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Abstract

We study that a solution of the initial value problem associated for the coupled system
of equations of Korteweg - de Vries type which appears as a model to describe the
strong interaction of weakly nonlinear long waves, has analyticity in time and smooth-
ing effect up to real analyticity if the initial data only has a single point singularity
at x = 0.

Keywords and phrases: Evolution equations, Gevrey class, Bourgain space, smoothing ef-
fect.
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1 Introduction

We consider the following coupled system of equations of Korteweg - de Vries type

Ut + Uggy + A3 Vgpg + WUy + a1 V0, + a2 (uv), =0, x,t€R (1.1)
b1 0t + Vggg + b2 A3 Uy + 00y + ba ag Uty + boay (W), =0, (1.2)
i(r, 0) = dolx), (. 0) = Tolx). (13)
where u = u(z, t), v = v(z, t) are real-valued functions of the variables x and ¢ and

a1, ag, as, by, by are real constants with b; > 0 and by > 0. The original coupled system is
Ut + Ugpy + a3 Vpgy + 0P Uy + a1 0P Uy + a2 (WP V), =0, =z, t€R (1.4)
b1 6t + 17353[;3[; + bz as ﬂgmg; + ?A)”pf?jx + bz as u? ﬂx + bz aj (ﬁ@"p)x =0
u(x, 0) = up(z), v(z, 0) = vo(w)

Copyright © 200* by M Sepilveda and O Vera
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where u = u(z, t), v = v(z, t) are real-valued functions of the variables x and ¢ and
a1, ag, as, by, by are real constants with by > 0 and by > 0. The power p is an integer
larger than or equal to one. The system (1.4)-(1.6) has the structure of a pair of Korteweg
- de Vries equations coupled through both dispersive and nonlinear effects. In the case
p = 1, the system (1.4)-(1.6) was derived by Gear and Grimshaw [9] as a model to describe
the strong interaction of weakly nonlinear, long waves. Mathematical results on the system
(1.4)-(1.6) were given by J. Bona et al. [5]. They proved that (1.4)-(1.6) is globally well
posed in H*(R) x H*(R) for any s > 1 provided |ag| < 1/v/b2. The system (1.4)-(1.6) has
been intensively studied by several authors (see [2, 3, 5, 7, 23] and the references therein).
We have the following conservation laws

El(ﬁ):/R'ddx , Eg(a):/Radm . Es(q, 17):/R(b2172+b1'62)dm (1.7)

The time-invariance of the functionals [E; and [Eg expresses the property that the mass of
each mode separately is conserved during interaction, while that of Eg3 is an expression of
the conservation of energy for the system of two models taken as a whole. The solutions of
(1.4)-(1.6) satisfy an additional conservation law which is revealed by the time-invariance
of the functional

~3 ~3
Ey = / <b2 ’ljﬁ + fﬁ% + 2bya3t, Uy — bz% — b2a2ﬂ2i7 — b2a2ﬂ2i7 — b2a1ﬂ52 — %) dx
R

The functional E4 is a Hamiltonian for the system (1.4)-(1.6) and if boa < 1, ¢4 will be
seen to provide an a priori estimate for the solutions (u, v) of (1.4)-(1.6) in the space
H(R) x HY(R). Furthermore, the linearization of (1.1)-(1.3) about the rest state can be
reduced to two, linear Korteweg - de Vries equations by a process of diagonalization. Using
this remark and the smoothing properties (in both the temporal and spatial variables) for
the linear Korteweg - de Vries derived by Kato [13, 15], Kenig, Ponce and Vega [18, 19|
it will be shown that (1.4)-(1.6) is locally well-posed in H*(R) x H*(R) for any s > 1
whenever v/baaz # 1. This result was improved by J. M. Ash et al. [1] showing that the
system (1.1)-(1.3) is globally well-posed in L?(R) x L?(R) provided that v/byaz # 1. In
2004, F. Linares and M. Panthee [21] improve this result showing that the system (1.1)-
(1.3) is locally well-posed in H*(R) x H*(R) for s > —3/4 and globally well-posed in
H*(R) x H*(R) for s > —3/10 under some conditions on the coefficients, indeed for az = 0
and b; = by. Following the idea W. Craig et al. [6], it is shown in [23] that C'*° solutions
(u(-, t), v(-, t)) to (1.1)-(1.3) are obtained for ¢ > 0 if the initial data (u(x, 0), v(zx, 0))
belong to a suitable Sobolev space satisfying resonable conditions as |z| — oo. Since (1.1)-
(1.3) is a coupled system of Korteweg-de Vries equations, it is natural to ask whether it
has a smoothing effect up to real analyticity if the initial data only has a single point
singularity at = 0 as the known results for the scalar case of a single Korteweg -de
Vries equation. Using the scaling argument we can have an insight to this question.
In this paper our purpose is to prove the analyticity in time of solutions to (1.1)-(1.3)
without regularity assumption on the initial data improving those obtained in [23]. Our
main tool is the generator of dilation P = 3t 0; 4+ x 0,. which almost commutes with the
linear Korteweg-de Vries operator L = 9y + 0,. Indeed [L, P] = 3 L. A typical example
of initial data satisfying the assumption of the above theorem is the Dirac delta measure,
since (2% 9;)*6(z) = (—1)Fk!6(z). The other example of the data is p. v. 1, where
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p- v. denotes the Cauchy principal value. Linear combination of those distributions
with analytic H® data satisfying the assumption is also possible. In this sense, the Dirac
delta measure adding the soliton initial data can be taken as an initial datum. Using the
operator K = x -/ + 2it0; it was proved the Gevrey smoothing effect in space variable
[8]. Indeed, it was shown that, if the initial data belongs to a Gevrey class of order 2, then
solutions of some nonlinear Schrodinger equations become analytic in the space variable
for ¢ # 0. For the Korteweg-de Vries equations version of the generator of dilation is also
useful to study the analyticity in time and the Gevrey effect in the space variables for
solutions [8].

This paper is organized as follows: In section 2 we have the reduction of the problem and
we outline briefly the notation, terminology to be used subsequently and results that will
be used several times. In section 3 we prove a theorem of existence and well-posedness of
the solutions. In section 4 we prove the following theorem:

Theorem 1.1. Suppose that the initial data (ug, vo) € H*(R) x H*(R), s > —3/4 and
Ag, A1 > 0 such that

o Af b o Al b

Zg [|(2 02) ¥ | sy < +00 : Z? ||(2 02) "o jrsmy < +00.  (1.8)
k=0 k=0

Then for some b € (1/2, 7/12), there exist T = T(|[to||rs(w), |[Vol|ms(r)) and a unique

solution of (1.1)-(1.3) in a certain time (=T, T) and the solution (u, v) is time locally

well-posed, i. e., the solution continuously depends on the initial data. Moreover, the

solution (u, v) is analytic at any point (x, t) € R x {(=T, 0) U (0, T)}.

Corollary 1.1. Let s > —=3/4, b € (1/2, 7/12). Suppose that the initial data (ug, vy) €
H*(R) x H*(R), and Ay, A1 > 0 such that

— Ap k~ — Af ko~

> 28 (@ 02) o sy < +00 : > 2 1@ 02) o 1+ ) < +00- (1.9)

k=0 k=0
Then there exists a unique solution (u, v) € C((=T, T), H*(R))NX;/xC((-T, T), H*(R))N
X to the coupled system of Korteweg- de Vries equation (1.1)-(1.3) for a certain (=T, T')
and for any t € (=T, 0)U(0, T), the pair (u, v) are analytic functions in the space variable
and for x € R, u(x, -) and v(z, -) are Gevrey 3 as function of the time variable.

Remark 1.1. In Theorem 1.1 and Corollary 1.2, the assumption on the initial data implies
analyticity and Gevrey 3 regularity except at the origin respectively. In this sense, those
results state that the singularity at the origin immediately disappears after ¢ > 0 or ¢ < 0,
up to analyticity.

Remark 1.2. The crucial part for obtaining a full regularity is to gain the L?(R?) regular-
ity of the solutions (ug, vg) from the negative order Sobolev space. This part is obtained
in Proposition 4.1 in Section 4. We utilize a three steps recurrence argument for treating
the nonlinearity appearing in the right hand side of

1 1

tPuy, = —3 Puy + 3 x Opuy, +t Bi(u, u) +t B2 (v, v) 4+t B} (u, v) (1.10)
1 1

t vy = —= Pop 4+ = 20y, + t Cp(u, u) + t C2(v, v) +t Ci(u, v). (1.11)

3 3



4 M Sepulveda and O Vera

Then step by step, we obtain the pointwise analytic estimates

sup ||8?8iu||H1(mO,e,mo+e) < CATH (m+ 1), I,m=0,1,2,... (1.12)
tE[to—E,t0+e]

Sup  11OP 0l (roe sy < AT (mADL,  Lm=0,1,2,... (L13)
tE[to—E,t0+e]

Since initially we do not know whether the solution belong to even L?(R?) we should men-
tion that the local well-posedness is essentially important for our argument and therefore
it merely satisfies the coupled system equations in the sense of distribution.

2 Reduction of the Problem and Preliminary Results

As mentioned in the introduction we consider the following coupled system of equations
of Korteweg - de Vries type (1.1)-(1.3). If ag = 0 there is no coupling in the dispersive
terms. Let us assume that ag # 0. We are interested in decoupling the dispersive terms in
the system (1.1)-(1.3). For this, let a3 by # 1. We consider the associated linear system

Wi+ AWype =0, W(z, 0) = Wy(z) (2.1)
where
U 1 a
w=[v] o aslam ¥
b1 b1

The eigenvalues of A are given by

1 1 1\? 4bya2
ay =3 1+E+\/<1_E> + b21a3 (2.2)

1 1 1\? 4bya?
=1+ =y (1= 3 2.3
- =g +b1 \/< b1>+ h (2.3)

which are distinct since b; > 0, by > 0 and a3 # 0. Our assumption a3 by # 1 guarantees
that ar # 0. Thus we can write the system (1.1)-(1.3) in a matrix form as in [21]. After
we make the change of scale

-1

u(x, t) = u(a, /3 xz,t) and v(z,t)= v(ofl/3 x, t).

Then we obtain the system of equations

Ut + Uggy + aUUL +DVV, + ¢ (uv), =0, z,t€ER (2.4)
Ut + Vpgr + QU Uy + bV U, + € (uv), =0, (2.5)
u(z, 0) =uo(z), v(x,0)=vo()

where a, b, ¢ and @, b, ¢ are constant.

Remark 2.1. Notice that the nonlinear terms involving the functions v and v are not
evaluated at the same point. Therefore those terms are not local anymore.
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For s, b € R define the spaces X; and X; ;| to be the completion of the Schwartz space
S(R?) with respect to the norms

1/2
lullx; = ( [ [asir-ena+ i e T)!zdfd7>

and

[lullx;

1/2
o= ([ [asm=enen av i e npdsar )

where X7 = {u € §'(R?) : [|u||x; < oo}. Let F, and F, ; be the Fourier transform in the
x and (z, t) variables respectively. The Riesz operator D, is defined by D, = Fe Yie| Ao
The fractional derivative is defined by

<D, > = Fl <> Fo=F (1+[EP) R,
<Dm,t>s = ’7:5771—<|£|+|T|>S fx,t

For < - >= (14| - [)'2, we have

D11 M@ ar@y =11 < Dy >P< Do >" -l 12 (g2
i) H5(R) = {u € S'(R) : < D, >* u € L}(R)].
i) || - [lgs@) = Il < Dz >+ |l2(w)-

Remark 2.2. With the above notation we obtain

a) [[ull gy = 1| <€ > Ull2g)-
b) [|ull 2. mrmy) = Il <& >" ull2@e).-
) || < Dz >° ul|r2w) = |Jull s w)-

d) [| < Dy >< D, >7 uHLi’t(RQ) = HUHHf(R:H;(R))-
e) [| < Da,t > ull 2. mrwy) = Il <&>" <[]+ (7] > ul€, 7)l|z2me)-

We consider the following operators: L = 0; + 83 and J = = — 3t 0?2 then [L, J] =
L J—J L =0. We introduce the ”generator of dilation” P = 3t 0;+ x 0, for the linear part
of the coupled system (2.4)-(2.6) and the "localized dilation operator” Py = 3ty 0y + x¢ Oy.
By employing a localization argument, we look at the operator P as a vector field Py =
3t O+ x Oy near a fixed point (zg, to) € Rx{(—T7, 0)U (0, T)}. Since P is a directional
derivative toward to (x, t), we introduce another operator L3 = to 93 which plays the role
of a non-tangential vector field to Py. Since Py and Lg are linearly independent, the space
and time derivative can be covered by those operator. The main reason why we choose
Ly is because the corresponding variable coefficients operator £3 =t 93 can be treated via
the equations (1.10)-(1.11) and a cut-off procedure enables us to handle the right hand
side of those.

Remark 2.3. For L and P we have the following properties:

a) [L, Pl =LP=(P+3)L.
b) L P* = (P +3)*L.
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c) (P +3)k0, = 0,(P + 2).

d) (P +3)%92 = 93 PF.

e) PQP:PPO+3P0 —25[?0833.

Notation. The summation Z is simply abbreviated by Z
k=kq+ko+kg k=k1+ko+k3

0<k1, ko, k3<k
Let P*u = uy, then
Oy (Pru) + 93(P*u) = LP*u= (P +3)"Lu= (P + 3)*(du+ 8u)

—(P +3)* [g 0 (u?) + g 0z (V%) + ¢y (uv)

L P30 - L(P 3100 — (P 43 (uv)
= =5 %P+ W) - S 0a(P +2)" (v%) = ¢ 0x(P + 2)" (uv).

k
k o
Noting that (P + 2)Fu = g ( 4>2k_]P]u. Hence
» J
Jj=0

Bi(u,u) = — g 0. (P + 2)k(u2)

m=0 )
k. m
= - g Y Z (Z) (T) 9m=i Py . pPk=my

m=0 j=0
a k& k!
2amZZ(m—')!j!(k—m)! " “
m=0 j=0
a k!
= a2 TR 2 e ), @7
k=k1+ko+k3

In a similar way

b b k! /
k=k+kh+ky L2003

> Ko
Bg’(u, U) = C 8$(P + 2)k(uv) = —C W 2™ (“)x <’U,k/2/ . ng) . (29)
k:klll-f—kg-f—k;g 1 ™2 V3"
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Therefore

O (P*u) 4+ 93(PFu)

a k! Ky b k! I
= 3 2 Fl kgl gt 2 O (ke k) = 5 2 I AT <”ké ‘”ké)
k=Fk1+ka+ks k=K +kj+k}
k:! k//
—e > 20 (wg )
k=k/+ky+ky 1203
= Bj(u, u) + Bi(v, v) + Bil(u, v). (2.10)
Performing similar calculations as above we obtain
Oy (PFv) + 92 (PFv)
a k! b k! :
_ _ 1 . —_ — _— k s /
=3 X k! kol k! 2 O (uny i) =5 ) I AT <”k2 ”’fs)
k=ki+ka+k3 k=k{+k)+k}
~ k:! k”
e 3 g 2 0 (g o)
k=k+ky+ky 123
= Ck(u, u) + CE(v, v) + C3(u, v). (2.11)

The above nonlinear terms maintain the bilinear structure like that of the original coupled
system of equations of KdV type, since Leibniz’s rule can be applied for operations of P.
Now, each u; and v, satisfies the following system of equations

Opup + Bup = Bi(u, u) + Bi(v, v) + Bi(u, v) = By, (2.12)

Ovp + vy, = Cl(u, u) + Ci(v, v) + CE(u, v) = Cp  (2.13)

up(, 0) = (¢ 0,) uo(2) = ug(v), vg (@, 0) = (2 8) vo(x) = v (). (2.14)

In order to obtain a well-posedness result for the system (2.12)-(2.14) we use Duhamel’s

principle and we study the following system of integral equations equivalent to the system
(2.12)-(2.14)

t
vw = HOVOU =00 [ Ve ) ur) Buld)a (215)

t
vty = BV =) [ Vi) ur(t) Cult) (216)
Where V(t) =e £33 ig the unitary group associated with the linear problem and (t) €

C§°(R), 0 <4 <1 is a cut-off function such that
if 1
O={ o i WSy md e =v)

The following results are going to be used several times in the rest of this paper.
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Lemma 2.1 ([16]). . Let s € R, a,d’ € (0,1/2), b€ (1/2,1) and § < 1. Then for any
k=0,1,2,..., we have

[sdullxs, < cole—a)/a=a) owllxs (2.17)
w5 V() drllxs < e8> |6%l = m)s (2.18)

t
¢5/0 V(t— t,) Fk(t/) at’ < cl/2=b ||Fk||X§ (2.19)

Xy

Lemma 2.2 ([16]). . Let s > —3/4, b, b € (1/2, 7/12) with b < b'. Then for any
k,1=0,1,2,... we have

—1°

10z (ue vi)lxs < cllollx; llollx;- (2.20)

Lemma 2.3 ([12]). . Let s < 0, b € (1/2,7/12) and ¢ = (x, t) be a smooth cut-
off function such that the support of 1 is in Ba(0) and ¥ = 1 on B1(0). We set ¢ =
Y((z —x0) /€, (t —to)/€). Then for f € X$, we have

e fllx; < CE?M*WWEHX‘\;HH\b\ 111 xcp+21015 (2.21)

where the constant c is independent of € and f.

Lemma 2.4 ([12]). . Let P be the generator of the dilation and D, ; be an operator
defined by fgi <|7|+|&] > Fy,t- We fix an arbitrary point (zo, to) € Rx{(=T, 0)U(0, T')}.
Then

1) Suppose that b € (0, 1], r € (—o0, 0] and g € X]_, with suppg C Bac(zo, to) and td2g,
P3g ¢ Xy If € > 0 is sufficiently small, then we have

1< Dyt >* gllzeqe oy < ¢ (Ilollxg, + 1102l + 1P gllx;., ) (2.22)

where the constant ¢ = c¢(xg, to, €).
2) If g € H*3(R?) with suppg C Bac(wo, to) and td3g, P3g € H*~3(R?). Then for small
€, we have

| < Dyt > gllr2ee) < ¢ (Ilgllma-s ey + 160591 ma-sm2) + [1P°gl -3 (m2))  (2:23)
where the constant ¢ = ¢(xg, to, €).

Lemma 2.5 ([12]). . Let 0 <'s, r < n/2 with n/2 < s+ 1 and suppose that f € H*(R")
and g € H"(R™). Then for any 0 < s +r —n/2, we have f g € H°(R") and

1F gllme ®ny < e(€) [ £l @mllgl mr @n), (2.24)
where e =s+1r—n/2 —o.
Corollary 2.1 ([12]). . For1/2<b <1 and —3/4 < s < 0, we have

1 fllmr < ellfllxg, (2.25)

where 1 € C§°(R?) and c is independent of f.
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Lemma 2.6 ([12]). . Let¢(z) be a smooth cut-off function in C§°((—2, 2)) with ¢ (z) =1
n (=1, 1). We set . = (z/e) for 0 < e < 1. Then for r <0, and f € H", we have

ce || fllgr if —1/2<r<0
. < (R) - -
||7/)e f||H (R) = { 061/2+r||f||HT(R) if r< _1/2

where § > 0 is an arbitrary small constant and c is independent of e.

Throughout this paper c is a generic constant, not necessarily the same at each occasion
(it will change from line to line), which depends in an increasing way on the indicated
quantities.

3 Existence and Well-Posedness

We firstly solve the following (slightly general) system of equations

Oy + O3up = Bl(u, u)+ Bi(v, v) + Bi(u,v) = By (3.1)
O + v, = Cl(u, u) + C2(v, v) + C(u, v) = Cy,
up(z, 0) = (2 0:) uo(x) = u(x) ,  w(z, 0) = (z9,) vo(w) = vf(x)
where By and Cj, are as above.
Definition 3.1. Let f = (fo, f1, ..., fx) denotes the infinity series of distributions and
define
Ay (X3) = {f = (fou f1s ooy 1), Fi € Xg, (i =0,1,2..) such that [|f]|a, (x;) < +oo}
where
1l ang (xp) = D k:_? el xs-
k=0
Similarly, for ug = {u, uj, ..., ulg, ... }and vg = {09, v§, ..., vg, ...} we set
4 =4t
[uollay, (1rs(®)) = > 71 Nwollme @) and ool (e my) = > 71 ol )
k=0 k=0
respectively.

Remark 3.1. Each solution of the coupled system of Korteweg de Vries equations is
accompanied by the following estimate

||Pku||X5 < cAFE, and ||ka||X§ < cAVE, k=0,1,2,...
Theorem 3.1. Let —3/4 < s, b € (1/2, 7/12). Suppose that uf, vk € H*R)(k =
0, 1, 2, ...) and satisfies

XAF A
ol a (x3) = D 71 [wollre) < +ooand ool (xp) = > Ty 20l () < +oo.
k=0 k=0
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Then there exist T = T(||u’5||Hs(R), ||v§||Hs(R)) and a unique solution u = (ug, u1, ...) and
v =v(vg, v1, ...) of the system (3.1)-(3.3) with uy, vy € C((-T, T) : H*(R))N X} and

. Ak Ak
= ul L () < 400, 0 okl xp m) < 400
k! b k! b

k=0 k=0

Moreover, the map (uf, vE) — (u(t), v(t)) is Lipschitz continuous, i. e.,

lu(®) = a()]|aq, (xp) + Nult) = u@®llo-7,7): mo®) < (T) |luo — Uoll 4, (1rs(R))
and
(@) = 0()[| a4, (xp) + [0@) = 0@)lle( =7, 1) B2)) < (T) [lvo — Voll 4, (2 (r))-
Proof. For given (ug, vg) € Aa,(H*(R)) x Aa,(H*(R)) and b > 1/2, let us define,
Hiy, = { (0, 0) € Aay () % Ay (X9) t llullagyoxp) < Bre [Iollagyox) < Fe

where R} = 2¢g ||u0||AAO(HS(R)) and Ry =2c¢p ||v0||~AA0(HS(R))' Then Hg, g, is a complete
metric space with norm

1w, O)|g,, ry = lullag, xp) + [10llag, (xp)-

Without loss of generality, we may assume that that Ry > 1 and Ry > 1. For (u, v) €
HRg,  Rr,, let us define the maps,

B (u,v) = BBVt — b(t) /0 V(t— ) () By(t') i’ (3.4)
TE (w0) = () V() ok — ) /0 V(t— 1) () Cu(t) de’. (3.5)

We prove that & x ¥ maps Hpg, g, into Hg, r, and it is a contraction. In fact, using
lemma 2.1 and lemma 2.2 we have

t
%t ol = O VOl + |00 [ Vi) ort) Bueyar
Xy
< C(J||UIS||HS(1R)+01T”||Bk||Xg/_1
a k! &
< ¢ ||U§||HS(R) +caTH 5 Z Tkl ! 2 gy [ xp s ||
k=k1+ka+k3
talts Z TR 2 Homg [1x;p 1w xs
k=k)+ky+ky L0203
Ko
Rt A T alb g

k=K +ky+kY
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Applying a sum over k we have

k
S8k (o)l

k=0
o0
Ak Ak k!
0 p 0 Z M 9k
< ), o ||y + 1 T Z o ool Tl 2 [uky || [lusllx;
k=0 k; 0 k=k1+ko+ks
b= Af k! o
rat ) W 2 g 2 el gl
k=0 " k=k{tkhtky L2
o
Ab k! "
0 2o Z 9k s s
rat C,; L S 2% Mgl owy llx;
-1 2 3
0o k1 ko k3
a Agt Ap Ay
< @ !\UOI\AAO(HS(R))+01T“§Z ook k1! k:' [|uks | x; k' ||y || x5
k=0 k=k1+ko+ks
K k!
b w Agt Ag? Ag?
talTrtoy Y 2 e T oyl v llowgllxg
2 ke=k! k)l MRy k!
o) k‘” k?// k‘”
At A2 A
k;//
taTrle)y D, 2 TR llugllxg o o llxg
k=0 k=K +ky+KY - 3
o0 ki1 ©© ko o0 ks
o, A A A
< @ HUOHAAO(HS(R))JrClT“§ 22 ' k_o' P s llx; > ko' k||
k1 =0 - ks=0 S
1= 3
p " oo ké
w2
barrl Y oM g o o 3 A o 2 1 1 3 o Il
k=0 k=0 k4, =0
%) 00 k// k//
A Apy?
k//
+oThe ) oM ,,, Z k:”' ury |l x; Z o ok l1x;
k=0 k=0 k=0 3

24 2
= co |uolla, mo @) + T 5 € ullla, oxp)
b A A
+alls A0 ol gy + e T e €0 fulLay o 10lagg o)
Hence, choosing d = max{a/2, b/2, ¢} we have

[ Pug (uy v)[Lay, (x5) < co [lwollay, (1= (r))
FerTrd e [lully, o+ 10 oxo) + el ) Hollag x|

3
<o lluollag oy + 5 1 d T €4 [Jlullh o + 101 oxp)] - (3.6)
In a similar way, choosing d = max{a/2, b/2, ¢} we have

3 ~
a1 )Ly ) < €0 00l o) + 5 c2d T €22 [l oy + 010, (x| (B)
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If we choose T such that

1
T <
-3 max{cl, CQ} (Rl + Rz)

Then we obtain in (3.6) and (3.7)
[ Pug (u, V)[| a4, (xp) < Ba and [ (u, V)] 44, (x5) < R

Therefore, (®y,, Vy,) € Hpr,, r,. We show that @,y x Uy 1 (u, v) — (Pyy(u, v), Yoy (u, v))
is a contraction.
Let (u, v), (u, v) € Hg,, r,, then as above we get for d = max{a/2, b/2, c}

[ @y (u, v) — Py (W, 5)||AAO(X5)
< SerdTH M (Rt By) [y g + 10— Dllag ) - (3.8)
In a similar way, choosing d = max{a/2, b/2, ¢} we have
Wy (u, v) = Wy (4, 5)”AAO (X9)
< S edTH M (Bt By) [ Ly g 10— llag ) - (3.9)

Choosing T* small enough, such that
1

T <
~ 6 max{cy, c2} (R1 + R2)?
we obtain
~ 1
90t ) = B DLy ) < & [0 = Ty + 0 =Tl o] - (310)
In a similar way
o~ 1 ~ ~
[1Wug (1, ) = W (@, D)l any (x3) < 5 {llu —fla,,xp) +llv = vllAAO(Xg)] - (311)

Therefore the map ®,, x ¥,, is a contraction and we obtain a unique fixed point (u, v)
which solves the initial value problem (3.1)-(3.3) for 7" < T*. The rest of the proof follows
a standard argument.

Corollary 3.1. Let —3/4 < s, b € (1/2, 7/12). Suppose that (x 0;)*ug, (x0;)Fvy €
H*R)(k=0,1,2,...) and that

Ak lc
Z - HUOHHS(R <+oo and Z HUOHHS < +00.
k=0

Then there exist T' = T(||u]5||Hs(R), ||v§||Hs(R)) and a unique solution (u, v) of the coupled
system equations KdV type (1.1)-(1.3) with u, ve C((=T,T): H*(R))N X} and

A'f k A’f
Z [Pl x; ) < 400, Z |1 P*]| x5 @) < +o0.
k=0 k=0
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Moreover, the map (ug, vo) — (u(t), v(t)) is Lipschitz continuous in the following sense:

~ ~ Ak
| PRu(t) — PRu(t)||xs + [|[PRu(t) — PRu(t)|l o1, 7y memy) < o(T) Z =3 H
=0

(@ 02)" (uo — o) | 7= ()
and

k
() = 2@)llx; + [[v(t) = 0Ol (1, 7): 5o®)) < (T) Z AO 12 82)" (vo — o)l s vy -
k=0

4 The main result

In this section we prove the analyticity of the solution obtained in the previous section.
We treat the solution u, = PFu and v, = PFv as if they satisfy the coupled system of
equations (3.1)-(3.3) in the classical sense. This can be justified by a proper approximation
procedure. The following results are going to be used in this section. Let (xg, ty) be
arbitrarily taken in R x {(=T, 0)U (0, T)}. By ¥ (z, t) we denote a smooth cut-off function

in C5°(B1(0)) and e = ¥ ((z — x0)/¢, (t —to)/€).
Let ¢ be a smooth cut-off function around the freezing point (zg, to) with suppy C

C6°(Be(zo, to))-

Proposition 4.1. For the cut-off function ¢ defined above, there exists a positive constant
c and A such that

I Pku||Lz ey <cAM(R)?, k=0,1,2, ... (4.1)

||y P* ullzz ¢ g2y < c A (k!)?, k=0,1,2, ... (4.2)
Proof. Using (2.22) with r = s — 1, we obtain
| < Da¢ >3 wpkuHL%(]R: HIR) S € (kukHngll + Htai’(ww)!\x;;; + Hpg(wuk)”)(;:11> (4.3)

Each term in (4.3) is estimated separately. For the first term in the right hand side we
use Lemma 2.3. Indeed,

I unllxe-1 <Y urllx;_, < ||ZZ)||X\ a2 lugllxs < c()AYEL  k=0,1,2,..(4.4)

The third term is estimated again using Corollary 2.6.

3
3! _
HP?’(wuk)HXg;; < ZWH(P?’ ") Plug|x;_,

3
Zl ||Pluk||XS

<
=0
< czl HP’“HUHXS
3
= ¢ AT (k+1D)
=0
< cAkEl k=0,1,2,... (4.5)
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For the second term, we use (3.1) to reduce the third derivative in space to the dilation
operator P. Since the generator of dilation is Pug = 3t dyuy + x Ozux we obtain

1 1
tOyuy, = 3 Puy, — 3% OpU. (4.6)

Multiplying (3.1) by ¢, we have
Yt Opuy, + Yt Ouy = 1t By. (4.7)

Replacing (4.6) in (4.7) we obtain

1 1
zptafguk:—gz/;PukJrgszaxukertBk. (4.8)
hence
b _ ! P 1 ) B
[t xUkHX;;; = guw UkHX;;;JrgHM xUkHX;;;JrHW kabs;;
= F1+F2+F3. (4.9)

Using the assumption in the Theorem, we have

. k+1 E+1
F1:§||7/)Puk||xlj:11 < cl[lly-s 1P ullx; < el PP hullx;
< AP (k1) < cAfRL (4.10)

Similarly, we obtain

1 1 1
= g ||1/)$(9$uk||X5:11 < g ||am(7/)xuk)||x§_—ll + g ||am(7;z) x) uk)”x;_—ll
1
< Oz vr)llxg_, +elloe(W )l llunllx;_,
1
< g llvallxglluellxg + cllos (@ 2)llx e llurllx;_,

< (Ipallx + 1002y, ) ABKL < cARL (411)
Using Lemma 2.3 and 2.2, we have

Fy= ¢t Bllg1 < elllly— |IBL+B3+Billx;

1

< e (IBHIx, + 1B Ilxe_, +11BIx;., )

- b—1
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Then replacing B}, Bf and B} in (2.7), (2.8) and (2.9) we deduce

B < _ M o o
b < e Y PRTSTN ks s sl +¢ > R owg [1xp [l |1 x5
k=k1+ka+k3 k=Fk{+kj+k; 3
k:' "
: k
v > g 2 gl llogllx
=k +kY 4k
k! k! k! !
: k1 pko k3 kL AR2 10 3.1/
< c Z mQ A7 'kQ!A7 'k3!+c Z WQ AS kQ!AS k3'
- 1 R2! Kg: T
=k1+ka+ks k=K +kbL+k}
k!
kY "
tc Z " 1.1 //2 A k'Alo k'
=K+ k! kY Rithy! k!
D D . S LT
= ky! K
k=k1+ka+ks k=K, +k)+k L
k' " k” 34
ki 3
tc Z ]{3”'2 A AlO
k:k”+k”+k” 1
k k—k g k—k “
/ —
< a3 Lok ATk g ok Al Y Zmzk
=0 ko= ky=0kh=0 +
fekl S oM Al A
k:klll-f—kg-f—k” kl :
!
k k—ki l k k=K, l il
k 1 k‘" k;” k';/:,/
< ck! Ak ZZ +ck'ASZZ ekl > o 20 Ay - Ay
=0 ko= K, =0 k,=0 k=kY kY +ky L
2/A7 Ak 2/As gk Loy 468 4k
< e AR Rl e/ AL R Akl Y —m oM A AR
k=K +kY kY it
1 v k! k!
< 0(62/A7+62/A8>A11-k!+ck! > oAadal. k=012 @12

k=k{ 4Ry +ky L

Hence, from (4.10), (4.11) and (4.12) in (4.9) we obtain that there exists a positive constant
c and Aj; such that

1 17 k‘” k?//
HzptagukHX;j <cAy-kltckl ) WQ’ﬁ Ay AR, k=0,1,2, .(413)
k=Y +ky+ky L

On the other hand, using 93(v) - f) =¥ - 03 f + 302(00 - f) — 30, (024 - f) + 04 - f we
have that

103wl [yes < 1180 Bl + 3113 Ot - i) ot
31100 (420 - w1 + (18050 o (4.14)
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Using Lemma 2.2 and Lemma 2.3 we obtain

H@%(taww-uwuxg;; < 0u(t 0t - wp)lx; | < cllt 0utl]xp | luk | x;
< cA¥ k! (4.15)
||3x(t3§¢'%)||x;;11 < 102t 20 - wp)lxs_, < cllt 07| |x; lunllx;
< cA¥ k! (4.16)
Htaiib'uk!\xg;; < c|| < Dy >3/2taﬁi/}\lxmmb—uHUkHXg,l < cflukl|x;
< ARkl (4.17)

Hence, replacing (4.13), (4.15),(4.16) and (4.17) in (4.14) we obtain that there exists a
constant ¢ and Aj4 such that

1 " " "
[t (Wunllxps < cAfy-Kiaekl 3 oA AR, k=0,1,2.(4.18)

m
k=ky +ky+ky L

Therefore, replacing (4.4), (4.5) and (4.18) in (4.3) we obtain that there exists a constant
c and Ajs such that

b
I < Dyt > unll 2. s my)
1

< el kltckl Y Wz’f’l'A’;g-A’fg, k=0,1,2, ... (4.19)

=y +ky+ky L
In a similar way, we obtain that there exists a constant ¢ and Ajg such that

3b
| < Doyt > Ykl 2@ 21wy

1 ” " "
< cAfRl4ckl Y o AR AN k=0,1,2, ... (4.20)

kN
=k} +ky+ky L

Adding (4.19) and (4.20) we have

b b
|| < Dz >3 wukHLf(R:H;*(R)) + || < Dg, >? kaHL?(R!Hifl(R))

1 1 1" "
< cAly RteAfg K4kl YT oMo AR AR
k=K +ky+ky
1 1 k! k!
< oAb+ Ak Bl ekt > W2’“12-A92-A13
=Ky +ky+ky L
1 ” ” "
< cAl Rldck Y Wzklz-A’;%A’fg. (4.21)

=y +ky+ky L
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We estimate the last term on the right hand side of (4.21)

kK m
1 K k! k! 1 s , b
E W212‘A92.A18 = E E 72(7” ])Q‘Aé'Alom

— )
k=K +ky+ky L m=0 j=0 (m =)
k. m ]
Ty 1 A\ [ 2 \"
< —

IA
N
Sk‘
M-

NE

(%) )]

A
N
5?}“

1 [M)=
b—.

m=0 j=0 J! m=0 j=0 m!
kK m <A_3)j kK m <i>m
< Ay L A m Y Ai;,
m=0 j=0 m=0 j=0
< A6/ Ak kI 4 €40 Ak k!
< c AR k. (4.22)

Replacing (4.22) in (4.21) we obtain

| < Daye >* gl 2@ gs-1(my) + 11 < Doyt >* Yokl 2. gs—1(my)

<cAk k4 c ANy - (K2

< c AV, - (K1) + c Al - (K3

< c AL, - (k2 (4.23)

and the result follows.

Remark 4.1. a) For simplicity, we only illustrate the conclusion for the case s > —1/2—§
with b = 1/2 4+ §/3 (for small 6 > 0) and the case s = —3/4+ 6 and b = 7/12 — §/3. If
s =—1/2—0 with b=1/2+ /3, the initial data can involve Dirac’s delta measure dy and
the latter is the critical case of the local well-posedness.

b) The following inequality is simple to verify in both cases,

||% ukHLi’t(RQ) <|| < Dy >*" (¢ Uk)HLg(R; -ty S ¢l < Dayi >3 (¢ Uk)HLf(R; H Y(R))

Proposition 4.2. Under the same assumptions as in Proposition 4.1, there exist positive
constants ¢ and A such that

19 Poull ez gey < c A¥ (B2, k=0,1,2,... (4.24)
19 PRl grogey < c A (R)?, k=0,1,2,... (4.25)
Proof. We apply Lemma 2.4 to ¢ u; = ¢ P*u with b= 1 and r = 0.

| < Dot > ¢ Prull 2@ 12 w))
< ¢ ([ urll 2w r2m)) + 16024 we) | 2w: r2Ry) + P2 (4 )l 2r: £2(R))) (4-26)
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Therefore, if we wish to estimate the second term in the right hand side of (4.26) with the
aid of the equation (2.12)

1 1
Yt Ouy, = —gz/zPuk—l—gwngguk—i-tz/sz

it is necessary to estimate |[¢) uk||p2(g. g1 (r)) Which is not yet obtained. Hence, we start
from the lower regularity setting, i. e., applying (2.23) in Lemma 2.4 to ¢ uj with p = 1/2.
Let 91 be a smaller size of smooth cut-off function with 11 < ¢ and ¢; = 1 around (zg, to).
Applying (2.23) a 9 uy = o P*u with g = 1/2 we have

| < Dae >° 1 Prul|g-s/2ay < ¢l < Daye > 91 Prul| 2 (g2
< ¢ (Ilrunll-sr2qee) + 02 W1l -s/2ge) + 1P Wrun) |- s2qas) ) - (427)

The first term on the right hand side of (4.27) has already been estimated. For the third
term we have

||P3(7,Z)1Uk)||H*5/2(]R2) < ||P3(¢1Uk)||L§7t(R2)

3
3! _
= Y ag P e Pl e
=0 " ’

3! 31 !
mHP Drllge, @) 1P urllzz |, re)

N

~

IN
o
[ =

3!
l'(3 — l)' ||Pk+lu||Li’t(R2)
=0 ’
3
< e APME < cAbR! < cAf(R!) (4.28)
=1

For the second term on the right side hand we use the same idea of the remark above,
using the dilation operator P. Indeed,

1t 3 (W1 ur)llgg-sr2 < |91t urll gr-s/2 gy + 31105 (8 0athr - up)l| -5/ (r2)
+ 3100t O2von - wi)llgg-s/2 gy + |1t (D41 )kl g-5/2 ey (4.29)
The last three term are bounded by the following:
c (||am¢1||L;?t(R2) + (10391 ]] Lo, 2y + ||a£7p1||Lgf’t(R2)> 1 ullrz ,re)
<cAFE! < cAF (k)2 (4.30)
On the other hand, using

191t unllg-s2 ey < % 11 Puk|| 2w 22r)) + % |z 1 Opture|| 572 m2) + ([t Y1 Bill r—5/2(me2)
= i+ R+ F (4.31)

Thus
Fy

IN

k k
cleuLgf’t(RQ)pr+1UHL§J(R2) < Cpr—HUHLi’t(RQ)

cARTL(k+ 1) < cAFR! < cAE(R)?, (4.32)

N
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B < ||$¢laka||L2(R;H;l(R))
< ||61(x 1 Uk)||L2(]R: H;Y(R)) + ||am(x 7/)1)7/) vk”L?(R:H;l(R))
< ledrokllzz |, @e) + 110:(@ 1)l Lo, ®2) 1Y 0kl 2 |, we)
< (llewnllee, @) + 100(@60) e, e ) I onllzz o
< cAFE! < cAR (kD2 (4.33)

Using Lemma 2.5(case 0 = —5/2, s =5, r = —5/2)

Fy = ([t 91 Billg-sr2me) < e [[91]lms@2) |19 Bollg-s2 e

and replacing By by (2.10), we have

F3

IN

IN

IN

|al Ko
1 7 Z WQ leulmwukgHH 3/2(R2)
k=k1+ka+ks3

tas > s vk v llg-s2e)
k=k|+ky+ky 123

k/" k”
+ 1] Z KN KD k”'2 kuk‘”ka”HH 3/2(R2)
k=l +kll Kl

la] Koo
g D Rk I el 0 v e

k=k1+ka+k3
0] Ko
tag Y el vl 1Y vkl
k=) +kh+ky L2
k! k//
tald Y, 2 1 ugllees 1 vgllee)
=Ky 4ky+ky L2
|a| k! k1 pk2 k
lal R ks
G D Tl ArkATE!
k=k1+ka+ks
|b| k' k! k/ / k:’ ,
e DL il A kA
k=k|+ky+ky L2
k! o
teald Y a2 A RIAT K

k//! k://! k//'
k:k’l’-l-ké’-i-kg’ 1-"2

2]'91 b 2k ’ ’
‘;’ k! Z o Al;zqtks T ’_2’ k! Z Ak 2R3

! K
k=ki+hkotks * ke=k! -+, +k,

zklll " "
Z kY kY
+ ‘C‘ k! WAQ AlO’
k=k{+ky+ky
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and then
ol b hkok L 2k/
Pz alluay S e foay S 5
=0 ko= 0 k1 Okgzo
lel k! k‘"
telek > i Ay At
k=K kY +kY
b
< o % AT AE (b + 1) + ¢ ’—2’ A8 Ak (k+1)!

1
le ko k!
2 3
+ ‘C‘ k! E WAQ AlO'
=k} +ky+ky L

Replacing (4.30), (4.35) and (4.29) in (4.31) we obtain
191 ¢ w572 m2)

k k”
< ALK taldk! Y i Ag” A
k=K +ky+ky L

Replacing (4.30) and (4.35) in (4.29)
103 (1 wp) || r-s5/2me)

"
k
< ALk taldk Y o Ay’ AL
k=K +ky+ky L

Now replacing (4.28) and (4.36) in (4.27) we obtain
| < Da,t >* gl g-s2(m2)

k?//
k A Ky kY
< ¢ A13 k!—i‘Cl‘C‘ k! E k—Ag AlO’
=Ky 4Ry +ky L

In particular
|19 url /2 (me)

1

2k1 k?// k?//

< ALK taldk Y TR AS AR,
k=K +k+ kY '

k=0,
k=0,
k=0,
k=0,

1,2, ...

1,2, ...

1

1

2, ...

2, ...

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Using a similar argument as above for || < D, ; >3 ¢ PFul|y- s/2(g2y With g = 3/2 in
(2.23) and replacing the support of the cut-off function . we obtain

|19 ug|| a2 ge)

Qkﬂ/ kU k!
k
< s AJ K+ e el k! E — Ag? ALl

1" 1" 1" k/l!
k=K k! + kY

k=0,1,2, ...

(4.39)
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In a similar way we have

|19 vkl s /2 (re)

—_ 2]{:3/ " 1"
< AR taldk S AR k=012 ... (4.40)

"
k=k+ky+ky

Adding (4.39) with (4.40) and performing straightforward calculations as (4.22) we obtain
N url| s moy + 1Y vell a2 ey < CA(k)?, k=0,1,2, ... (4.41)

To obtain the estimate for |[¢ PkuHH7/2(R2) and ||y Pk’UHH7/2(R2) we repeat the above
method with p = 7/2.

Proposition 4.3. Suppose that

10wkl gz gey < cAF (B)?, k=0,1,2, ... (4.42)
| okllgr/o ey < c A5 (K1), k=0,1,2,... (4.43)

then we have

sup ]\(t1/36x)Pku\]H1(m_e7 vt Sl AET (B + D12k, 1=0,1,2,..(4.44)
te[tofe,t()%’e]

sup  [[(t1/30,) PRl
tE[to—e,to-{-E}

< AMT(E+D?, K, 1=0,1,2,.(4.45)

To—E€, :130+6)

where € > 0 is so small that ¥ = 1 near I = (xg — €, xg + €) X (tg — €, to + €).

Proof. Let Iy, = (to — €, to+€) and I, = (o — €, x¢ + €), then we have [ = I, x I,. For
any fixed t € I, let £ = t1/39,,. We show that for some positive constants ¢ and Ag the
following inequality holds

1L PRl g, ) < cAGT LB+ D!TP, Yk, ¥I=0,1,2, ... (4.46)

Now, let use induction over [. By the trace theorem, we have

HﬁlPkUHH;(IxO) < Htl/?)aipku(t)HH%(%) < (to+f)l/gﬂaipku\’HB/?([zoxltO)
< (to+ )PP ullgrrar, wrg) < (o + )10 Prull o gay
< (to+ ey AV < (to + )3 ey AFT (K +1)
< (to+ o) Pe AR (B + )12 (4.47)

where we take ¢ = (tg + €)!/3¢; and Ag = max{1, A;}. Hence, in the case [ =0, 1, 2, it is
easy to show that (4.46) follows directly from the assumption.
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Now, we assume that (4.46) is true to [ > 2. Applying PF to the equation (2.4), we have
oy (P*u) + 93(PFu) = LPru

(P+3)*Lu

= (P+ 3)k(8tu + (ﬁu)

= —(P+3)* g O (u?) + g 02 (v%) + cOp(uv)

-3 = P 0,02 (P + 3P0

= — 5 %P+ W) - % a(P +2)" (v%) = ¢ 0:(P +2)"(uv)

(P + 3)%0,(u?)

such that
1L (PRu) + 1 93(PRu) = — & 10,(P + 2 () - g 10, (P + 2F (1) — ¢ 1 0, (P + 2)F (uv]4.48)
Moreover, P = 3t 0; + x 0. Then

£0,(P*u) = % Prly — é 20, (PFu). (4.49)
Replacing (4.49) in (4.48) we obtain

L3PFy = t32(PFu) = — %Pkﬂu + %x@x(Pku)

2 10,(P + 2 () - g 10,(P + 25 (1) — ¢ t 0(P + 2)F(uv). (4.50)
Hence, applying £/72 we have
IE PRl gy, = (17 2L° PRl
< SIE Py + 5 16720 (PR Ly,
#0222 0,(P + 2 @) gy + L2 00(P + 250 3

+ el £ £7% 02(P + 2)* (wo)l |1 1)
= F1—|—F2—|—F3—|—F4+F5. (451)

Using the induction assumption, we obtain
1
Fi < ca Aif™ (k+ 1+ 1)) (4.52)

We estimate the term £72(x ;) for [ > 3. Let 7 = [ — 2, then we estimate £"(z d,) for
r>1.

orw0) =3 () 2 o) 0k (15

k=0
But

ek 1 k=r—1
%% (””)_{0 if k<r—2
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then in (4.53) we obtain

() = rd N 0,)+20(0y) = 10 +30,(5))
(1—2)0%2) 1+ 28,(002)),

that is, £172(28,) = 20,L72 + (1 —2) £'72, for | > 3. For F, we have

o< aacﬁl*zpku\’H;(Iaco) +(-2) HEliQPkUHH;(IxO)
< lz t_l/gﬁl_lpkuHH;(lzo) +(1-2) Hﬁl_szUHH;(IIO)
< elto— ) (fwo] + e+ 1) L7 Poul gyqr, + (0~ 2) €72 Prul yr,
< (to—) Y¥(zo+e+1) e AR L= D) ey AN = 2) (k11— 1)!
1
< za AV (14 1)! (4.54)

where we take A4 larger than (tg — €)~'/3(|zg| + € + 1) and 3. Using that (£ = t/393)
we have

a _
Bo= ‘2_’||t2/3£l HP+2)M () 111y

la| 2/3 (=1t k! k
< S 2%
< QW+ Y D T
1—1=l1+1ls k=k1+ko+ks

x e [|L PPl | gy r, ) 11£%2 PPl gy 1, )-

Using the induction assumption

|al 2ks
Fy < 7(to+e)2/3 > > czci’»k!(z—n!F

I—1=l1 12 k=k1+ka+k3 ¥
(ll + kﬁl)' (lg + k‘Q)'

k+1—1

11 k! Io! kol Alj
< M(t0+6)2/36263 (I+k—1)1 Ak Z Z &
= 9 1 M ¥ kool

1—1=l1+1s k=k1+ko+ks
(ll + /{?1)! (lz + kz)! k! (l — 1)!
11! k! lo! kol (l-i—k—l)!'
Using that

2ks (] k) (1 ko)! K!'(1 —1)!
> > 2%l + k) (o + k) KL(I—1) < (14 )
k‘3' ll'kll l2'k32' (l-|—k‘—1)'

l-1=l1+12 k=k1+k2+k3

we obtain

1

F3 < (to+e)?Peycie® (14 k)AL < 301 AR (-1 4 1)) (4.55)

~1/3

where we take A4 larger than (tg — €) Co c% e?, and 3. In a similar way

1
Fy<goes AR (1 1) (4.56)
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where we take A5 larger than (tg — e)_1/3 cy4 cg e, and 3. Finally, in a similar way

1

F5 < g Ce AlfngJrl (k? + l + 1)' (457)
where we take Aig larger than (tg — e)*l/?’ cg c2 €2, and 3. Therefore, from (4.52), (4.54),
(4.55), (4.56) and (4.57) we obtain

1L PEul a1,y < er A7 (R + 1+ 1)L (4.58)
In a similar way, we obtain

£ PRl g,y < er AT (R + 14 1)), (4.59)
and the result follows.

Proposition 4.4. Suppose that there exists a positive constants c1, ca and A14, A1s such
that

[ sup ]H(?iPkuHH%(m_EJO_H) < AN (E+D!?, k1=0,1,2,... (4.60)
te(to—e, to+e€

oL pk < e AR B+, Kk 1=0,1,2 4.61

sup H T UHH%(xo—e,a:o—l—g) = G2 Ajy [( + )] s s , L, 2, ... ( . )
te[tofe,t()%’e]

Then we have respectively

sup HB?@QUHH;@O,EJO“) <c3 A%H [((m+D!%, m,1=0,1,2,... (4.62)
tE[to—E,t0+e]

sup H@Z”BQUHH%(:BO,QWFE) <cy A’fé“ [((m+D!% m,1=0,1,2,... (4.63)
tE[to—E,to+e]

where c3, ¢4 and Ayg, A7 only depend on ¢y, co and Ay4, Ais, respectively and e, (xq, to).

Proof. Using the idea of Proposition 4.3, we fix t € I,. First we show that for some
positive constants c3, A1g and Big

(@ 02)™ 0L P*oll i1,y < es AV Big(k+m+ D! k,m, 1=0,1,2, ... (4.64)

We use induction. Suppose that (4.64) is true for m.

(2 8:)™ " 0P 0|11 1,

= (@ 0s) (@ 02)™ 8P 0]l 31

< (Jwol + e+ 1) |z 0y + D)™ O Proll gy a,,
m m '
< c(|zol, G)Z (j)"(m@x)] alerlPkUHH;(Ixo)
j=1
< CZ(T)CBAT?““B%(HZH+1>!
j=1
"\ (A1 Big)" ") m! (k4144 1)!
< o ARHEMAL pm e i (A16 Bis m!
R 6k +1+m+ )Z (m — j)! jt (k+1+m+1)!
7j=1
< em Mo Biogg ARFEMTL g L) 1) (4.65)
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where we take Bjg so large that Big > max{|zg|+€+1, 1}. We show that for some positive
constants ¢4, A17 we have

||(t at)m almuHH;(IxO) < All-i’?_m (l + m)', l, m = 0’ 1, 2’ s

Using that t 9, = & (P — 2 9,), we obtain

1t 0™ Dl arsr,yy = 37" 1P = 20:)™ Dyullmyr,y)
B m)! R
< 3 Y @) PRoullm )
m=j1+7j2 JiJz:
B m)! ; j
< 3 Y S @0 AP~ Pl
)2
m=j1+7J2
B ml . . .
<3 ) e Pl A PPullny ).
m=71+Jj2+J3 J1:J2:Js:

where we replace jo into jo + js3. Now, using the induction hypothesis we have (with
Bi7 > A Big)

[t 0)™ 5&““1{;(1%0)

m! : L
< 3 Y g e B G D)
m=j1+j2+j3 J1J27J3:
, ! (4 Gy + 1)
< 3 M BRT(m+D! ) Bg?ffwﬁﬂﬂ+fgﬂ, (4.66)
m=j1+j2+73 JiJg2: g3 m '
(J1 +J2 +1)!

Observing that /3 < 1, we obtain in (4.66)

(m+1)!

1(t00)™ Oullmyr,,) < 3 ™es (24 By )™ B (1 +m)!

< g A (14 m)!

where we take A17 = max{Bi7, 37! Bi7 (2 + B7")}. We show that for some positive con-
stants ¢4, A1g and Big we have

||(t at)j atmai‘uHH%(IzO) <y A{§m+l B18(j +m+ l)" Js l, m=0,1,2,... (467)
Induction in m.

10y o dhallynryy < 110(t0 — I Dl

= 7|t 0 (¢ 0 — 1) 0Ol a1,

j .
< (to—e) " Z <le> [1(8;)7 apaﬁ:“”%Um)'

j1=0
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Using the induction hypothesis

where we take Big larger than (tg—e€)~

10 Ol
i,
< (to—e)! Z <]> J AT BT (G 1+ m o+ 1))
j1=0 J1
= 4 (to — 6) Ajl+l+m+1 Bm (]1 +1l4+m+ 1)

x Z A’ <> (Gt m+i+ DG — )
(7 — ) (j+m+1+1)

Jj1=0
— C4 (tO _ 6) 1 —Alg A]+l+m+1 Bl8( +l+m+ 1)
< & A{;Hmﬂ Big(j+1+m+1)!

L e=418, Finally, we choose j = 0 in (4.67) and take

co = ¢4 and A5 = Ajg Byg. The result of analyticity follows.
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