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An isothermal model describing the separation of the components of a binary metallic
alloy is considered. A process of phase transition is also assumed to occur in the solder;
hence, the state of the material is described by two order parameters, i.e. the concentration
c of the first component and thghase fieldp. A physical derivation is provided starting

from energy balance considerations. The resulting system of PDEs consists of a rather
regular second-order parabolic equation §orcoupled with a fourth-order relation of
Cahn—Hilliard type forc with constraint and solution-dependent mobility. Global existence

of solutions is proved and several regularity properties are discussed under more restrictive
assumptions on the physical parameters. Continuous dependence on data is shown in a
special case. An asymptotic analysis of the model is also performed, yielding at the limit
step a coupling of the original phase field equation with a Stefan-like systetn for

Keywords binary alloy; phase transition; fourth-order parabolic system; constraint;
variational formulation; maximum principle; Faedo—Galerkin scheme.

1. Introduction

In this paper, we aim to study a model describing the diffusive separation of components
in a binary metallic alloy possibly undergoing a phase transition phenomenon. As a
basic simplification, the whole process is assumed to be isothermal. The system is then
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described on the one hand by the relative concentratioihone component with respect
to the mixture and on the other hand byhase fieldparameterp which stands for the
solidification state of the systerp (= O indicates a solid phase whereas= 1 isfor a
liquid phase). The functionsand¢ satisfy the system

dp — Ap = Fi(p) + c Fa(g), (1.1)
0tc — div(u(ep, c)Vw) = 0, 1.2)
w € —Ac+ B(c) + y(c) + g(p), (1.3)

that will be coupled with the no-flux conditions and with the Cauchy conditiong famd

c. Here, we have set := 310 1) the subdifferential of the indicator function §d, 1];
anyway, we point out that a wider class of constraints will be allowed in our analysis. The
functionsF; andF, are smooth and vanish @at= 0 andg = 1. This system is composed

of a Cahn-Hilliard equation for the concentration (Cahn & Hilliard, 1958) coupled with a
second-order parabolic equation for the phase field function (Warren & Boettinger, 1995;
Wheeleret al,, 1992). The mobility coefficient is allowed to depend on bothande, but
assumed to have a nondegenerate character as in Barrett & Blowey (1999). In the rest of
this section, we give the modelling leading to (1.1)—(1.3).

Modelling. Let us consider a binary mixture composed by two pure elemaraad B
which can be in both liquid and solid states inside a donfairThe composition of the
system is characterized by the relative concentratien[0, 1] of the componenB with
respect to the mixture. The solidification state of the alloy is described by a phase field
parametetp which is equal to 1 in a liquid phase and 0 in a solid phase. Whisrstrictly
between 0 and 1, this indicates the presencemfiahyregion. We do not take into account
thermal effects, so the temperatéef the system is assumed to be constant and fixed
between the two melting temperatuggsandd B of the component#& andB. In that way,

we consider that the system is fully determined by the knowledge of the scalardields
c(x, t) ande = ¢(x, t) for each poinix € (2 at timet. Then, in order to obtain evolution
equations forc and ¢, we introduce a Ginzburg—Landau type free energy depending on
both the gradients af and¢ and also on a free energy densityd, c, ¢). This total free
energyF is given by Cahn & Hilliard (1958)

&2 2
F@,c,9) = /Q (3‘”|w|2+ %CIVC|2+ f©,c, <p)> dx, (1.9)

whereg, ande¢ are given positive parameters. We assume the total mass of the system is
conserved. Thus, denoting lgythe mass flux, the mass balance equation reads

dhc+divg=0 inf2, (1.5)
with the no-flux boundary condition
g-n=0 onas?, (1.6)

wheren is the unit normal vector to the boundady?. Since we assume no external
exchange, we also impose the boundary conditions

o =onc=0 o0nasl. a.7)
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Now, we compute the time derivative of the total free energy. By the use of Green'’s formula
with boundary conditions (1.6), (1.7) and recalling that the temperatiseonstant, we
obtain

dF 2 of 2 of
—_—= —ecA — V| —eiA — ] -q. 1.
@ /Q< €y <p+8(p>at<p+ ( ggAc+ 8c> q (1.8)

Then, we have to introduce suitable constitutive lawsdferandq. Namely, for suitable
M, u > 0, we assume

of :
o = —M§,F = —M (—ggAgo + —) in 2 (1.9)
dp
and
2 af .
q=—uVsF =—nuV|—efAc+ 3c in 2, (1.10)

where, of course, F, . F denote the first variations of w.r.t. ¢, c, respectively. Then, it
is easy to see that the second principle of thermodynamics is satisfied; actually (1.8) entails

dF/dt <O.
More in detail, we takéM as a positive constant (Kessler, 2001; Warren & Boettinger,
1995), whereat = u(p,c) is a positive function ofc and ¢ which expresses a

concentration and phase field dependent mobility. Indeed, the concentration dependence
appears in the original derivation of the Cahn—Hilliard equation (Cahn & Hilliard, 1958)
and we shall discuss relevant choices fotater on this section. Then, from the mass
balance equation (1.5) together with (1.10) we deduce the equation for

i
dC + div <M(¢, oV <e§Ac - %)) =0 on. (1.11)

Now, let us turn to the free energy density This is supposed to be the sum of two
contributions, namely

f0,c.0) =[L—0)fA0,0) +ctB@O, 0]+ j(©. (1.12)

The first one arises as a convex combination of the free enefdles= A, ¢) and

fB = £B(9, ¢) of the pure components weighted by the concentratiothe second
term is the potential energjyof the mixing process (Kessler, 2001; Warren & Boettinger,
1995), assumed to depend onlymiin contrast to Kessler (2001) and Warren & Boettinger
(1995), herej might be nonconvex in order to describe a separation process of the two
components. To be precise, our basic choice fizr

j(©) = ljo,1(¢) + jo(0), (1.13)

wherel[g 1; is the indicator function of0, 1] (ljo,13(c) = 0 if ¢ € [0, 1], I{0,13(C) = 400
otherwise) andg is a regular function that possesses two local minin@-atO andc = 1.
A typical form of jg is given for example by the double-well potential

jo(©) = 16r c*(1 - ©)?, (1.14)
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wheret > 0 is agiven parameter (Elliott & Garcke, 1996); anyway, we remark that other
choices are possible (see e.g. Blowey & Elliott, 1991, 1992; Elliott & Garcke, 1996). The
above setting, indeed, turns out to prescribe lower energy levels in presence of the pure
statesA and B than in the mixture. We point out that considering potentials with infinite
barriers is a common choice when dealing with Cahn—Hilliard-like systems. Indeed, an
expression like (1.13) is usually noted aglauble obstaclgotential. A potential of this
kind was first proposed by Blowey & Elliott (1993, 1994) and has been considered in
several papers (e.g. Kenmodtial,, 1995, and references therein).

We remark that another and probably more usual expression for the potential is the
logarithmic

X(c) =clogc+ (1 —c¢)log(l—oc), (1.15)

that has been considered also for phase separation problems (Elliott & Luckhaus, 1991).
Indeed, in our analysis it is also possible to takenstead ofl|g 1;, in (1.13). We notice
anyway that this logarithmic potential is more usually considered in the non-double-well
case (i.ej = X without the nonconvex terrp). This means that the mixed configurations
are assumed to attain a lower energy level than the pure ones, and this is not the case of our
model.

Since the dependence gnin relation (1.12) for the free energy densityis exactly
the same as in the Warren—Boettinger model (Warren & Boettinger, 1995), we proceed as
in Kessler (2001) and Warren & Boettinger (1995) to deternfifeand f B and obtain

of
= Fi(p) + cF(e), (1.16)
@

whereF, F> are smooth functions which vanish for= 0 and¢ = 1. Hence, equation
(1.9) for the phase field becomes

gy = M (240 + Fi(g) + CRalp)) in 2. (1.17)

Moreover, with the choice (1.12) fof, equation (1.11) for the concentration can be
read as

arc — div(u(e, ©) V) = 0, (1.18)
w € —s2A¢+ g(p) + 310,11 (C) + j§(©), (1.19)

whereg(p) = fB(p) — fA(p) (note thaty'(¢) = —F2(¢) andg(p) = 0for ¢ = 0and
¢ = 1) and the new auxiliary variable is often named as thehemical potential

Finally, a thermodynamically reasonable choice for the mobility in the case where it
only depends on the concentration is given by

u =) =cl-c (1.20)

(see Elliott & Garcke, 1996, and references therein). This prescribes that the diffusion
effect forc vanishes in the pure componemtsand B; however, we remark that (1.20) is
generally assumed in cage= X (cf. (1.15)), so thai cancels out with the denominator

of the termV j’(c) and the degenerate character of the evolutionisfactually lost.
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Hence, our mathematically easier choice of a nondegeneisgems not to be severely
restrictive. In more detail, we assumeo be a continuous, positive, and bounded function
allowed to depend also gnm as in Kessleet al. (1998) and Rappaz & Scheid (2000). A
realistic expression fqu is given by

n(c, ¢) = D()(1—a(2c—1)3), forcel0,1], (1.21)

wherex € [0, 1) is a given parameter, the case= 1 giving the degeneration. The function
D is a non-decreasing positive and bounded function suchi@f = us > 0 and
D(1) = w > 0 ae respectively the solid and liquid mobility coefficients with < ;.

Without any loss of generality, we pid = e§ = ¢2 = 1 o that, settingy := joand
B = dlj0,17, the equations (1.17)—(1.19) reduce to (1.1)—(1.3), respectively. Let us also
mention that forp = 0 andg = 1, we haveg(¢) = 0 and we recover the Cahn—Hilliard
equation forc with a concentration dependent mobility studied in Barrett & Blowey (1999)
(see also Elliott & Garcke, 1996).

We finally quote the paper of Eldest al. (2001), where a coupled system with a
nonconserved phase field and a conserved concentration field is considered. The authors
deal with the same generic equations as (1.9), (1.11) but with a slightly different free energy
density f and they obtain sharp interface limits. In this concern, we analyse a singular limit
problem related to the system (1.1)—(1.3), where the fourth-order diffusiontefmand
the derivativey () = jo(c) of the nonconvex part of the mixing energy are set equal to 0
in the limit. In order to motivate this analysis, let us notice that the total free erErgfy
the system can be broken down into two contributigjsand F, where

2
ﬁp:/g (%"wm%(1—c>fA<<o)+ch(¢)>

is the excess energy due to solid—liquid phase mixing, indicating that the system wants to
separate its liquid and solid phases=£ 0 andy = 1), and

2
Fo= / (8_C|Vc|2 =+ ljo,1(C) + IO(C))
o\2

is the excess energy due to concentration phase mixing, indicating that the system wants
to separate into pure element phases=(0 andc = 1). The termlg 1;(c) provides the
physical barriers at = 0, 1.

Up to now, we have considered that solid—liquid phase separation and concentration
phase separation can be described by energies of comparable magnitude, or equivalently
that they act at the same time scale. Nevertheless, it is reasonable to assume that in fact
solid-liquid phase separation occurs much faster than the coarsening of concentration
phases. One way of describing this situation is to consider that the full contribution of
F¢ to the energy is much smaller than the contributiotFpf even infinitesimally smaller.

This leads us to introduce the new energy

Fir = Fp+2Fe

and let the parametex be very small and eventually converge to 0. Actually, the
introduction of this artificial parameter which is convenient for the forthcoming analysis,
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is equivalent to rescaling botif andy . Let us note that the constraihs 1) is not modified
in the multiplication byx and hence it is conserved at the limit.

We are able to prove the convergence of the solutions of the original system (1.1)—
(1.3) to a weak solution of the limit one provided thais allowed to depend only op
(corresponding ta = 0in (1.21)). Let us note that the limit system is formally equivalent
to a Stefan problem with zero specific heat for the unknawwhich is coupled with
the regular diffusion equation (1.1) fgr. Hence, at the limit and at least f@r = 1o 13,
the evolution ofc does no longer account for a separation of components, but just for a
diffusive behaviour as stays in between the physical barriers- O, 1.

Outline of the paper. In the next section we provide some analytical preliminaries that are
required for stating the precise mathematical abstract formulation of the problem. This is
presented in Section 3 together with our main related results. In Section 4 we approximate
the system by regularizing the subdifferential term, by use of the Yosida approximation.
Then we exploit a Faedo—Galerkin technique and prove global existence by an a priori
estimates and passage to the limit argument. Section 5 is devoted to the analysis of
further properties of the solution, as additional regularity, continuous dependence on data,
unigueness, and physical interpretation. Finally, in Section 6, the singular limit problem is
considered and a related convergence result is proved.

2. Mathematical preliminaries

Let £2 be a smooth, bounded, and connected domaik®inl < d < 3, and letT > 0.
Setl' :=002,2:=1Ix(0,T), Q=8 x(0,t) fort € (0, T],andQ := Q. Set also
H := L2() andV := H1(£2) and endow the latter space with the usual scalar product

(v, w) := / vw dx +/ Vv - Vw dx. (2.1)
N N

We identify H and its dual, in order that the compact inclusibn ¢ V’ holds and
(V, H, V") form a Hilbert triplet (Lions & Magenes, 1972, p. 202). We denote (by-)
the scalar product of botH andHY and by| - | the associated norms. Finally, we indicate
by (-, -) the duality pairing betweeX’ andV and by((, -)). the associated scalar product
onV’.

Let us introduce some notation for functions and functionals with zero mean value.
Namely, for any; € V', let us set

1
Vy=(teV ito=0 Voi=VNV, 2.3)

Let now O< a < ug be assigned constants and let

n e Lippe(R?), witha <u<po ae. inR2 (2.4)
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Let alsov, z: 2 — R be measurable functions. Then, we can naturally associate with the
couple(v, z) the elliptic operator

Bwz:V—>V/, (Bw.pu, y) := /Q/L(v, 2)Vu-Vydx foru,yeV. (2.5)

Note indeed that
u(v, 2) € L) with o < u(v,2) < no a.e.inf2. (2.6)

Analogously, we introduce the realization of the Laplace operator with homogeneous
Neumann boundary conditions as

B:V -V, (Bu, y) ::/ Vu-Vydx for u,yeV. (2.7)
Q

Clearly, B, B(,,z mapV onto Vé and their restrictions t&g turn out to be isomorphisms
of Vo onto V. Then, we can denote by : Vj — Vo the inverse ofB and by, 2 :

Vy — Vo the inverse 0B, ). Just by applying the definition (2.5), one can readily check
that for anyu € V and¢ € V), there holds

(Bw,2U, Nw,2¢) = (B, Nw,2¢, u) = (£, u). (2.8)

The next result (cf. Bonet#t al, 2003, Lemmas 2.2, 2.3) is an easy consequence of the
Poincaé—Wirtinger inequality.

LEMMA 2.1 There exist constanig, k2 > 0depending only oi2, «, i, such that for all
¢ €V, and for all measurable functionsz : 2 — Ritis

INw2¢ v < kaliliv, (€. Nwat) = kallg 11 (2.9)

Wealso note that, as, z: Q — R are measurable functions, we can set, fortaee(0, T),
B(U,Z)(t) = B(v(t),z(t)) andN(U,z) t) = -/\[(v(t),z(t)) and the operator(v’z) and/\/(v,z) can

be actually intended to work on time-dependent functions. Namely, it is easy to show that
(Bonettiet al,, 2003, Lemma 3.1)

IBw.ollzwroT;v),Lr0T;v)) < Mo, ||/\/(v,2)||£(LP(0,T;V(§),LD(O,T;VO)) < k1, (2.10)

whereks is as in (2.9),p € [1, co], and by the notationC(X, Y) we mean the space

of the linear and continuous operators between the Banach siaarad Y. Finally, let

J : H — [0, +00] be a convex, lower semicontinuous, and proper function e its
subdifferential, regarded as a (multivalued) operatdd afto itself. We need in the sequel
acouple of integration by parts formulae, that are stated in the following two lemmas. We
prove the first one, while the second is in Brezis & Strauss (1973, Lemma 2).

LEMMA 2.2 LetT > 0,u € HY0, T; V)N L0, T;V), n € L0, T; V). Let also
n(t) € Au(t) for a.e.t € (0, T). Moreover, let us suppose that there existc2 > 0 such
that

Jw) > k1v|> —kz  forallv e H. (2.11)
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Then, the functiont — J(u(t)) is absolutely continuous i(0, T) and

t
/ (@ru(r), n(r))ydr = J(u(t)) — J(u(s)) Vs, te (O, T). (2.12)
S

Proof. Let us define a new convex functionaly: : V' — R as
Jext(v) :==J(v) ifveH, Jext(v) := 400 otherwise. (2.13)

Owing to (2.11), it is not difficult to prove thaley; is lower semicontinuous oW’.
Furthermore, by definition of subdifferential and using that V, for any¢ € H we
have

(C—un=>07:¢—w< I —IW = Jext(t) — Jext(U). (2.14)

Note that this relation still holds if € V’. Actually, due to (2.13), it € V' \ H,
then Jext(¢) = +o0, and (2.14) is trivial. Then, denoting bR : V — V’ the Riesz
isomorphism, it is not difficult to infer that

Ry € 0y Jext(),

where dyr Jext Of course denotes the subdifferential &fx; with respect to the Hilbert
structure ofV’. Then, Brezis (1973, Lemma 3.3, p. 73) can be applied in the sgace
Furthermore, for al§, t € [0, T], a Smple integration yields

t t

/ (Beu(r), n(r))dr = / @cu(r), Rn(r))sdr
S S
= Jext(U(t)) — Jext(U(s)) = J(u(t)) — J(u(s)),

since it is known thati(-) € H a.e. in(0, T). O
LEMMA 2.3 Letz, & € H, and letJ be the realization inH of a convex, lower

semicontinuous, and proper functipn R — [0, +o¢], e.g.

J@k:/QKMDMX forv e H,
(9}

where it is intended that the value of the integral might{bs for somewv. Then, let
& € 0J(2). Let alsou as in (2.4),u, v, B, as in (2.5). Finally, leB, )z € H. Then,
(Bw,»z &) = 0.

3. Main results

Let us give the main assumptions on the data of the problenKLet0 and let

F1, F2, y, g € Wh(R), (3.1)
IFal, IF2l, y1, 191, IF{L 15l 1771 191 < K ae. inR, (3.2)
@o € H, CoeV, (3.3)

BCRxR maximal monotone graph such thate(3(0). (3.4)
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Let us fix a convex and lower semicontinuous functipbn: R — [0, +oo] such that
B = oy andy (0) = 0. Moreover, we recall that theomainof the graphg is defined as

DB):={reR: B(r) #0d}.
Then, we also require

¥ (co) € LY(1), (3.5)
Ccp €intD(B), where cg := (Co)g. (3.6)

We are now able to state our main existence result.

THEOREM 3.1 Let assumptions (2.4) and (3.1)—(3.6) hold. Then, there exists a quadruple
(¢, ¢, w, &) such that

¢ € HYO, T;: V)N L%, T; V), (3.7)
ce HYO, T; V)N L™, T; V)N L20, T; H3(12)), (3.8)
w e L?0,T; V), (3.9)
£eL?0,T: H). (3.10)

The quadrupléyp, ¢, w, &) satisfies

0o + Bo = Fi1(p) + cFa(e) inV’ a.e.in(, T), (3.11)
&C+ Byow =0 inV’ a.e.in(0, T), (3.12)
w=Bc+E&+y(©)+9(p) inV’ a.e.in(0,T), (3.13)

& € B(c) a.e. inQ, (3.14)

0,0 =@o(-), c(,0 =cp(") a.e. inf?. (3.15)

Moreover,c is a conserved order parameter, i.e.
ct)yp =cp forallt € [0, T]. (3.16)

REMARK 3.2 Using (3.10) and the last of (3.8), one can see that (3.13) turns out to hold
a.e. inQ. However, we prefer to state it i/, since this is the natural output space for the
operatorB.

Let us come to some regularity results.

THEOREM 3.3 In addition to (2.4) and (3.1)—(3.6), let
wo € V. (3.17)
Then, the functiorp whose existence is ensured by Theorem 3.1 satisfies

¢ € HYO, T; H)NnC°%(0, T1; V) N L2(0, T; H2(2)). (3.18)
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THEOREM 3.4 In addition to (2.4) and (3.1)—(3.6), let
g0 € H2(12), dnhgo=0 a.e.onl, (3.19)

where n denotes the outer unit normal vector f&. Then, the functionp given by
Theorem 3.1 satisfies

9 € W0, T H) N H(0, T: V) N L¥(0, T: H2(12)) N LA0, T: H3(©2)).  (3.20)

The following continuous dependence results hold in the regularity setting of
Theorem 3.1, but only in case the functiann (2.4) is replaced by a constant.

THEOREM 3.5 Let us assume (3.1)—(3.2) and (3.4), and two pairs of initial data
(0,1, Co,1) and(go 2, Co.2), satisfying (3.3) and (3.5), (3.6). Moreover, let us assume that

(co.1) 2 = (Co2) - (3.21)
Then, let us consider the system given by (3.11), (3.13)—(3.15), and
dCc+Bw =0 inV’ a.e.in(0, T). (3.22)
and, fori = 1, 2, let(¢j, G, wj, &) be two solutions of such a system, related to the initial

data(go 1, Co,1) and (¢o,2, Co2), respectively. Moreover, let us assume tiat> 0 is a
constant such that

CallLro, T H2(2) S R (3.23)

Then, there exists a constadit> 0 only depending o2, T, R, andK, such that

lpr — @2llcoo,T1: HynL2(0,T:v) + II€1 — C2llco0,T1:v/)NL2(0,T: V)
< C(lgo,1 — @02l + lico,1 — Co2llv7). (3.24)

In particular, the solution to the modified system provided by Theorem 3.1 is unique.

Finally, let us prove that more restrictive assumptionsFan F> ensure that the
component of at least one solution admits a ‘physical’ interpretation as a phase variable.

THEOREM 3.6 Keeping the hypotheses of Theorem 3.1, let us also suppose

F1(0) = F1(1) = F2(0) = F2(1) =0, (3.25)
0<¢po<1 a.e.inf2. (3.26)

Then, there exists at least a solution to (3.11)—(3.15) in the regularity setting of Theorem 3.1
whose component fulfils

0 € L®(Q), with 0< o <1 a.e.inQ. (3.27)
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REMARK 3.7 We observe that assumptions (3.4)—(3.6) actually generalize the natural
physicalassumptions on the graghand the initial datuntg, that we now report in a
rigorous mathematical form for the sake of completeness:

0<c<1l ae.inf, (3.28)
O<cp <1 where cp:=(co)p, (3.29)
B =0l (3.30)

Indeed, it is clear that, if (3.28)—(3.30) are fulfilled, then any solutido (3.13), (3.14)
satisfies, in addition,

ce L*®Q), with 0<c<1 a.e.inQ. (3.31)

4. Proof of Theorem 3.1
4.1 Local existence

We aim to prove existence for (3.11)—(3.15) by exploiting a Faedo—Galerkin approxima-
tion. Since the argument is standard we just sketch it briefly. First of all, we regularize the
system by replacing with its Yosida approximatio, (Brezis, 1973, p. 28). We denote

by v, the primitive of 8. such thaty,(0) = 0. Then, we take a complete and ordered
system of eigenvector);} of the standard Neumann problem for the Laplace operator.

We setVy, := sparvy, ..., v} andVe := Up? ; Vy, which is a dense subspace \6f of
course. For any € N, welook for approximate solutions of the form
n n n
go? = Z(pi(t)vi, C? ZZCi ®vi, w? ZZwi(t)vi- (4.1)
i=1 i=1 i=1
Indeed, denoting byp, ¢, w the vectors{¢; }i=1...n, {Ci}i=1,...n, {wil}i=1....n, the finite-
dimensional approximation of (3.11)—(3.14) becomes
¢ =—Ap+F(p,0), (4.2)
¢ = —M(p, W, (4.3)
W = Ac + B () +v(C) + g(¢). (4.4)

Here, the functionsk, 3., v andg are constructed in a natural way frdfm and F», 8.,
y andg, respectively. Moreoverd and M are the elliptic matrices resulting fro and
B.c)-

It is easy to see that the right-hand sides of the system above are locally Lipschitz
functions of their arguments. Then, approximating also the Cauchy condition (3.15) by
choosingpon € Vi, Con € Vi with

gon— ¢o iNH, con—Co NV, (4.5)
and requiring of course
"0 = gon, "0 =con  ae.ing, (4.6)

Cauchy’s local existence theorem for ODEs vyields a final tifpepossibly< T, and
a unique triplet(e, ¢, w) € C([0, Tol; V,3), solving (4.2)—(4.4) up tdlp and satisfying
(4.6).
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4.2 Apriori estimates

We now aim to prove some a priori estimates on the solution of the approximated
system given by (4.2)—(4.4) and (4.6). Hence, let us rewrite (4.2)—(4.4) by replacing the
expressions (4.1) therein:
(o + Boy, v) = (Fu(ef) + ¢ Fa(ep), v) YveVnh Vte(0,T), 4.7)
(ath + B((pgycg)w?, v) =0 YveVy Yte(T), (4.8)
(wg, v) = (BG4 Be(c]) + v (c)) + g(@f), v) VveVnh Vte(0,T). (4.9)
In the sequelk will be a positive constant, possibly varying even inside a single row, but
allowed to depend only of?, «, o, K, T and, in particular, not ofig, n, £. Symbols like,

for examplek, are intended to mean that the constantmight also depend on one, or
more, additional parameters (in this cage The elementary Young inequality

rs<or’+s?/4c  foranyr,seR,o >0 (4.10)

will be used repeatedly in the following. Finally, we observe that, since our estimates do
not depend oy, the limit solution will turn out to be defined up to the final tirffie For
this reason, we shall directly work in the interyal T).

Energy estimate. Taket € (0, T], choosev = w{ in (4.8) andv = &c] in (4.9), integrate
over (0, t) and sum together the results. Owing to (2.4), observing that two terms cancel,
and integrating in time the term withy, it is easy to infer

1 1
V0 g + IV + [ (@) dx < 3Vl

t t
+/ wg(co,])dx—// y(cg)atcgdxds—// g(er) dcl dx ds. (4.11)
7] 0Jo 0Jn

The last two integrals on the right-hand side above can be estimated in several ways. For
instance, splitting the former in the duality, V'), we have

t
[ veaeocas| < alnetizg, +ho oIV g, (412

and, analogously,

t
| /O /Q 9D dxds| < o122 +ho +KolVEM ). (413)

where, of courses is as in (4.10) and the abokg also depend on the bound to y, g
and their first derivatives.

Now, in order to estimate the norm @f appearing in (4.13), we choose= ¢ in
(4.7) and integrate again ovéd, t). Taking advantage of (3.1), (3.2) again, it is immediate
to infer

1 2 2 1 2 2 2
SR OF +1VelITz g < Sleonl® + KL+ 0], + 1612 q,)  (414)
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We now have to estimate the norms &t[' on the right-hand side of (4.12), (4.13).
Then, note that; = 0, so that 1€ V, for everyn and we can choose = 1 in (4.8),
obtaining

(%ch, 1) = 0.

Thus,d:c] € Vih N Vo. Noting thatVy N Vo = sparva, ..., vy} by orthogonality, one can
readily see that the appropriate restriction\éfis an isomorphism 0¥}, N Vg onto itself

(in coordinates it is the inverse of the diagonal matrix obtained by suppressing the first row
and column of4). Hence, we can choose= N3;cl in (4.8). Integrating ove(0, t) and

owing to (2.9), (2.10), (4.10), and to the Poinga¥Virtinger inequality, we get

n;2 n2 n n 2
”atcg ” L2(0,t;V’) < k“ B((pQ,C?) wg ” LZ(O,t;V’) < k H B(goQ,CQ) (wg - (wg)Q) H LZ(O,I;V’)

2
<kfw? — @D el 200y < KIVRIT2q,)- (4.15)

Before collecting the above computations, we still have to recover th&/falbrm of c!
on the left-hand side of (4.11) and we do this by noting that

1 1 t
§|c2<t>|2= §|cOn|2+/ (&cl, ¢ ds
0
1 2, 1. ne2 ny2 ny2
< §|COH| + Z”atcg ”LZ(O,I;V/) + k”Cg ”LZ(QI) + k”vcg |||_2(Q[)- (416)

Now, let us multiply (4.11) bym; > 0 and (4.14) bym, > 0, wherem; and my will
be chosen later. Then, we take the sum of the resulting relations and add also (4.15) and
(4.16). Taking (4.12) and (4.13) into account, we infer

my mp
malVullZs g, + VO +m [ v b Eiel o2

2

1
Lo T 1 T2 0 v + 51O

+mp|| Ve |
<k, ™, 9 conl? d N2
S .My, my + 2 | COFI| + my o lﬁs(COn) X + ko,m2||cg ||L2(Q[)
1
s [9122, g, + (5 + 2M10 IR0 oy + (Miko +0IVEN 2 g

my 1
+ my k3 ||V¢£||52(Qt) + 7|<ﬂ0n|2 + k*va?“i?(Qt) + §|COn|2, (4.17)

wherek’ is the constank, multiplying the last norm in (4.13) arkf is the constank on
the right-hand side of (4.15).
Now, let us choose successively, o, andmy, in order that
2k* 1
my 2 R o <

_— my > 2m; k*.
o = 4mq - 7

Then, all the terms on the right-hand side of (4.17) are controlled. Indeed, (4.5) holds and
we naotice that, by (3.5) and Brezis (1973, Proposition 2.11, p. 39),

/ Ve (Con) AX < 1+/ ¥(co)dx < k.
2 2
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at least fom large enough, depending enHence, we readily see that Gronwall's lemma
can be applied to the function

te I OIF + lof O
in order to derive a bound. Since we need an estimate for th¥ falbrm of w], we take

v = w} in (4.9) and integrate oveD, t). Owing to the Lipschitz continuity of, g and s,
and noting that, due to the estimates given by (4.17),

t 1 1

we readily get
w2, < ke + ki (4.18)

where the constark. resulting from the terng.(c.) is quadratically dependent on the
Lipschitz constant 0B, and explodes as\ 0.

4.3 Passage to the limit

Passage to the limitas  co. We now aim to pass to the limit firstly as oo and

then ase N\, 0. Henceforth, all the convergence relations will be meant to hold up to the
extraction of suitable subsequences, generally not relabelled. Then, from relations (4.17),
(4.18), we see that there exists a triplet, c., w.), such that

ol — ¢, weakly starinL>°(0, T; H) N L?(0, T; V), (4.19)
> ¢ weaklystarinH(0, T; V) N L0, T; V), (4.20)
w! - w,  weaklyinL?©, T; V). (4.21)

Then, standard interpolation and compact embedding results for vector-valued functions
(see e.g. Simon, 1987, Section 8) ensure that

c" - strongly inCo([0, T]; H). (4.22)
In order to derive some strong convergence ¢drwe need an estimate of its time
derivative. Due to the finite-dimensional setting, we cannot proceed by a direct comparison

in (4.7); then, we choose = N (3¢ — (99! 2) € Vn in (4.7) and integrate oveDn, t),
t < T, deriving

t t
/0 (Bl N (3o — (3t¢2)9)>d5+f0 (Bol, N (drgy — (o)) ds

t
- /0 (Fa(e™) + ¢ Fa(@™). N (3" — (39D ) . (4.23)
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Note now that, sincéV'(dpf — (dp!) ) € Vo a.e. in(0, T), we can rely on (2.9) and
obtain

t
/0 (0", N (00" — (g 2)) ds

t
= fo (Bl — @ro 0. N (el — (Bref)))ds
> K| ool — @eM el foorve- (4.24)

Moreover, by (2.8), it is easy to check that

t
/O (BoP, N (3ol — (oD 2)) ds = |9 (1) — (oM 1% — lpon — (9on) 01,

and the latter norm is bounded, of course. Finally, the terms on the right-hand side of (4.23)
can be splitin the duality/’, V) and estimated by taking account of (3.1)—(3.2), estimates
(4.19), (4.20), and the continuous embeddihg H. This allows us to derive from (4.23),
(4.24) the relation

|| 3t€0g - (at(p2)9||i2(0"r;v/) < k. (425)

Next, we notice that(d¢l), is constant inf2 everywhere in[0, T]. Let us now take
v = £11in(4.7) and note that, by (3.2) and the second of (4.20),

|Gt o®] <KL+ I ILe@TiLi@)) <K (4.26)
forallt € [0, T]. Then, (4.25) yields
g — drpe  weakly inL2(0, T; V') (4.27)
and, using (4.19) and Simon (1987, Section 8) again,
ol — ¢.  strongly inL%(0, T; H) N C%([0, T]; V). (4.28)

Now, the boundedness and Lipschitz continuityFaf F», v, g, and 8., together with
relations (4.22) and (4.28), allow us to take the limits of the nonlinearities in (4.7) and
(4.9). As for dealing with (4.8), we have to rewrite it as

(&cl, v) +/ (gl cHvVw! - Vv dx YveV, a.e.in@,T).
Q

Then, we note that, by (2.4) and Lebesgue’s dominated convergence theorem,
(e, ey = 11(@e, Ce) weakly star inL*>°(Q), and strongly inLP(Q)  (4.29)
for any p < oo. Thus, recalling (4.21),

(@D, V! — w(ge, c)Vwe  weakly inL%(Q) (4.30)
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and this permits us to pass to the limit in (4.8). We still have to proveHReegularity
for c.. Then, it is enough to sat = B¢ in (4.9), integrate in time, and note that, by
monotonicity,

t t
/(ﬁs(cf;), BcQ)ds:// BLcH|vVcl|?dxds > 0 (4.31)
0 0J2
and that
t
| [t B8] < 190lzgy 9z < k. (4.32)

We point out that this estimate depends just on tfenorm of Vw and not on the full
V-norm ofw; in particular, thek on the right-hand side does not explode as, 0.

Finally, we observe that, if € V is fixed, system (4.7)—(4.9) surely makes sense for
sufficiently largen. Then, by the density 0¥, in V, in the limit we are allowed to take
anyv € V as atest function. As for the Cauchy conditions (4.6), they pass to the limit too,
since (4.5), (4.22) and the second of (4.28) hold.

Passage to the limit as \( 0. We would like to repeat the above procedure; however,
we can no longer take advantage of the Lipschitz continuity.ofnd in particular of
the bound (4.18). Hence, we have to perform a new estimaf (@f), consisting of a
variant of an argument devised in Kenmoghial. (1995, Lemma 5.2). Namely, we set
Xe 1= (Be(Ce))p and takev = B.(c;) — X, in the n-limit of (4.9). Moreover, we choose

v = Ng,.c.)(Bs(Ce) — X ) in (4.8), subtract from the above, and integrate @@et), where

t < T. Proceeding as in Colét al. (2001, Section 4), we can prove that

1Be(Ce) = X:IIE 2 ) < k. (4.33)

Note in particular that, by (2.10), (4.10), and the continuous embeddiagH,

t 1
2 2
A <8t087 -/\[((pg,Cs)(,Bs(CS) - X8)>ds < ZHIB&‘(CS) - XS”LZ(Q[) + kHBth”LZ(O,t;V’)

and the latter quantity is bounded by (4.20).

The second part of the procedure consists in the estimation of the averdbat can
be performed exactly as in Bonett al. (2003, Section 5.3). Observe that, at this step,
hypothesis (3.6) turns out to be crucial. This means that, in the physicapcasel|g 1,
we cannot start by concentratiogiga.e. equal to 0 or to 1. By this argument, it follows the
existence of a functio§ such that

Be(Ce) = & weaklyinL?(0, T; H). (4.34)

Now, we can improve the bound (4.18) by taking= w, in then-limit of (4.9). We readily
obtain

lwellf2q) < . (4.35)
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wherek no longer depends anthanks to (4.34). Now the passage to the limit ag 0 can

be performed as in the previous section and suitable limit functions, w) are obtained

as limits of(¢,, c., w,), respectively. The only difference concerns the identification of the
function&. Indeed, by (4.34), the analogue of (4.22), namely

c. —> ¢ stronglyinC°([0, T]; H), (4.36)

and the monotonicity argument of Barbu (1976, Proposition 1.1, p. 42), one can actually
prove (3.14). Finally, to conclude the proof of Theorem 3.1, it suffices to show (3.16) and,
of course, it is enough to take= 1 € V1 in (4.8) of the approximate statement, and pass
to the limitine, n.

5. Regularity and uniqueness

Proof of Theoren3.3. We derive additional a priori estimates, independent,af, for the
solutions of the system (4.7)—(4.9). We just give the highlights of this procedure, since it
is rather similar to the analogous argument in Rappaz & Scheid (2000, Section 3). Thus,
we first have to take = d;¢ on the right-hand side of (4.7) and integrate og@&tt), for

t < T.Then, performing standard integrations by parts, using the uniform boundedness of
F1 andF; and (4.22), and taking advantage of (3.17), it is easy to arrive at

g liio.T:Hy + lepliLeo1;v) < k. (5.1)

Of course, to make the procedure rigorous, we have to improve (4.5), by requiring

@on € Vn, on — ¢o inV. (5.2)

Finally, choosing = By} in (4.7) and working as above, we get the bound
l B§0?|||_2(0,T;H) <k (5.3)

The above relations can be taken into account in order to get the convergences yielding
(3.18) at the limit. Indeed, thel2-regularity follows from (5.3) and the standard elliptic
regularity theorems, while th€®([0, T1; V) regularity in (3.18) is a consequence of, for
example, Baiocchi (1967, Lemma 6.3). O

Proof of Theoren3.4. Again, we proceed similarly to (Rappaz & Scheid, 2000, Sec-
tion 4). Anyway, our conditions od]! are slightly different from those of Rappaz & Scheid
(2000); so, we briefly detail the computations. Thus, we take Bz<p2 in (4.7) and
integrate again ovgl0, t). Then, by the Gauss—Green formula we get

1 1 t
5IBEEOF + IVBe]IE g, < §|B¢On(t)|2+/c; (F(@D) + ¢ Fa(el), B?9))) ds
(5.4)

and we have to estimate the right-hand side above. The initial datum can be controlled just
by postulating

@on € Vn, @on —> @o in HZ(Q)- (5.5)
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Furthermore, integrating by parts the latter term in (5.4) and using (3.2) and (4.10), we
easily get

t
/O<F1(m+c Fa(eD). B2 ds < —||VB<ps||L2(Q)

IV 0 + KIVEN 2, g + K /O [ iEvgas (60

Of course, recalling (4.19), (4.20), we just have to control the last term. Thus, using some
standard three-dimensional embedding theorems, we get

k / / |cPI?| VP2 dx ds < k / IR S 1F 40 I VLS 14 IS
k /O IR S 1510 197 S 1512 IS
t
<k /o 12 ®) 11, 0P (S)7 ds + k fo 12 ®) 11, |Ber (S)1 ds. (5.7)

Now, the first integral on the right-hand side is bounded by (4.19)—(4.20), while we can
control the latter with the first term on the left-hand side of (5.4) if we take advantage of
the second of (4.20) and of the Gronwall lemma in the form of, for example, Brezis (1973,
Lemma A.4, p. 156).

Then, passing to the limit we derive the third and the fourth of (3.20). Now, we have to
choosev = 3By} in (4.7) and integrate again in time. Proceeding as before, we obtain

1 1 t
100Vl T2 g + 51BeE O < 51Byon(®I” + fo (Fi(eD) + ¢ Fa(e]), % Be) ds
(5.8)

and we readily see that the right-hand side can be estimated as above. In particular, working
asin (5.6), (5.7), we arrive at

t
/(; /Q CQ Fé((p?)V(p? . 8th02 dx ds

1 2 ' 2 2 2
< 718Vl g +K /O IEX S IF1 ) (I8 (917 + Bl ()% ds.  (5.9)

Then, (5.8) yields the second regularity in (3.20). To prove the first one, we differentiate in
time (4.7) and test the result Byy. Note that this procedure is rigorous. Indeed, referring
to the formulation (4.2), we see that the right-hand side is at least lo€&fly Thus, we

get

—|atgo€(t>| 18V 22 g, < |aw>5<0>| + f (Fi(gMareD, o) ds

+ /0 (SR (@™ kel Bl ds + /O (BCMFa(eD). drl) ds (5.10)
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and we have to bound the four terms on the right-hand side. As for the initial datum, we
note that, by (4.7), (5.5), the second of (4.5), and the boundedné&ssaoid F,

18:9R(0)2 < K(1Bgonl? + con|? + 1) < k. (5.11)

By Holder’s inequality and the continuous embeddHig(2) ¢ L>(£2), we seethat the
first couple of integral$; + 1> can be estimated as follows:

t
1] < k/o (14 1) 2 )) |k () . (5.12)

The latter integral 3z on the right-hand side of (5.10) has to be split in the duality between
V/ andV and gives

1 n,2 1 n n;2
||3| g E”atcg ”LZ(O,t;V’) + 5” FZ(%)at‘Pg ”LZ(O,t;V)
t
K sy, e [ [ VeIl dds (519)
t
< k+ k/o 02113, 102 (9)|7 A ds. (5.14)

Thus, collecting (5.10)—(5.14) and using the third of (3.8) and the fourth of (3.20), we see
that Gronwall's lemma applies tor— |8t(p2(t)|2, so that the proof of Theorem 3.4 turns
out to be complete. O

We now come to the ‘physical’ interpretation of the solution and assume (3.25), (3.26)
in addition to (3.1)—(3.6). Then, we modifyy andF,, by effecting a truncation. Namely,
we set, foii =1, 2,

Fa):=0 ifr <Oorr > 1, Fa):=F@) ifo<r <1, (5.15)

Thanks to (3.25), it is clear thaf;, F» still satisfy (3.1), (3.2). Thus, Theorem 3.1
guarantees the existence of a solution to the system (3.11)—(3.15), Wwhefe replace

F1, F2 in (3.11). Now, we state a maximum principle argument ensuring that, under the
regularity assumptions of Theorem 3.1, any solution to the modified system (3.11)—(3.15)
is actually a solution also to the original one.

LEMMA 5.1 Under the assumptions (3.1)—(3.6) and (3.25), (3.26), the compgneht
any solution to (3.11)—(3.15)—witRs, F; in place ofF;, F,—satisfies

0<gp«1 a.e. inQ. (5.16)

We do not report the proof of this lemma, that is rather standard and actually identical
to the proof of Rappaz & Scheid (2000, Theorem. 3). Anyway, we note that Theorem 3.6
follows as an easy consequence. Moreover, we observe that of course assumption (3.2) on
g can be dropped in the statement of Theorem 3.6, that holds for any locally Lipgchitz

REMARK 5.2 Itis worthwhile discussing an important consequence of the above property.
Of course, we would like to prove the well-posedness of the system (3.11)—(3.15) in the
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physical case ensuring the boundsOp, ¢ < 1 a.e. inQ. The above lemma guarantees
that any solution of the truncated system is a solution of the original one in the very general
regularity setting of Theorem 3.1. Of course, if we were able to show the uniqueness of
the solution to the original system, this would mean that this unique solution is physically
meaningful, since it has to coincide with a solution of the truncated system, which surely
exists. However, the uniqueness result provided by Theorem 3.5 holds just invdase

a constant function. Hence, we cannot exclude that there exists some solution to (3.11)—
(3.15) whose componentattains its values also outsifie 1].

Proof of Theoren8.5. Letussety := ¢1 —¢2,C:=C1 —Cp, w := w1 — w2, & := & — &,
%0 = ¢0,1— 0.2, Co := Co,1 — Co,2. Then, write (3.11) firstly fofp1, ¢1 and then fokpy, c2,
take the difference, multiply it by, and integrate ovef0, t), fort < T. Then, owing to
(3.1), (3.2), itis easy to get

51O + 10l 2 g, < 510l +7/0 lp(s)[2 ds

K t t
+5/ |c(s>|2ds+// c1l|Falen) — Fa(e2)llpldxds  (5.17)
0 0JN

and by the continuous embeddiftf (£2) C L*(£2), holding ford < 3, the latter integral
can be estimated as

t t
<K /0 llc1(S) Loy le(s)2 ds < k /O leL(S) Iz le(S)1? ds, (5.18)

whereK is as in (3.2). Now, take the difference of (3.13) written for the two solutions,
multiply it by ¢, and integrate again ove0, t). Then, note that, by (3.21) and (3.16),
c(s) € o fora.e.s € [0, T] and it makes sense to test the difference of the relations (3.22)
by N'c. Moreover, using Lemma 2.1 it is not difficult to prove that

t Cun Cun
/O<ct,/vc>> =2 o) G, — <52 ol

Thus, comparing with the relation obtained from (3.13) and exploiting the monotonicity of
B, we readily obtain

Ca,!?,u 2 2 Co.0 2 2 2
2001 + 1900 2 gy < 2200+ KllplZag + KlelZa g (5:19)

Then, we note that, by the compact embeddihgc H and the Poinc&-Wirtinger
inequality, for anys > 0 there existk, > 0such that

el g, < oIVElf2q, + KollClFog v (5.20)

Then, summing together the expressions (5.17) and (5.19), taking (5.18) and (5.20) into
account, choosing suitably small, and using hypothesis (3.23), we note that the Gronwall
lemma in the form of, for example, Brezis (1973, Lemma A.4, p. 156) can be applied to
the function

t lp® + llc®) I,

so that relation (3.24) can be inferred by standard considerations. O
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REMARK 5.3 In the physical case (3.30), or just assuming tlsi8) is bounded,
assumption (3.23) can be avoided, since one can justRake sug|r|, r € D(B)} to
estimate the term in (5.18).

6. Singular limit problem

Let us now study the singular limit problem for (3.11)—(3.15) described in the Introduction.
Henceforth, we assume that the functign defined in (2.4) depends only oa,
corresponding tax = 0 in (1.21), take a parameter > 0O that is supposed to go to 0

in the limit, and consider a solutia@;, C,, w;, &) to the system

oty + By = Fi(en) + ¢ Fa(ey) inV’' a.e.in0,T), (6.1)
&*Cy. + By, wp =0 inV’ a.e.in(0, T), (6.2)

wy =ABo + & + Ay (C) + 9(es) inV’ a.e.in(0, T), (6.3)
& € B(cy) a.e. inQ, (6.4)

@.(,0 = go(), C.(,0 =co() ae.in?. (6.5)

Here,po, Co, F1, F2, ¥, gandpg are as in Theorem 3.1 that, of course, can be used to deduce
the existence of such a solution. Moreover, the operBjpris defined as in (2.5) with the
only difference that it has to depend only on one functignHence, also the inverse map
Ny, of Vg to Vp retains the natural properties stated in Section 2. We have the following
result.

THEOREM 6.1 Beyond the above stated hypotheses, let us assume that thekg gxist
0 such that

Y(r) = kir?—ko  Vr e D). (6.6)

Then, there exists a quadruple, c, w, &), such that, as. \, 0, the following relations
hold:

¢ — ¢ weakly starinH(0, T; V/) N L>®(0, T; H) N L0, T; V), (6.7)

¢, — ¢ weakly starinH(0, T: V) N L®(0, T; H), (6.8)
AC, — 0 stronglyinL?(0, T; V) and weakly inL?(0, T; H2(£2)), (6.9)
w, — w  weaklyinL?0, T; V), (6.10)

£ — &  weaklyinL?(0, T; H). (6.11)

Moreover, the quadruplép, ¢, w, §) satisfies

dip + Bo = F1(p) + cF(p) inV’ a.e.in(, T), (6.12)
&Cc+ B,w =0 inV’ a.e.in(0, T), (6.13)
w=£&49(p) a.e. inQ, (6.14)

& € B(0) a.e. inQ, (6.15)

0,0 =@o(-), c(,0 =cp(") a.e. inf?. (6.16)
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REMARK 6.2 We notice that (6.6) is a standard assumption, that ensures the well-
posedness of this kind of degenerate parabolic systems (Damlamian, 1977; Kenmochi,
1990). Of course, it is verified in the physical case (3.30), where the second of (6.8) can be
straightforwardly improved as

c. — ¢ weakly star inL*°(Q) and 0<c<1 a.e.inQ. (6.17)
Proof. As usual, we proceed by compactness methods and start by deriving one new a

priori estimate. To this aim, test (6.1) lpy and integrate as usual ov&;, t < T, easily
obtaining

1 2 2 1 2 2 2
SO+ 1991122 g, < 1002 +k+KlglZz g +KICi g (6:18)

Now, test (6.2) byw; and (6.3) byo;c,, integrate ovelQ; and sum the results. Note that
this procedure makes sense as the right-hand side of (6.3) lie® T; V). Then, we
formally have

A
2 2
Vw2 g + 5 VeI + fg ¥ (G(D) dx

t t

A
<5|Vco|2+[gw<cmdx+x/0 <atcx,y<cmds+/o (0Ce. (@) ds.  (6.19)

Note anyway that the integration in time of the term wfthhas to be justified, and this
can be done by applying Lemma 2.2 (in particular, the integration formula (2.12)) with the
choices of

A
J(v) ::/ (1//(v(x)) + —|Vv(x)|2) dx,  forve H, (6.20)
Q 2
u:=c, n:=w, —Ay(C) — g(pa)- (6.21)
Indeed, it is easy to show thate L2(0, T; V) for all  and that
n(t) € 9J(u(t)) fora.et e (0, T).
Finally, (2.11) is a consequence of (6.6), so that the lemma can be applied.
Now, proceeding as in (4.15), one readily sees that there exists a cdgstar@ such
that

o
S IV Iz g = KallotGilE 20 vy (6.22)

Then, we have to split the last two integrals in (6.19) w.r.t. the duélity V). Namely, for
somek* dependent or, butnot oni, we have

¢ Ke
A fo (0o, v (€)) s < NGl 2 g gy + K22 2,y + K22 (6.23)
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and
! ka 2 2
| 006 g0 b < S0 g1y + Kz e (620

Now, let us multiply (6.18) byn > 0 (to be chosen at the end), and sum the result to (6.19),
so that, collecting also (6.22)—(6.24), we infer

m o
5|m(t>|2 + M=KVl + SV

2
L2(Qv) |||-2(Qt)

K 2 A 2
+ 202 gy + 5 IV O + fg ¥ (G (1) dx

m A
< Glool? + k(A m+47) £ S5l + [ wico et (mke k)l g

2 2 2 2
+ (mk+ K*A )”C)‘”LZ(Qt) + k*A ”VCAHLZ(Qt)- (625)

Now, using (6.6), we immediately have

fg ¥ (G (1) dx > k[ (1)]? — ke, (6.26)

so that, upon choosing > 2k*, we se that, at least fox sufficiently small, Gronwall’s
lemma applies once more to

t = ()% + 6 ®)1% 4+ A Ve )%,

so that (6.8), the second and the third of (6.7), and the first of (6.9) readily follow from
(6.25). Moreover, the first of (6.7) can be deduced by a direct comparison in (6.1), while
for the other relations it is necessary to repeat the argument leading to the estimégjjon of
and this can be performed as in Section 4, with minor modifications. Note indeed that in
this setting the functiof8 is no longer regular; hence, to integrate by parts the term with
Bc., Lemma 2.3 has to be used. Actually, this procedure gives relation (6.11). Now, to
deduce (6.10), it suffices to estimate &0, T; H) norm ofw;. Thus, test (6.3) byvy,
integrate overO, t), and note that

t
| /0 MBGL, ws) ds| < KI Vsl g + 221V g, < K (6.27)

thanks to (6.25) and the first of (6.9). At this point, (6.10) is a consequence of the other

convergence relations and the second of (6.9) can be proved by a comparison in (6.3).
Finally, we have to show that the limit functioqg, c, w, &) fulfil system (6.12)—(6.16)

and actually this can be performed similarly as in the proof of Theorem 3.1, with the

complication that (6.8) by (Simon, 1987, Corollary 4, Section 8) just implies

¢, — ¢ strongly inCo([0, T1; V'); (6.28)
so, we do not have pointwise convergencediorHowever, (6.7) yields

o — @ strongly inL?(0, T; H) and pointwise. (6.29)
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Thus, the continuity and boundednesd-of Lebesgue’s dominated convergence theorem,
and the second of (6.8) entail

¢, Fo(g:) — cFR(p) weakly inLP(Q) foranyp e [1,2) (6.30)

and this permits us to pass to the limit in (6.1). Moreover, the passage to the limit in (6.2),
(6.3) does not present difficulties, since of courgéc, ) tends to 0, for example, strongly
in L°°(Q) and the Cauchy conditions (6.16) are recovered as in Section 4.

Thus, to conclude the proof, we just have to idengify.e. to show (6.15). Note that
we cannot proceed as before, since we do not have the strong convergenae lof(Q).
Hence, we have to test again (6.3)dyand integrate oveiO, T), deriving

T T T
/o En (D), cu(t)) dt :/o (C.(1), wa (D)) dt —)»/0 Ve, () dt

T T
—)\/ / G,y (Cy) dx dt —/ / C. 0(g;) dx dt. (6.31)
0 J 0 J

Then, we take the lim sup of the relation above.as, 0 and notice that, thanks to (6.28)

and (6.10), itis
T

-
Iim/ (ck(t),w,\(t»dt:/ (c(t), w(t)) dt.
N0 Jo 0

Consequently, using the strong convergence in (6.29) and performing a comparison in the
already deduced relation (6.14), we derive

T T T
Iimsup/ (& (D), cu(t)) dt S/ (C(t),w(t))dt—/ / cg(p) dxdt
A0 Jo 0 0 J

.
= /O (E(), c(t)) dt, (6.32)

so that (6.15) is once more a consequence of Barbu (1976, Proposition 1.1, p. 42)]
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