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SUMMARY 
 
In industries that involve either chemistry or biology, the analytical methods are the 
necessary eyes of all the material produced. If the quality of an analytical method is 
doubtful, then the whole set of decisions that will be based on those measures is 
questionable.  For those reasons, being able to assess the quality of an analytical method 
is far more than a statistical challenge; it’s a matter of ethic and good business practices. 
 
The validity of an analytical method must be assessed at two levels.  The “pre-study” 
validation aims at proving, by an appropriate set of designed experiments, that the 
method is able to achieve its objectives.  The “in-study” validation is intended to verify, 
by inserting QC samples in routine, that the method remains valid over time.   
 
This paper discusses and compares two methods, based on the total error concept, to 
check the validity of a measurement method at a pre-study level.  The first checks if a 
tolerance interval on hypothetical future measurements lies within given acceptance 
limits and the second calculates the probability to lie within these limits and verifies if it 
is greater than a given acceptance level.   For the “in-study” validation, the paper assesses 
the properties of the s-n-λ rule recommended by FDA. 
 
A crucial point is also to ensure that the decisions taken at the pre-study stage and in 
routine are compatible.  More precisely, a laboratory should not see its method rejected in 
routine when it has been proven to be valid and remains so.  This goal may be achieved 
by an appropriate choice of validation parameters at both pre- and in-study levels.    
 
 

                                                      
1Correspondance to : Bernadette Govaerts, Institut de Statistique, 20 voie du roman pays, 1348 
Louvain-la-Neuve, Belgium, Govaerts@stat.ucl.ac.be, Phone : +32-10-47.43.13.   
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1. INTRODUCTION 

In industries that involve either chemistry or biology, such as pharmaceutical industries, 
chemical industries or food industry, the analytical methods are the necessary eyes and 
hear of all the material produced or used. If the quality of an analytical method is 
doubtful, then the decisions and possibly the product released based on measures 
obtained with this procedure may become questionable. For those reasons, being able to 
assess the quality of an analytical method is far more than a statistical challenge; it’s a 
matter of ethic and good business practices. Many regulatory documents have been 
released to address that issue primarily ICH and FDA documents in the pharmaceutical 
industry [1,2,3]. 
 
The objective of validation is to give to the laboratory as well as to the regulatory bodies 
guarantee that every single measurement that will be performed in routine will be close 
enough to the unknown “true” value of the sample [4].  The conformity of a given 
analytical method to this objective is usually assed in two stages [5, 6, 7, 8].  First, a “pre-
study” phase is conducted to proof, on the basis of a designed experiment, that the 
method is able to deliver results of quality.  Then, at a routine level, the laboratory must 
verify that the analytical method of interest remains valid over time and that each run 
performed provides trustful measures.  This is usually achieved by inserting QC samples 
in the unknown samples runs. 
 
At these two stages, one needs then to have a way to quantify the quality of a measure in 
terms of its closeness to the “true” value of the property of interest.    Traditionally this 
quantity is assessed by examining the two main performance criteria of an analytical 
method: the bias or “trueness” and precision of the method.  Both should be small enough 
and are usually quantified separately [3, 9, 10, 11]. This approach focuses the method 
itself in assuming that if the method is “good” then the measures it will provide are also 
“good”. As already show, this is not always the case [12]. The concept of “total error” [8, 
13, 14, 15, 16, 17] however puts the emphasis on the results themselves and tackles the 
problem globally by estimating the proportion π of measurements expected to lie within a 
fixed interval (+/- λ) around their true value. The correct underlying assumption behind 
this approach is that, if the results produced are “good”, then the method that produces 
them is necessarily “good”.  This paper presents procedures to check the pre- and in-study 
validity of an analytical method based on this total error concept, i.e. by examining the 
quality of results it produces.       
    
At the pre-study level, the validation procedure consists of measuring a given set of 
samples for which the nominal values are known and arranged according to an 
experiment adequately designed.  The design should be able to estimate measurement 
bias and precision for different nominal levels and, if necessary, provide a decomposition 
of the global precision in various components of variances (repeatability, between-run, 
and between laboratory).  Two statistical procedures are discussed to assess the method 
validity on the basis of such an experiment.  The first consists in estimating a tolerance 
interval in which “future” measurements are expected to lie and verify if this interval is 
included in predefined acceptance limits.  The second estimates directly the probability to 
get a measure in this acceptance limits and verifies if this estimated probability is greater 
than a given minimal acceptance level on the basis of a lower bound of a maximum 
likelihood confidence interval on this probability.   Simulations have been conducted to 
study the laboratory and client risks for these two procedures and show that the first 
method is particularly efficient when the measurement process is well centered and that 
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the probability approach gains in power for reasonably biased situations, a common 
situation in practice.    
 
In routine, budget and simplicity requirements usually lead to use validation rules that do 
not fully protect both the client and the laboratory.   This paper studies the properties of 
the 4-6-15 rule recommended by FDA [3] in this context, generalized here as s-n-λ  rule.  
It consists of inserting a set of n QC samples within routine unknown samples and check 
if at least s of the measurements obtained with those samples are not more distant than 
λ from their nominal (true) value.    Power functions of this generalized rule show that it 
is very difficult to protect simultaneously the client and laboratory interest at a reasonable 
cost.  It is also shown that the FDA 4-6-15 rule protects mainly the laboratory, a 
surprising result since the spirit of those regulations are precisely to protect the client. 
 
In the practical organization of an industrial laboratory, the pre- and in-study validation 
studies are often conducted separately by different persons especially if the method is 
developed and validated in one place (e.g. research laboratory) and is used in routine in 
another one (e.g. production plan).  The compatibility of the decisions taken at both 
stages is not obvious and even not well understood by the analysts. A laboratory that has 
declared the validity of a method in a pre-study phase would not appreciate (economically 
speaking) to see its method rejected in routine if it is still valid.  On the other hand, if a 
valid method is subject to a significant total error increase, the in-study validation rule 
should be able to detect it rapidly.  Conciliating pre- and in-study objectives is then 
crucial and may be achieved through an appropriate choice of validation rules parameters 
in order to align the risks associated.      
  
This paper is organized as follows: Section 2 gives a precise definition of method 
validation based on the concept of total error and introduces related notations.  Section 3 
introduces two procedures for “pre-study” validation, the β-expectation tolerance interval 
approach and a maximum likelihood approach aimed at estimating the probability to be 
within acceptance limits using the delta method. Those two procedures are illustrated on a 
real example and their performances are then compared using simulations. Section 4 
discusses the properties of the s-n-λ rule in terms of client and laboratory risks.  Finally, 
Section 5 shows how to conciliate pre- and in-study validation parameters to attain 
coherent properties for the validation decisions.    

2. ANALYTICAL METHOD EVALUATION BASED ON TOTAL ERROR 

The objective of a good analytical method is to be able to quantify accurately each of the 
unknown quantities that the laboratory will have to determine.  In other terms, the 
analytical method is expected to give results for which the difference with the unknown 
"true value" (µT) of the sample is small or inferior to an acceptance limit, i.e.: 
 

λµλµλ <−⇔<−<− TT XX  
 

Two components may influence this difference: the bias or trueness of the method and its 
precision.  As illustrated in Figure 1, a biased method provides results that deviate “in 
mean” or systematically from the true value µT : δ = E(X) - µΤ = µ - µT.  The precision 
expresses how results vary around the mean value µ=E(X) when the measure is repeated.  
Let’s note σ the standard deviation available to quantify this precision.  A “good” 
analytical method should ideally give results close from the unknown true value of the 
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sample, i.e. within some acceptance limits. This “closeness” is directly linked to the size 
of the bias δ and precision σ of the method.  
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Figure 1 : Comparison of four possible validation situations 

 
Classical method validation and quality control tools usually check the size of these two 
components separately (t and χ2 tests in validation or X - R control charts in routine) but 
this approach has the drawback that a very small value of one component may not 
compensate a weakness of the other.   
 
The total error approach [4, 8, 13, 14, 15, 16, 17] suggests a global approach in 
considering a procedure acceptable if it is “very likely” that the difference between each 
measurement X of a sample and its "true value" (µT) is inside the acceptance limits [-
λ,+λ]� predefined by the analyst.  The notion of "very likely" can be translated to the 
following probabilistic equation:  
 

( ) minπλµπ ≥<−= TXP  

 
where πmin is called the acceptance level and π the quality level.  The acceptance limit 
λ can be expressed either in absolute or in relative value (%).  In this later case, the 
equation is redefined as: 

minπλ
µ

µπ ≥��
�

�

�
�

�
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P  

 
All results presented in this paper are applicable to both cases.  Below, we will then use 
the first formulation without loss of generality. 
 
The value of λ must be chosen according to intended use of the results. The objective is 
linked to the requirements usually admitted by the practice (e.g. 1% or 2% on bulk, 5% 
on pharmaceutical specialties, 15% for biological samples, 30% for ligand binding assays 
such as RIA or ELISA, etc.).   
 
The probability πmin must also be fixed by the analyst according to cost, consumer and 
analytical domain requirements.  The key aspect is to ensure the coherence between the 
πmin and λ values targeted in the pre-study and in-study phases.  This issue is discussed in 
more detail in section 5.   
 
Under normality assumption for the measurement results, it is easy to establish the 
relationship between the quality level π and the bias δ (systematic error), and precision σ 
(random error): 
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where Z is a standard normal random variable. This leads to define the “acceptance 
region”, i.e. the set of (δ,σ)’s such that the quality level π is greater than πmin.  Figure 2 
shows, below the curves, the acceptance region for various values of πmin (99%, 95%, 
90%, 80% and 66.7%) when acceptance limits are fixed to [-15%,+15%] as 
recommended by FDA [3] for bioanalytical methods. Logically, as it can be seen on 
Figure 1, the greater the variance of measure or the greater the bias, the less likely a 
measure will fall within the acceptance limits. 

 
Figure 2: Acceptance region of analytical methods as a function of the method bias and  

precision when λ = 15%. 
 
Note that, in this graph, δ and σ must be interpreted as relative bias and relative standard 
deviation.   

3. PRE-STUDY METHOD VALIDATION 

Before an analytical method can be used in routine for qualifying unknown samples, it’s 
the practice to perform a more or less extensive set of experiments to evaluate if the 
analytical method will be able to achieve the objective stated above. Those experiments 
are usually called “pre-study validation” as opposed to the “in-study validation” 
experiments. 
 
Since the bias δ and the precision σ, the intrinsic performance parameters of the 
analytical procedure, are unknown, experiments are required before using the method in 
routine to allow the user to obtain estimates of these quantities. These estimates of bias 
( δ̂ ) and standard deviation (σ̂ ) are intermediary but obligatory steps to evaluate if the 
analytical procedure is likely to provide accurate measures of the unknown samples to be 
measured in routine.   
   
The objective of the pre-study validation phase is to evaluate whether, given the estimates 
of bias δ̂ and standard-deviationσ̂ obtained, the proportion of measures of new unknown 
samples, that will fall within the acceptance limits, is greater than a predefined acceptance 
level, say πmin. 

 ( ) minπλµ ≥<− TXP  (1)  
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However, there exists neither no exact solution nor easy way to answer this question, 
even for very easy validation experimental designs.  Two methods are discussed in this 
paper.  The first one is based on the notion of tolerance interval and the second consists of 
calculating the lower bound of a maximum likelihood one side confidence interval on this 
quality level π using the delta method.   

3.1 ββββ-expectation tolerance interval method 

A first method to take a decision has already been proposed by other authors [14,4] and 
consists of computing the β-expectation tolerance interval [18]: 

 ( ){ } βσδσδµσδ
σδ

=+<−<− ˆ,ˆˆˆˆˆ
ˆ,ˆ kXkPE TX   

where the factor k is determined so that the expected proportion of the population falling 
within the interval is equal to β.  β is defined as the acceptance level πmin in this context 
and the value of k depends on the experimental design used for validation.  In the 
simplest case, where a same sample with nominal value µT is measured n times in 
repeatability conditions, δ̂ , σ̂  and k are calculated as follows from the measurement 
results X1, X2,… Xn if a normality assumption can be postulated on X: 
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where 2/)1(;1 minπ+−nt is the quantile (1+πmin)/2 of a (n-1) t distribution. 

Mee [19] discussed how to calculate σ̂ and k in a balanced one-way ANOVA random 
model where the within and between-run variabilities are taken into account.  Hoffman 
and Kringle [17] generalize it to more general random effect models for the β-content 
tolerance intervals instead of the β-expectation tolerance intervals as suggested here. 
 
The decision rule proposed is then the following: if the β-expectation tolerance interval 
defined above is included within the acceptance limits [-λ,+λ], i.e. if ( λσδ −>− ˆˆ k  and 

λσδ +<+ ˆˆ k ) then there is high evidence that the method is valid.  As a matter of fact, if 
this condition is verified, the expected proportion of measurements within the acceptance 
limits is greater or equal to πmin, i.e. equation (1) is also verified, on average, in that case.  
Note that the opposite statement is not true, i.e. either λσδ −<− ˆˆ k  or λσδ +>+ ˆˆ k  
doesn’t imply that the expected proportion is smaller than πmin.  This is illustrated on 
simulations below.  

3.2 Maximum likelihood one side confidence interval on ππππ using the delta method.  

Another approach proposed to validate the method consists in deriving, from δ̂ and σ̂ ,  the 
lower bound of an one side confidence interval on the quality level π and verifying if it is 
bigger than πmin or not.  This is not easy as far as the estimation of a probability is 
concerned.  No exact solution exists even in the simple sampling scheme case but 
different statistical approaches may be envisaged to attack the problem: search for a 
mathematical approximation to the exact solution, asymptotic approximation by 
maximum likelihood, bootstrap or Bayesian modeling.  We present here a maximum 
likelihood (ML) solution for the simple sampling scheme, under normality assumptions.    
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Let X1, X2,… Xn be the measurement results of the validation experiment and suppose 
that Xi is distributed as a normal distribution with unknown bias δ and variance 2σ .  The 

maximum likelihood estimators of these parameters are given by : 
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By the invariance property, a maximum likelihood estimator of π can be defined as: 
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where (.)φ is the distribution function of the standard normal distribution [19].  The delta 
method can be used to derive an asymptotic approximation for the variance of the 
estimator π̂ : 
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and (.)ϕ is the density of the standard normal distribution.  The asymptotic lower bound 
of a one side 1-α confidence interval on the quality level π can then be calculated as:  

πασππ ˆ1inf ˆˆˆ −−= z  
where z1-α is the quantile 1-α of a standard normal variable and πσ ˆˆ is calculated by 

replacing δ by δ̂  and σ by σσ ˆ~ w=  in )ˆ(πVar above. 
 
The analytical method is then declared valid if mininfˆ ππ > .   The generalization of this 
approach to more general variance components models is possible.   

3.3 Example 

To illustrate the methodology expressed here, pre-study validation data from a 
bioanalytical procedure [20, 21] are used to illustrate both statistical methods described in 
section 3.1 and 3.2. 

 
The design consisted in 3 runs of 4 replicates per run at each concentration level but the 
run factor was ignored in this illustration in order to align with formulas detailed in 
section 3.1 and 3.2.  This leads to an overall estimate of the total variance without 
estimating its within within-run and between-run components. Therefore the sample size 
n in this example is n = 12 at each level of concentration. In order to answer to the 
objectives, the acceptance limit λ was fixed at 0.15, i.e. [-15%, 15%], the acceptance 
level πmin at 80%, and the confidence level for the ML unilateral confidence interval on π 
at 90%. 
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The results are summarized in Table 1. The β-expectation tolerance interval limits are all 
included within the acceptance limits whatever the concentration level.  The bioanalytical 
method of interest can therefore be considered as valid over the range investigated using 
the tolerance interval rule. Also, the 90% lower limits of the unilateral confidence interval 
on π estimated by the maximum likelihood method are larger than 0.80 over the range of 
concentration levels investigated. This lead to the same conclusion as the one obtained 
with the tolerance interval method. 

 
Table 1: Validation results obtained by β-expectation tolerance interval method and ML 
method.  

Tµ  δ̂  σ̂  Tolerance Interval Acceptance Limits π̂  infπ̂  
25.4 0 1.4 [-2.1, 2] [-3.8, 3.8] 0.994 0.982 
48.2 -2.7 2.7 [-6.5, 1.2] [-7.2,7.2] 0.959 0.908 

437.8 -9.3 19.7 [-37.2, 18.6] [-65.7, 65.7] 0.999 0.995 
838.6 11.8 45 [-52, 75.7] [-125.8,125.8] 0.995 0.984 

3.4 Validation method comparison on the basis of simulations 

This section compares the two pre-study validation procedures on the basis of 
simulations.  Four valid and two non valid hypothetical measurement processes or 
analytical methods have been chosen as shown in Table 2 and Figure 3, and sets of 
normally distributed data of size ranging from 5 to 200 have randomly been generated.  A 
measurement process was considered as valid if the proportion of measurements within a 
range of +/- 15% (λ=0.15) around the target value µT was greater than 80% (acceptance 
level πmin=0.8).  For the ML confidence interval on π using the delta method, a 90% 
unilateral confidence interval was calculated to get a lower bound for π. 
 
Figure 4 presents, for the 6 possible scenarios and the two validation methods, the 
proportion γ of cases for which the validation has been accepted over 5000 simulated 
samples.   
 
Table 2: Six scenarios chosen to compare the performances of the two validation 
methods 

δT σΤ πΤ  δT σΤ πΤ  
0 0.0765 0.95 Valid 0.05 0.0605 0.95 Valid 
0 0.104 0.85 Valid 0.05 0.091 0.85 Valid 
0 0.13 0.75 Non Valid 0.05 0.12 0.75 Non Valid 

 

Figure 3 : Six scenarios chosen to compare the performances of the two validation 
methods 
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Figure 4 : Simulation results: δ = 0 on the left and δ = 0.05 on the right 

This graph leads to several observations: 
• When the measurement process is not valid (π = 0.75), the behaviors of the two 

methods are quite similar and protect very well the client since the probability to 
accept the method is very small.  The ML method is slightly better than the 
tolerance interval method for centered processes, the reverse being observed for 
bias processes.    

• When the measurement process is well centered (δ=0) and valid, the probability 
to accept the method follows an expected behavior as it increases with n and π.  
For π = 0.85, the tolerance interval method is more powerful than the maximum 
likelihood method. 

• However, when the process is biased, the behavior of the tolerance interval 
method is less attractive: for π = 0.95, the measurement process is less often 
accepted as valid than for the ML method.  

• In addition, for π = 0.85, the probability to accept the measurement process with 
the tolerance interval method tends to 0 when n increases.  This is not a desirable 
result, from a statistical point of view, as for π = 0.85 the process is valid.  It can 
be shown that this arises (asymptotically) for the points in the acceptance region 
such that :   

2
min1 π

σδλ
+

<− z  

This result has already been emphasized roughly in [22].   
 

This last point merits to be investigated a little further.  Figure 5 illustrates it graphically: 
the area between the triangle and the acceptance region is a zone where, asymptotically, 
the measurement process is rejected by the tolerance interval method when the process is 
indeed valid.  Note that asymptotically this acceptance region coincides with the region 
where the process is asymptotically accepted by the ML method so all valid method 
should be accepted.   The litigious point (δ=0.05, σ=0.091) is in this zone.    
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Figure 5 : Representation of the acceptation region area where the measurement method 
is (asymptotically) wrongly rejected with the tolerance interval method while it is valid 
and accepted with the ML method.   The 6 simulated scenarios are marked.   

For small samples, the scenario is different and the “gap” between the tolerance interval 
and ML methods is less important.  Figure 6 presents results of new simulations of the 
two validation methods behaviors in the δ,σ space.  The three curves in this figure delimit 
the “real” acceptation region for πmin=0.8 and two regions (one for each method) for 
which the power is higher or equal to γ=0.75.  Two sample sizes, n=12 and n=200, are 
envisaged.  
 

 

Figure 6: Iso-power line in the δ,σ space of the tolerance interval and maximum 
likelihood validation methods for two samples sizes: n=12 and n=200. The outer plain 
line represent the true acceptance region for πmin=0.8.  

As it can be seen on those figures, for small sample size, there is very little difference of 
power between the two validation methods and the differences mainly occurs for 
analytical methods slightly biased. The practical consequence being that with limited 
sample size, there is a small region of good measurement processes that may be rejected 
by the tolerance interval procedure while they will be accepted more often with the other 
approach. This can increase very slightly the cost for the labs but can not increase the risk 
for the client since this phenomenon does not occur outside the acceptance region where 
both methods are very conservative.   
 
Once the sample size increases (n=200) then, it can be observed that the likelihood 
method converges to the “true” acceptance region while the tolerance interval acceptance 
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region keeps its “triangular” shape. The gap between the two procedures -the difference 
between the “bell” shape and the “triangular” shape- then becomes larger. This highlights 
the fact that the use of the “two one-sided” approach using the tolerance interval tends to 
ignore the other side of the distribution once a tolerance limit goes outside one acceptance 
limit. This doesn’t occur when the bias=0.      

4. (S-N-λ) METHOD FOR ROUTINE FOLLOW UP 

Once a method has been validated and is used in routine analysis, it should be monitored 
regularly to check if the method remains valid over time.  As opposed to the validation 
phase where expensive and cautious practices are usually envisaged, the rule used for QC 
in routine must be simple and cheap.  An in-study rule that is largely accepted in the 
bioanalytical community, is called “4-6-15” rule and is defined in the FDA guidance [3] 
as : “…At least four of every six QC samples should be within "15% of their respective 
nominal value...”.  This rule is discussed below as a simple and practical solution for 
routine follow up and its properties are analyzed.   
 
In general terms, this “s-n-λ��” rule is applied as follows: 

1. n QC samples with known nominal values are integrated in a daily run. 
2. The number Y of samples such that the (absolute or relative) difference between 

the measured value Xi and the nominal value µT is lower than λ is counted. 
3. If Y≥s, the run is accepted and can be delivered to the laboratory client.   

 
The properties of such decision rule with respect to the laboratory and client interests 
depend crucially on the choice of s and n [21].  They are well represented by a power 
function which gives the probability γ to accept a run with respect to the state of the 
measurement system expressed in term of quality level π or bias and precision δ and σ. 
 
As Y is a binomial distribution with parameters n and π, the power γ is calculated as 
follows:  

�
=

−−=≥=≥==
n

si

inii
nCsnBiPsYPP )1()),(()()run accept the( πππππγ  

Figure è presents this power function for the 4-6-λ rule with respect to π and iso-power 
curves for the 4-6-15 rule in the δ and σ space.  These graphics show (as expected) that 
the more the method is in a valid state (π large or δ and/or σ small)  the higher is the 
probability γ to accept a run.    

 

Figure 7 : Power of 4-6-15 decision rule 
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It is instructive to study the power of s-n-λ rules for other values of s and n.  Figure 8 
shows the evolution of the power of s-6-λ rule for s = 2, 4 and 6 and of s-n-λ rule for n = 
6, 12, 24 and 96 with s/n = 2/3.  These results are intuitively meaningful: increasing s 
(keeping n constant) decreases the client risk while increasing n (keeping s/n constant) 
decreases simultaneously the client and laboratory risks with respect to the compromise 
π* = s/n value.  When n increases, the laboratory will have a high probability to see 
accepted a run for which π > π* and the run will have a high probability to be rejected if 
π < π*.  The simultaneous protection of the client and laboratory interests has of course a 
cost: the number n of QC samples required.   

 

Figure 8 : Power of n-s-λ as a function of s and n. 

Such discussion is common in the context of lot acceptance sampling plans as discussed 
in [24] or in ISO norms [25].  In this framework, the problem is treated in the opposite 
direction, i.e.  the requirements of both client and supplier are first fixed and then the 
optimal values for n and s are calculated to meet their requirements. In practice, the client 
has first to choice a quality level πC under which the probability of accepting a run (or lot) 
is small (γC say).  On the other side, the supplier (laboratory) has to choose a quality level 
πL over which the probability of accepting a run (or lot) is high enough (γL say).  This 
leads to a system of two inequalities to be solved with two unknown values n and s. 
     

equationSupplier )(

equationClient )(

LL

CC

sYP

sYP

γππ
γππ

>>≥

<<≥
 

 
This is illustrated in Figure 9 for 4-6-λ  and 6-6-λ  rules.  It shows that the 4-6-λ  rule is 
highly protective for the laboratory and favors the laboratory over the client.  

 

Figure 9 : Comparison of client and laboratory risks for 4-6-λ and 6-6-λ rules. 
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Table 3 finally presents optimal n and s values for different combinations of client and 
supplier parameters.   

Table 3: Optimal sampling plans for different combinations of client and laboratory 
requirements.  

πC γC πL γL n s πC γC πL γL n s 
0.6 0.2 0.8 0.8 19 14 0.6 0.1 0.8 0.9 36 26 
0.7 0.2 0.8 0.8 55 42 0.7 0.1 0.8 0.9 127 96 
0.7 0.2 0.9 0.8 14 12 0.7 0.1 0.9 0.9 25 21 
0.8 0.2 0.9 0.8 39 34 0.8 0.1 0.9 0.9 86 74 

 
This table illustrates clearly the impossibility to conciliate acceptable client and supplier 
risks with a reasonable cost when using classical s-n-λ rule.  In consequence, the FDA 
recommendations should be interpreted as a practice that favors laboratory risks over 
consumer risks.  

5. CONCILIATING VALIDATION AND ROUTINE DECISION RULES 

The central question, when applying pre-study and in-study validation procedures to a 
measurement method, is to conciliate the objectives pursued by both validation 
procedures.   
 
When the total error approach is used in pre-study and s-n-λ in method in routine, a 
common objective is already pursued: to control the parameter π or the proportion of 
measurement results (X-µT) expected to lie within the acceptance limit [-λ,λ].  The shape 
of the acceptance region of both methods is then equivalent as shown in Figures 2 and 5.   
 
The ability to conciliate the pre-study procedure, tolerance interval or maximum 
likelihood estimate, and s-n-λ validation procedure depends on the adequacy of the 
parameters chosen for these two.  Indeed, a laboratory, who has proven a method to be 
valid in a pre-study experiment, can expect to see most of the runs produced by this 
analytical method accepted in routine if the method performance remains stable over 
time.  This is essential; otherwise it would become counterproductive to maintain an 
analytical method that leads frequently to reject runs.     
 
Let’s reformulate this requirement in terms of the test methods parameters in two ways: 
1. If the parameters n and s of the s-n-λ rule are fixed, the value of πmin should be 

chosen to ensure that, if the method remains valid, the s-n-λ rule is accepted in most 
cases (e.g. with a minimum probability γmin). 

2. For a pre-study validation scheme (πmin and λ), the value of s (for a given n) should 
guarantee that most of the runs will be accepted if the method remains truly valid.      

 
On the client side, as seen, in section 4, it is difficult with an s-n-λ rule to protect really 
the client at a reasonable cost.  The parameters should then protect the client as much as 
possible given the budget available and the economical rationale for the laboratory.   It 
exists, however, other routine tests which, for a same cost, may protect the client better 
like tests directly based on quantitative results (instead of dichotomous response) [26] or 
moving type statistics like the Scan statistic [27].  This is however not the purpose of this 
paper to discuss such methods.   
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Let’s consider now the particular case of the 4-6-λ rule.  As stated above, a good pre-
study validation rule should work with a πmin value which ensures that the routine test will 
be accepted in most of the cases (let’s take γmin=90%) if the method is still valid: 
 

minmin )( γππ >>≥ sYP  

 
For a given s and n, this πmin is simply obtained by inverting, in π, the Binomial(n, π) 
distribution function as shown in Figure 10.   
 

 
Figure 10 : Conciliating pre-study validation πmin value with  4-6-λ rule 

 
For the 4-6-λ rule we have πmin = 0.8.  This means that, in the pre-study validation 
experiment, the laboratory should demonstrate that, using validation experiment, it is 
expected that at least 80% of the measurements X-µT will likely lie within the acceptance 
limits [-λ,λ] to ensure to accept the 4-6-λ rule in routine in 90% of the cases if the process 
remains valid (π > πmin). This contrasts with the (intuitive) proposal frequently 
encountered in the literature [8, 17] that 4/6 or 66.7% of the measures must lie within the 
acceptance limits. Proposing 66.7% as value for πmin as suggested by those authors can 
lead to reject up to 32% of the “valid” runs as can be seen on Figure 9. This was certainly 
not the intent of the authors and rather results from an erroneous interpretation of the 
Binomial distribution.  
 
On the other hand, when the s-n-λ rule is not fixed in advance, as we recommend, it is 
easy to calculate the most adequate value of s for given πmin, n and  γmin.  It consists of 
finding the maximal value of s (0 ≤ s ≤ n) such that: 
 

minmin )( γππ >=≥ sYP  

 
Figure 11 gives this optimal value of s for different values of n and πmin when γmin is fixed 
at 0.9. 
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Figure 11 : Choice an optimal s value for a fixed n and pre-study acceptance level ππππmin . 

6. CONCLUSION 

The introduction of the acceptance limits to evaluate the quantitative capability of an 
analytical method has triggered, on purpose, discussions on the values for the acceptance 
limits [-λ,λ] in pre-study validation. Some authors [6] wrongly argued that if 15% was 
acceptable for the bias (trueness) and 15% was acceptable for the precision, then 30% 
was a reasonable limits for the total error, i.e. the sum of bias and precision. This is a 
doubtful interpretation of the regulatory requirements that was in Findlay’s case duly 
motivated by the fact that ligand binding assays can hardly have a total error below 30%. 
However the very spirit of the FDA text [3] for bioanalytical method, was to expect that 
future measurements will fall within the [-15%, 15%] limits and not the [-30%, 30%] 
limits as clearly suggested by the 4-6-15 rule to be applied in routine use. Naively, many 
thought that having a (relative) bias smaller than 15% and precision better than 15% as 
observed during the pre-study validation would guarantee measures within [-15%, 15%] 
limits during routine, as evaluated by the 4-6-15 rule. This is not the case and doesn’t 
hold from a statistical point de view. In the case of bioanalytical method, it’s clear today 
that acceptance limits during pre-study validation and during routine must be the same 
and then should be [-15%, 15%]  in this context. For other types of analytical methods, 
the limits [-λ, λ] should be established depending on the intended use of the results.  
 
Throughout this paper two test methods have been proposed to make a decision, after the 
pre-study validation, about the acceptability or rejection of an analytical method in order 
to minimize later both the consumer and laboratory risks. For limited sample size, as 
often encountered in laboratories, both approaches, the tolerance interval and the 
maximum likelihood method, behave similarly in the sense that they have comparable 
power curves over the (δ,σ) space. The tolerance interval approach however has 
asymptotical unsuitable behavior because the acceptance region of this test doesn’t 
converge, as do the maximum likelihood method, to the true region of “good“ methods. 
Practically for validation of methods, this difference is negligible, but the maximum 
likelihood should be preferred nevertheless, not only for its nice statistical properties, but 
also because it directly answers the very fundamental question: what is the expected 
proportion of measures that will fall within the acceptance limits in the future. 
 
This paper, also, opens and proposes a solution to another necessary connection needed 
between the pre-study validation criteria and routine run acceptance rule: conciliating the 
probability levels or risks in order to minimize both consumer and laboratory risks. Stated 
differently, depending on the rule that will be used in routine for accepting runs, what 
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should be the minimal probability  πmin, as estimated from validation experiments, such 
that in routine most valid runs will be accepted ensuring that a very limited proportion of 
measurements will fall outside the acceptance limits.  
 
The results show, that if we keep the 4-6-λ rule, the expected minimum proportion  πmin 
of measures that should fall within the acceptance limits [-λ,λ] must be at least equal to 
80% to guarantee that at least 90% of the runs will be accepted with the 4-6-λ rule when 
the measurement process remains valid. Taking 80% as  πmin value allows making pre-
study and in-study decision rules consistent. But, as also shown, the 4-6-15 rule lacks of 
power and favors the laboratory over the consumer. The only solution to minimize both 
the consumer and the laboratory risks is to improve the in-study rule, by increasing both 
the number of QC samples (n) and increasing the number successful QC samples (s) and 
to adapt the πmin value accordingly for the pre-study validation. But as shown in Table 3, 
this lead to very large and impracticable number of QC samples. More advanced 
techniques based directly on the quantitative measures and/or taking into account the 
history of the method’s results are then recommended.  Sampling plans for measures [26], 
scan statistics [27], moving type control charts (Cusum, Ewma) [28] are attractive 
solutions. 
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