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We study that a solution of the initial value problem associated for the coupled system of equations of Korteweg -de Vries type which appears as a model to describe the strong interaction of weakly nonlinear long waves, has analyticity in time and smoothing effect up to real analyticity if the initial data only has a single point singularity at x = 0.

Introduction

We consider the following coupled system of equations of Korteweg -de Vries type

u t + u xxx + a 3 v xxx + u u x + a 1 v v x + a 2 ( u v) x = 0, x, t ∈ R (1.1) b 1 v t + v xxx + b 2 a 3 u xxx + v v x + b 2 a 2 u u x + b 2 a 1 ( u v) x = 0, (1.2) 
u(x, 0) = u 0 (x), v(x, 0) = v 0 (x). (1.3) where u = u(x, t), v = v(x, t) are real-valued functions of the variables x and t and a 1 , a 2 , a 3 , b 1 , b 2 are real constants with b 1 > 0 and b 2 > 0. The original coupled system is

u t + u xxx + a 3 v xxx + u p u x + a 1 v p v x + a 2 ( u p v) x = 0, x, t ∈ R (1.4) b 1 v t + v xxx + b 2 a 3 u xxx + v p v x + b 2 a 2 u p u x + b 2 a 1 ( u v p ) x = 0 (1.5)
u(x, 0) = u 0 (x), v(x, 0) = v 0 (x) (1.6) Copyright c 200* by M Sepúlveda and O Vera where u = u(x, t), v = v(x, t) are real-valued functions of the variables x and t and a 1 , a 2 , a 3 , b 1 , b 2 are real constants with b 1 > 0 and b 2 > 0. The power p is an integer larger than or equal to one. The system (1.4)- (1.6) has the structure of a pair of Korteweg -de Vries equations coupled through both dispersive and nonlinear effects. In the case p = 1, the system (1.4)-(1.6) was derived by Gear and Grimshaw [START_REF] Gear | Weak and strong interactions between internal solitary[END_REF] as a model to describe the strong interaction of weakly nonlinear, long waves. Mathematical results on the system (1.4)- (1.6) were given by J. Bona et al. [START_REF] Bourgain | Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I Schrödinger equation[END_REF]. They proved that (1.4)- (1.6) is globally well posed in H s (R) × H s (R) for any s ≥ 1 provided

|a 3 | < 1/ √ b 2 .
The system (1.4)-(1.6) has been intensively studied by several authors (see [START_REF] Bisognin | Asymptotic Behaviour in Time of the Solutions of a Coupled System of KdV Equations[END_REF][START_REF] Bisognin | Coupled system of Korteweg de Vries equations type in domains with moving boundaries[END_REF][START_REF] Bourgain | Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I Schrödinger equation[END_REF][START_REF] Dávila | Continuação única para um Sistema Acoplado de Equações do tipo Korteweg -de Vries e para as Equações de Benjamin-Bona-Mahony e de Boussinesq[END_REF][START_REF] Vera | Gain of regularity for a coupled system of nonlinear evolution dispersive equations type[END_REF] and the references therein). We have the following conservation laws

E 1 ( u) = R u dx , E 2 ( v) = R v dx , E 3 ( u, v) = R (b 2 u 2 + b 1 v 2 )dx (1.7)
The time-invariance of the functionals E 1 and E 2 expresses the property that the mass of each mode separately is conserved during interaction, while that of E 3 is an expression of the conservation of energy for the system of two models taken as a whole. The solutions of (1.4)-(1.6) satisfy an additional conservation law which is revealed by the time-invariance of the functional

E 4 = R b 2 u 2 x + v 2 x + 2b 2 a 3 u x v x -b 2 u 3 3 -b 2 a 2 u 2 v -b 2 a 2 u 2 v -b 2 a 1 u v 2 - v 3 3 dx
The functional E 4 is a Hamiltonian for the system (1.4)- (1.6) and if b 2 a 2 3 < 1, φ 4 will be seen to provide an a priori estimate for the solutions ( u, v) of (1.4)- (1.6) in the space H 1 (R) × H 1 (R). Furthermore, the linearization of (1.1)-(1.3) about the rest state can be reduced to two, linear Korteweg -de Vries equations by a process of diagonalization. Using this remark and the smoothing properties (in both the temporal and spatial variables) for the linear Korteweg -de Vries derived by Kato [START_REF] Kato | On the Cauchy problem for the ( generalized ) Korteweg -de Vries equations[END_REF][START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF], Kenig, Ponce and Vega [START_REF] Kenig | On the (generalized) Korteweg -de Vries equation[END_REF][START_REF] Kenig | Oscillatory integrals and regularity equations[END_REF] it will be shown that (1.4)- (1.6) is locally well-posed in H s (R) × H s (R) for any s ≥ 1 whenever √ b 2 a 3 = 1. This result was improved by J. M. Ash et al. [START_REF] Ash | On Strongly Interacting Internal Solitary Waves[END_REF] showing that the system (1.1)-(1.3) is globally well-posed in L 2 (R) × L 2 (R) provided that √ b 2 a 3 = 1. In 2004, F. Linares and M. Panthee [START_REF] Linares | On the Cauchy problem for a coupled system of KdV equations[END_REF] improve this result showing that the system (1.1)-(1.3) is locally well-posed in H s (R) × H s (R) for s > -3/4 and globally well-posed in H s (R) × H s (R) for s > -3/10 under some conditions on the coefficients, indeed for a 3 = 0 and b 1 = b 2 . Following the idea W. Craig et al. [START_REF] Craig | Gain of regularity for equations of Korteweg -de Vries type[END_REF], it is shown in [START_REF] Vera | Gain of regularity for a coupled system of nonlinear evolution dispersive equations type[END_REF] that C ∞ solutions ( u( • , t), v( • , t)) to (1.1)-(1.3) are obtained for t > 0 if the initial data ( u(x, 0), v(x, 0)) belong to a suitable Sobolev space satisfying resonable conditions as |x| → ∞. Since (1.1)-(1.3) is a coupled system of Korteweg-de Vries equations, it is natural to ask whether it has a smoothing effect up to real analyticity if the initial data only has a single point singularity at x = 0 as the known results for the scalar case of a single Korteweg -de Vries equation. Using the scaling argument we can have an insight to this question. In this paper our purpose is to prove the analyticity in time of solutions to (1.1)-(1.3) without regularity assumption on the initial data improving those obtained in [START_REF] Vera | Gain of regularity for a coupled system of nonlinear evolution dispersive equations type[END_REF]. Our main tool is the generator of dilation P = 3 t ∂ t + x ∂ x . which almost commutes with the linear Korteweg-de Vries operator L = ∂ t + ∂ x . Indeed [L, P ] = 3 L. A typical example of initial data satisfying the assumption of the above theorem is the Dirac delta measure, since (

x k ∂ x ) k δ(x) = (-1) k k! δ(x).
The other example of the data is p. v. 1 x , where p. v. denotes the Cauchy principal value. Linear combination of those distributions with analytic H s data satisfying the assumption is also possible. In this sense, the Dirac delta measure adding the soliton initial data can be taken as an initial datum. Using the operator K = x • ▽ + 2 i t ∂ t it was proved the Gevrey smoothing effect in space variable [START_REF] De Bouard | Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations[END_REF]. Indeed, it was shown that, if the initial data belongs to a Gevrey class of order 2, then solutions of some nonlinear Schrödinger equations become analytic in the space variable for t = 0. For the Korteweg-de Vries equations version of the generator of dilation is also useful to study the analyticity in time and the Gevrey effect in the space variables for solutions [START_REF] De Bouard | Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations[END_REF]. This paper is organized as follows: In section 2 we have the reduction of the problem and we outline briefly the notation, terminology to be used subsequently and results that will be used several times. In section 3 we prove a theorem of existence and well-posedness of the solutions. In section 4 we prove the following theorem:

Theorem 1.1. Suppose that the initial data ( u 0 , v 0 ) ∈ H s (R) × H s (R), s > -3/4 and A 0 , A 1 > 0 such that ∞ k=0 A k 0 k! ||(x ∂ x ) k u 0 || H s (R) < +∞ : ∞ k=0 A k 1 k! ||(x ∂ x ) k u 0 || H s (R) < +∞. (1.8) 
Then for some b ∈ (1/2, 7/12), there exist

T = T (|| u 0 || H s (R) , || v 0 || H s (R)
) and a unique solution of (1.1)-(1.3) in a certain time (-T, T ) and the solution ( u, v) is time locally well-posed, i. e., the solution continuously depends on the initial data. Moreover, the solution ( u, v) is analytic at any point (x, t) ∈ R × {(-T, 0) ∪ (0, T )}.

Corollary 1.1. Let s > -3/4, b ∈ (1/2, 7/12). Suppose that the initial data

( u 0 , v 0 ) ∈ H s (R) × H s (R), and A 0 , A 1 > 0 such that ∞ k=0 A k 0 (k!) 3 ||(x ∂ x ) k u 0 || H s (R) < +∞ : ∞ k=0 A k 1 (k!) 3 ||(x ∂ x ) k u 0 || H s (R) < +∞. (1.9)
Then there exists a unique solution

( u, v) ∈ C((-T, T ), H s (R))∩X s b ×C((-T, T ), H s (R))∩ X s
b to the coupled system of Korteweg-de Vries equation (1.1)-(1.3) for a certain (-T, T ) and for any t ∈ (-T, 0)∪ (0, T ), the pair ( u, v) are analytic functions in the space variable and for x ∈ R, u(x, • ) and v(x, • ) are Gevrey 3 as function of the time variable.

Remark 1.1. In Theorem 1.1 and Corollary 1.2, the assumption on the initial data implies analyticity and Gevrey 3 regularity except at the origin respectively. In this sense, those results state that the singularity at the origin immediately disappears after t > 0 or t < 0, up to analyticity.

Remark 1.2. The crucial part for obtaining a full regularity is to gain the L 2 (R 2 ) regularity of the solutions (u k , v k ) from the negative order Sobolev space. This part is obtained in Proposition 4.1 in Section 4. We utilize a three steps recurrence argument for treating the nonlinearity appearing in the right hand side of t ∂ 3

x u k = -

1 3 P u k + 1 3 x ∂ x u k + t B 1 k (u, u) + t B 2 k (v, v) + t B 3 k (u, v) (1.10) t ∂ 3 x v k = - 1 3 P v k + 1 3 x ∂ x v k + t C 1 k (u, u) + t C 2 k (v, v) + t C 3 k (u, v). (1.11)
Then step by step, we obtain the pointwise analytic estimates sup

t∈[t 0 -ǫ, t 0 +ǫ] ||∂ m t ∂ l x u|| H 1 (x 0 -ǫ, x 0 +ǫ) ≤ c A m+l 1 (m + l)!, l, m = 0, 1, 2, . . . (1.12) sup t∈[t 0 -ǫ, t 0 +ǫ] ||∂ m t ∂ l x v|| H 1 (x 0 -ǫ, x 0 +ǫ) ≤ c A m+l 2 (m + l)!, l, m = 0, 1, 2, . . . (1.13)
Since initially we do not know whether the solution belong to even L 2 (R 2 ) we should mention that the local well-posedness is essentially important for our argument and therefore it merely satisfies the coupled system equations in the sense of distribution.

Reduction of the Problem and Preliminary Results

As mentioned in the introduction we consider the following coupled system of equations of Korteweg -de Vries type (1.1)-(1.3). If a 3 = 0 there is no coupling in the dispersive terms. Let us assume that a 3 = 0. We are interested in decoupling the dispersive terms in the system (1.1)- (1.3). For this, let a 2 3 b 2 = 1. We consider the associated linear system

W t + A W xxx = 0, W (x, 0) = W 0 (x) (2.1) 
where

W = u v , A = 1 a 3 a 3 b 2 b 1 1 b 1 .
The eigenvalues of A are given by

α + = 1 2   1 + 1 b 1 + 1 - 1 b 1 2 + 4 b 2 a 2 3 b 1   (2.2) α -= 1 2   1 + 1 b 1 - 1 - 1 b 1 2 + 4 b 2 a 2 3 b 1   (2.3)
which are distinct since b 1 > 0, b 2 > 0 and a 3 = 0. Our assumption a 2 3 b 2 = 1 guarantees that α ± = 0. Thus we can write the system (1.1)-(1.3) in a matrix form as in [START_REF] Linares | On the Cauchy problem for a coupled system of KdV equations[END_REF]. After we make the change of scale u(x, t) = u(α

-1/3 + x, t) and v(x, t) = v(α -1/3 - x, t).
Then we obtain the system of equations

u t + u xxx + a u u x + b v v x + c (u v) x = 0, x, t ∈ R (2.4) v t + v xxx + a u u x + b v v x + c (u v) x = 0, (2.5) u(x, 0) = u 0 (x), v(x, 0) = v 0 (x) (2.6)
where a, b, c and a, b, c are constant.

Remark 2.1. Notice that the nonlinear terms involving the functions u and v are not evaluated at the same point. Therefore those terms are not local anymore.

For s, b ∈ R define the spaces X s b and X s b-1 to be the completion of the Schwartz space S(R 2 ) with respect to the norms

||u|| X s b = R R (1 + |τ -ξ 3 |) 2b (1 + |ξ|) 2s | u(ξ, τ )| 2 dξ dτ 1/2 and ||u|| X s b-1 = R R (1 + |τ -ξ 3 |) 2(b-1) (1 + |ξ|) 2s | u(ξ, τ )| 2 dξ dτ 1/2
where

X s b = {u ∈ S ′ (R 2 ) : ||u|| X s b < ∞}.
Let F x and F x, t be the Fourier transform in the x and (x, t) variables respectively. The Riesz operator D x is defined by

D x = F -1 ξ |ξ| F x .
The fractional derivative is defined by

< D x > s = F -1 ξ < ξ > s F x = F -1 ξ (1 + |ξ| 2 ) s/2 F x < D x, t > s = F -1 ξ, τ < |ξ| + |τ | > s F x, t For < • >= (1 + | • | 2 ) 1/2 , we have i) || • || H b (R: H r (R)) = || < D t > b < D x > r • || L 2 x, t (R 2 ) . ii) H s (R) = {u ∈ S ′ (R) : < D x > s u ∈ L 2 (R)}. iii) || • || H s (R) = || < D x > s • || L 2 (R) .
Remark 2.2. With the above notation we obtain

a) ||u|| H s x (R) = || < ξ > s u || L 2 (R) . b) ||u|| L 2 t (R: H r x (R)) = || < ξ > r u || L 2 (R 2 ) . c) || < D x > s u|| L 2 (R) = ||u|| H s (R) . d) || < D t > b < D x > r u|| L 2 x, t (R 2 ) = ||u|| H b t (R: H r x (R)) . e) || < D x, t > s u|| L 2 t (R: H r x (R)) = || < ξ > r < |ξ| + |τ | > s u(ξ, τ )|| L 2 (R 2 ) .
We consider the following operators: L = ∂ t + ∂ 3

x and J = x -3 t ∂ 2

x then [L, J] ≡ L J -J L = 0. We introduce the "generator of dilation" P = 3 t ∂ t + x ∂ x for the linear part of the coupled system (2.4)-(2.6) and the "localized dilation operator"

P 0 = 3 t 0 ∂ t + x 0 ∂ x .
By employing a localization argument, we look at the operator P as a vector field P 0 = 3 t 0 ∂ t + x 0 ∂ x near a fixed point (x 0 , t 0 ) ∈ R × {(-T, 0) ∪ (0, T )}. Since P 0 is a directional derivative toward to (x 0 , t), we introduce another operator L 3 0 = t 0 ∂ 3 x which plays the role of a non-tangential vector field to P 0 . Since P 0 and L 0 are linearly independent, the space and time derivative can be covered by those operator. The main reason why we choose L 0 is because the corresponding variable coefficients operator L 3 = t ∂ 3

x can be treated via the equations (1.10)-(1.11) and a cut-off procedure enables us to handle the right hand side of those.

Remark 2.3. For L and P we have the following properties:

a) [L, P ] ≡ L P = (P + 3)L. b) L P k = (P + 3) k L. c) (P + 3) k ∂ x = ∂ x (P + 2) k . d) (P + 3) k ∂ 3 x = ∂ 3 x P k . e) P 0 P = P P 0 + 3 P 0 -2 x 0 ∂ x .
Notation. The summation

k=k 1 +k 2 +k 3 0≤k 1 , k 2 , k 3 ≤k is simply abbreviated by k=k 1 +k 2 +k 3 . Let P k u = u k , then ∂ t (P k u) + ∂ 3 x (P k u) = L P k u = (P + 3) k Lu = (P + 3) k (∂ t u + ∂ 3 x u) = -(P + 3) k a 2 ∂ x (u 2 ) + b 2 ∂ x (v 2 ) + c ∂ x (u v) = - a 2 (P + 3) k ∂ x (u 2 ) - b 2 (P + 3) k ∂ x (v 2 ) -c (P + 3) k ∂ x (u v) = - a 2 ∂ x (P + 2) k (u 2 ) - b 2 ∂ x (P + 2) k (v 2 ) -c ∂ x (P + 2) k (u v). Noting that (P + 2) k u = k j=0 k j 2 k-j P j u. Hence B 1 k (u, u) = - a 2 ∂ x (P + 2) k (u 2 ) = - a 2 ∂ x k m=0 k m (P + 2) m u • P k-m u = - a 2 ∂ x k m=0 m j=0 k m m j 2 m-j P j u • P k-m u = - a 2 ∂ x k m=0 m j=0 k! (m -j)! j! (k -m)! 2 m-j P j u • P k-m u = - a 2 k=k 1 +k 2 +k 3 k! k 1 ! k 2 ! k 3 ! 2 k 1 ∂ x (u k 2 • u k 3 ) . (2.7)
In a similar way

B 2 k (v, v) = - b 2 ∂ x (P + 2) k (v 2 ) = - b 2 k=k ′ 1 +k ′ 2 +k ′ Therefore ∂ t (P k u) + ∂ 3 x (P k u) = - a 2 k=k 1 +k 2 +k 3 k! k 1 ! k 2 ! k 3 ! 2 k 1 ∂ x (u k 2 • u k 3 ) - b 2 k=k ′ 1 +k ′ 2 +k ′ = C 1 k (u, u) + C 2 k (v, v) + C 3 k (u, v). (2.11) 
The above nonlinear terms maintain the bilinear structure like that of the original coupled system of equations of KdV type, since Leibniz's rule can be applied for operations of P. Now, each u k and v k satisfies the following system of equations

∂ t u k + ∂ 3 x u k = B 1 k (u, u) + B 2 k (v, v) + B 3 k (u, v) ≡ B k (2.12) ∂ t v k + ∂ 3 x v k = C 1 k (u, u) + C 2 k (v, v) + C 3 k (u, v) ≡ C k (2.13) u k (x, 0) = (x ∂ x ) k u 0 (x) ≡ u k 0 (x), v k (x, 0) = (x ∂ x ) k v 0 (x) ≡ v k 0 (x). (2.14) 
In order to obtain a well-posedness result for the system (2.12)-(2.14) we use Duhamel's principle and we study the following system of integral equations equivalent to the system (2.12)-(2.14)

ψ(t) u k = ψ(t) V (t) u k 0 -ψ(t) t 0 V (t -t ′ ) ψ T (t ′ ) B k (t ′ ) dt ′ (2.15) ψ(t) v k = ψ(t) V (t) v k 0 -ψ(t) t 0 V (t -t ′ ) ψ T (t ′ ) C k (t ′ ) dt ′ (2.16)
where

V (t) = e -t ∂ 3
x is the unitary group associated with the linear problem and

ψ(t) ∈ C ∞ 0 (R), 0 ≤ ψ ≤ 1 is a cut-off function such that ψ(t) = 1, if |t| < 1 0, if |t| > 2 and ψ T (t) = ψ(t/T )
The following results are going to be used several times in the rest of this paper.

Lemma 2.1 ([16]

). . Let s ∈ R, a, a ′ ∈ (0, 1/2), b ∈ (1/2, 1) and δ < 1. Then for any k = 0, 1, 2, . . . , we have

||ψ δ φ k || X s -a ≤ c δ (a-a ′ )/4(1-a ′ ) ||φ k || X s -a ′ , (2.17 
)

||ψ δ V (t) φ k || X s b ≤ c δ 1/2-b ||φ k || H s (R) , (2.18) 
ψ δ t 0 V (t -t ′ ) F k (t ′ ) dt ′ X s b ≤ c δ 1/2-b ||F k || X s b-1 . (2.19) Lemma 2.2 ([16]). . Let s > -3/4, b, b ′ ∈ (1/2, 7/12) with b < b ′ .
Then for any k, l = 0, 1, 2, . . . we have

||∂ x (u k v l )|| X s b ′ -1 ≤ c ||v k || X s b ||v l || X s b .
(2.20)

Lemma 2.3 ([12]). . Let s < 0, b ∈ (1/2, 7/12
) and ψ = ψ(x, t) be a smooth cutoff function such that the support of ψ is in B 2 (0) and ψ = 1 on B 1 (0). We set

ψ ǫ = ψ((x -x 0 )/ǫ, (t -t 0 )/ǫ). Then for f ∈ X s b , we have ||ψ ǫ f || X s b ≤ c ǫ -|s|-5|b| ||ψ ǫ || X |s|+2 |b| |b| ||f || X s+2 |b| b , (2.21) 
where the constant c is independent of ǫ and f.

Lemma 2.4 ([12]

). . Let P be the generator of the dilation and D x, t be an operator defined by F -1 ξ, τ < |τ |+|ξ| > F x, t . We fix an arbitrary point (x 0 , t 0 ) ∈ R×{(-T, 0)∪(0, T )}. Then 1) Suppose that b ∈ (0, 1], r ∈ (-∞, 0] and g ∈ X r b-1 with supp g ⊂ B 2ǫ (x 0 , t 0 ) and t∂ 3 x g, P 3 g ∈ X r b-1 . If ǫ > 0 is sufficiently small, then we have

|| < D x, t > 3b g|| L 2 (R: H r (R)) ≤ c ||g|| X r b-1 + ||t∂ 3 x g|| X r b-1 + ||P 3 g|| X r b-1 (2.22)
where the constant c = c(x 0 , t 0 , ǫ).

2) If g ∈ H µ-3 (R 2 ) with supp g ⊂ B 2ǫ (x 0 , t 0 ) and t∂ 3 x g, P 3 g ∈ H µ-3 (R 2 ). Then for small ǫ, we have

|| < D x, t > µ g|| L 2 (R 2 ) ≤ c ||g|| H µ-3 (R 2 ) + ||t∂ 3 x g|| H µ-3 (R 2 ) + ||P 3 g|| H µ-3 (R 2 ) (2.23)
where the constant c = c(x 0 , t 0 , ǫ).

Lemma 2.5 ([12]). . Let 0 ≤ s, r ≤ n/2 with n/2 ≤ s + r and suppose that f ∈ H s (R n ) and g ∈ H r (R n ). Then for any σ < s + r -n/2, we have f g ∈ H σ (R n ) and ||f g|| H σ (R n ) ≤ c(ǫ) ||f || H s (R n ) ||g|| H r (R n ) , (2.24 
)

where ǫ = s + r -n/2 -σ.
Corollary 2.1 ( [START_REF] Kato | Analyticity and Smoothing effect for the Korteweg -de Vries equation with a single point singularity[END_REF]). . For 1/2 < b < 1 and -3/4 < s < 0, we have

||ψ f || X s-1 b-1 ≤ c ||f || X s b-1 (2.25)
where ψ ∈ C ∞ 0 (R 2 ) and c is independent of f. Lemma 2.6 ( [START_REF] Kato | Analyticity and Smoothing effect for the Korteweg -de Vries equation with a single point singularity[END_REF]). . Let ψ(x) be a smooth cut-off function in C ∞ 0 ((-2, 2)) with ψ(x) = 1 on (-1, 1). We set ψ ǫ = ψ(x/ǫ) for 0 < ǫ < 1. Then for r ≤ 0, and f ∈ H r , we have

||ψ ǫ f || H r (R) ≤ c ǫ -δ ||f || H r (R) if -1/2 ≤ r ≤ 0 c ǫ 1/2+r ||f || H r (R) if r < -1/2
where δ > 0 is an arbitrary small constant and c is independent of ǫ.

Throughout this paper c is a generic constant, not necessarily the same at each occasion (it will change from line to line), which depends in an increasing way on the indicated quantities.

Existence and Well-Posedness

We firstly solve the following (slightly general) system of equations

∂ t u k + ∂ 3 x u k = B 1 k (u, u) + B 2 k (v, v) + B 3 k (u, v) ≡ B k (3.1) ∂ t v k + ∂ 3 x v k = C 1 k (u, u) + C 2 k (v, v) + C 3 k (u, v) ≡ C k (3.2) u k (x, 0) = (x ∂ x ) k u 0 (x) ≡ u k 0 (x) , v k (x, 0) = (x ∂ x ) k v 0 (x) ≡ v k 0 (x) (3.3) 
where B k and C k are as above.

Definition 3.1. Let f = (f 0 , f 1 , . . . , f k ) denotes the infinity series of distributions and define

A A 0 (X s b ) ≡ f = (f 0 , f 1 , . . . , f k ), f i ∈ X s b , (i = 0, 1, 2 . . .) such that ||f || A A 0 (X s b ) < +∞ where ||f || A A 0 (X s b ) ≡ ∞ k=0 A k 0 k! ||f k || X s b .
Similarly, for u 0 = {u 0 0 , u 1 0 , . . . , u k 0 , . . . } and v 0 = {v 0 0 , v 1 0 , . . . , v k 0 , . . . } we set

||u 0 || A A 0 (H s (R)) ≡ ∞ k=0 A k 0 k! ||u k 0 || H s (R) and ||v 0 || A A 0 (H s (R)) ≡ ∞ k=0 A k 0 k! ||v k 0 || H s (R)
respectively.

Remark 3.1. Each solution of the coupled system of Korteweg de Vries equations is accompanied by the following estimate

||P k u|| X s b ≤ c A k 0 k!, and ||P k v|| X s b ≤ c A k 1 k!, k = 0, 1, 2, . . . Theorem 3.1. Let -3/4 < s, b ∈ (1/2, 7/12). Suppose that u k 0 , v k 0 ∈ H s (R)(k = 0, 1, 2, . . .) and satisfies ||u 0 || A A 0 (X s b ) = ∞ k=0 A k 0 k! ||u k 0 || H s (R) < +∞ and ||v 0 || A A 0 (X s b ) = ∞ k=0 A k 0 k! ||v k 0 || H s (R) < +∞.
Then there exist

T = T (||u k 0 || H s (R) , ||v k 0 || H s (R)
) and a unique solution u = (u 0 , u 1 , . . .) and

v = v(v 0 , v 1 , . . .) of the system (3.1)-(3.3) with u k , v k ∈ C((-T, T ) : H s (R)) ∩ X s b and ∞ k=0 A k 0 k! ||u k || X s b (R) < +∞, ∞ k=0 A k 0 k! ||v k || X s b (R) < +∞.
Moreover, the map

(u k 0 , v k 0 ) → (u(t), v(t)) is Lipschitz continuous, i. e., ||u(t) -u(t)|| A A 0 (X s b ) + ||u(t) -u(t)|| C((-T, T ): H s (R)) ≤ c(T ) ||u 0 -u 0 || A A 0 (H s (R))
and

||v(t) -v(t)|| A A 0 (X s b ) + ||v(t) -v(t)|| C((-T, T ): H s (R)) ≤ c(T ) ||v 0 -v 0 || A A 0 (H s (R)) . Proof. For given (u 0 , v 0 ) ∈ A A 0 (H s (R)) × A A 0 (H s (R)) and b > 1/2, let us define, H R 1 , R 2 = (u, v) ∈ A A 0 (X s b ) × A A 0 (X s b ) : ||u|| A A 0 (X s b ) ≤ R 1 , ||v|| A A 0 (X s b ) ≤ R 2 where R 1 = 2 c 0 ||u 0 || A A 0 (H s (R)) and R 2 = 2 c 0 ||v 0 || A A 0 (H s (R)) . Then H R 1 , R 2 is a complete metric space with norm ||(u, v)|| H R 1 , R 2 = ||u|| A A 0 (X s b ) + ||v|| A A 0 (X s b ) .
Without loss of generality, we may assume that that

R 1 > 1 and R 2 > 1. For (u, v) ∈ H R 1 , R 2 , let us define the maps, Φ k u 0 (u, v) = ψ(t) V (t) u k 0 -ψ(t) t 0 V (t -t ′ ) ψ T (t ′ ) B k (t ′ ) dt ′ (3.4) Ψ k v 0 (u, v) = ψ(t) V (t) v k 0 -ψ(t) t 0 V (t -t ′ ) ψ T (t ′ ) C k (t ′ ) dt ′ . (3.5) We prove that Φ × Ψ maps H R 1 , R 2 into H R 1 , R 2 
and it is a contraction. In fact, using lemma 2.1 and lemma 2.2 we have

||Φ k u 0 (u, v)|| X s b = ||ψ(t) V (t) u k 0 || X s b + ψ(t) t 0 V (t -t ′ ) ψ T (t ′ ) B k (t ′ ) dt ′ X s b ≤ c 0 ||u k 0 || H s (R) + c 1 T µ ||B k || X s b ′ -1 ≤ c 0 ||u k 0 || H s (R) + c 1 T µ a 2 k=k 1 +k 2 +k 3 k! k 1 ! k 2 ! k 3 ! 2 k 1 ||u k 2 || X s b ||u k 3 || X s b + c 1 T µ b 2 k=k ′ 1 +k ′ 2 +k ′ 3 k! k ′ 1 ! k ′ 2 ! k ′ 3 ! 2 k ′ 1 ||v k ′ 2 || X s b ||v k ′ 3 || X s b + c 1 T µ c k=k ′′ 1 +k ′′ 2 +k ′′ 3 k! k ′′ 1 ! k ′′ 2 ! k ′′ 3 ! 2 k ′′ 1 ||u k ′′ 2 || X s b ||v k ′′ 3 || X s b .
Applying a sum over k we have

∞ k=0 A k 0 k! ||Φ k u 0 (u, v)|| X s b ≤ c 0 ∞ k=0 A k 0 k! ||u k 0 || H s (R) + c 1 T µ a 2 ∞ k=0 A k 0 k! k=k 1 +k 2 +k 3 k! k 1 ! k 2 ! k 3 ! 2 k 1 ||u k 2 || X s b ||u k 3 || X s b + c 1 T µ b 2 ∞ k=0 A k 0 k! k=k ′ 1 +k ′ 2 +k ′ 3 k! k ′ 1 ! k ′ 2 ! k ′ 3 ! 2 k ′ 1 ||v k ′ 2 || X s b ||v k ′ 3 || X s b + c 1 T µ c ∞ k=0 A k 0 k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 k! k ′′ 1 ! k ′′ 2 ! k ′′ 3 ! 2 k ′′ 1 ||u k ′′ 2 || X s b ||v k ′′ 3 || X s b ≤ c 0 ||u 0 || A A 0 (H s (R)) + c 1 T µ a 2 ∞ k=0 k=k 1 +k 2 +k 3 2 k 1 A k 1 0 k 1 ! A k 2 0 k 2 ! ||u k 2 || X s b A k 3 0 k 3 ! ||u k 3 || X s b + c 1 T µ b 2 ∞ k=0 k=k ′ 1 +k ′ 2 +k ′ 3 2 k ′ 1 A k ′ 1 0 k ′ 1 ! A k ′ 2 0 k ′ 2 ! ||v k ′ 2 || X s b A k ′ 3 0 k ′ 3 ! ||v k ′ 3 || X s b + c 1 T µ c ∞ k=0 k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 A k ′′ 1 0 k ′ 1 ! A k ′′ 2 0 k ′′ 2 ! ||u k ′′ 2 || X s b A k ′′ 3 0 k ′′ 3 ! ||v k ′′ 3 || X s b ≤ c 0 ||u 0 || A A 0 (H s (R)) + c 1 T µ a 2 ∞ k 1 =0 2 k 1 A k 1 0 k 1 ! ∞ k 2 =0 A k 2 0 k 2 ! ||u k 2 || X s b ∞ k 3 =0 A k 3 0 k 3 ! ||u k 3 || X s b + c 1 T µ b 2 ∞ k ′ 1 =0 2 k ′ 1 A k ′ 1 0 k ′ 1 ! ∞ k ′ 2 =0 A k ′ 2 0 k ′ 2 ! ||v k ′ 2 || X s b ∞ k ′ 3 =0 A k ′ 3 0 k ′ 3 ! ||v k ′ 3 || X s b + c 1 T µ c ∞ k ′′ 1 =0 2 k ′′ 1 A k ′′ 1 0 k ′′ 1 ! ∞ k ′′ 2 =0 A k ′′ 2 0 k ′′ 2 ! ||u k ′′ 2 || X s b ∞ k ′′ 3 =0 A k ′′ 3 0 k ′′ 3 ! ||v k ′′ 3 || X s b = c 0 ||u 0 || A A 0 (H s (R)) + c 1 T µ a 2 e 2 A 0 ||u|| 2 A A 0 (X s b ) + c 1 T µ b 2 e 2 A 0 ||v|| 2 A A 0 (X s b ) + c 1 T µ c e 2 A 0 ||u|| A A 0 (X s b ) ||v|| A A 0 (X s b ) .
Hence, choosing d = max{a/2, b/2, c} we have

||Φ u 0 (u, v)|| A A 0 (X s b ) ≤ c 0 ||u 0 || A A 0 (H s (R)) + c 1 T µ d e 2 A 0 ||u|| 2 A A 0 (X s b ) + ||v|| 2 A A 0 (X s b ) + ||u|| A A 0 (X s b ) ||v|| A A 0 (X s b ) ≤ c 0 ||u 0 || A A 0 (H s (R)) + 3 2 c 1 d T µ e 2 A 0 ||u|| 2 A A 0 (X s b ) + ||v|| 2 A A 0 (X s b ) . (3.6) 
In a similar way, choosing d = max{ a/2, b/2, c} we have

||Ψ v 0 (u, v)|| A A 0 (X s b ) ≤ c 0 ||v 0 || A A 0 (H s (R)) + 3 2 c 2 d T µ e 2 A 0 ||u|| 2 A A 0 (X s b ) + ||v|| 2 A A 0 (X s b ) . (3.7)
If we choose T such that

T µ ≤ 1 3 max{c 1 , c 2 } (R 1 + R 2 ) 2
Then we obtain in (3.6) and (3.7)

||Φ u 0 (u, v)|| A A 0 (X s b ) ≤ R 1 and ||Ψ v 0 (u, v)|| A A 0 (X s b ) ≤ R 2 . Therefore, (Φ u 0 , Ψ v 0 ) ∈ H R 1 , R 2 . We show that Φ u 0 × Ψ v 0 : (u, v) → (Φ u 0 (u, v), Ψ v 0 (u, v)) is a contraction. Let (u, v), ( u, v) ∈ H R 1 , R 2 , then as above we get for d = max{a/2, b/2, c} ||Φ u 0 (u, v) -Φ u 0 ( u, v)|| A A 0 (X s b ) ≤ 3 2 c 1 d T µ e 2 A 0 (R 1 + R 2 ) ||u -u|| A A 0 (X s b ) + ||v -v|| A A 0 (X s b ) . (3.8) 
In a similar way, choosing d = max{ a/2, b/2, c} we have

||Ψ v 0 (u, v) -Ψ v 0 ( u, v)|| A A 0 (X s b ) ≤ 3 2 c 2 d T µ e 2 A 0 (R 1 + R 2 ) ||u -u|| A A 0 (X s b ) + ||v -v|| A A 0 (X s b ) . (3.9) 
Choosing T µ small enough, such that

T µ ≤ 1 6 max{c 1 , c 2 } (R 1 + R 2 ) 2 we obtain ||Φ u 0 (u, v) -Φ u 0 ( u, v)|| A A 0 (X s b ) ≤ 1 4 ||u -u|| A A 0 (X s b ) + ||v -v|| A A 0 (X s b ) . (3.10) 
In a similar way

||Ψ v 0 (u, v) -Ψ v 0 ( u, v)|| A A 0 (X s b ) ≤ 1 4 ||u -u|| A A 0 (X s b ) + ||v -v|| A A 0 (X s b ) . (3.11) 
Therefore the map Φ u 0 × Ψ v 0 is a contraction and we obtain a unique fixed point (u, v) which solves the initial value problem (3.1)-(3.3) for T < T µ . The rest of the proof follows a standard argument.

Corollary 3.1. Let -3/4 < s, b ∈ (1/2, 7/12). Suppose that (x ∂ x ) k u 0 , (x ∂ x ) k v 0 ∈ H s (R)(k = 0, 1, 2, . . .) and that ∞ k=0 A k 0 k! ||u k 0 || H s (R) < +∞ and ∞ k=0 A k 0 k! ||v k 0 || H s (R) < +∞.
Then there exist

T = T (||u k 0 || H s (R) , ||v k 0 || H s (R)
) and a unique solution (u, v) of the coupled system equations KdV type (1.1)-(1.3) with u, v ∈ C((-T, T ) :

H s (R)) ∩ X s b and ∞ k=0 A k 1 k! ||P k u|| X s b (R) < +∞, ∞ k=0 A k 1 k! ||P k v|| X s b (R) < +∞.
Moreover, the map (u 0 , v 0 ) → (u(t), v(t)) is Lipschitz continuous in the following sense:

||P k u(t) -P k u(t)|| X s b + ||P k u(t) -P k u(t)|| C((-T, T ): H s (R)) ≤ c(T ) ∞ k=0 A k 0 k! ||(x ∂ x ) k (u 0 -u 0 )|| H s (R)
and

||v(t) -v(t)|| X s b + ||v(t) -v(t)|| C((-T, T ): H s (R)) ≤ c(T ) ∞ k=0 A k 0 k! ||(x ∂ x ) k (v 0 -v 0 )|| H s (R) .

The main result

In this section we prove the analyticity of the solution obtained in the previous section. We treat the solution u k ≡ P k u and v k ≡ P k v as if they satisfy the coupled system of equations (3.1)-(3.3) in the classical sense. This can be justified by a proper approximation procedure. The following results are going to be used in this section. Let (x 0 , t 0 ) be arbitrarily taken in R × {(-T, 0) ∪ (0, T )}. By ψ(x, t) we denote a smooth cut-off function in C ∞ 0 (B 1 (0)) and ψ ǫ = ψ((x -x 0 )/ǫ, (t -t 0 )/ǫ). Let ψ be a smooth cut-off function around the freezing point (x 0 , t 0 ) with supp ψ ⊂ C ∞ 0 (B ǫ (x 0 , t 0 )). Proposition 4.1. For the cut-off function ψ defined above, there exists a positive constant c and A such that

||ψ P k u|| L 2 x, t (R 2 ) ≤ c A k (k!) 2 , k = 0, 1, 2, . . . (4.1) ||ψ P k v|| L 2 x, t (R 2 ) ≤ c A k (k!) 2 , k = 0, 1, 2, . . . (4.2)
Proof. Using (2.22) with r = s -1, we obtain

|| < D x, t > 3b ψP k u|| L 2 t (R: H s-1 x (R)) ≤ c ||ψu k || X s-1 b-1 + ||t ∂ 3 x (ψu k )|| X s-1 b-1 + ||P 3 (ψu k )|| X s-1 b-1 . (4.3)
Each term in (4.3) is estimated separately. For the first term in the right hand side we use Lemma 2.3. Indeed,

||ψ u k || X s-1 b-1 ≤ ||ψ u k || X s b-1 ≤ c ||ψ|| X |s|+2|b-1| |b-1| ||u k || X s b ≤ c(ψ)A k 1 k!. k = 0, 1, 2, . . . (4.4)
The third term is estimated again using Corollary 2.6.

||P 3 (ψ u k )|| X s-1 b-1 ≤ 3 l=0 3! l (l -3)! ||(P 3-l ψ) P l u k || X s b-1 ≤ c(ψ) 3 l=0 3! l (l -3)! ||P l u k || X s b ≤ c 3 l=0 3! l (l -3)! ||P k+l u|| X s b = c 3 l=0 A k+l 1 (k + l)! ≤ c A k 2 k!. k = 0, 1, 2, . . . (4.5) 
For the second term, we use (3.1) to reduce the third derivative in space to the dilation operator P. Since the generator of dilation is

P u k = 3 t ∂ t u k + x ∂ x u k we obtain t ∂ t u k = 1 3 P u k - 1 3 x ∂ x u k . (4.6) 
Multiplying (3.1) by ψ t, we have

ψ t ∂ t u k + ψ t ∂ 3 x u k = ψ t B k . (4.7) 
Replacing (4.6) in (4.7) we obtain

ψ t ∂ 3 x u k = - 1 3 ψ P u k + 1 3 ψ x ∂ x u k + ψ t B k . (4.8) hence ||ψ t ∂ 3 x u k || X s-1 b-1 = 1 3 ||ψ P u k || X s-1 b-1 + 1 3 ||ψ x ∂ x u k || X s-1 b-1 + ||ψ t B k || X s-1 b-1 = F 1 + F 2 + F 3 . (4.9)
Using the assumption in the Theorem, we have

F 1 = 1 3 ||ψ P u k || X s-1 b-1 ≤ c ||ψ|| X -s 1-b ||P k+1 u|| X s b-1 ≤ c ||P k+1 u|| X s b ≤ c A k+1 3 (k + 1)! ≤ c A k 4 k!. (4.10)
Similarly, we obtain

F 2 = 1 3 ||ψ x ∂ x u k || X s-1 b-1 ≤ 1 3 ||∂ x (ψ x u k )|| X s-1 b-1 + 1 3 ||∂ x (ψ x) u k )|| X s-1 b-1 ≤ 1 3 ||∂ x (ψ x v k )|| X s b-1 + c ||∂ x (ψ x)|| X -s 1-b ||u k || X s b-1 ≤ 1 3 ||ψ x|| X s b ||u k || X s b + c ||∂ x (ψ x)|| X -s 1-b ||u k || X s b-1 ≤ c ||ψ x|| X s b + ||∂ x (ψ x)|| X -s 1-b A k 5 k! ≤ c A k 6 k!. (4.11)
Using Lemma 2.3 and 2.2, we have

F 3 = ||ψ t B k || X s-1 b-1 ≤ c ||ψ|| X -s b-1 ||B 1 k + B 2 k + B 3 k || X s b-1 ≤ c ||B 1 k || X s b-1 + ||B 2 k || X s b-1 + ||B 3 k || X s b-1
Then replacing B 1 k , B 2 k and B 3 k in (2.7), (2.8) and (2.9) we deduce

F 3 ≤ c k=k 1 +k 2 +k 3 k! k 1 ! k 2 ! k 3 ! 2 k 1 ||u k 2 || X s b ||u k 3 || X s b + c k=k ′ 1 +k ′ 2 +k ′ 1 k ′ 1 ! 2 k ′ 1 A -k ′ 1 8 + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 ≤ c k! A k 7 k k 1 =0 k-k 1 k 2 =0 2 A 7 k 1 k 1 ! + c k! A k 8 k k ′ 1 =0 k-k ′ 1 k ′ 2 =0 2 A 8 k ′ 1 k ′ 1 ! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 ≤ c e 2/A 7 A k 7 • k! + c e 2/A 8 A k 8 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 ≤ c e 2/A 7 + e 2/A 8 A 11 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 . k = 0, 1, 2, . . . (4.12)
Hence, from (4.10), (4.11) and (4.12) in (4.9) we obtain that there exists a positive constant c and A 11 such that

||ψ t ∂ 3 x u k || X s-1 b-1 ≤ c A 11 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 , k = 0, 1, 2, . . . (4.13)
On the other hand, using

∂ 3 x (ψ • f ) = ψ • ∂ 3 x f + 3 ∂ 2 x (∂ x ψ • f ) -3 ∂ x (∂ 2 x ψ • f ) + ∂ 3 x ψ • f we have that ||t ∂ 3 x (ψ • u k )|| X s-1 b-1 ≤ ||t ψ • ∂ 3 x u k || X s-1 b-1 + 3 ||∂ 2 x (t ∂ x ψ • u k )|| X s-1 b-1 + 3 ||∂ x (t ∂ 2 x ψ • u k )|| X s-1 b-1 + ||t ∂ 3 x ψ • u k || X s-1 b-1 . (4.14)
Using Lemma 2.2 and Lemma 2.3 we obtain 

||∂ 2 x (t ∂ x ψ • u k )|| X s-1 b-1 ≤ ||∂ x (t ∂ x ψ • u k )|| X s b-1 ≤ c ||t ∂ x ψ|| X s b ||u k || X s b ≤ c A k 10 k! (4.15) ||∂ x (t ∂ 2 x ψ • u k )|| X s-1 b-1 ≤ ||∂ x (t ∂ 2 x ψ • u k )|| X s b-1 ≤ c ||t ∂ 2 x ψ|| X s b ||u k || X s b ≤ c A k 11 k! (4.16) ||t ∂ 3 x ψ • u k || X s-1 b-1 ≤ c || < D x, t > 3/2 t ∂ 3 x ψ|| X |s|+2|b-1| 1-b ||u k || X s b-1 ≤ c ||u k || X s b ≤ c A k 12 k!. ( 4 
||t ∂ 3 x (ψu k )|| X s-1 b-1 ≤ c A k 14 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 , k = 0, 1, 2, . . . (4.18) 
Therefore, replacing (4.4), (4.5) and (4.18) in (4.3) we obtain that there exists a constant c and A 15 such that

|| < D x, t > 3b ψ u k || L 2 t (R: H s-1 x (R)) ≤ c A k 15 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 , k = 0, 1, 2, . . . (4.19)
In a similar way, we obtain that there exists a constant c and A 16 such that 

|| < D x, t > 3b ψ v k || L 2 t (R: H s-1 x (R)) ≤ c A k 16 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 A k ′′ 2 9 • A k ′′ 3 10 , k = 0, 1, 2, . . . ( 4 
|| < D x, t > 3b ψ u k || L 2 t (R: H s-1 x (R)) + || < D x, t > 3b ψ v k || L 2 t (R: H s-1 x (R)) ≤ c A k 15 • k! + c A k 16 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 2 • A k ′′ 2 9 • A k ′′ 3 10 ≤ c (A k 15 + A k 16 ) • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 2 • A k ′′ 2 9 • A k ′′ 3 10 ≤ c A k 17 • k! + c k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 2 • A k ′′ 2 9 • A k ′′ 3 10 . (4.21) 
We estimate the last term on the right hand side of (4.21)

k=k ′′ 1 +k ′′ 2 +k ′′ 3 1 k ′′ 1 ! 2 k ′′ 1 2 • A k ′′ 2 9 • A k ′′ 3 10 = k m=0 m j=0 1 (m -j)! 2 (m-j) 2 • A j 9 • A k-m 10 ≤ A k 10 k m=0 m j=0 1 (m -j)! 2 • A 9 2 j • 2 A 10 m ≤ A k 10 k m=0 m j=0 A 2 9 4 j + 4 A 2 10 m ≤ A k 10 k m=0 m j=0 j! A 2 9 4 j j! + A k 10 k m=0 m j=0 m! 4 A 2 10 m m! ≤ A k 10 k! k m=0 m j=0 A 2 9 4 j j! + A k 10 k! k m=0 m j=0 4 A 2 10 m m! ≤ e A 2 9 /4 A k 10 k! + e 4/A 2 10 A k 10 k! ≤ c A k 10 k!. (4.22) Replacing (4.22) in (4.21) 
we obtain

|| < D x, t > 3b ψ u k || L 2 t (R: H s-1 x (R)) + || < D x, t > 3b ψ v k || L 2 t (R: H s-1 x (R)) ≤ c A k 17 • k! + c A k 19 • (k!) 2 ≤ c A k 17 • (k!) 2 + c A k 19 • (k!) 2 ≤ c A k 20 • (k!) 2 (4.23) 
and the result follows. b) The following inequality is simple to verify in both cases,

||ψ u k || L 2 x, t (R 2 ) ≤ || < D x > 3 b (ψ u k )|| L 2 t (R: H s-1 x (R)) ≤ c || < D x, t > 3 b (ψ u k )|| L 2 t (R: H s-1 x (R)) .
Proposition 4.2. Under the same assumptions as in Proposition 4.1, there exist positive constants c and A such that

||ψ P k u|| H 7/2 (R 2 ) ≤ c A k (k!) 2 , k = 0, 1, 2, . . . (4.24) ||ψ P k v|| H 7/2 (R 2 ) ≤ c A k (k!) 2 , k = 0, 1, 2, . . . (4.25) 
Proof. We apply Lemma 2.4 to ψ u k ≡ ψ P k u with b = 1 and r = 0.

|| < D x, t > 3 ψ P k u|| L 2 (R: L 2 x (R)) ≤ c ||ψ u k || L 2 (R: L 2 x (R)) + ||t∂ 3 x (ψ u k )|| L 2 (R: L 2 x (R)) + ||P 3 (ψ u k )|| L 2 (R: L 2 x (R)) . (4.26)
Therefore, if we wish to estimate the second term in the right hand side of (4.26) with the aid of the equation (2.12)

ψ t ∂ 3 x u k = - 1 3 ψ P u k + 1 3 ψ x ∂ x u k + t ψ B k it is necessary to estimate ||ψ u k || L 2 t (R: H 1 x (R)) which
is not yet obtained. Hence, we start from the lower regularity setting, i. e., applying (2.23) in Lemma 2.4 to ψ u k with µ = 1/2. Let ψ 1 be a smaller size of smooth cut-off function with ψ 1 ≤ ψ and ψ 1 = 1 around (x 0 , t 0 ). Applying (2.23) a ψ u k = ψ P k u with µ = 1/2 we have

|| < D x, t > 3 ψ 1 P k u|| H -5/2 (R 2 ) ≤ c || < D x, t > 3 ψ 1 P k u|| L 2 (R 2 ) ≤ c ||ψ 1 u k || H -5/2 (R 2 ) + ||t∂ 3 x (ψ 1 u k )|| H -5/2 (R 2 ) + ||P 3 (ψ 1 u k )|| H -5/2 (R 2 ) . (4.27)
The first term on the right hand side of (4.27) has already been estimated. For the third term we have

||P 3 (ψ 1 u k )|| H -5/2 (R 2 ) ≤ ||P 3 (ψ 1 u k )|| L 2 x, t (R 2 ) = 3 l=0 3! l!(3 -l)! ||(P 3-l ψ 1 )(P l u k )|| L 2 x, t (R 2 ) ≤ 3 l=0 3! l!(3 -l)! ||P 3-l ψ 1 || L ∞ x, t (R 2 ) ||P l u k || L 2 x, t (R 2 ) ≤ c 3 l=0 3! l!(3 -l)! ||P k+l u|| L 2 x, t (R 2 ) ≤ c 3 l=1 A k+l 1 k! ≤ c A k 2 k! ≤ c A k 2 (k!) 2 . (4.28)
For the second term on the right side hand we use the same idea of the remark above, using the dilation operator P. Indeed,

||t ∂ 3 x (ψ 1 u k )|| H -5/2 ≤ ||ψ 1 t ∂ 3 x u k || H -5/2 (R 2 ) + 3 ||∂ 2 x (t ∂ x ψ 1 • u k )|| H -5/2 (R 2 ) + 3 ||∂ x (t ∂ 2 x ψ 1 • u k )|| H -5/2 (R 2 ) + ||t (∂ 3 x ψ 1 )u k || H -5/2 (R 2 ) . (4.
29) The last three term are bounded by the following:

c ||∂ x ψ 1 || L ∞ x, t (R 2 ) + ||∂ 2 x ψ 1 || L ∞ x, t (R 2 ) + ||∂ 3 x ψ 1 || L ∞ x, t (R 2 ) ||ψ u k || L 2 x, t (R 2 ) ≤ c A k 3 k! ≤ c A k 3 (k!) 2 . (4.30)
On the other hand, using

||ψ 1 t ∂ 3 x u k || H -5/2 (R 2 ) ≤ 1 3 ||ψ 1 P u k || L 2 (R: L 2 x (R)) + 1 3 ||x ψ 1 ∂ x u k || H -5/2 (R 2 ) + ||t ψ 1 B k || H -5/2 (R 2 ) = F 1 + F 2 + F 3 . (4.31)
Thus

F 1 ≤ c ||ψ 1 || L ∞ x, t (R 2 ) ||ψ P k+1 u|| L 2 x, t (R 2 ) ≤ c ||ψ P k+1 v|| L 2 x, t (R 2 ) ≤ c A k+1 4 (k + 1)! ≤ c A k 5 k! ≤ c A k 5 (k!) 2 , (4.32) F 2 ≤ ||x ψ 1 ∂ x v k || L 2 (R: H -1 x (R)) ≤ ||∂ x (x ψ 1 v k )|| L 2 (R: H -1 x (R)) + ||∂ x (x ψ 1 )ψ v k || L 2 (R: H -1 x (R)) ≤ ||x ψ 1 v k || L 2 x, t (R 2 ) + ||∂ x (x ψ 1 )|| L ∞ x, t (R 2 ) ||ψ v k || L 2 x, t (R 2 ) ≤ ||x ψ 1 || L ∞ x, t (R 2 ) + ||∂ x (x ψ 1 ))|| L ∞ x, t (R 2 ) ||ψ v k || L 2 x, t (R 2 ) ≤ c A k 6 k! ≤ c A k 6 (k!) 2 . (4.33)
Using Lemma 2.5(case σ = -5/2, s = 5, r = -5/2)

F 3 = ||t ψ 1 B k || H -5/2 (R 2 ) ≤ c 1 ||ψ 1 || H 5 (R 2 ) ||ψ 2 B x || H -5/2 (R 2 )
and replacing B k by (2.10), we have

F 3 ≤ c 1 |a| 2 k=k 1 +k 2 +k 3 k! k 1 ! k 2 ! k 3 ! 2 k 1 ||ψ u k 2 ψ u k 3 || H -3/2 (R 2 )
and then 

F 3 ≤ c 1 |a| 2 k! A k 7 k k 1 =0 k-k 1 k 2 =0 2 k 1 k 1 ! A -k 1 7 + c 1 |b| 2 k! A k 8 k k 1 =0 k-k ′ 1 k ′ 2 =0 2 k ′ 1 k ′ 1 ! A -k ′ 1 8 + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 ≤ c 1 |a| 2 e 2/A 7 A k 7 (k + 1)! + c 1 |b| 2 e 3/A 8 A k 8 (k + 1)! + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 . ( 4 
||ψ 1 t ∂ 3 x u k || H -5/2 (R 2 ) ≤ c 2 A k 11 k! + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 , k = 0, 1, 2, . . . (4.35) 
Replacing (4.30) and (4.35) in (4.29) 

||t ∂ 3 x (ψ 1 u k )|| H -5/2 (R 2 ) ≤ c 3 A k 12 k! + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 , k = 0,
|| < D x, t > 3 ψ u k || H -5/2 (R 2 ) ≤ c 4 A k 13 k! + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 , k = 0, 1, 2, . . . (4.37) 
In particular 

||ψ u k || H 1/2 (R 2 ) ≤ c 5 A k 14 k! + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′
||ψ u k || H 3/2 (R 2 ) ≤ c 5 A k 14 k! + c 1 |c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 , k = 0, 1, 2, . . . (4.39)
In a similar way we have 

||ψ v k || H 3/2 (R 2 ) ≤ c 5 A k 15 k! + c 1 | c| k! k=k ′′ 1 +k ′′ 2 +k ′′ 3 2 k ′′ 1 k ′′ 1 ! A k ′′ 2 9 A k ′′ 3 10 , k = 0,
||ψ u k || H 3/2 (R 2 ) + ||ψ v k || H 3/2 (R 2 ) ≤ C A k (k!) 2 , k = 0,
||ψ u k || H 7/2 (R 2 ) ≤ c A k 1 (k!) 2 , k = 0, 1, 2, . . . (4.42) ||ψ v k || H 7/2 (R 2 ) ≤ c A k 2 (k!) 2 , k = 0,
||(t 1/3 ∂ x )P k v|| H 1 (x 0 -ǫ, x 0 +ǫ) ≤ c 1 A k+l 4 [ (k + l)! ] 2 , k, l = 0, 1, 2, . . . (4.45)
where ǫ > 0 is so small that ψ ≡ 1 near I = (x 0 -ǫ, x 0 + ǫ) × (t 0 -ǫ, t 0 + ǫ).

Proof. Let I t 0 = (t 0 -ǫ, t 0 + ǫ) and I x 0 = (x 0 -ǫ, x 0 + ǫ), then we have I = I x 0 × I t 0 . For any fixed t ∈ I x 0 , let L = t 1/3 ∂ x . We show that for some positive constants c and A 0 the following inequality holds

||L l P k u|| H 1 x (Ix 0 ) ≤ c A k+l 0 [ (k + l)! ] 2 , ∀ k, ∀ l = 0, 1, 2, . . . ( 4 

.46)

Now, let use induction over l. By the trace theorem, we have

||L l P k u|| H 1 x (Ix 0 ) ≤ ||t l/3 ∂ l x P k u(t)|| H 1 x (Ix 0 ) ≤ (t 0 + ǫ) l/3 ||∂ l x P k u|| H 3/2 (Ix 0 ×It 0 ) ≤ (t 0 + ǫ) l/3 ||P k u|| H 7/2 (Ix 0 ×It 0 ) ≤ (t 0 + ǫ) l/3 ||ψ P k u|| H 7/2 (R 2 ) ≤ (t 0 + ǫ) l/3 c 1 A k 1 k! ≤ (t 0 + ǫ) l/3 c 1 A k+l 0 (k + l) ≤ (t 0 + ǫ) l/3 c 1 A k+l 0 [ (k + l)! ] 2 . (4.47)
where we take c = (t 0 + ǫ) l/3 c 1 and A 0 = max{1, A 1 }. Hence, in the case l = 0, 1, 2, it is easy to show that (4.46) follows directly from the assumption. Now, we assume that (4.46) is true to l ≥ 2. Applying P k to the equation (2.4), we have

∂ t (P k u) + ∂ 3 x (P k u) = L P k u = (P + 3) k Lu = (P + 3) k (∂ t u + ∂ 3 x u) = -(P + 3) k a 2 ∂ x (u 2 ) + b 2 ∂ x (v 2 ) + c ∂ x (u v) = - a 2 (P + 3) k ∂ x (u 2 ) - b 2 (P + 3) k ∂ x (v 2 ) -c (P + 3) k ∂ x (u v) = - a 2 ∂ x (P + 2) k (u 2 ) - b 2 ∂ x (P + 2) k (v 2 ) -c ∂ x (P + 2) k (u v) such that t ∂ t (P k u) + t ∂ 3 x (P k u) = - a 2 t ∂ x (P + 2) k (u 2 ) - b 2 t ∂ x (P + 2) k (v 2 ) -c t ∂ x (P + 2) k (u v). (4.48) Moreover, P = 3 t ∂ t + x ∂ x . Then t ∂ t (P k u) = 1 3 P k+1 u - 1 3 x ∂ x (P k u). (4.49) 
Replacing (4.49) in (4.48) we obtain

L 3 P k u = t ∂ 3 x (P k u) = - 1 3 P k+1 u + 1 3 x ∂ x (P k u) - a 2 t ∂ x (P + 2) k (u 2 ) - b 2 t ∂ x (P + 2) k (v 2 ) -c t ∂ x (P + 2) k (u v). (4.50)
Hence, applying L l-2 we have

||L l+1 P k u|| H 1 x (Ix 0 ) = ||L l-2 L 3 P k u|| H 1 x (Ix 0 ) ≤ 1 3 ||L l-2 P k+1 u|| H 1 x (Ix 0 ) + 1 3 ||L l-2 x ∂ x (P k u)|| H 1 x (Ix 0 ) + |a| 2 ||t L l-2 ∂ x (P + 2) k (u 2 )|| H 1 x (Ix 0 ) + |b| 2 ||t L l-2 ∂ x (P + 2) k (v 2 )|| H 1 x (Ix 0 ) + |c| ||t L l-2 ∂ x (P + 2) k (u v)|| H 1 x (Ix 0 ) = F 1 + F 2 + F 3 + F 4 + F 5 . ( 4 

.51)

Using the induction assumption, we obtain

F 1 ≤ 1 3 c 1 A k+l+1 14 (k + l + 1)!. (4.52) We estimate the term L l-2 (x ∂ x ) for l ≥ 3. Let r = l -2, then we estimate L r (x ∂ x ) for r ≥ 1. ∂ r x (x ∂ x ) = r k=0 r k ∂ r-k x ( x ) • ∂ k x ( ∂ x ). (4.53) But ∂ r-k x ( x ) = 1 if k = r -1 0 if k ≤ r -2 then in (4.53) we obtain ∂ r x (x ∂ x ) = r ∂ r-1 x ( ∂ x ) + x ∂ r x ( ∂ x ) = r ∂ r x + x ∂ x ( ∂ r x ) = (l -2) ∂ (l-2) x + x ∂ x ( ∂ (l-2) x ), that is, L l-2 (x ∂ x ) = x ∂ x L l-2 + (l -2) L l-2 , for l ≥ 3. For F 2 we have F 2 ≤ ||x ∂ x L l-2 P k u|| H 1 x (Ix 0 ) + (l -2) ||L l-2 P k u|| H 1 x (Ix 0 ) ≤ ||x t -1/3 L l-1 P k u|| H 1 x (Ix 0 ) + (l -2) ||L l-2 P k u|| H 1 x (Ix 0 ) ≤ c (t 0 -ǫ) (|x 0 | + ǫ + 1) ||L l-1 P k u|| H 1 x (Ix 0 ) + (l -2) ||L l-2 P k u|| H 1 x (Ix 0 ) ≤ (t 0 -ǫ) -1/3 (|x 0 + ǫ + 1) c 1 A k+l-1 14 (k + l -1)! + c 1 A k+l-1 14 (l -2) (k + l -1)! ≤ 1 3 c 1 A k+l+1 14 (k + l + 1)! (4.54)
where we take A 14 larger than (t 0 -ǫ) -1/3 (|x 0 | + ǫ + 1) and 3. Using that (L = t

1/3 ∂ 3 x ) t L l-2 ∂ x = t t (l-2)/3 ∂ (l-2) x ∂ x = t t -1/3 t (l-1)/3 ∂ (l-1) x = t 2/3 L l-1 ,
we have

F 3 = |a| 2 ||t 2/3 L l-1 (P + 2) k (u 2 )|| H 1 x (Ix 0 ) ≤ |a| 2 (t 0 + ǫ) 2/3 l-1=l 1 +l 2 k=k 1 +k 2 +k 3 (l -1)! l 1 !l 2 ! k! k 1 !k 2 !k 3 ! 2 k 3 × c 2 ||L l 1 P k 1 u|| H 1 x (Ix 0 ) ||L l 2 P k 2 u|| H 1 x (Ix 0 )
. Using the induction assumption

F 3 ≤ |a| 2 (t 0 + ǫ) 2/3 l-1=l 1 +l 2 k=k 1 +k 2 +k 3 c 2 c 3 1 k! (l -1)! 2 k 3 k 3 ! × (l 1 + k 1 )! l 1 ! k 1 ! (l 2 + k 2 )! l 2 ! k 2 ! A k+l-1 14 ≤ |a| 2 (t 0 + ǫ) 2/3 c 2 c 3 1 (l + k -1)! A k+l-1 14 l-1=l 1 +l 2 k=k 1 +k 2 +k 3 2 k 3 k 3 ! × (l 1 + k 1 )! l 1 ! k 1 ! (l 2 + k 2 )! l 2 ! k 2 ! k! (l -1)! (l + k -1)! . Using that l-1=l 1 +l 2 k=k 1 +k 2 +k 3 2 k 3 k 3 ! (l 1 + k 1 )! l 1 ! k 1 ! (l 2 + k 2 )! l 2 ! k 2 ! k! (l -1)! (l + k -1)! ≤ e 2 (l + k)! we obtain F 3 ≤ (t 0 + ǫ) 2/3 c 2 c 3 1 e 2 (l + k)! A k+l-1 14 ≤ 1 3 c 1 A k+l+1 14 
(k + l + 1)! (4.55)

where we take A 14 larger than (t 0 -ǫ) -1/3 c 2 c 2 1 e 2 , and 3. In a similar way where we take A 15 larger than (t 0 -ǫ) -1/3 c 4 c 2 3 e 2 , and 3. Finally, in a similar way where we take B 16 so large that B 16 ≥ max{|x 0 |+ǫ+1, 1}. We show that for some positive constants c 4 , A 17 we have

F
||(t ∂ t ) m ∂ l x u|| H 1
x (Ix 0 ) ≤ c 4 A l+m 17 (l + m)!, l, m = 0, 1, 2, . . . Using that t ∂ t = 1 3 (P -x ∂ x ), we obtain

||(t ∂ t ) m ∂ l x u|| H 1 x (Ix 0 ) = 3 -m ||(P -x ∂ x ) m ∂ l x u|| H 1 x (Ix 0 ) ≤ 3 -m m=j 1 +j 2 m! j 1 ! j 2 ! ||(x ∂ x ) j 1 P j 2 ∂ l x u|| H 1 x (Ix 0 ) ≤ 3 -m m=j 1 +j 2 m! j 1 ! j 2 ! ||(x ∂ x ) j 1 ∂ l x (P -l) j 2 u|| H 1 x (Ix 0 ) ≤ 3 -m m=j 1 +j 2 +j 3 m! j 1 ! j 2 ! j 3 ! l j 3 ||(x ∂ x ) j 1 ∂ l x P j 2 u|| H 1 x (Ix 0 ) .
where we replace j 2 into j 2 + j 3 . Now, using the induction hypothesis we have (with Observing that l j 3 (j 1 + j 2 + l)! (m + l)! ≤ 1, we obtain in (4.66) 

B 17 ≥ A 16 B 16 ) ||(t ∂ t ) m ∂ l x u|| H 1 x (Ix 0 ) ≤ 3 -m
||(t ∂ t ) m ∂ l x u|| H 1 x (Ix 0 ) ≤ 3 -m c 3 (2 + B - 1 

Remark 4 . 1 .

 41 a) For simplicity, we only illustrate the conclusion for the case s ≥ -1/2-δ with b = 1/2 + δ/3 (for small δ > 0) and the case s = -3/4 + δ and b = 7/12 -δ/3. If s = -1/2 -δ with b = 1/2 + δ/3, the initial data can involve Dirac's delta measure δ 0 and the latter is the critical case of the local well-posedness.

  argument as above for || < D x, t > 3 ψ P k u|| H -3/2 (R 2 ) with µ = 3/2 in (2.23) and replacing the support of the cut-off function ψ ǫ we obtain

F 4 ≤ 1 3 c 3 A k+l+1 15 (

 15 k + l + 1)! (4.56)

||∂ l x P k v|| H 1 x 1 x

 11 (x 0 -ǫ, x 0 +ǫ) ≤ c 2 A k+l 15 [ (k + l)! ] 2 , k, l = 0, 1, 2, . . .(4.61)Then we have respectivelysup t∈[t 0 -ǫ, t 0 +ǫ] ||∂ m t ∂ l x u|| H 1 x (x 0 -ǫ, x 0 +ǫ) ≤ c 3 A m+l 16 [ (m + l)! ] 2 , m, l = 0, 1, 2, . . . (4.62) sup t∈[t 0 -ǫ, t 0 +ǫ] ||∂ m t ∂ l x v|| H 1 x (x 0 -ǫ, x 0 +ǫ) ≤ c 4 A m+l 17 [ (m + l)! ] 2 , m, l = 0, 1, 2, . . . (4.63)where c 3 , c 4 and A 16 , A 17 only depend on c 1 , c 2 and A 14 , A 15 , respectively and ǫ, (x 0 , t 0 ).Proof. Using the idea of Proposition 4.3, we fix t ∈ I x 0 . First we show that for some positive constants c 3 , A 16 and B 16||(x ∂ x ) m ∂ l x P k v|| H 1 x (Ix 0 ) ≤ c 3 A k+m+l16 B m 16 (k + m + l)!, k, m, l = 0, 1, 2, . . . (4.64) We use induction. Suppose that (4.64) is true for m.||(x ∂ x ) m+1 ∂ l x P k v|| H 1 x (Ix 0 ) = ||(x ∂ x ) (x ∂ x ) m ∂ l x P k v|| H 1 x (Ix 0 ) ≤ (|x 0 | + ǫ + 1) ||(x ∂ x + I) m ∂ l+1 x P k v|| H 1 x (Ix 0 ) ≤ c(|x 0 |, ǫ) ∂ x ) j ∂ l+1 x P k v|| H l + j + 1)! ≤ c 3 A k+l+m+116 B m 16 (k + l + m + 1)! m j=1 (A 16 B 16 ) -(m-j) (m -j)! m! j! (k + l + j + 1)! (k + l + m + 1)! ≤ e -A 16 B 16 c 3 A k+l+m+1 16 B m 16 (k + l + m + 1)! (4.65)

m=j 1 +j 2 +j 3 m! j 1 ! j 2 ! j 3 ! l j 3 c 3 B j 1 +j 2 +l 17 (j 1 +m=j 1 +j 2 +j 3 B -j 3 17 m! j 1 !

 312331713171 j 2 + l)! ≤ 3 -m c 3 B m+l 17 (m + l)! j 2 ! j 3 ! l j 3 (j 1 + j 2 + l)! (m + l)! ,(4.66)

  To obtain the estimate for ||ψ P k u|| H 7/2 (R 2 ) and ||ψ P k v|| H 7/2 (R 2 ) we repeat the above method with µ = 7/2.

	1, 2, . . .	(4.41)
	Proposition 4.3. Suppose that	

  [START_REF] Kenig | A bilinear estimate with applications to the KdV equation[END_REF] larger than (t 0 -ǫ) -1/3 c 6 c 2 5 e 2 , and 3. Therefore, from (4.52), (4.54), (4.55), (4.56) and (4.57) we obtain||L l+1 P k u|| H 1 x (Ix 0 ) ≤ c 7 A k+l+1 ||L l+1 P k v|| H 1 x (Ix 0 ) ≤ c 7 A k+l+1Proposition 4.4. Suppose that there exists a positive constants c 1 , c 2 and A 14 , A 15 such thatsup t∈[t 0 -ǫ, t 0 +ǫ] ||∂ l x P k u|| H 1 x (x 0 -ǫ, x 0 +ǫ) ≤ c 1 A k+l 14 [ (k + l)! ] 2, k, l = 0, 1, 2, . . .

	5 ≤	1 3	c 6 A k+l+1 16	(k + l + 1)!		(4.57)
	where we take A 17	(k + l + 1)!.	(4.58)
	In a similar way, we obtain	
				17	(k + l + 1)!,	(4.59)
	and the result follows.		

(4.60) 

sup

t∈[t 0 -ǫ, t 0 +ǫ]

  17 ) m B l+m 17 (l + m)! ≤ c 4 A l+m 17 (l + m)!where we takeA 17 = max{B 17 , 3 -1 B 17 (2 + B -1 17 )}.We show that for some positive constants c 4 , A 18 and B 18 we have||(t ∂ t ) j ∂ m t ∂ l x u|| H 1 x (Ix 0 ) ≤ c 4 A j+m+l 18 B 18 (j + m + l)!, j, l, m = 0, 1, 2, . . . Ix 0 ) ≤ ||∂ t (t ∂ t -I) m ∂ m t ∂ l x u|| H 1

		(4.67)
	Induction in m.	
	||(t ∂ t ) j ∂ m+1 t	∂ l x u|| H 1 x (

x (Ix 0 ) = t -1 ||t ∂ t (t ∂ t -I) j ∂ m t ∂ l x u|| H 1 x (Ix 0 ) ≤ (t 0 -ǫ) -1 j j 1 =0 j j 1 ||(t ∂ t ) j 1 +1 ∂ m t ∂ l x u|| H 1 x (Ix 0 ) .
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