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We study the representations of the commutator subgroup Kn of the braid group Bn into a finite group Σ. This is done through a symbolic dynamical system. Some experimental results enable us to compute the number of subgroups of Kn of a given (finite) index, and, as a by-product, to recover the well known fact that every representation of Kn into Sr , with n > r , must be trivial.

Introduction

In [START_REF] Silver | Augmented group systems and shifts of finite type[END_REF], D. Silver and S. Williams exploited the structure of the kernel subgroup K of an epimorphism χ : G → Z, where G is a finitely presented group, to show that the set Hom (K, Σ) of representations of K into a finite group Σ has a structure of a subshift of finite type (SFT), a symbolic dynamical system described by a graph Γ; namely, there is a one to one correspondence between representations ρ : K → Σ and bi-infinite paths in Γ.

We apply this method to the group B n of braids with n-strands, with χ being the abelianization homomorphism and Σ the symmetric group S r of degree r or the special linear group over a finite field SL 2 (F q ). The subgroup K n = ker χ is then the commutator subgroup of B n .

It is a well known fact that for a given group K, there is a finite to one correspondence between its subgroups of index no greater than r and representations ρ : K → S r . This correspondence can be described by ρ -→ {g ∈ K : ρ (g) (1) = 1} .

The pre-image of a subgroup of index exactly r consists of (r -1)! transitive representations ρ. (ρ is said to be transitive if ρ (K) operates transitively on {1, 2, ..., r}). This will allow us to draw some conclusions about the subgroups of finite index of K n , which motivates the choice of S r ; we motivate that of SL 2 (F q ) by the fact that any representation of K n into any group Σ has range in the commutator subgroup [Σ, Σ], for n ≥ 6.

We give an algorithm to compute Hom (K n , Σ), for n ≥ 5 . Some experimental results enable us to compute the number of subgroups of K n of a given (finite) index, and, as a by-product, to recover the well known fact that Hom (K n , S r ) is trivial for n ≥ 5 and r < n . Since every representation in Hom (B n , Σ) restricts to an element of Hom (K n , Σ), we enhance the given algorithm in order to compute Hom (B n , Σ).

Generalities

Let B n be the braid group given by the presentation:

σ 1 , ..., σ n-1 σ i σ j = σ j σ i ; |i -j| ≥ 2 σ i σ j σ i = σ j σ i σ j ; |i -j| = 1 ,
(see [BuZi] for additional background). Let β ∈ B n be a braid. Then β can be written as :

β = σ ε1 i1 • • • σ ε k i k , with i 1 , • • •, i k ∈ {1, • • •, n -1} and ε i = ±1.
Define the exponent sum of β (in terms of the σ i 's) denoted by exp(β), as:

exp(β) = ε 1 + • • • + ε k .
Then exp(β) is an invariant of the braid group, that is, it doesn't depend on the writing of β. Moreover, exp(β) : B n → Z is a homomorphism. Let H n denote its kernel. Then the Reidemeister-Schreier theorem [LySc] enables us to find a presentation for H n . We choose the set

• • •, σ -m 1 , σ -m+1 1 , • • •, σ -1 1 , 1, σ 1 , σ 2 1 , • • •, σ m 1 , • • • as a Schreier system of right coset representatives of H n in B n . Putting z m = σ m 1 σ 2 σ -1 1 σ -m 1 for m ∈ Z, and x i = σ i σ -1 1 for i = 3, • • •, n -1, we get the following presentation of H n : H n = z m , m ∈ Z x i , i = 3, • • •, n -1 x i x j = x j x i , |i -j| ≥ 2; x i x j x i = x j x i x j , |i -j| = 1; z m z m+2 = z m+1 , z m x 3 z m+2 = x 3 z m+1 x 3 , m ∈ Z; z m x i = x i z m+1 , i = 4, • • •, n -1; m ∈ Z.
Example 1. We have:

H 3 = z m |z m z m+2 = z m+1 ; ∀m ∈ Z is a free group on two generators z 0 = σ 2 σ -1 1 and z -1 = σ -1 1 σ 2 ,
and

H 4 = z m , t z m z m+2 = z m+1 , z m tz m+2 = tz m+1 t, m ∈ Z . Note that H 2 = {1}, since B 2 = σ 1 |-∼ = Z.
Now, every commutator in B n has exponent sum zero. Conversely, every generator of H n is a product of commutators. Hence, we have H n = K n , and exp is the abelianization homomorphism.

Each K n fits into a split exact sequence:

1 → K n → B n → Z → 0,
and there are "natural" inclusions B n ⊂ B n+1 and K n ⊂ K n+1 .

Remark 1. We have the following consequences of relations in K n :

(1) z m+1 = x -1 j z m x j , hence z m = x -m j z 0 x m j ; for j ≥ 4. where z 0 = σ 2 σ -1 1 .

(2) The z m 's are conjugate in B n for n ≥ 3 (by σ 1 ) and in K n for n ≥ 5.

(3) The restriction of conjugation by σ 1 in B n to K n induces an action of Z on K n . This presentation of K n is said to be Z-dynamical.

The representation shift

This work is essentially experimental. It aims to describe the set of representations of K n into finite group Σ. We start with n = 3 and describe Hom (K 3 , Σ) by means of a graph Γ that we will construct in a step by step fashion [START_REF] Silver | Generalized n-colorings of links[END_REF]. A representation ρ : K 3 → Σ is a function ρ from the set of generators z m to Σ such that for each m ∈ Z, the relation:

ρ (z m ) ρ (z m+2 ) = ρ (z m+1 )
holds in Σ. Any such function can be constructed as follows, beginning with step 0 and proceeding to steps

±1, ±2, • • • • • • (step -1) Choose ρ (z -1 ) if possible such that ρ (z -1 ) ρ (z 1 ) = ρ (z 0 ). (step 0) Choose values ρ (z 0 ) and ρ (z 1 ). (step 1) Choose ρ (z 2 ) if possible such that ρ (z 0 ) ρ (z 2 ) = ρ (z 1 ). (step 2) Choose ρ (z 3 ) if possible such that ρ (z 1 ) ρ (z 3 ) = ρ (z 2 ). • • •
This process leads to a bi-infinite graph whose vertices are the maps ρ : {z 0 , z 1 } → Σ, each of which can be regarded as an ordered pair (ρ (z 0 ) , ρ (z 1 )). There is a directed edge from ρ to ρ ′ if and only if ρ (z 1 ) = ρ ′ (z 0 ) and ρ (z 0 ) ρ ′ (z 1 ) = ρ (z 1 ). In such a case, we can extend ρ : {z 0 , z 1 } → Σ by defining ρ (z 2 ) to be equal to ρ ′ (z 1 ). Now if there is an edge from ρ ′ to ρ", we can likewise extend ρ by defining ρ (z 3 ) to be ρ" (z 1 ). We implement this process by starting with an ordered pair (a 0 , a 1 ) of elements of Σ, and computing at each step a new ordered pair from the old one, so that every edge in the graph looks like:

(a m , a m+1 ) → (a m+1 , a m+2 ) , with a m+2 = a -1 m a m+1 . In our case, since the group Σ is finite, the process must end, and the graph Γ we obtain consists necessarily of disjoint cycles. This gives an algorithm for finding Hom(K 3 , Σ). Observe that Hom(K 3 , Σ) is endowed with a shift map

σ : ρ -→ σ (ρ) defined by σ (ρ) : x -→ ρ σ 1 xσ -1 1 . If we regard ρ as a bi-infinite path in the graph Γ, then σ correspond to the shift map (a m , a m+1 ) -→ (a m+1 , a m+2 ), since z m+1 = σ 1 z m σ -1
1 . Any cycle in the graph Γ with length p corresponds to p representations having least period p. These are the iterates of some representation ρ ∈ Hom(K 3 , Σ) satisfying ρ (z m ) = a m and σ p (ρ) = ρ, since a m+p = a m .

Example 2. A cycle of length 2 has the form a, a 2 ⇆ a 2 , a , with a 3 = 1.

Remark 2. Since K 3 is a free group of rank 2, Hom (K 3 , Σ) has a simple description; namely, there is a one to one correspondence between Hom (K 3 , Σ) and Σ 2 . The interest of our approach, beside the dynamical structure, is that it allows to go further and describe Hom (K n , Σ), for n ≥ 3. As a consequence of the dynamical approach, we get a partition of Hom (K 3 , Σ) into orbits, hence the identity

|Σ| 2 = 1 + p≥2 p.n p ,
where n p is the number of orbits of (least) period p.

Proposition 1. If a cycle has length p, then the identity a 0 a 1 ...a p-1 = 1 holds.

In order to minimize calculations, we extract some foreseeable behaviour for various choices of the ordered pair (a 0 , a 1 ) in the previous algorithm.

First, the dynamics of ordered pairs (a 0 , a 1 ) such that a 0 = 1 or a 1 = 1 or a 0 = a 1 is entirely known. To be precise, we get a cycle of length 6 unless a = a -1 , in which case it is of length 3 (or 1 if and only if a = 1).

(

1, a) → (a, a) → (a, 1) → 1, a -1 → a -1 , a -1 → a -1 , 1 → (1, a) .
This sort of dynamics will be generalized later to representations into abelian groups. Second, when we proceed to a new step, we do not need to take a pair we have already got in a previous cycle, since we would get indeed the same cycle. The following dichotomy will prove useful in the sequel: Definition 1. If a vertex of a cycle in Γ has equal components, then the cycle is said to be of type I. Otherwise, it is of type II.

Note that a cycle is determined by any of its vertices. Furthermore, the type I cycles are determined by elements of Σ. Now let us proceed to compute Hom(K 4 , Σ). Since K 3 ⊂ K 4 , every representation ρ ∈ Hom(K 4 , Σ) restricts to a representation ρ | K3 ∈ Hom(K 3 , Σ), the latter being described by a cycle. All we have to do is then to check which representation in Hom(K 3 , Σ) does extend to K 4 . To this end, observe that K 4 is gotten from K 3 by adjunction of a generator x 3 subject to the relations

z m x 3 z m+2 = x 3 z m+1 x 3 ; m ∈ Z.
Hence we may proceed as follows. Take a cycle in Hom(K 3 , Σ) (by abuse of language, i.e. identify each representation with its orbit, since a representation in Hom(K 3 , Σ) extends to K 4 if and only if every element in its orbit does), and choose if possible a value b 3 ∈ Σ for ρ (x 3 ). This value must satisfy the relations

a m b 3 a m+2 = b 3 a m+1 b 3 ; for m = 0, • • •, p -1,
where p is the cycle's length and the indexation is modp. Observe that the choice b 3 = 1 is convenient, so all cycles extend to K 4 . However, this is the only possibility for type I cycles to extend, for if b 3 commute with some a m , then b 3 = 1. Before giving the general procedure, let us proceed one further step to show that all type I cycles will vanish for n ≥ 5. Take a cycle in Hom(K 3 , Σ), along with a convenient value b 3 of ρ (x 3 ). We look for an element b 4 ∈ Σ satisfying : 

a m b 4 = b 4 a m+1 , m = 0, • • •, p -1;
a m b n-1 = b n-1 a m+1, m = 0, • • •, p -1; b n-1 b i = b i b n-1 i = 3, • • •, n -3; b n-1 b n-2 b n-1 = b n-2 b n-1 b n-2
The element b n-1 has to be non trivial, otherwise the representation is trivial.

Using the various relations between the a m 's and the b i 's, we get the following ones :

Proposition 3. Let ρ ∈ Hom(K n , Σ), n ≥ 5 be encoded by a type II cycle (a m ) p-1 m=0
of length p, along with elements b 3 , ..., b n-1 ∈ Σ as previously. Then we have the following relations :

(1) The b i 's are non trivial and conjugate for i = 3, ..., n -1 and

[b p i , a m ] = 1, for m = 0, ..., p -1; i = 4, ..., n -1. (2) [b i , b j ] = 1; |i -j| ≥ 2; [b i , b j ] = 1; |i -j| = 1. .
(3) b i = b j , for i, j = 3, ..., n -1 and i = j, except for the possibility b 3 = b 5 , in which case ρ doesn't extend to Hom(K 7 , Σ). As a consequence of the first relation, p divides the order of b i , i = 4, ..., n -1; hence that of Σ.

The abelian case

Starting with n = 3, we see that the relation betwen the a m 's, written additively, becomes :

a m+2 = a m+1a m . Implementing our algorithm gives a matix A :

(a, b) A -→ (b, b -a) ,
with A 3 = -I. All cycles have length dividing 6. More precisely, the length may be 1 (a = b = 0) or 2 (a = -b, with 3a = 0) or 3 (2a = 2b = 0) or 6 (otherwise). Moving to n = 4, we find that all cycles extend to K 4 with b 3 = 1 (only). No non trivial cycle extends to K 5 , that is Hom(K n , Σ) = 0, for Σ abelian and n ≥ 5. This latter fact can also be seen from :

K n [K n , K n ]
= 1; n ≥ 5.

Extension to the braid group

In this section, we address the question of extending representations

ρ ∈ Hom(K n , Σ)
to representations ρ ∈ Hom(B n , Σ). Applying [SiWi1 (3.5)], the extension is possible if and only if there is an element

c ∈ Σ such that a m c = ca m+1, m = 0, • • •, p -1; cb i = b i c i = 3, • • •, n -1;
Observe that such an element c must satisfy c = 1, unless ρ is trivial; and [c p , a m ] = 1, for m = 0, ..., p-1. In particular, p divides the order of c. Hence, if p ∤ |Σ|, then ρ doesn't extend to B n . Observe also that a necessary condition for a representation ρ ∈ Hom(K n , Σ) to extend to ρ ∈ Hom(B n , Σ) is that ρ ∈ Hom(K n , [Σ, Σ]). A sufficient condition is that ρ be the restriction of some representation ρ ∈ Hom(K n+2 , Σ) for if this is the case, the choice c = b n+1 will do. In this case, since ρ maps K n into [Σ, Σ]; it also maps K n+2 into [Σ, Σ], for the b i 's are conjugate (if n ≥ 4) and [Σ, Σ] is normal in Σ. As a result, we get the following Proposition 4. for n ≥ 6, Hom(K n , Σ) = Hom(K n , Σ (r) ), where r ≥ 0 is the smallest integer such that Σ (r+1) = Σ (r) .

As a consequence, we get the fact that n ≥ 6, Hom(K n , Σ) is trivial for any solvable group Σ. This generalizes the abelian case. In this case, every ρ ∈ Hom(B n , Σ) has a cyclic image generated by ρ (σ 1 ) = ... = ρ (σ 1 ), i.e. |Hom(B n , Σ)| = |Σ|.

Actually we can enhance our algorithm to one which gives for fixed n ≥ 5 the sets Hom(K n , Σ) and Hom(B n , Σ).

Step one: find all cycles of both types. This gives Hom(K 3 , Σ).

Step two: For the trivial cycle, take any c ∈ Σ to be arbitrary. For a type II cycle C (with length p dividing |Σ|), find c = 1 such that a m c = ca m+1 , for m = 0, • • •, p -1. This gives Hom(B 3 , Σ).

Step three: For a cycle of any type , take b 3 = 1. 

3 , •••, b i-1 . if [C, b 3 , b 4 , • • •, b i-2 , c] occurs in Hom(B i-1 , Σ) with some convenient c then: if cb i-1 = b i-1 c , then the representation [C, b 3 , b 4 , • • •, b i-1 ] moves up to a rep- resentation [C, b 3 , b 4 , • • •, b i-1 , c] in Hom(B i , Σ); if cb i-1 c = b i-1 cb i-1 , then the representation [C, b 3 , b 4 , • • •, b i-1 ] moves up to a representation [C, b 3 , b 4 , • • •, b i-1 , b i ] in Hom(K i+1 , Σ) by taking b i = c.

Permutation representations

Our goal in this section is to study representations of K n into the symmetric group S r . Note that there is a natural homomorphism:

π : B n → S n ,
for all n ≥ 2, given by σ i -→ (ii + 1). This restricts to K n to give a non trivial homomorphism:

x i -→ (12) (ii + 1) i = 3, • • •, n -1 z m -→ (132) , (123) , 
m is even m is odd

We start, as usual, with n = 3, and describe Hom(K 3 , S r ). Note that it contains π | K3 , for r ≥ 3. Recall that a non trivial element a ∈ S r has order two if and only if it is a product of disjoint transpositions. Let n r be the number of such elements. This gives us a means to compute the number of type I cycles to be 1 2 (1 + n r + r!) and of representations coming from them to be 3r! -2.

Since S 2 = {1, (12)}, Hom (K 3 , S 2 ) consists only of the following type I cycle:

(1, (12)) → (( 12) , (12)) → ((12) , 1) → (1, ( 12)) , along with the trivial representation. So

Claim 1. |Hom (K 3 , S 2 )| = 4.
As for Hom (K 3 , S 3 ), there are three type I cycles of length 3 corresponding to transpositions and one type I cycle of length 6 corresponding to the 3-cycle (123) (and its inverse). Looking at type II cycles, we find two cycles of length 9 corresponding to the pairs (( 23), ( 12)) and (( 23) , (123)) and one cycle of length 2 corresponding to the pair (( 123) , (132)). This last one is exactly the orbit (under the shift map σ) of π | K3 . All by all, we have Claim 2. |Hom (K 3 , S 3 )| = 36.

In the last section, we present among other things, the results of computer calculations of type II cycles in the graph of Hom (K 3 , S 4 ) using Maple. Moving to n = 4, we find that all (type I) cycles in Hom (K 3 , S 2 ) extend to K 4 with b 3 = 1. So

Claim 3. |Hom (K 4 , S 2 )| = 4.
No cycle in Hom(K 3 , S 3 ) extends to K 4 with non trivial b 3 :

Claim 4. |Hom (K 4 , S 3 )| = |Hom (K 3 , S 3 )| = 36.
Out of 71 (type II) cycles in Hom(K 3 , S 4 ) only ten do extend to K 4 , each with three possibilities for b 3 (the same for all; see the last section). So

Claim 5. |Hom (K 4 , S 4 )| = |Hom (K 3 , S 4 )| + 30.
For n = 5, we find that no type I cycle and no type II cycle with b 3 = 1 extends to K 5 , and that Claim 6. |Hom (K 5 , S 2 )| = |Hom (K 5 , S 3 )| = 1.

As for type II cycles with b 3 = 1, none of the thirty cycles extends to K 5 :

Claim 7. |Hom (K 5 , S 4 )| = 1.
We also find :

Claim 8. |Hom (K 6 , S 5 )| = |Hom (K 7 , S 6 )| = 1.
Experimental results recover the well known fact that that the process given by Algorithm 1 will stop at step n = r. That is: Proposition 5. Hom(K n , S r ) is trivial for r ≥ 4 and n ≥ r + 1.

Proof. see Lin

It is obvious that a cycle (of any type) can not extend to K n if it doesn't extend to K n-1 , so Proposition 5 asserts exactly that Hom(K r+1 , S r ) is trivial. Recall that for n ≤ r, Hom(K n , S r ) is not trivial since it contains the homomorphism π | Kn : K n → S n . Proposition 6. for n ≥ 6, Hom(K n , S r ) = Hom(K n , A r ).

Proof. Apply Proposition 4 to Σ = S r .

Note that according to Proposition 5, for n ≥ r + 1 , every representation ρ : B n → S r factorizes through the abelianized group (B n ) ab , and has a cyclic image. Hence, there are r! possible choices for ρ.

Consequences

Regarding the correspondence between subgroups of finite index of a group K and its representations into symmetric groups, we investigate the subgroups of index r of K n for low degrees r. The general principle is to compute the number of transitive representatations of K into S r to deduce the number of subgroups of K with index exactly r. We start with K 3 as usual. Note that since K 3 is freely generated by z 0 and z -1 , it maps onto any symmetric group, and hence, has subgroups of every index. Now, if a representation in Hom(K 3 , S r ) is transitive, then so are the representations in its orbit. Consider a type I cycle in Hom(K 3 , S r ). Then the representations it defines are transitive if and only if the defining element a is (with respect to the action of S r on {1, • • •, r}). This exactly means that a is an r-cycle. If r > 2 then a 2 = 1 and the cycle has length 6. Claim 9. The number of transitive representations ρ ∈ Hom(K 3 , S r ), r ≥ 2 coming from type I cycles is 3 (r -1)!.

For r = 2, there are only type I cycles and there is only one 2-cycle, which has length 3; Hence, The number of transitive representations ρ ∈ Hom(K 3 , S 2 ) is 3. The kernels of these representations give rise to subgroups of K 3 with index 2.

Claim 10. There are three subgroups of K 3 with index 2. Now we compute the number of subgroups of K 3 with index 3. Among all representations we have seen in example 2, there are six transitive representations coming from the only type I cycle and all representations coming from type II cycles are transitive. Hence: Claim 11. The number of transitive representations in Hom (K 3 , S 3 ) is 26, consequently there are thirteen subgroups of K 3 with index 3.

We can proceed in this way for every degree r. To compute the number of transitive representations of K 3 into S r , we need only consider those coming from type II cycles, since we already know the number of those coming from type I cycles. This can be done using a computer algebra system, by taking any cycle C = (a 0 , •••, a p-1 ) and checking if the subgroup a 0 , •••, a p-1 of S r acts transitively on {1, • • •, r}. If so, this gives rise to p transitive representations in Hom (K 3 , S 3 ). Then we divide the total number by (r -1)! to find the number of subgroups of K 3 of index r. Now let us consider Hom (K 4 , S r ). For r = 2 we have, as previously:

Claim 12. There are three subgroups of K 4 with index 2.

As for transitive representations in Hom (K 4 , S 3 ), since all cycles in Hom (K 3 , S 3 ) extend to K 4 with only b 3 = 1, we have: Claim 13. There are twenty six transitive representations in Hom (K 4 , S 3 ), hence thirteen subgroups of K 3 with index 3.

For r ≥ 4, we have 3 (r -1)! transitive representations coming from type I cycles, and we must check which representation coming from a type II cycle is transitive. For a cycle C = (a 0 , • • •, a p-1 ) such that a 0 , • • •, a p-1 failed to be transitive, we check if a 0 , • • •, a p-1 , b 3 (with b 3 non trivial) is transitive. Indeed, if a 0 , • • •, a p-1 is transitive, then so is a 0 , • • •, a p-1 , b 3 . Finally, we divide the total number by (r -1)! to find the number of subgroups of K 4 of index r. Now, we consider n ≥ 5, where we get rid of type I cycles. Suppose we have found the transitive representations in Hom (K n-1 , S r ). We then take, for fixed r, We may enhance algorithm 1 by checking, each time we get a new type II cycle, if it is transitive, and if not, we re-check at each time the cycle extends from K i to K i+1 , i = 3, • • •, n -1, after having augmented it with b i . Dividing by (r -1)! the number of transitive representations in Hom (K n , S r ) we find the number of subgroups of K n with index r. As a consequence of Proposition 5, we get the following: Proposition 7. For n ≥ 5 and 2 ≤ r ≤ n -1, there are no subgroups of K n with index r. Moreover, every nontrivial representation ρ of K n into S n is transitive.

Remark 3. We can likewise investigate the number of subgroups of B n with a given index r by looking at transitive representations of B n into S r . Namely, according to Proposition 5, there is exactly one subgroup of index r in B n , for 1 ≤ r ≤ n -1. Moreover, if ρ : B n → S n is a representation, then ρ | Kn is either trivial or transitive, according to Proposition 7. In the first case, ρ has a cyclic image and we know when it is transitive. In the second case, ρ is transitive.

Proposition 2 .

 2 Let ρ ∈ Hom (K 4 , Σ) be encoded by a cycle (a m ) m=0,...,p-1 and an element b 3 ∈ Σ. Then b p 3 = 1.As a consequence, the order of b 3 divides p; hence, if gcd (p, |Σ|) = 1, then b 3 = 1.

  and b 3 b 4 b 3 = b 4 b 3 b 4 Hence, if b 3 b 4 = b 4 b 3 , then b 3 = b 4 . Using a m b 3 a m+2 = b 3 a m+1 b 3 , and a m b 4 = b 4 a m+1 , we get b 3 = b 4 = 1, and a m = a m+1 , ∀m = 0, • • •, p -1, so that the representation is trivial. So, except for the trivial cycle, only type II cycles with b 3 = 1 possibly extend to K 5 , with b 4 not commuting with b 3 , in particular, b 4 = 1. Note that b 3 and b 4 are conjugate. Algorithm 1. The general procedure for Hom(K n , Σ), n ≥ 5 is to consider only type II cycles along with convenient non trivial values b 3 , •••, b n-2 , which correspond to representations in Hom(K n-1 , Σ) and find a non trivial element b n-1 ∈ Σ such that the following relations are satisfied:

  For a type II cycle C (with length p such that gcd (p, |Σ|) = 1), find b 3 = 1 such that a m b 3 a m+2 = b 3 a m+1 b 3 , for m = 0, • • •, p -1. This gives Hom(K 4 , Σ). Step four: Beside the trivial cycle, take a type II cycle C along with a convenient b 3 (with length p dividing |Σ|). If this cycle occurs in Hom(B 3 , Σ) with some convenient c then : if cb 3 = b 3 c (which need not be checked if b 3 = 1), then the representation [C, b 3 ] moves up to a representation [C, b 3 , c] in Hom(B 4 , Σ); if cb 3 c = b 3 cb 3 (which is impossible if b 3 = 1), then the representation [C, b 3 ] moves up to a representation [C, b 3 , b 4 ] in Hom(K 5 , Σ) by taking b 4 = c. • • • Step i: take a representation ρ in Hom(K i , Σ), encoded by a type II cycle C along with convenient values b

  a type II cycle C = (a 0 , • • •, a p-1 ) along with values b 3 , • • •, b n-1 , such that a 0 , • • •, a p-1 , b 3 , • • •, b n-2 failed to be transitive and check if a 0 , • • •, a p-1 , b 3 , • • •, b n-1 is transitive.
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