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Solidification and Grown-in Defects

Thierry Duffar

This chapter is dedicated to my colleague Marie-Danielle Dupouy, who died in Sep-

tember 2004. She devoted her scientific activity to the study of the effect of liquid con-

vection on metallurgical alloy structures. We were working together, with the help of

numerous colleagues and students, on an academic project that ultimately fed the pres-

ent text.

3.1

Introduction: the Solid–Liquid Interface

Most solid alloys are prepared from the liquid phase, and the liquid-to-solid trans-

formation, called solidification, is the topic of this chapter.

Obviously, the structure, defects, and properties found in the final alloy are the

result of what happened in the elaboration process and therefore first in the liq-

uid phase, where transport phenomena, diffusion and convection, have a strong

influence on the final structure. The main and special solidification features oc-

cur at the transition between the solid and the liquid phases, the so-called solid–

liquid interface. The physics of what happens later in the solid phase is covered

by other chapters in this book: this one will deal essentially with the solid–liquid

interface and its interaction with the liquid.

This introduction will be completed with some fundamental notions relating to

this interface. Section 3.2 will present the classical theories of structures in alloy

solidification: stability of the solid–liquid interface, growth of dendrites and eu-

tectics and rapid solidification; it will be seen that the diffusion in the liquid state

plays a major role in these processes. Section 3.3 will be focused on the defects

resulting from solidification processes, and the role of convection in the liquid

will be stressed.

3.1.1

Structure of the Solid–Liquid Interface

There are essentially two different structures of a solid–liquid interface. The

‘‘faceted’’ interface is represented by a flat, smooth surface, at the atomic scale.
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Therefore there is a sharp, total change in the degree of order when crossing the

interface, from the fully crystalline solid side to the liquid (Fig. 3.1).

In ‘‘rough’’ interfaces, the transition between the fully ordered solid and the

disordered liquid is less abrupt, extending over several atomic distances (Fig.

3.2). In this layer, atoms, molecules, or building units are experiencing an envi-

ronment of which the degree of order is fluctuating with time. Results of molec-

ular dynamics simulations have shown that the unit movements do not change

markedly when crossing the interface (at the melting temperature). Structural

and kinetic models of such diffuse interfaces have been proposed; see for exam-

ple the pioneering work of J. W. Cahn (1960), and more sophisticated models of

Fig. 3.1 AFM observation of a (101) facet on a growing monoclinic

lysozyme crystal. An unsaturable spiral step, likely to be associated with

a dislocation, is visible (Chernov et al. 2004).

Fig. 3.2 Liquid–solid transition through a diffuse zone with a thickness

of a few structural units (Hoyt et al. 2004).
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the interface can be found in the review article by Bennema (1993), but for the

purpose of the present discussion simplified surface representations will be used.

Theoretical models have been proposed in order to predict the interface rough-

ness. The most classical, from K. Jackson (1958) takes into account the transfor-

mation entropy (vaporization, solution, melting) reduced to the ideal gas constant

R [Eq. (1)].

a ¼ DSt

R
ð1Þ

Faceting occurs if a > 2.

3.1.2

Kinetics of the Solid–Liquid Interface

Solidification generally occurs under thermal or chemical gradients and cannot

be considered as an equilibrium process. However, a local thermodynamic equi-

librium on the interface can be considered in the case where, on arrival, a build-

ing unit can easily find a satisfactory position in its surroundings. By denoting

the surface diffusion coefficient as DS and the typical size of a structural unit as

a, the surface velocity Vu of the unit can be compared with the interface velocity vi
by Eq. (2)

Vu

vi
¼ DS

avi
ð2Þ

With typical values of DS and a (5� 10�10 m2 s�1 and 5� 10�10 m) it can be

seen that for interface velocities higher than 1 m s�1 the local thermodynamical

equilibrium does not apply. This case will be treated in Section 3.2.3 (Rapid

Solidification).

For lower velocities, thermodynamic data, especially the phase diagram in the

case of alloys, can be used safely. For example, the temperature Ti of an alloy

Table 3.1 Observed morphology of the crystal surface during growth of

various materials in several processes.

Reduced entropy a Material Feeding phase Morphology

@1 metal molten liquid rough

@1 crystalline polymer molten liquid rough

2–3 semiconductor solution rough to faceted

@10 metal vapor faceted
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interface can be computed from the liquidus slope (which is generally negative;

see Fig. 3.3), by Eq. (3).

Ti ¼ Tm þmlci ð3Þ

However, thermodynamic equilibrium is established only in the case of a resting

interface. In order to make it move, it is necessary to introduce a slight deviation

from equilibrium. In the case of solidification this is kinetic undercooling, mea-

sured as the difference between the thermodynamic melting temperature Tm and

the actual temperature Ti of the moving interface [Eq. (4)].

DTk ¼ Tm � Ti ð4Þ

In the case of the faceted interface, growth can occur only by nucleation of a

cluster on the perfectly flat surface. When this cluster is created, the whole sur-

face is quickly covered, so that the factor limiting the velocity is the cluster

creation step. This gives an interface velocity varying exponentially with under-

cooling, and then growth only occurs at high values of undercooling, when the

cluster size is small enough to have some chance of appearing spontaneously

thanks to the density fluctuations of the liquid phase.

Undercooling values of several 10 K result; experiments show, however, that the

undercooling for faceted interfaces is generally of the order of a few degrees only.

In practice, facets contain defects such as steps and kinks or unsaturable defects

such as screw dislocations (see Fig. 3.1). Following the pioneering work of

Burton, Cabrera, and Frank (Burton et al. 1951), numerous authors have derived

relationships, such as Eq. (5), between the velocity and the undercooling for an

imperfect faceted interface.

vi ¼ Kf DTk
n 1 < n < 4 ð5Þ

Fig. 3.3 Typical phase diagram used in this chapter.
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Kf is the kinetic coefficient, depending on the number of defects on the surface

and also on its crystallographic orientation.

In the case of the rough interface, the interface velocity is calculated from the

balance of the structural units coming from the liquid to the interface and leaving

the interface for the liquid phase. To a first order, with some simplifying assump-

tions ([111] surface composed of cubic structural units), Eq. (6) can be shown to

hold (Kurz and Fisher 1998).

vi ¼ KrDTk ð6Þ

Kr is of the order of 1, showing that for classical metallurgical or crystal growth

rates (10�6–10�4 m s�1) the kinetic undercooling is very low for rough interfaces

and can be neglected.

3.1.3

Chemistry of the Solid–Liquid Interface: the Segregation Problem

Figure 3.3 shows a typical, simplified phase diagram of a binary alloy. For a given

temperature, T2, the composition of the solid is related to the composition of the

liquid by the segregation coefficient k [Eq. (7)].

k ¼ cs
c l

ð7Þ

In most cases, the solid is less concentrated than the liquid ðk < 1Þ and this situ-

ation will be considered throughout this chapter; the reverse situation ðk > 1Þ
leads to symmetric results. In case of faceted growth, k is likely to depend on the

crystallographic orientation of the interface.

It follows that the advancing interface rejects solute in the liquid and a balance

of the incorporated and rejected solute gives the flux toward the liquid [Eq. (8)].

�D l
qc

qz

� �

i

¼ vic
l
i ð1� kÞ ð8Þ

This flux generates a boundary layer in the liquid, close to the interface. If diffu-

sive conditions prevail in the liquid, the boundary layer thickness is of the order

of d [Eq. (9)].

d ¼ D l

vi
ð9Þ

In this case, after an initial transient (whose length is of the order of Di=kvi) cor-

responding to the building of the solute boundary layer, Tiller et al. (1953) have

shown that a steady state is obtained, with a growing solid of initial composition
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c0 in equilibrium with a liquid of composition c0=k. This result is valid as far as

the diffusive solute boundary layer is not affected by convection. According to Eq.

(9), this is more likely for high interface velocities (even with a growth rate of

10�3 m s�1, for a typical diffusion coefficient of 10�8 m2 s�1, the boundary layer

is 10 mm thick, and likely to be affected by the convection, which vanishes very

close to the interface where solid is growing).

The very general case, then, is that the liquid is mixed by some natural or

forced convection and the boundary layer thickness depends on the intensity of

convection. If the mixing is strong enough, the solute boundary layer can be

neglected and the liquid can be considered as homogeneous. Scheil and Gulliver

derived Eq. (10) for the relationship between solid composition cs and solidified

fraction (Scheil, 1942).

cs ¼ kc0ð1� fsÞðk�1Þ ð10Þ

Figure 3.4 gives the shape of this segregation behavior for different values of k.

This equation is not valid right up to the end of the ingot, where the concentra-

tion tends toward infinity. In practice different phenomena may occur when the

concentration increases, such as precipitation of eutectic material, variation of k

with c, or destabilization of the interface (see Section 3.2.1).

For a moderate convection, Burton, Prim and Schlichter (Burton et al. 1953)

have shown that Eq. (10), and consequently Fig. 3.4, can be used provided that k

is replaced by an ‘‘effective’’ segregation coefficient, keff , depending on the bound-

ary layer thickness. Its value varies between 1 (the diffusive case seen above) and

k (fully mixed liquid, Scheil–Gulliver law); for the interested reader there is a

general discussion of these matters, with the calculation of keff in some configu-

rations, in Garandet et al. (1994).

In the above explanations, cases have been considered where the diffusion of

the solute in the solid is negligible, which generally is the case (substitutional

alloys). However, this is not valid for solutes of small atoms in lattices of large

atoms, as for example in the case of C in Fe (interstitial alloys). If solid diffusion

is rapid, on the scale of the solidification time, the solid can be considered homo-

geneous at any time, especially at the end of solidification, and in equilibrium

with the liquid interface composition. In the case of ideal mixing of the liquid,

this leads to the well known lever rule, Eq. (11).

cs fs þ c l f l ¼ cs fs þ
cs
k
ð1� fsÞ ¼ c0 ð11Þ

The chemical segregation problem is unavoidable. Strong mixing of the melt in-

creases the local homogeneity of the solid but increases the macrosegregation all

along the ingot. The only way to reduce the segregation is to feed the crucible

continuously with fresh solvent in order to keep the liquid composition constant,

but this leads to process complexity and this solution is seldom used.
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3.1.4

Temperature of the Solid–Liquid Interface

The nucleation theory (for details, see Chapter 7) can be applied to solidification

and, from Gibbs’s classical treatment, it appears that the critical nucleation radius

in a liquid showing a certain undercooling can be expressed as Eq. (12), where G

is the Gibbs coefficient (close to 1� 10�7 K m for metals).

Fig. 3.4 Concentration profile along a solidified ingot for various values

of the segregation coefficient k (Garandet et al. 1994).
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r � ¼ 2gls
DSmDT

¼ 2G

DT
ð12Þ

It follows that any curved solid–liquid interface (even at rest) in equilibrium with

its liquid shows a capillary undercooling depending on the local curvature k, ac-

cording to Eq. (13).

DTcap ¼ Gk: ð13Þ

This effect is significant only for a radius of curvature of the interface less than

10 mm.

From the above considerations, it follows that the temperature of the solid–

liquid interface depends on the chemical composition, on its velocity, and on its

curvature. For example, the interface temperature of an alloy growing with a

rough interface should be expressed as Eq. (14), from Eqs. (3), (6), and (13),

where Tm is the thermodynamic melting point of the pure substance.

Ti ¼ Tm þmlci �
vi
Kr

� Gk ð14Þ

This equation of state of the solid–liquid interface defines its position and shape.

The next Section aims to present some classical studies of the solid alloy struc-

tures that result from the interaction of Eq. (14) with the thermal and chemical

fields surrounding the interface.

3.2

Solidification Structures

The solid–liquid interface morphology changes with the process parameters alloy

composition, thermal gradient, and solidification rate. Figure 3.5 shows how it

changes when the solidification rate increases. Similar diagrams can be plotted

as a function of the alloy composition or thermal gradient.

Derivations of the most important characteristics of the diagram in Fig. 3.5, i.e.,

the interface destabilization, which corresponds to the transition between planar

(a) and cellular (b) interface, the periodicity of the cellular structure (b), the

characteristics of the dendrite field (c), and the transition toward rapid solidifica-

tion (d), are given below. Another case is included, when an eutectic structure is

obtained with two different solid phases growing simultaneously from a single

liquid.

In practical applications, three regimes are used in order to grow materials.
� Planar interface growth is used to get high-quality single

crystals for electronics, optics, detectors, and so on.
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� Dendritic growth is the most common because it is used

universally for all metallurgical processes: steel, cast iron, Al-

and Cu-based alloys, and others. The reason is that the

dendritic regime leads to tiny microstructures, furthermore

accompanied by eutectic areas, and this gives excellent

mechanical properties to these alloys.
� Rapid solidification is used in order to obtain very small

microstructures and amorphous materials. It is also a way to

get metastable phases that cannot be solidified at lower

growth rates.

3.2.1

The Interface Stability and Cell Periodicity

Morphological destabilization of the solid–liquid interface is a mechanism aim-

ing to increase its area in order to exchange solute or heat better with the sur-

rounding liquid. This generally leads to important modifications of the structural

quality of an alloy and has deserved continuous attention, considering the practi-

cal importance of solidification in material processes (Coriell and Mc Fadden

1993).

Destabilization occurs when a perturbation of the interface is likely to expand

toward the liquid instead of decreasing and vanishing. To the first order, this can

be checked by comparing the actual thermal field in the sample and the local

melting temperature, which depends essentially, for a flat interface, on the local

chemical composition [Eq. (3)]. Due to the chemical boundary layer at the inter-

face, the chemical composition decreases, and the melting temperature increases,

with the distance to the interface. The variation of melting temperature at the in-

terface, toward the liquid, is given by Eq. (15), from Eqs. (3) and (8).

Fig. 3.5 Evolution of the solid–liquid interface morphology with

increasing velocity. (a) Planar interface generally observed in single-

crystal growth; (b) cellular structures; (c) dendrites observed in

classical metallurgical processes; (d) flat interface obtained in rapid

solidification.
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dTm

dz

� �

i

¼ dTm

dc

dc

dz

� �

i

¼ �m l
vic

l
ið1� kÞ
D l

ð15Þ

If the thermal gradient in the liquid, at the interface, is lower than this value, a

liquid layer close to the interface is at a temperature lower than its melting tem-

perature and any perturbation of the interface will grow toward the liquid. On the

contrary, in a high enough liquid thermal gradient, there is no undercooled liquid

layer. It follows that the interface stability is written as Eq. (16).

‘T l
i > �m l

vic
l
ið1� kÞ
D l

ð16Þ

As explained in the Introduction, the composition at the interface, ci, is likely to

change all through the solidification process (see for example Eq. (10) in the case

of complete mixing). For a solute rejected into the liquid, the concentration in-

creases continuously and destabilization occurs toward the end of the ingot. It is

only in the case of pure diffusion in the liquid that the composition at the inter-

face reaches a steady-state value, c0=k.

These destabilization mechanisms and criteria were initially proposed by Tiller

et al. (1953) and are in acceptable agreement with the experimental observation of

destabilization for slow growth rates. However they do not take into account the

energy cost linked to the increase in the interface area; taking this into account

will make it possible to find the typical size of the resulting structure. This analy-

sis has been performed by Mullins and Sekerka (1964) by studying the effect of

a sinusoidal perturbation of the interface, of amplitude e and period l, on the

thermal and chemical field around it and taking into account the effect of the in-

terface curvature on its temperature [Eq. (13)]. This gives the rate of variation of

the perturbation amplitude as in Eq. (17), where L and ‘T are mean values taken

from the liquid and solid regions, and the x are positive functions of the growth

rate.

1

e

de

dt
¼ m l‘cxc � L‘TxT � G

4p2

l2
ð17Þ

Looking at the right-hand side of Eq. (17), it appears that the first term, related to

the solute field, is positive and therefore is the source of the destabilization,

whereas the other two terms, related to the thermal field and to the capillarity,

are negative and thus stabilize the interface.

From the physical point of view, the interface deformation is an increase in its

area in order to improve the rejection of solute toward the liquid. However it is

then more difficult to extract the latent heat toward the solid: this explains the

stabilizing effect of the thermal field. Furthermore, creating surface has an ener-

getic cost, reflected in the capillary term, which is also stabilizing.
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From this expression an improved stability criterion, Eqs. (18) and (19), can be

deduced (Sekerka 1965).

DHm

2Ll
þ ‘T l

i

vi

� �

> �ðLs þ LlÞ
2Ll

m l
c li ð1� kÞ

Dl
SðAÞ ð18Þ

with:

A ¼ � Gkvi

m lD lð1� kÞc li
ð19Þ

This expression differs from Eq. (16) by taking into account a mean thermal con-

ductivity and the latent heat of transformation but, more importantly, by the func-

tion SðAÞ, which takes into account the stabilizing effect of capillarity.

This function is plotted in Fig. 3.6. When A ¼ 1, SðAÞ ¼ 0 and the interface is

stable. This occurs for high values of the interface velocity and will be discussed

Fig. 3.6 Variation of Sekerka’s stability function with the dimensionless

parameter A (Sekerka, 1965).
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in Section 3.2.3. At low growth rate, the latent heat term becomes negligible,

A ! 0, SðAÞ ! 1, and the stability criterion takes a form similar to Eq. (16).

Finally, the periodicity of the fluctuation can be obtained by setting Eq. (17)

equal to zero, which, for small growth rates, can be written as Eq. (20) (Kurz and

Fischer 1998).

0 ¼ m l‘c � ‘T � G
4p2

l2
ð20Þ

Equation (21) follows.

l ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G

m l‘c � ‘T

r

ð21Þ

It can be noted that l takes a real value if Eq. (22) is true; this is the condition for

instability already given in Eq. (16).

m l‘c > ‘T ð22Þ

For typical growth parameters used in metallurgy, the periodicity is of the order

of 1 mm.

3.2.2

Dendrites

Destabilization of the interface leads to the formation of cell and dendrite struc-

tures. From the practical point of view, cells create defects in semiconductor crys-

tals and crystal growers carefully avoid working under destabilizing conditions.

Dendrites have been studied intensively in materials processing because they af-

fect the properties of the alloy. This influence can be either negative (e.g., the

disappearance of the transparency of silicate glasses in the case of dendrite gener-

ation within them), or positive (e.g., the increase in the elastic limit of eutectoid

steels when the microstructure decreases in size).

The interface destabilization studied in Section 3.2.1 corresponds to the transi-

tion between Fig. 3.7(a) and (b). If the destabilization is increased (in this case by

increasing the growth rate), the interface shows cells, then fully developed den-

drites. The tips of the perturbations reject solute very efficiently and the regions

between them trap solute, then grow more slowly. The resulting structure has a

periodicity of its chemical composition, very often associated with precipitates or

eutectics between the dendrites or cells.

It should be borne in mind that the structure obtained during solidification,

close to the melting point, is likely to be significantly modified during the natural

cooling of the solid, or during subsequent mechanical or thermal treatments.

This modification depends on the alloy of interest: in the case of steels, the origi-

nal structure of which can be totally lost after forging, whereas the solidification
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structures in aluminum-based alloys do not change significantly during subse-

quent processes. These solid-state transformations are covered in Chapter 7.

3.2.2.1 Different Types of Dendrites

The dendrites obtained by destabilization of a macroscopic solid–liquid interface

are called ‘‘columnar dendrites’’. They appear only in the case of an alloy pro-

cessed under conditions of interface destabilization and their growth is con-

Fig. 3.7 From planar interface to dendrites: evolution of the solid–liquid

interface structure when the growth rate is increased. The alloy is a

transparent succinonitrile/acetone (4% mixture), solidified between two

glass plates under a microscope. The liquid is on the right in all the

pictures (Trivedi and Somboonsuk 1984).
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Fig. 3.8 Equiaxed dendrites in an AlaNi alloy; each dendrite constitutes

an individual grain (typical size 200 mm). The eutectic structure

between the dendrites cannot be seen at this magnification.

Fig. 3.9 Typical columnar dendrites in an Ala7%Si alloy: SEM

observation of the interface after quickly removing the liquid. These

dendrites have a typical size of 200 mm. Their faces are all oriented in

the same direction, because they belong to the same single crystal

grain (Access-Aachen).
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strained (oriented) by the thermal gradient, so that the latent heat is evacuated by

the solid. A common error is to associate structural grains with the dendrites.

Generally speaking, the solid–liquid interface of a single grain is composed of

several columnar dendrites: for example, single-crystal turbine blades are grown

in the columnar dendritic mode.

Another type is called an ‘‘equiaxed dendrite’’. It is obtained when crystal seeds

nucleate inside the liquid phase. This happens when the liquid is undercooled.

Each seed grows on its own, at the beginning as a sphere, which may be main-

tained throughout the solidification (globular structures); more generally, how-

ever, dendrite arms appear on the crystal by destabilization. Growth is free (in all

directions) and controlled by both solute and thermal diffusion into the liquid in

the case of alloys. Equiaxed dendrites occur for pure elements as well, in which

case the growth is controlled by thermal diffusion alone. Due to the release of

latent heat, the solidified dendrite becomes warmer than the surrounding liquid

and the latent heat is evacuated toward the liquid. Each equiaxed dendrite gives

birth to an individual grain in the final structure.

Fig. 3.10 Shape of the columnar interface of an Al2Cu intermetallic

compound: SEM observation after quickly removing the liquid (Dupouy,

1986).
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The shape of the dendrite depends on the material. In the case of solid solu-

tions based on simple crystalline metals with high symmetry (bcc, fcc) numerous

growth directions are available and the structure shows an axis and secondary and

even ternary arms typical of dendrites (Fig. 3.9). In general, the axis and the arms

have simple crystallographic orientations, [001] in the case of cubic crystals, and

the growth rate anisotropy is low.

In the case of intermetallic compounds with crystallographic structures of

lower symetry, only a few growth directions are available; the dendrites are fac-

eted and the growth rate anisotropy is high (Fig. 3.10).

Non metallic compounds have high melting entropies and they grow as thin

plates, flakes, or needles (Fig. 3.11).

3.2.2.2 Kinetics of Columnar Dendrites

The fundamental hypothesis of all models for the study of dendrite dynamics

considers that the growth is controlled by what happens at the tip of the dendrite.

This rather surprising assumption (the dendrite tip radius is typically 1 mm and

the dendrite length may be several hundreds of micrometers) is based on obser-

vations performed by Huang and Glicksman (1981) and Esaka (1986) and has

been verified for the columnar dendrite.

For a given velocity, the problem is to find the most appropriate curvature of

the dendrite tip to evacuate the amount of solute rejected. It is supposed that the

solute field around the dendrite tip is purely diffusive. As shown in Fig. 3.12,

Fig. 3.11 Typical equiaxed carbon flakes in gray cast iron: optical

metallography, typical size 500 mm.
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supersaturation and undercooling are related by Eq. (23) and depend on the

chemical composition at the tip.

W ¼ c li � c0

c lið1� kÞ
¼ �DT

m lkc
i
l

ð23Þ

It is therefore necessary to compute the solute field around the tip in order to

solve the problem.

A parabolic shape of the dendrite is generally assumed and fits well with the

observation of dendrites in transparent media in the diffusive approximation

(see Fig. 3.13b).

The diffusion equation in this case has been solved by Ivantsov (1947) and

gives Ivantsov’s function Q [Eq. (24)].

W ¼ IvðPeÞ ¼ ePePe

ðy

Pe

e�z

z
dz ð24Þ

The leading parameter is the Peclet number, Pe [Eq. (25)].

Pe ¼ vir

2D l
ð25Þ

Fig. 3.12 Chemical and thermal fields in front of the tip of the dendrite

(Kurz and Fischer 1998).
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If Pe is low (low growth rate), the supersaturation tends toward Pe, which is also

the solution obtained by considering that the dendrite is a cylinder ending in a

half-sphere, instead of a parabola.

This solution does not take into account the effect of capillarity, which has been

added by Huang and Glicksman (1981). For example, in the low-Pe approxima-

tion, Eq. (24) is modified to Eq. (26).

W ¼ Peþ 2G

c0m lðk� 1Þr ð26Þ

The relationship imposed by Eq. (26) between tip radius and velocity at given

undercooling is shown in Fig. 3.14, in which the Ivantsov solution is the straight

line on the right-hand side and departure from this law under the effect of capil-

larity is seen to occur for small radii of curvature.

For a given supersaturation (undercooling in the thermal case) the number of

couples ðvi; rÞ is practically infinite and another criterion is necessary to solve the

problem. It was first considered that the tip radius is given by the extremum of

the curve in Fig. 3.14, because it corresponds to the maximum velocity and mini-

mum undercooling of the dendrite. However this leads to tip radii which are too

small compared with the experimental values.

Langer and Müller-Krumbhaar (1977) have postulated that the tip radius is of

the order of the periodicity of the interface destabilization. Their argument is

that if the dendrite tip is smaller than this value the dendrite is likely to disap-

pear, and if it is higher the dendrite tip will be destabilized and two dendrites

will appear. From Eq. (21) we get Eq. (27), where the unknown variable is the

solute gradient at the tip, which depends on the concentration at the interface.

Fig. 3.13 Shape of succinonitrile dendrites: (a) under a liquid flow

which is coming from the left and stabilizes the exposed side; (b) under

microgravity conditions where no convection occurs (Huang and

Glicksman 1981). Dendrite tip radius is a few mm.
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r ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G

m l‘c � ‘T

r

ð27Þ

Combination of Eqs. 8, 23, 26, and 27 gives a relationship between the growth

rate and the tip radius which, in the case of a low growth rate and a negligible

thermal gradient, can be written as Eq. (28) (Kurz and Fischer 1998).

r 2vi ¼ 4p2 D lG

c0m lðk� 1Þ ð28Þ

This criterion is in good agreement with the dendrite tips measured by

Glicksman.

3.2.2.3 Kinetics of Equiaxed Dendrites

For dendritic structures of pure metal growing in an undercooled melt (thermal

equiaxed dendrites), the treatment of the columnar dendrite is applied, but the

solute diffusion equation is replaced by the heat transfer equation, and Eq. (24)

is replaced by Eq. (29).

DT ¼ DHm

Cp

� �

IvðPeÞ ð29Þ

The growth is not constrained, the velocity depends on the undercooling of the

melt, and, in the simplified case of low Pe, the kinetic equations are (Kurz and

Fischer, 1998) (30a) and (30b).

Fig. 3.14 Relationship between the velocity and the tip radius for a

given undercooling/supersaturation (Kurz and Trivedi, 1990).
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vi ¼
DthCp

2p2DHmG
DT 2 ð30aÞ

r ¼ 4p2 G

DT
ð31aÞ

In the case of an alloy, it is necessary to take into account simultaneously the

thermal and the solute fields around the dendrite (Kurz and Fischer, 1998). This

gives Eqs. (30b) and (31b).

vi ¼
D l

4C0m lðk� 1ÞGDT 2 ð30bÞ

r ¼ 4
G

DT
ð31bÞ

The equiaxed dendrite arms are very sensitive to sedimentation and convection,

as shown by the comparison of experiments performed on AlaNi alloys under

microgravity (no sedimentation and convection), those under normal gravita-

tional conditions (Dupouy and Camel, 2001), and those on transparent materials

(Gerardin et al. 2001). Figure 3.15 shows the phase field simulation of the growth

of an equiaxed dendrite in a liquid flow (phase field simulation techniques are

Fig. 3.15 Two-dimensional phase field simulation of free dendritic

growth in a fluid flow. The flow enters at the top and leaves through the

bottom. Colours indicate temperatures and the light lines are the

streamlines (Boettinger et al. 2002).
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discussed in Chapter 10). The dendrite arm facing the incoming liquid is acceler-

ated, so that the equiaxed crystal becomes elongated in the direction of flow.

3.2.2.4 Characteristic Dimensions of the Dendrite

Knowing now the geometry of the dendrite tip, it is possible to compute the

characteristic dimensions of the dendrite field: height, a, and periodicity, l1, un-

der the hypothesis of an elliptical shape and regular hexagonal arrangement of

the dendrite field. With a and b as half-major and -minor axis, respectively, the

geometrical properties of the ellipse give Eq. (32).

r ¼ b2

a
ð32Þ

Neglecting the tip undercooling, Eq. (33) follows from Fig. 3.16.

l1 ¼ 1:7b ¼ 1:7
ffiffiffiffiffi

ra
p

¼ 1:7

ffiffiffiffiffiffiffiffiffiffiffi

r
DT0

‘T

r

ð33Þ

Substituting r from Eq. (28) gives l1 according to Eq. (34).

l1 ¼
4:3
ffiffiffiffiffiffiffi

‘T
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D lGc0m lðk� 1Þ
kvi

4

s

ð34Þ

Fig. 3.16 (a) Columnar Al dendrites (0.5 mm diameter) in an

Ala26wt%Cu alloy grown under microgravity in order to prevent

convective perturbation (Dupouy et al. 1992); (b) their schematic

representation as a hexagonal packing of ellipses; c) elevation along the

line A–B; d) corresponding temperatures in the phase diagram.
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This parameter gives the main periodicity of the alloy structure and also of the

defects that are generally trapped between the dendrites, precipitates, minority

phases, microsegregations, and so on. Table 3.2 gives experimental values of the

exponents of the growth rate and the thermal gradient, which are the principal

process control parameters. It follows that Eq. (34) describes well the tendency

but somewhat underestimates the effect of the growth rate.

Another important parameter is the secondary spacing, l2, which is the spacing

between the secondary arms along the dendrite side. As follows from Figs 3.8 and

3.16(a), because of the evolution of the structure during cooling, these arms are

degenerated and often are the only measurable structures. The original size of

these arms, close to the dendrite tip, is the destabilization periodicity but, as can

be seen from Fig. 3.13, it increases rapidly because of diffusion in the liquid be-

tween the arms, the solute going from the smaller arms toward the larger ones

under the effect of capillarity (Ostwald ripening). This occurs as long as the sides

of the dendrites are in contact with liquid. This phenomenon has been studied by

Kattamis and Flemings (1965) and Feurer and Wunderlin (1977); they found an

expression [Eq. (35)] for the spacing of secondary arms.

Table 3.2 Experimental growth rate exponents for the primary spacing of

dendritic arrays, for various alloys: l1A vmi ‘T n.

Dendrite Solute [wt%] m n

Al 2.2 to 10.1 Cu

5.7 Cu

0.15 Mg, 0.33 Si, 0.63 Mg, 1.39 Si (at %)

0.1 to 8.4 Si

1 to 27 Cu

1 to 5 Sn

0.1 to 4.8 Ni

5 Ag

�0.43

�0.36

�0.28

�0.28

�0.5

�0.5

�0.5

�0.5

�0.44

–

�0.55

�0.55

�0.5

�0.5

�0.5

�0.5

Pb 2 to 7 Sb

5 to 10 Sb

10 to 50 Sn

8 Au

10 to 40 Sn

�0.42

�0.75

�0.45

�0.44

�0.39 to �0.43

�0.45

�0.33

�0.3 to �0.41

Fe 0.4 C, 1 Cr, 0.2 Mo

8 Ni

0.6 to 1.5 C; 1.1 to 1.4 Mn

0.035 C, 0.3 Si

�0.2

�0.19

�0.25

�0.26

�0.4

–

�0.56

–
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l2 ¼ 5:5 �
GD l ln

cb
c0

� �

m lð1� kÞðcb � c0Þ
ðT0 � TbÞ
vi‘T

0

B

B

B

@

1

C

C

C

A

1=3

ð35Þ

In Eq. (35) the subscript b stands for the bottom of the dendrite, often at the eu-

tectic composition and temperature (as shown in Fig. 3.16d). This expression has

been obtained with the help of crude hypothesis and simplifications, yet it gives a

good description of the phenomenon and compares well with experimental obser-

vation (see Fig. 3.17).

3.2.2.5 Microsegregation

The cellular or dendritic morphology is the source of chemical heterogeneities in

the material, as solute is trapped between the cells or dendrites and the composi-

tion varies periodically through the microstructure.

Equation (10) can be used to account for this periodic variation of solute, by

considering the solidification of the dendrite thickness in the y direction, perpen-

dicular to its z axis [Eq. (36)]. The tip of the dendrite solidifies at a composition

close to the melt composition (Fig. 3.12) and solidification proceeds along a dis-

tance l1=2 till it reaches the side of the facing dendrite:

cðyÞ ¼ kc li 1� 2y

l1

� �ðk�1Þ
ð36Þ

Fig. 3.17 Secondary spacing l2 as a function of cooling rate e for

Ala4%Cu and Ala11%Si alloys (Jones 1984).
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When this concentration reaches the solubility limit, other solid phases precipi-

tate, often as eutectic structures.

3.2.3

Rapid Solidification

The study of rapid solidification processes began in the 1960s, as it is a way to

obtain materials in nonequilibrium and metastable states: microcrystalline or

amorphous phases, such as metallic glasses. They are obtained by a rapid cooling

of the sample, at 102–106 K s�1 (1011 K s�1 in certain laboratories). In this sec-

tion the three major aspects of rapid solidification are explained: the stabilization

of the solid–liquid interface, how it is possible to obtain metastable phases, and

in which case an amorphous solid can be obtained. There are no direct relation-

ships between these phenomena: amorphous and stable or metastable crystalline

phases can be obtained below, as well as above, the absolute stability velocity.

3.2.3.1 Absolute Stability and Diffusionless Solidification

From Eqs. (18) and (19), it can be seen that, during directional solidification, the

interface becomes unconditionally stable when the parameter A equals 1, which

gives immediately the expression for the absolute stability velocity, Eq. (37).

va ¼ �m lD lð1� kÞC0

Gk
ð37Þ

It is independent of the thermal gradient because its value becomes negligible

compared with the solute gradient in front of the interface. With classical mate-

rial parameters, the absolute velocity is in the range 0.1–1 m s�1.

At very high growth rates, the solute boundary layer in the liquid decreases so

much [Eq. (9)] that it becomes of the order of the interface thickness. Coming

back to the argument developed in the Introduction [Eq. (2)] it follows that the

interface velocity becomes so high that the atoms or molecules do not have

enough time to rearrange at the interface and the liquid is solidified without any

segregation; the solute segregation coefficient tends toward 1. Of course, the

chemical potential of the solid and the liquid are no longer equal, as they are not

in equilibrium. Aziz (1982) has proposed a relationship [Eq. (38)] for the velocity-

dependent segregation coefficient:

kv ¼
kþ avi

Ds

1þ avi
Ds

ð38Þ

As kv approaches 1 with increasing velocities, this favors the absolute stability of

the front in the case of directional solidification. In the case of growth from the

undercooled melt, dendrites become purely thermal once diffusionless solidifica-

tion conditions are reached at the tip ðkv ¼ 1Þ.
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In any case, the interface velocity cannot be higher than the velocity of sound in

the liquid, which is of the order of 103 m s�1 for metals.

3.2.3.2 Nonequilibrium Phase Diagrams

An interesting fact in rapid solidification is that the undercooling of the interface

increases with the growth rate (see Eqs. (5) and (6) for the kinetic effect, or Eqs.

(23)–(25) for a columnar dendrite) and liquids can be solidified far from their

equilibrium melting temperature, in regions of the phase diagram where meta-

stable phases can be obtained.

At equilibrium, for a given temperature T, the compositions of the solid and

liquid phases are defined through the free energy diagram (Fig. 3.18) (see Chap-

ter 7 for calculation of phase diagrams).

When rapid solidification occurs, the chemical compositions of the solid and of

the liquid can be equal, as explained above, but they cannot be higher than c0,

otherwise the energy of the solid would be higher than the energy of the liquid.

Therefore, for the given temperature T, it is possible to get a solid with composi-

tions ranging from ce to c0. The corresponding T–c0 curve, known as the T0 line,

can be plotted in the phase diagram of the alloy, as shown in Fig. 3.19. It is

located between the liquidus and solidus lines.

Provided that the undercooling is large enough, it can be seen from Fig. 3.19

that the composition domain of the equilibrium phases can be increased. But

the most important application is that other phases, which cannot be solidified

at equilibrium, can be obtained.

3.2.3.3 Structure of the Rapidly Solidified Phase

Crystals show well-ordered piles of atoms. On the contrary, amorphous solids,

such as glasses, show atomic arrangements that are closer to the structure of

Fig. 3.18 Free energy of the solid and the liquid phases at equilibrium.

The dotted line is a tangent to both energy curves corresponding to the

solidus and liquidus lines (‘‘double tangent construction’’).
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liquid phases, with absence of topological long-range order. Obtaining one or the

other structure depends on the probability of nucleation of crystal seeds in the

cooling liquid.

The nucleation rate of seed crystals depends on two factors. In order to nucle-

ate, a seed should be large enough, so that enough solid is created to counterbal-

ance the energy cost of creating the seed surface. Once the seed has nucleated, it

should be fed by diffusion through the liquid in order to grow. Both mechanisms

are energetically activated and the nucleation rate, i.e., the number of growing

seeds nucleated per second, is given by Eq. (39), with DGn depending on the

undercooling of the liquid according to Eq. (40) (see Chapter 7 for a detailed dis-

cussion of the nucleation mechanisms).

Fig. 3.19 Comparison between the equilibrium and the kinetic phase

diagram of a given alloy. The eutectic temperature is substantially

lowered, the eutectic composition width decreases, and a new solid

phase y appears.
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I ¼ I0e
�DGn=kBT e�DGD=kBT ð39Þ

DGn ¼ 16p

3

gslG
2

DT 2 ð40Þ

Figure 3.20 shows both contributions and the corresponding nucleation rate.

In general, this curve is presented in a plot of temperature versus time; see Fig.

3.21 (known as a TTT diagram, for Time–Temperature–Transformation), where

the curve gives the time after which a given nucleus density or solid fraction is

obtained.

Three domains can be distinguished in this diagram. Above the melting tem-

perature, the sample is liquid. Below the melting temperature, the crystalline

phase is obtained in the domain on the right of the ‘‘nose’’-shaped curve. In the

case of a small undercooling, the time to obtain the first crystal seed may be very

long (path 1). When the undercooling increases, the probability of seed nuclea-

tion increases as well and the critical nucleus size decreases. However, after pass-

Fig. 3.20 Evolution of nucleation rate below the melting temperature.

Fig. 3.21 TTT diagram, showing how the cooling rate selects either the

crystalline or the amorphous structure of an alloy.
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ing a certain critical undercooling, it becomes difficult to get crystals because the

nucleation and diffusion processes are both thermally activated.

It follows from this diagram that, whatever the material or alloy, there always

exist cooling conditions permitting either the crystalline (path 2) or the amor-

phous (path 3) phase to be obtained. However, the critical cooling rate to get

crystals may be extremely low for materials such as silica glasses. On the contrary,

extremely high cooling rates, of the order of 106 K s�1 and obtainable only on

thin materials (ribbons, wires and suchlike), are usually necessary to get amor-

phous metallic binary alloys. In practice, the difficulty of obtaining a crystal seed

increases with the complexity of the crystallographic structure, which in turn in-

creases with the number of different atoms in the structure. It follows that it is

easier to get metallic glasses of quaternary or quinary alloys: centimetric bulk

metallic glasses of ZraTiaNiaCuaBe are currently produced with cooling rates

of the order of 10 K s�1 (Johnson 1999).

3.2.4

Eutectic Structures

Eutectic structures occur when two or more solid phases grow simultaneously

from the liquid. This generally leads to tiny structures, of the order of 1 mm. Eu-

tectics are composite materials and often show very good mechanical properties.

3.2.4.1 Size of the Eutectic Structure

The derivation of the period of a eutectic structure has been introduced by Jack-

son and Hunt (1966). The calculation presented here is a simplified version for a

symmetric phase diagram and equivalent physical parameters of both phases, to-

gether with linearized fluxes.

Fig. 3.22 Typical fibrous (Ag2Al phase in a CuaZnaAlaAg alloy) and

lamellar (Ala23%Cu alloy) eutectic structures. Their characteristic

dimension is 1 mm (Access-Aachen).
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Each phase rejects the solute corresponding to the growth of the other phase,

which then will diffuse in order to feed the adjacent lamella (Fig. 3.24).

In a first approximation, the flux of B atoms from the a to the b phase can be

written as Eq. (41).

JB ¼ �D l
ðC a

B � C b
BÞ

l

2

ð41Þ

From [Eq. (8)], the flux of solute B rejected by the a phase is given by Eq. (42).

JB ¼ vic
a
Bð1� kÞ ð42Þ

Under conditions of stationary growth, both fluxes are equal and the composition

is close to the eutectic composition, which gives Eq. (43).

Fig. 3.23 Lamellar eutectic growth and corresponding phase diagram.

Fig. 3.24 Diffusion of solute rejected by one phase in order to feed the adjacent one.

29



ðC a
B � C b

BÞ ¼
lvicEð1� kÞ

2D
ð43Þ

Equation (44) is the corresponding expression in terms of chemical undercooling

(see Fig. 3.23).

DTch ¼
cEð1� kÞ

2D
1

mb

� 1

ma

� � lvi ð44Þ

The geometry of the junction between two lamellae gives another expression [Eq.

(45), derived from Eq. (13)] for the undercooling (Fig. 3.25). It is supposed that

the top of the lamella is a portion of a circle and that the geometry is symmetric.

DTcap ¼
2G

l
ð45Þ

The temperature of the eutectic interface Ti is plotted in Fig. 3.26 with the two

undercooling terms DTch and DTcap [Eq. (46)].

Fig. 3.25 Geometry of a junction of two lamellae with

the equilibrium of the surface energies leading to the

curvature of the solid–liquid interface at the lamella

top.

Fig. 3.26 Temperature of the eutectic interface versus eutectic spacing.

30



Ti ¼ TE � DTch � DTcap ð46Þ

The system is likely to adopt the position where the energy, and thus the under-

cooling, are minimal.

The eutectic spacing is then obtained by derivation of Eq. (46) with respect to l

and finally gives Eq. (47).

l2vi ¼ 4

DG
1

mb

� 1

ma

� �

cEð1� kÞ ð47Þ

This simplified relationship captures the basic physical concepts leading to the

eutectic spacing: the periodicity of the structure is a compromise between the in-

terdiffusion of the species, which works better when the distance between lamel-

lae is decreased, and the surface energy, which tends to increase the thickness of

the lamellae. It should be noted that in a first approximation the thermal gradient

and the alloy composition have no effect on the eutectic structure. Equation (47)

is in good agreement with results for an AlaAl2Cu eutectic (compare Fig. 3.27).

3.3

Defects in Single and Polycrystals

Section 3.2 has reviewed the main theories developed in order to explain the

structures obtained after solidification. However, the reality is generally more

complicated and materials and structures are not as ideal and perfect as could be

expected from the previous explanations.

This section is therefore devoted to analysis of the defects which are generated

during the solidification of alloys. This applies essentially to two classes of alloys

and growth regimes: single crystals, which are expected to have a highly perfect

atom arrangement, and dendritic structures, because perturbations of the den-

Fig. 3.27 Variation of the eutectic spacing with the growth rate for the

AlaAl2Cu eutectic (Jones 1984).
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dritic field are likely to create defects in the material which may cause the

mechanical properties of the alloy to deteriorate and restrict considerably its

technical application. Section 3.3.2 is devoted to the development of the grain

structure of an alloy.

3.3.1

Defects in Single Crystals

A convenient way to classify defects is to use their characteristic dimension.

3.3.1.1 Point Defects

A full treatment of point defects, such as vacancies, interstitials, antisites and so

on, is provided in Chapter 5.

Solidification by itself has no direct effect on point defects in pure elements. As

the liquid phase is not constrained and electrically neutral, the basic principle is

that the interface acts as an ideal source and sink of point defects that are incor-

porated in the solid at their equilibrium value, which depends essentially on the

temperature. Considering Si at its melting temperature, vacancies and intersti-

tials show a level of 1015 cm�3 in the solid, while holes and electrons are at the

1019 cm�3 level. However, only a rough interface is an ideal surface, faceted inter-

faces may decrease the level of defects because the energy of one atom absorbed

on or desorbed from the interface is high in this case.

The situation is more complicated in compound phases. For GaAs, vacancies

and interstitials are at the level of 1019 cm�3 (0.05%) for a perfectly stoichiometry

and neutral material, but it is difficult to obtain stoichiometry. Figure 3.28 shows

an enlarged view of the phase diagram of GaAs. It appears that the congruent

point is shifted to the As-rich side, which means that only Ga0:497As0:503 can be

grown without segregation effects. However, during cooling, this will cause As

to precipitate. The situation is complicated by the fact that As has a high vapor

pressure above liquid GaAs (2 atm at the melting point). Perfectly stoichiometric

GaAs can be grown from the liquid phase, provided that its composition is con-

trolled continuously during growth, which is technically (but not easily) obtained

by controlling the As pressure in the gas in equilibrium with the liquid.

In turn, antisite defects (for definition and more details, see Chapter 5) are

controlled by the stoichiometry of the compound. An important defect in GaAs,

known as EL2, is AsGa. The reaction governing this defect is represented by

(Lagowski et al. 1982):

AsAs
0 þ hGa

� ! AsGa
2þ þ hAs

þ þ 4e�

It is found that the concentration of EL2 is dependent on stoichiometry, but also

on the electrical state of the semiconductor [Eq. (48)].

½AsGa� ¼ KðTÞ ½hGa�
½hAs�½e��4

ð48Þ
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1D: Dislocations Dislocations are covered in detail in Chapter 6, and only a few

comments on their interaction with solidification will be given here.

The only stress applied on the growing solid–liquid interface is the hydrostatic

pressure. For materials which are very soft at the melting temperature, for exam-

ple, HgI2, this may have an effect on the dislocations created in the crystal. How-

ever, this pressure is negligible in more conventional materials and a no-stress

mechanical boundary condition is typically used on the interface. It follows that

the solidification process by itself does not generate dislocations.

Stresses occurring after solidification, during the cooling process, or because of

possible adhesion on crucible walls easily generate dislocations in the crystal; es-

pecially close to the melting point where plasticity is enhanced (Gondet et al.

2003). Since this process is not directly linked to solidification matters, it will not

be covered here, but the reader should be aware that it is the main cause of dislo-

cation generation in industrial single crystals (see Völkl, 1994).

Fig. 3.28 GaAs phase diagram with an enlarged view of the solidus

close to the stoichiometric point superposed on it (Wenzl et al. 1991).
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Solidification may be used to decrease the number of dislocations in crystals. If

dislocation lines are not perfectly perpendicular to the growing interface, they will

move, as growth proceeds, toward the edge of the crystal, where they will disap-

pear. This property is used for ‘‘cleaning’’ seeds in the pulling of Si single crystals

(Fig. 3.29) (Dash 1959).

Last but not least, the reader should keep in mind, as mentioned in the Intro-

duction, that the existence of dislocations at the growing interface has a strong

effect on the undercooling, especially in the case of faceted growth.

2D: Twins and grain boundaries Although point defects and dislocations can, to a

certain extent, be accepted in single-crystal production, this is not the case for

twins and grain boundaries which separate the sample into two or more parts

with different crystallographic orientations, making the material unsuitable for a

use as single crystal.

It is well known that twins and grains are easily produced during mechanical

deformation of materials (see Chapter 6). The thermal stresses occurring during

the cooling phase of crystal growth processes are not large enough to produce

twins, but they produce dislocations that may align in sub-grain boundaries and,

ultimately, give grains (Boiton et al. 1999). Since this is not directly linked to

Fig. 3.29 X-ray topography of the seed of a zone-melting

Si single crystal. Dislocations appear as white lines and

their number decreases as growth proceeds, from top to

bottom (Hurle and Rudolph 2004).
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solidification it will not be discussed further here (for a discussion of thermal

stresses in crystal growth, see Völkl, 1994).

3.3.1.2 Twins

Twins are specifically linked to single crystals, because they are due to a defect in

the stacking of atom piles, leading to a rotation of the crystal structure (Fig. 3.30).

The energy associated with the twin plane is due to the stacking faults and is

relatively low compared with a grain boundary, so that twins can grow easily un-

der certain conditions.

The twinning of a crystal during Czochralski pulling will be discussed, but the

case can be extended to other crystal growth processes where a crucible wall is in

contact with both liquid and solid. A first condition for the twinning to occur is

that the solid–liquid interface is faceted at the crystal–liquid–gas triple line (Fig.

3.31). It can be shown that a twinned seed cannot nucleate in the middle of the

facet, because its energy, increased by the twin energy boundary, is higher than

the energy of a regular seed.

Hurle (1995) has shown that twinning will occur on the facet at the triple line,

if a twinned seed can nucleate. Such a seed is a truncated disk and its energy is

lower than for a regular, circular, seed. The question is under which conditions

a truncated twinned seed has a lower energy than a truncated regular (well-

oriented) seed. The key point is that the lateral surface of the seed (facing the

gas) should have a given orientation, generally h111i. This happens if the angle

a in Fig. 3.31 is 70.5�, which is likely to occur in the conical part of the crystal,

when its diameter is increased. Temperature oscillations, leading to diameter

fluctuations, are also a cause of reaching this particular value.

In order to make possible the growth of the twinned seed, it should also be

small enough; this gives a value for its undercooling according to Eq. (49), where

subscripts TB, C and T respectively stand for the Twin Boundary, for a Circular

seed, and for the Truncated seed.

DTs ¼
gTB

aDSm

DGC

DGC � DGT
ð49Þ

Fig. 3.30 Typical twin boundary, due to an error of piling A, B, and C atomic planes.
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It follows that the facet on which the twinned seed is nucleating should be

highly undercooled. As dislocations facilitate the growth of faceted crystals and

then decrease their undercooling, twins are more likely to appear in crystals with

a very low dislocation density, which is in good agreement with the experimental

observation.

3.3.1.3 Grains

Single-crystal growth often fails because the occurrence of grains. Due to the en-

ergy associated with the grain boundary, the nucleation of a randomly disoriented

seed directly on the growing interface is not possible and the mechanism should

be different from that of twin nucleation. The basic principle is still the decrease

in energy of the seed of a grain with respect to a seed correctly oriented on the

interface. This may occur if foreign surfaces, on which a disoriented seed can

grow, are present in the system. Such surfaces are typically precipitates or cruci-

ble walls. In addition, the grain seed should nucleate ahead of the interface and

then a certain undercooling is necessary.

As shown in Fig. 3.32, two configurations may lead to grain nucleation in the

layer of undercooled melt ahead of the interface: nucleation on a crucible wall,

and in holes of a rough crucible. Only the case of a seed nucleating on the

crucible wall (Duffar et al. 1999) will be discussed here, but the treatment of the

other configuration is equivalent. In processes without crucibles, grains nucleate

on foreign particles or on precipitates in the melt.

From the nucleation theory, there is a critical radius for nucleation of a 2D

nucleus on a faceted interface [see Eq. (12)] and the associated energy is given

by Eq. (50).

Fig. 3.31 Normal growth in the Czochralski process: the facet at the

triple line grows step by step. A twin may occur if a seed of this

orientation nucleates at the triple line.
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DGI ¼
pag2sl

DSmDT
ð50Þ

On the crucible wall, the critical seed has a similar radius, but the energy is de-

creased by a factor depending on the contact angle of the seed on the wall [Eq. (51)].

DGW ¼ 16pg3sl
3DSm

2DT 2

ð2þ cos yÞð1� cos yÞ2
4

ð51Þ

Figure 3.33 shows that if the contact angle is low enough, spurious nucleation

may occur, even for low values of undercooling.

Fig. 3.32 Nucleation of solid seeds: (1) on the interface; (2) in a hole in

a rough crucible. (3) Spurious nucleation on the crucible wall.

Fig. 3.33 Nucleation energy of a 2D nucleus on the interface and on

walls with various contact angles, plotted as a function of the

undercooling.
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Figure 3.34 shows the angle made by a solid–liquid interface on a crucible wall.

The measured angles, introduced into Eq. (51), are in agreement with the obser-

vation that spurious nucleation in GaSb crystal growth never occurs in silica cru-

cibles, but always happens in BN crucibles.

Fig. 3.34 Metallographs of marked GaSb solid–liquid interfaces, in

contact with the crucible wall: (a) silica (y ¼ 100�); (b) vitreous carbon
(y ¼ 90�); (c) BN with carbon coating (y ¼ 90�); (d) BN (y ¼ 40�, the
crucible wall is on the right).
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3.3.2

Grain Structure of an Alloy

As already mentioned in Section 3.2.2 with respect to dendrites, the grain struc-

ture of an alloy is of primary importance to its mechanical properties. Grain

boundaries are defect zones with a high energy (0.5 J m�2, close to the energy of

a solid–liquid interface), attracting stresses and impurities, and helping the pre-

cipitation of foreign phases. On the one hand, this results in a cleaning effect

of the intragranular material but, on the other hand, grain boundaries may be

locations of corrosion, mechanical weakness, or crack initiation. Although this is

extremely alloy-dependent, it is generally recognized that the quality of an alloy is

improved when grains are smaller.

Grains can be columnar, when they are elongated in the direction of the

growth, and in this case each grain is constituted by several columnar dendrites

(see Section 3.2.2). Grains with an isotropic shape are called equiaxed and they

are generally produced from individual equiaxed dendrites. As shown on Fig.

3.35, it is possible to change the growth conditions in order to get one or the

other type of grain structure.

Typical defects are associated with the grain structure.
� Chemical segregation may occur between dendrites and

grains, and on the full ingot scale. Precipitation of oxides,

sulfides, or eutectic phases, or nucleation of dissolved gases

(H2) often follows.
� Shrinkage may also occur between dendrites and grains, and

on the ingot scale. It is a major defect that deserves much

attention. Its distribution across the solid depends strongly

on the solidification conditions.

Fig. 3.35 Transition from columnar (left) to equiaxed (right) grain

growth through an increase in the growth rate from 2 to 15 mm s�1

(refined Ala3.5%wtNi, ‘T ¼ 20 K cm�1) (Dupouy and Camel 2000).

Diameter 8 mm.
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In practice, all metallurgical processes consist in pouring the liquid into a mold.

The extraction of heat toward the walls leads to a typical grain structure in the

cast ingot which is shown in Fig. 3.36. There are three zones: the outer dendrites,

the columnar region, and an equiaxed area in the center.

The outer equiaxed zone is composed of small grains that grew by heteroge-

neous nucleation in the undercooled liquid at the mold walls (step 1; compare

Fig. 3.37). As there is a great heat extraction by the mold, their growth rate is

Fig. 3.36 Typical grain structure in a cast alloy.

Fig. 3.37 Three steps of the transition from the outer equiaxed zone to

the columnar structure.
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high and destabilization occurs, leading to columnar dendritic growth (step 2).

Dendrites follow the crystallographic orientation of the initial grain and those ori-

ented opposite to the thermal flux ‘‘overgrow’’ the others, so that grain selection

occurs (step 3).

So far, these nucleation, growth, and grain selection mechanisms have been

modeled only through stochastic numerical simulation, with realistic and predic-

tive results (Fig. 3.38). The method and some results are given in Rappaz and

Gandin (1993) and Gandin and Rappaz (1994).

The central equiaxed region appears when the thermal gradient in the liquid

vanishes and seeds transported from the front (detached dendrite arms) are able

to grow in the liquid. Depending on the application of the alloy, it is possible to

avoid the equiaxed structure (photovoltaic silicon, turbine blades) or on the con-

trary to favor it, by mixing the liquid or using refining particles.

In Section 3.3.2.1 the equiaxed grain growth regime is studied, in an attempt

to find out the typical size of the grain structure. The parameters involved in the

columnar to equiaxed transition are explained in Section 3.3.2.2.

3.3.2.1 Equiaxed Growth in Presence of Refining Particles

Grain refining is used to get a homogeneous and tiny equiaxed structure. It

consists in enhancing the heterogeneous grain nucleation with the help of

foreign solid particles introduced in the melt. The principle is based on the fact

that heterogeneous nucleation on foreign particles is easier than homogeneous

nucleation, especially if the contact angle of the seed on the particle is low [Eq.

(51)].

The first condition is to have nucleating particles (refiners) in the melt. Finding

adequate particles is not easy because they should not dissolve in the melt and

Fig. 3.38 Grain structure of an alloy as predicted by Gandin’s stochastic

model (Gandin and Rappaz, 1994). The growth proceeds from the left

to the right and the effect of melt convection can be seen. The colors

are representations of the various crystallographic orientations of the

grains.
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they should have nucleation properties only for a sufficiently undercooled melt.

In practice, two refinement processes are used (Jackson et al. 1966).
� Introduction of the appropriate particles in an undercooled

melt. A very typical example is the introduction of Ti (1–10%)

and B (0.1–3%) in Al alloys.
� Strong mixing of the melt, for example by electromagnetic

forces. The common assumption is that the melt flow is

strong enough to detach secondary arms of columnar

dendrites (this detachment occurs by chemical dissolution

rather than mechanical effect) and these solid particles are

seeds for the equiaxed growth if they remain in or pass into

an undercooled liquid.

The second condition means that the melt should be, and should remain, under-

cooled as long as possible. However, because of the equiaxed dendrite growth, la-

tent heat is released in the system and the liquid temperature increases. It is only

in the case of efficient solute rejection by the grains that the liquid remains

undercooled (chemical undercooling, Eq. (3)) and that the growth of the already

existing grains is restricted. This ability is measured by the parameter of growth

restriction, q [Eq. (52)].

q ¼ m lðk� 1Þc0 ¼ kDT0 ð52Þ

The number of grains in the alloy is a direct consequence of the competition be-

tween the heterogeneous nucleation rate, which increases with the undercooling,

and the growth rate, which decreases as the undercooling increases.

In the model proposed by Maxwell and Helawell (1975), three different regimes

are considered.

In a first step, the hot liquid cools down, passes the melting temperature, then

is undercooled. The energy barrier for nucleation of a seed on a foreign particle is

given by Eq. (51) and therefore decreases when the undercooling increases and

nucleation starts at a given undercooling. The nucleation rate is given by Eq.

(39) and is proportional to the number of foreign particles Np. Considering the

low undercooling, the diffusion term is taken to be constant and Eq. (53) results.

dN

dt
¼ NpI0e

�DGn=kBT ð53Þ

In the second step, particles are growing. It is supposed that the undercooled

liquid is isothermal and that the solute fields around the particles are not interact-

ing, so that the liquid between two grains is at the initial composition. These as-

sumptions are based on the fact that the thermal diffusivity is two to three orders

of magnitude higher than the chemical diffusivity. Then the characteristic length

for chemical diffusion is smaller than the typical grain size (200 mm) but the char-

acteristic length for the heat transport corresponds to hundreds of grains.
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The crystals are spherical and their growth rate is limited by the solute rejection

and then varies inversely with q. The time evolution of the radius of a particle

growing and rejecting solute has been obtained by Aaron et al. (1970) as Eqs. (54).

r ¼ l
ffiffiffiffiffiffiffi

D lt
p

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2

4p
� S

r

� S
ffiffiffiffiffi

2p
p

S ¼ � 2DTS

m lðk� 1ÞðC0 � DTS=m lÞ
; DTS ¼ m lðc li � c0Þ ð54Þ

The undercooling of the melt is the sum of the solute undercooling [Eq. (54)] and

of the capillary undercooling [Eq. (13)], or as stated in Eq. (55).

DTS ¼ DT � DTcap ð55Þ

During the growth, the system is cooled at a rate P and the latent heat is released

proportionally to the increase of the solid fraction, so the variation of liquid

undercooling is given by Eq. (56).

dDT

dt
¼ P � DHm

Cp

dfs
dt

ð56Þ

Equations (53–56) form a system into which the number of particles, their size,

and the undercooling enter as unknown variables. This system can be solved nu-

merically if an initial value is given for the radius r0.

The third step starts when the temperature of the melt increases enough to

stop the grain nucleation. No more grains are formed, but the other grains con-

tinue growing and it has been shown that it is during this step that they are de-

stabilized and show dendrite arms.

This model is able to reproduce the melt undercooling, the undercooling break-

down, and the recalescence, and, most importantly, gives the tendencies concern-

ing the final number of grains. Some interesting results are shown in Fig. 3.39.

The contact angle of the seed on the foreign particle has a huge influence on the

number of grains. It is also shown that the cooling rate is likely to help to control

the number of grains.

Finally, the model is able to explain the experimental fact that the grain size

decreases with the number of refining particles, but only to a certain extent. If

too many particles are present, the number of growing grains increases quickly

at the beginning and the latent heat released prevents the nucleation of other

grains. It is then possible to determine the number of foreign particles leading

to the smallest grains. However, the model remains only qualitative.

Greer has proposed an improvement of the previous model, taking into account

the statistical distribution of particle size and a free growth of the dendrites
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(Greer et al. 2000). This analysis has been performed in the case of Al alloy cast-

ing with Al-Ti5-1B as refiner.

Suppose that Al seeds nucleate on the large [0001] faces of TiB2 particles: if the

wetting angle is low enough, this is likely to happen at low undercoolings. The Al

seed grows laterally and when the face is covered, it keeps on growing, but with

an increase in the curvature of the solid–liquid interface (Fig. 3.40). The radius of

curvature of the nucleus cannot be lower than the critical radius for nucleation,

r �, which depends on the undercooling [Eq. (12)]. Therefore free growth occurs

only when the critical radius becomes lower than the particle radius. It follows

that, for a particle population ranging from 0.1 to 10 mm, this kind of free growth

occurs for undercoolings from 6–0.06 K, which indeed corresponds to the under-

coolings observed in the processing of refined Al alloys.

It follows also that during the liquid cooling seeds appear first on large particles

then on smaller and smaller particles when the undercooling increases.

Greer’s model then adopts Maxwell–Hellawell’s treatment, where the growth of

existing seeds causes a decrease in the undercooling and of the subsequent reca-

lescence. This means that all the particles under a certain diameter do not lead to

Fig. 3.39 Equiaxed grain density versus foreign particle density.

Parameter: contact angle for P ¼ 0:5 K s�1 (left), and cooling rate for

y ¼ 7� (right) (AlaTi, r0 ¼ 1 mm) (Maxwell and Hellawell 1975).

Fig. 3.40 Growth of Al seed on the Al-Ti5-1B refiner

particle.
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seed nucleation because the undercooling does not decrease sufficiently. In prac-

tice only 5% of the particles are useful for seeding, but, as they are the biggest

ones, these represent a significant part of the refiner mass.

The prediction of the grain size versus quantity of refiner and cooling rate

agrees quantitatively with the experimental observations (Fig. 3.41) and shows

that above a quantity of about 1 ppt (part per thousand) (by weight) of refiner, or

a cooling rate of 1 K s�1, a further increase is not useful for decreasing the grain

size. It is worth noting that the model does not use any adjustable parameter.

It should be noted that the model is based on the hypothesis that the nuclea-

tion on the particle is easy (i.e., the contact angle is low) and therefore cannot be

applied if the nucleation barrier is too large. It has been remarked that certain

solutes, such as Zr, have a strong effect on the nucleation properties and thus

act as killers of the refining effect.

3.3.2.2 Columnar to Equiaxed Transition

As shown in the introduction to Section 3.3.2, columnar and equiaxed transitions

are competing at some moment of the ingot solidification. It therefore is impor-

tant to know when the transition between the two structures will occur and what

the parameters influencing this transition are.

The classical model has been proposed by Hunt (1984). A columnar dendritic

interface is growing; its growth rate is imposed by the heat extraction through

the mold (constrained growth). The dendrite tip undercooling is self-adjusted to

the given velocity (see Section 3.2.2.2). A region of undercooled liquid is thus

created ahead the columnar front, whose extent and undercooling depend on the

solidification rate and temperature gradient. It is supposed that solid seeds are

nucleating (in the presence of refining particles) in this undercooled region and

grow as equiaxed dendrites. The structure will remain columnar if the volume of

Fig. 3.41 Variation of grain size with refiner quantity and with cooling

rate, as predicted by Greer’s model and compared to experimental

values (Greer et al. 2000).
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equiaxed grains is negligible compared with the advancement of the columnar

front. Conversely, if the equiaxed grains grow fast enough to occupy the major

part of the volume before being passed by the columnar font, the resulting struc-

ture will be equiaxed.

The nucleation rate is expressed, from Eq. (53), taking into account the remain-

ing number of free nucleating particles, as Eq. (57).

dN

dt
¼ ðN0 � NÞI0e�DGn=kBT ð57Þ

An undercooling is necessary for nucleation [DGn varies as 1=DTN
2; compare Eq.

(3.51)]. At the columnar dendrite tip, the undercooling is maximal and equal to

DTc and it follows that there are two situations:
� if DTN > DTc , the equiaxed dendrites cannot nucleate and no

equiaxed grain will appear
� if DTc > DTN , seeds will nucleate at the forefront of the

columnar tips, and as Eq. (30b) states, the growth rate of

these equiaxed dendrites is proportional to the square of the

local undercooling [Eq. (58)].

dr

dt
¼ D l

4C0m lðk� 1ÞGDT 2 ð58Þ

This local undercooling varies between DTN and DTc at a rate depending on the

velocity of the columnar front and on the thermal gradient in the liquid [Eq. (59)].

dDT

dt
¼ vi‘T ð59Þ

Fig. 3.42 Schematic plot of the competition between columnar and

equiaxed growths. The columnar front is undercooled by DTc and seeds

nucleate in the liquid below the melting temperature Tm and then grow,

as the columnar front is approaching.
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When the equiaxed dendrite comes into contact with the columnar front, its

radius is given by Eq. (60) and the volume of equiaxed grains formed per unit of

time by Eq. (61).

r ¼ D l

4C0mlðk� 1ÞG

ð t

0

DT 2 dt ¼ D l

4C0m lðk� 1ÞG

ðDTC

DTN

DT 2

vi‘T
dDT ð60Þ

Veq ¼ N0
4

3
pr 3 ð61Þ

Hunt considered that the structure will be equiaxed if this volume is more than

66% of the total volume solidified per unit time (at the velocity vi) and columnar

if it is less than 0.66%. It finally follows that the structure is columnar if Eq. (62a)

is satisfied, and equiaxed if Eq. (62b) is true.

‘T > 0:617ð100N0Þ1=3ð1� DT 3
N=DT

3
c ÞDTc ð62aÞ

‘T < 0:617N0
1=3ð1� DT 3

N=DT
3
CÞDTc ð62bÞ

Between these two values, the structure is a mixture of columnar and equiaxed

grains. DTc is linked to the growth rate vi through Eqs. (27) and (28).

The effect of the leading parameters is plotted in Fig. 3.43. For a given thermal

gradient, the equiaxed growth is possible only at high velocity, because at low

velocity the undercooling is too small to allow for seed nucleation. Increasing

the thermal gradients helps the columnar growth, because the thickness of the

undercooled layer depends on the thermal gradient. This is the reason why equi-

axed grains are observed frequently at the end of the solidification, when the

liquid becomes almost isothermal.

The limiting velocity below which no equiaxed grain can nucleate decreases

when the solute concentration increases and when the nucleation undercooling

decreases (Fig. 3.44).

Fig. 3.43 (a) Equiaxed and columnar domains in a vi=‘T diagram, and

(b) effect of the number of refining particles on the equiaxed side of the

transition. Ala3%Cu (Hunt 1984).
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The model neglects convective effects, which are known to be strong, because

in reality there is transport of the smallest equiaxed grains by the convective flow,

into regions where they may melt back. Larger grains tend toward sedimentation.

In any case, the model is useful as it helps an understanding of the leading pa-

rameters acting on the columnar equiaxed transition. Experiments performed

under microgravity conditions in order to avoid any convective perturbations

have made it possible to discuss the validity of the model, which is limited by its

sensitivity to the initial parameters (undercooling and number of seeds) (Dupouy

and Camel 2001).

3.3.3

Macro- and Mesosegregation

In this section, perturbations of the columnar dendritic field are discussed. The

region between the tip and the bottom of the dendrite, where solid and liquid ex-

ist simultaneously, is often called the ‘‘mushy zone’’. Neglecting the undercooling

of the tip, its thickness can be calculated through Eq. (63) (see Fig. 3.16).

a ¼ DT0

‘T
ð63Þ

This mushy zone in certain solidification processes may reach several decimeters.

The thermal and chemical characteristics of the mushy zone are directly related

to the dendrite, as studied in Section 3.2.2. However it also has a strong interac-

tion with the flow field, acting as a porous medium (Darcy flow), with the partic-

ularity that the permeability depends on the solidification conditions, which in

turn are influenced by the flow field (see Fig. 3.13). By changing the thermal

and solutal fields around the dendrite, and inside the dendritic field, convective

flows have a strong influence on the solidification conditions. The coupling of

Fig. 3.44 Equiaxed and columnar domains in diagrams showing growth

rate versus thermal gradient. (a) Effect of the alloy composition and (b)

of the nucleation undercooling on the equiaxed side of the transition.

Ala3%Cu (Hunt, 1984) .
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the interdendritic flow with hydrodynamics in the bulk liquid leads to defects in

the material and chemical segregations on the ingot scale. The chemical segrega-

tion is called ‘‘positive’’ where the local chemical composition is higher than the

mean ingot concentration, and ‘‘negative’’ where it is lower.

Independently of forced convection that may be imposed on the system

(through mechanical, electromagnetic, or other processes), natural convection al-

ways exists because of the thermal field perturbation by the solidification front,

but also, and even more so, because of the chemical gradients that induce varia-

tions in the liquid density. Both thermal and solutal fields are acting on the liquid

density through their expansion coefficients [Eq. (64)].

rl ¼ r0l ð1þ bTDT þ bCc lÞ: ð64Þ

Since the chemical and thermal fields are related by the thermodynamic equilib-

rium hypothesis along the dendrite side [Eq. (3)], Eq. (65) follows.

rl ¼ r0l 1þ bT þ bC

m l

� �

DT

� �

ð65Þ

The thermal expansion coefficient is of the order 10�4 K�1 and the chemical term

in Eq. (64) is of the order of 10�2–10�3 K�1. Therefore the thermal convection

within the mush can generally be neglected. The resulting Archimedes force is

calculated through Eq. (66).

Fp ¼ bCDTg=mL ð66Þ

It follows that the convective effects will depend on the orientation of the solute

gradients relative to gravity.

From a solute balance at the local scale, Flemings and Nereo (1967) derived the

equation of solute distribution [Eq. (67)], taking into account the local convective

flow.

qf l
qc l

¼ �ð1� drÞ
ð1� kÞ 1þ v l:‘T

vi:‘T

� �

f l
c l
; ð67Þ

Here dp is the solidification shrinkage, and v l the liquid velocity, which is given by

Darcy’s law, with a permeability factor depending on the liquid fraction according

to Eq. (68).

v l ¼
�K

mf l
ð‘p� rlgÞ K ¼ af 2l ð68Þ

If there is no convection and no shrinkage, Eq. (67) is the differential form of the

classical Scheil’s law, Eq. (10). If convection is insignificant or parallel to the ther-

mal gradient, integration of Eq. (67) gives a modified Scheil’s law, Eq. (69).
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 cl ¼ c0ð1 � fsÞðk�1Þ=ð1�dr Þ ð69Þ

Transition toward the convective regime occurs when the fluid velocity becomes

of the same order as the growth rate.

In order to show the effect of the orientation of the thermal gradient (or equiv-

alently, of the growth direction) versus gravity, examples of solidification of AlaCu

alloys grown for various configurations are shown below. Considering the com-

plexity of the interactions and coupled mechanisms involved, only qualitative ar-

guments will be given.

Six configurations exist, depending on the direction of solidification (horizon-

tal, vertical upward, and vertical downward) and on the alloy concentration:

hypo-eutectic (the rejected Al is lighter than the Cu solvent) or hyper-eutectic

(the rejected Cu is heavier than the Al solvent). These can be grouped into three

different convective situations: horizontal, vertical with solute stabilization of the

liquid (Al-rich downward or Cu-rich upward), and vertical with solute destabiliza-

tion of the liquid (Al-rich upward or Cu-rich downward).

The hypo-eutectic horizontal case is shown in Fig. 3.45. Dendrites are located at

the bottom of the ingot cross-section because the flow, driven by the rising of the

Al-enriched liquid, increases the chemical composition at the top, where the

eutectic grows. Conversely, in the case of a hyper-eutectic alloy, the eutectic is

located at the bottom and the dendrites at the top.

In the vertically destabilizing case (Fig. 3.46) the liquid is unstable and driven

away from the interface, which creates convective chimneys in the dendritic field.

The solute is carried through the mush to those particular places, where the con-

centration increases and a purely eutectic structure may eventually form. This

causes freckles in the solid; such freckles are extremely detrimental to the me-

chanical properties of the alloy.

Fig. 3.45 Effect of convection on the structure of a horizontally

solidified Al-rich AlaCu alloy; (a) metallographic picture in cross-

section; (b) sketch of the flow and its effect on the microstructure

(Dupouy and Camel 2000).

50



The vertically stabilizing case is shown in Fig. 3.47. No interdendritic flow

would be expected if the isoconcentrations were strictly planar and horizontal.

However, defects inside the dendritic field induce radial solute gradients which

force convective loops in the mushy zone, and cause radial segregation, possibly

leading to the formation of purely eutectic regions as in the example shown.

However, contrarily to the previous case, the average concentration in a cross-

section remains equal to the nominal concentration (absence of longitudinal

segregation).

Fig. 3.46 Effect of convection on the structure of an AlaCu alloy grown

under vertically destabilized configuration: downward solidification of a

hyper-eutectic alloy. One freckle appears here as a region with smaller

dendrites (Dupouy and Camel 2000).

Fig. 3.47 Effect of convection on the structure of an AlaCu alloy grown

under vertically stabilizing configuration: upward solidification of a Cu-

rich alloy (Dupouy and Camel, 2000).
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3.4

Outlook

The objectives of this chapter have been to introduce the reader to the fundamen-

tal aspects of solidification in a simplified way, to show the basic physical phe-

nomena involved in structure formation of alloys, and to explain the generation

of defects during solidification.

The most important parameter determining all the solidification-related phe-

nomena is the undercooling of the solid–liquid interface, which depends essen-

tially on the local chemical composition and curvature. The kinetic undercooling

is negligible in the case of metallic alloys which present a rough interface, but

may reach several Kelvins for materials exhibiting faceted growth, such as inter-

metallics or semiconductors.

Therefore the structuring of the alloy is the result of the competition between:
� diffusion in the liquid, which governs the chemical field close

to the interface: solutal undercooling decreases as

microstructure size decreases
� capillary forces: capillary undercooling decreases as

microstructure size increases.

This competition is active continuously in all structuring processes: interface de-

stabilization and formation of dendrites, cells, eutectics, and grains.

Simultaneously, the solid–liquid interface interacts with the surroundings. The

essential external parameter acting on solidification is the thermal field applied

to the alloy through the heat fluxes extracted, or generated, in the growth facility.

This heat extraction is responsible for the spatial temperature distribution, acting

on most of the structuring processes through the thermal gradient, and for the

temperature variation with time, which fixes the growth rate.

Defects are related to foreign elements, which lead to chemical segregation, nu-

cleation of particles or bubbles, or act as nucleating agents. A second effect

concerns the interaction of convection with the solidification process through

perturbation of the thermal and chemical fields. It should be kept in mind that

the convective patterns are often coupled with the solidification process. This is

a consequence of the solute rejection in the liquid, which makes the problem ex-

tremely difficult to tackle.

Owing to such complexity, the present development in solidification research

tends essentially toward numerical simulation. This is the only way to get expla-

nations or predictive conclusions in the industrial processes, which are geometri-

cally complex and time-dependent. Currently, software is being developed in

order to fully solve the problem in real configuration, computing the tempera-

tures, velocities, solute field, and structures (dendrite or eutectic sizes, etc.). The

models generally take into account the mechanical evolution of the material after

solidification and the associated defect generation.

Numerical simulation is also at the forefront of more fundamental research, es-

pecially by the use of phase field simulation techniques, which give new insight

into the structuring phenomena and their interaction with the surroundings.
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This numerical technique is particularly well adapted to take into account the

complex shape of the solid–liquid interface. An example of simulation of equi-

axed growth is given in Fig. 3.48. A comprehensive review of this contribution

can be found in Boettinger et al. (2002) and partially in the introduction to phase

field methods given in Chapter 10.
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Fig. 3.48 Phase field simulation of equiaxed growth. Three equivalent

seeds are introduced into an undercooled melt. At the end of the

growth, the equiaxed grains are closely connected to each other. The

blue color in the last picture represents liquid which is unsolidified due

to solute rejection and trapping in the dendrite arms or between the

grains.
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Nomenclature

a lattice parameter, structural unit size

b Burgers vector

c chemical composition

f fraction (of solid or liquid)

g gravity vector

h vacancy or hole

k segregation coefficient

kB Bolzmann constant

m liquidus or solidus slopes

p pressure

r radius (of nuclei, of curvature, of dendrite tip . . .)

u fluid velocity

v solid–liquid interface velocity

x mole fraction

x, y, z axes

Cp heat capacity

D diffusion coefficient

E Young’s modulus

Gr Grashof number

G Gibbs free energy

H enthalpy

I nucleation rate (s�1)

J, j flux and flux density

K kinetic coefficient or permeability coefficient in Darcy’s law

N a number (of nuclei, particles etc.)

Pe Peclet number

R ideal gas constant

Re Reynolds number

S entropy

T temperature

V volume (Va, atomic volume)

a Jackson’s reduced transformation entropy

a thermal dilatation coefficient

b solutal dilatation coefficient

g surface energy (solid–liquid, liquid–gas etc.)

d boundary layer thickness

dr relative density jump aty the interface ðrs � rlÞ=rl
e fluctuation, strain, perturbation

k curvature ð1=rÞ
l characteristic solidification structure periodicity or length

m viscosity

s stress
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G Gibbs parameter (g=DS, Km)

L thermal conductivity

DG, DH, DS formation/migration/etc. energy values (differences)

DT undercooling

Dc supersaturation

y contact angle

W reduced supersaturation

‘ gradient

Subscripts or superscripts

cap capillary

s solid

l liquid

i at the solid–liquid interface

m melting

0 reference

ch chemical

S surface

T thermal
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