

∫

Ω

∆p∂2
tt|t=0

ut = −

∫

Γ

p′(1)∂2
tt|t=0

= [g(
1

4
) − g(0)]

∫

Γ

h2 − 2hD(h). (5.19)

Using (5.16), the expressions of the three integrals above and (2.9), we obtain

the second statement of Lemma 5.1.

If now h is given by its Fourier series expansion (5.1), we have that

H(h) =
∑

n≥1

rn(an cos nθ + bn sinnθ) on Ω. (5.20)

Elementary computations lead to

∫

Γ

h2 = π
∑

n≥1

(a2
n + b2

n),

∫

Γ

hD(h) = π
∑

n≥1

n(a2
n + b2

n),

∫

Ω

g′′(u)H(h)2 = 2π
∑

n≥1

(a2
n + b2

n)[−g′(0) + 2n

∫ 1

0

g′(u0)r
2n−1dr].

We deduce (5.2) (note that the term associed to n = 1 vanishes).
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[13] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des
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