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We study local and global existence and smoothing properties for the initial value problem associated to a higher order nonlinear Schrödinger equation with constant coefficients which appears as a model for propagation of pulse in optical fiber.

Introduction

We consider the initial value problem (P )

i u t + ω u xx + i β u xxx + |u| 2 u = 0 x, t ∈ R u(x, 0) = u 0 (x)
where ω, β ∈ R, β = 0 and u = u(x, t) is a complex valued function. The above equation is a particular case of the equation

(Q) i u t + ω u xx + i β u xxx + γ |u| 2 u + i δ |u| 2 u x + i ǫ u 2 u x = 0 x, t ∈ R u(x, 0) = u 0 (x)
where ω, β, γ, δ are real numbers with β = 0. This equation was first proposed by A. Hasegawa and Y. Kodama [START_REF] Hasegawa | Nonlinear pulse propagation in a monomode dielectric guide[END_REF] as a model for the propagation of a signal in an optic fiber (see also [START_REF] Kodama | Optical solitons in a monomode fiber[END_REF]). The equation (Q) can be reduced to other well known equations. For instance, setting ω = 1, β = δ = ǫ = 0 in (Q) we have the semilinear Schrödinger equation, i. e.,

i u t + u xx + γ |u| 2 u = 0. (Q 1 )
If we let β = γ = 0 and ω = 1 in (Q), we obtain the derivative nonlinear Schrödinger equation

i u t + u xx + i δ |u| 2 u x + i ǫ u 2 u x = 0. (Q 2 )
Letting α = γ = ǫ = 0 in (Q), the equation that arises is the complex modified Korteweg-de Vries equation,

i u t + i β u xxx + i δ |u| 2 u x = 0. (Q 3 )
The initial value problem for the equations (Q 1 ), (Q 2 ) and (Q 3 ) has been extensively studied in the last few years. See, for instance, [START_REF] Bisognin | Stabilization of solutions for the higher order nonlinear Schrödinger equation with localized damping[END_REF][START_REF] Bisognin | On the unique continuation property for the higher order nonlinear Schrödinger equation with constant coefficients[END_REF][START_REF] Bona | Dispersive blow-up of solutions of generalized Korteweg -de Vries equation[END_REF][START_REF]Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev space of negative indices[END_REF][START_REF] Carvajal | A higher order nonlinear Schrödinger equation with variable coefficients[END_REF][START_REF] Craig | Linear dispersive equations of Airy Type[END_REF][START_REF] Craig | Infinite gain of regularity for dispersive evolution equations, Microlocal Analysis and Nonlinear waves[END_REF][START_REF] Kato | On the Cauchy problem for the ( generalized ) Korteweg -de Vries equations[END_REF][START_REF] Kenig | On the (generalized) Korteweg -de Vries equation[END_REF][START_REF] Saut | Remark on the Korteweg -de Vries equation[END_REF][START_REF] Sjolin | Regularity of solutions to the Schrödinger equation[END_REF] and references therein. In 1992, C. Laurey [START_REF] Laurey | Le problème de Cauchy pour une équation de Schrödinger non-linéaire de ordre 3[END_REF] considered the equation (Q) and proved local well-posedness of the initial value problem associated for data in H s (R), s > 3/4, and global well-posedness in H s (R), s ≥ 1. In 1997, G. Staffilani [START_REF] Staffilani | On the generalized Korteweg -de Vries type equation[END_REF] for (Q)

established local well-posedness for data in H s (R), s ≥ 1/4 improving Laurey's result. A similar result was given in [START_REF]Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev space of negative indices[END_REF][START_REF] Carvajal | A higher order nonlinear Schrödinger equation with variable coefficients[END_REF] with w(t), β(t) real functions. Our aim in this paper, is to study gain in regularity for the equation (P ). Specifically, we prove conditions on (P ) for which initial data u 0 possessing sufficient decay at infinity and minimal amount of regularity will lead to a unique solution u(t) ∈ C ∞ (R) for 0 < t < T, where T is the existence time of the solution.

We are not considering the equation (Q) because of the technique used here, we shall see that the last two terms in (Q) are not outstanding in the main inequality, indeed the two last terms are observed in the last two terms in the main inequality.

In 1986, N. Hayashi et al. [START_REF] Hasegawa | Nonlinear pulse propagation in a monomode dielectric guide[END_REF] showed that for the nonlinear Schrödinger equation (NLS): i u t + u xx = λ |u| p-1 u, (x, t) ∈ R × R with initial condition u(x, 0) = u 0 (x), x ∈ R and a certain assumption on λ and p, all solutions of finite energy are smooth for t = 0 provided the initial functions in H 1 (R)(or on L 2 (R)) decay sufficiently fast as |x| → ∞. The main tool is the operator J defined by Ju = e i x 2 /4 t (2 i t) ∂ x (e -i x 2 /4 t u) = (x + 2 i t ∂ x )u which has the remarkable property that it commutes with the operator L defined by L = (i ∂ t + ∂ 2 x ), namely LJ -JL = [L, J] = 0. For the Korteweg-de Vries type equation (KdV), J. C. Saut and M. Temam [START_REF] Saut | Remark on the Korteweg -de Vries equation[END_REF] remarked that a solution u cannot gain or lose regularity. They showed that if u(x, 0) = u 0 (x) ∈ H s (R) for s ≥ 2, then u( • , t) ∈ H s (R) for all t > 0. For the KdV equation on the line, Kato [START_REF] Kato | On the Cauchy problem for the ( generalized ) Korteweg -de Vries equations[END_REF] motivated by work of Cohen [START_REF] Constantin | Local smoothing properties of dispersive equations[END_REF] showed that if u(x, 0) = u 0 (x) ∈ L 2 b ≡ H 2 (R) ∩ L 2 (e bx dx)(b > 0) then the solution u(x, t) of the KdV equation becomes C ∞ for all t > 0. A main ingredient in the proof was the fact that formally the semi-group S(t) = e -∂ 3

x in L 2 b (R) is equivalent to S b (t) = e -t (∂x-b) 3 in L 2 (R) when t > 0. One would be inclined to believe that this was a special property of the KdV equation. However, his is not the case. The effect is due to the dispersive nature of the linear part of the equation. Kruzkov and Faminskii [START_REF] Kruzhkov | Generalized solutions to the Cauchy problem for the Korteweg -de Vries equations[END_REF] proved that u(x, 0) = u 0 (x) ∈ L 2 (R) such that x α u 0 (x) ∈ L 2 ((0, +∞)), the weak solution of the KdV equation, has l-continuous space derivatives for all t > 0 if l < 2 α. The proof of this result is based on the asymptotic behavior of the Airy function and its derivatives, and on the smoothing effect of the KdV equation which was found in [START_REF] Kato | On the Cauchy problem for the ( generalized ) Korteweg -de Vries equations[END_REF][START_REF] Kruzhkov | Generalized solutions to the Cauchy problem for the Korteweg -de Vries equations[END_REF]. While the proof of Kato appears to depend on special a priori estimates, some of this mystery has been solved by the result of local gain of finite regularity for various others linear and nonlinear dispersive equations due to Ginibre and Velo [START_REF] Ginibre | Conmutator expansions and smoothing properties of Poincaré[END_REF] and others. However, all of them require growth conditions on the nonlinear term. In 1992, W. Craig, T. Kappeler and W. Strauss [START_REF] Craig | Linear dispersive equations of Airy Type[END_REF][START_REF] Craig | Infinite gain of regularity for dispersive evolution equations, Microlocal Analysis and Nonlinear waves[END_REF] proved for the fully nonlinear KdV equation u t + f (u xxx , u xx , u x , u, x, t) = 0, x ∈ R, t > 0 and certain additional assumption over f that C ∞ solutions u(x, t) are obtained for all t > 0 if the initial data u 0 (x) decays faster than polynomially on R + = {x ∈ R : x > 0} and has certain initial Sobolev regularity. Following this idea, H. Cai [START_REF] Cai | Dispersive smoothing effect for generalized and high order KdV type equations[END_REF] studied the nonlinear equation of KdV-type of the form u t + u xxx + a(x, , t) f (u xx , u x , u, x, t) = 0, where a(x, t) is positive and bounded, obtaining the same conclusion. Subsequent works were given by O. Vera [START_REF] Vera | Gain of regularity for an nonlinear dispersive equation Korteweg-de Vries-Burgers type[END_REF][START_REF] Vera | Existence and uniqueness for a nonlinear dispersive equation[END_REF][START_REF] Vera | Gain of regularity for a nonlinear dispersive equation[END_REF][START_REF] Vera | Gain of regularity for a Korteweg-de Vries-Kawahara type equation[END_REF] for a nonlinear dispersive evolution equation, a KdV-Burgers type equation and for KdV-Kawahara type equation, respectively. In more than one spatial dimension, J. Levandosky [START_REF] Levandosky | Smoothing properties of nonlinear dispersion equation in two spatial dimensions[END_REF], proved infinite gain in regularity results for nonlinear third-order equations. While [START_REF] Craig | Linear dispersive equations of Airy Type[END_REF] included local smoothing results for some mth-order dispersive equation in n spatial dimension, their results and the techniques are different from those presented by Levandosky. First, they consider equations with only a mild solution and Levandosky considers equations with very general nonlinearities including a fully nonlinear equation of the form

u t + f (D 3 u, D 2 u, Du, u, x, t) = 0, u(x, y, 0) = u 0 (x, y).

Secondly, they indicate local gain in finite regularity and Levandosky proved complementary results

showing the relationship between the decay at infinity of the initial data and the amount of gain in regularity. More specifically, it is proved a condition under which an equation of the form

u t + a u xxx + b u xxy + c u xyy + d u yyy + f (D 2 u, Du, u, x, t) = 0, u(x, y, 0) = u 0 (x, y),
where a, b, c, d are assumed constant. Indeed, Levandosky proved sufficient conditions on this equation for which a solution u will experience an infinite gain in regularity. Specifically, prove conditions for which initial data u 0 (x, y) possessing sufficient decay at infinity and a minimal amount of regularity will lead to a unique solution u(t) ∈ C ∞ (R 2 ) for T * where T * is the existence time of solutions. According to the characteristics of equations (P ) and considering the particular cases (Q 1 ) and (Q 2 ) we could hope that the (P ) equation have gain in regularity following the steps of N. Hayashi et al. [START_REF] Hasegawa | Nonlinear pulse propagation in a monomode dielectric guide[END_REF] or W. Craig et al. [START_REF] Craig | Linear dispersive equations of Airy Type[END_REF]. In our problem, the initial idea is to apply the technique given by N. Hayashi et al. [START_REF] Hasegawa | Nonlinear pulse propagation in a monomode dielectric guide[END_REF][START_REF] Hayashi | On solutions on the initial value problem for the nonlinear Schrödinger equations in One Space Dimension[END_REF] to obtain gain in regularity. Firstly, using straightforward calculus we can see that the equation (P ) has conservation of the energy, i. e., ||u|| L 2 (R) = ||u 0 || L 2 (R) . On the other hand, we look for estimates for u x that will help to obtain a priori estimates, basically to obtain estimates in L ∞ (R). Indeed, differentiating in the x-variable the equation (P ) we have

i u x t + i β u xxxx + ω u xxx + (|u| 2 ) x u + |u| 2 u x = 0, (1.1) 
and multiplying (1.1) by

u x i u x u x t + i β u x u xxxx + ω u x u xxx + (|u| 2 ) x u u x + |u| 2 |u x | 2 = 0 -i u x u x t -i β u x u xxxx + ω u x u xxx + (|u| 2 ) x u u x + |u| 2 |u x | 2 = 0. (applying conjugate)
Subtracting and integrating over x ∈ R, we have

i d dt R |u x | 2 dx + i β R u x u xxxx dx + i β R u x u xxxx dx + 2 i ω Im R u x u xxx dx + 2 i Im R (|u| 2 ) x u u x dx = 0.
Performing integration by parts and straightforward calculations we obtain

d dt R |u x | 2 dx + 2 Im R (|u| 2 ) x u u x dx = 0 (E 1 )
where

d dt ||u x || 2 L 2 (R) + 2 Im R u 2 u 2 x dx = 0 (E 2 )
or integrating by parts the second term in (E 1 ) we obtain

d dt ||u x || 2 L 2 (R) -2 Im R |u| 2 u u xx dx = 0. (E 3 )
Thus it is not possible to estimate in H 1 (R), because it appears a second term with two derivatives. The reason of having an estimate in the derivative is related to Sobolev embedding. In one spatial dimension we have the embedding H 1 (R) ֒→ L ∞ (R). It seems that the term i β u xxx is crucial. It makes the two "top" terms look like KdV equation; that is, u t + u xxx + . . . . Of course, the solution is complex, so that the equation is like two coupled real KdV equations. This was our motivation to obtain gain in regularity using the idea of W. Craig et al. [START_REF] Craig | Linear dispersive equations of Airy Type[END_REF]. We prove conditions on (P ) for which initial data u 0 (x) possessing sufficient decay at infinity and a minimal amount of regularity will lead to a unique solution u(t) ∈ C ∞ (R) for t > 0. We use a technique of nonlinear multipliers, generalizing Kato's original method, together with ideas of Craig and Goodman [START_REF] Craig | Linear dispersive equations ofAiry Type[END_REF] All the physically significant dispersive equations and systems known to us have linear parts displaying this local smoothing property. To mention only a few, the KdV, Benjamin-Ono, intermediate long wave, various Boussinesq, and Schrödinger equation are included. This paper is organized as follows: Section 2 outlines briefly the notation and terminology to be used subsequently. In section 3 we prove the main inequality.

In section 4 we prove an important a priori estimate. In section 5 we prove a basic-local-in-time existence and uniqueness theorem. In section 6 we prove a basic global existence theorem. In section 7 we develop a series of estimates for solutions of equations (P ) in weighted Sobolev norms. These provide a starting point for the a priori gain of regularity. In section 8 we prove the following theorem:

Theorem 1.1(Main Theorem). Let |ω| < 3 β, T > 0 and u(x, t) be a solution of (P ) in the region

R × [0, T ] such that u ∈ L ∞ ([0, T ] : H 3 (W 0 L 0 )) (1.2) for some L ≥ 2. Then u ∈ L ∞ ([0, T ] : H 3+l (W σ, L-l, l )) ∩ L 2 ([0, T ] : H 4+l (W σ, L-l-1, l )) (1.3)
for all 0 ≤ l ≤ L -1 and all σ > 0.

Remark. We consider the Gauge transformation

u(x, t) = e i d2 x+i d3 t v (x -d 1 t, t) ≡ e θ v (η, ξ) (1.4) 
where

θ = i d 2 x + i d 3 t, η = x -d 1 t and ξ = t. Then u t = i d 3 e θ v -d 1 e θ v η + e θ v ξ : u x = i d 2 e θ v + e θ v η u xx = -d 2 2 e θ v + 2 i d 2 e θ v η + e θ v η η : u xxx = -i d 3 2 e θ v -3 d 2 2 e θ v η + 3 i d 2 e θ v ηη + e θ v ηηη .
Replacing in (Q) we have

-d 3 e θ v -i d 1 e θ v η + i e θ v ξ -ω d 2 2 e θ v + 2 i ω d 2 e θ v η + ω e θ v ηη β d 3 3 e θ v -3 i β d 2 2 e θ v η -3 β d 2 e θ v ηη + i β e θ v ηηη + γ |v| 2 e θ v -δ d 2 |v| 2 e θ v + i δ |v| 2 e θ v η + ǫ d 2 e θ v 2 v + i ǫ e θ v 2 v η = 0 where i v ξ + (ω -3 β d 2 ) v ηη + i β v ηηη + (2 i ω d 2 -3 i β d 2 2 -i d 1 + i δ |v| 2 + i ǫ v 2 ) v η (β d 3 2 -ω d 2 2 -d 3 + γ |v| 2 -δ d 2 |v| 2 ) v + ǫ d 2 v 2 v = 0 then d 1 = ω 2 3 β : d 2 = ω 3 β : d 3 = -2ω 3 27 β 2 . (1.5)
This way in (Q) we obtain

i v ξ + i β v ηηη + i (δ |v| 2 + ǫ v 2 ) v η + γ - ω δ 3 β |v| 2 v + ǫ δ 3 β v 2 v = 0, but v 2 v = v v v = |v| 2 v
, then using the Gauge transformation we have the equivalent problem to (Q)

(Q) i v ξ + i β v ηηη + i δ |v| 2 v η + i ǫ v 2 v η + γ + ǫ δ 3 β -ω δ 3 β |v| 2 v = 0 η, ξ ∈ R v(η, 0) = e -i ω 3 β η u 0 (η).
Here, rescaling the equation, we take β = 1.

(

Q) i v t + i v xxx + i δ |v| 2 v x + i ǫ v 2 v x + γ + ǫ δ 3 -ω δ 3 |v| 2 v = 0 x, t ∈ R v(x, 0) = e -i ω 3 x u 0 (x).
The above Gauge transformation is a bicontinuous map from L p ([0, T ] : H s (W σ i k )) to itself, as far as 0 < T < +∞ and p, s, σ, i, k used in this paper. With this, the assumption |ω| < 3 β imposed in Theorem 1.1 can be removed.

Preliminaries

We consider the initial value problem

(P ) i u t + ω u xx + i β u xxx + |u| 2 u = 0, x, t ∈ R u(x, 0) = u 0 (x)
where ω, β ∈ R, β = 0 and u = u(x, t) is a complex valued function.

Notation. We write ∂ = ∂/∂x, ∂ t = ∂/∂t and we abbreviate u j = ∂ j u. Definition 2.1. A function ξ = ξ(x, t) belongs to the weight class W σ i k if it is a positive C ∞ function on R × [0, T ], ∂ξ > 0 and there are constant c j , 0 ≤ j ≤ 5 such that

0 < c 1 ≤ t -k e -σ x ξ(x, t) ≤ c 2 ∀ x < -1, 0 < t < T. (2.1) 0 < c 3 ≤ t -k x -i ξ(x, t) ≤ c 4 ∀ x > 1, 0 < t < T. (2.2) t | ∂ t ξ | + | ∂ j ξ | /ξ ≤ c 5 ∀ (x, t) ∈ R × [0, T ], ∀ j ∈ N. (2.3) 
Remark. We shall always take σ ≥ 0, i ≥ 1 and k ≥ 0.

Example. Let

ξ(x) = 1 + e -1/x for x > 0 1 for x ≤ 0 then ξ ∈ W 0 i 0 . Definition 2.2.
Let N be a positive integer. By H N (W σ i k ) we denote the Sobolev space on R with a weight; that is, with the norm

||v|| 2 H N (W σ i k ) = N j=0 R |∂ j v(x)| 2 ξ(x, t) dx < + ∞
for any ξ ∈ W σ i k and 0 < t < T., Even though the norm depends on ξ, all such choices leads to equivalent norms.

Remark. H s (W σ i k ) depends on t (because ξ = ξ(x, t)).

Lemma 2.1. (See [START_REF] Cai | Dispersive smoothing effect for generalized and high order KdV type equations[END_REF]) For ξ ∈ W σ i 0 and σ ≥ 0, i ≥ 0, there exists a constant c > 0 such that, for u ∈ H 1 (W σ i 0 ),

sup x∈R ||ξ u 2 || ≤ c R |u| 2 + |∂u| 2 ξ dx
Lemma 2.2(The Gagliardo-Nirenberg inequality). Let q, r be any real numbers satisfying 1 ≤ q, r ≤ ∞ and let j and m be nonnegative integers such that j ≤ m. Then

||∂ j u|| L p (R) ≤ c ||∂ m u|| a L r (R) ||u|| 1-a L q (R)
where

1 p = j + a 1 r -m + (1-a)
q for all a in the interval j m ≤ a ≤ 1, and M is a positive constant depending only on m, j, q, r and a. Definition 2.3. By L 2 ([0, T ] : H N (W σ i k )) we denote the space of functions v(x, t) with the norm (N integer positive)

||v|| 2 L 2 ([0, T ]: H N (W σ i k )) = T 0 ||v(x, t)|| 2 H N (W σ i k ) dt < + ∞ Remark.
The usual Sobolev space is H N (R) = H N (W 0 0 0 ) without a weight.

Remark. We shall derive the a priori estimates assuming that the solution is C ∞ , bounded as x → -∞, and rapidly decreasing as x → + ∞, together with all of its derivatives.

Considering the above notation, the higher order nonlinear Schrödinger equation can be written as

i u t + i β u 3 + ω u 2 + |u| 2 u = 0, x, t ∈ R (2.4)
where ω, β ∈ R, β = 0 and u = u(x, t) is a complex valued function.

Throughout this paper c is a generic constant, not necessarily the same at each occasion(it will change from line to line), which depends in an increasing way on the indicated quantities. In this part, we only consider the case t > 0. The case t < 0 can be treated analogously.

Main Inequality

Lemma 3.1. Let |ω| < 3 β. Let u be a solution of (2.4) with enough Sobolev regularity (for instance,

u ∈ H N (R), N ≥ α + 3), then ∂ t R ξ |u α | 2 dx + R η |u α+1 | 2 dx + R θ |u α | 2 dx + R R α dx ≤ 0 (3.1)
where

η = (3 β -|ω|) ∂ξ f or |ω| < 3 β θ = -[ ∂ t ξ + β ∂ 3 ξ + |ω| ∂ξ + c 0 ξ ] where c 0 = ||u|| 2 L ∞ (R) and R α = R α (|u α |, |u α-1 |, . . .).
Proof. Differentiating (2.4) α-times (for α ≥ 0) over x ∈ R leads to

i u α t + i β u α+3 + ω u α+2 + (|u| 2 ) α u + α-1 m=1 α m (|u| 2 ) α-m u m + |u| 2 u α = 0. (3.2)
Let ξ = ξ(x, t), then multiplying (3.2) by ξ u α we have

i ξ u α u α t + i β ξ u α u α+3 + ω ξ u α u α+2 + (|u| 2 ) α ξ u u α + α-1 m=1 α m (|u| 2 ) α-m ξ u m u α + ξ |u| 2 |u α | 2 = 0 -i ξ u α u α t -i β ξ u α u α+3 + ω ξ u α u α+2 + (|u| 2 ) α ξ u u α + α-1 m=1 α m (|u| 2 ) α-m ξ u m u α + ξ |u| 2 |u α | 2 = 0. (applying conjugate)
Subtracting and integrating over x ∈ R we have

i ∂ t R ξ |u α | 2 dx + i β R ξ u α u α+3 dx + i β R ξ u α u α+3 dx -i R ξ t |u α | 2 dx + ω R ξ u α u α+2 dx -ω R ξ u α u α+2 dx + 2 i Im R ξ (|u| 2 ) α u u α dx + 2 i α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 0. (3.3)
We estimate the second term integrating by parts

R ξ u α u α+3 dx = R ∂ 2 ξ u α u α+1 dx + 2 R ∂ξ |u α+1 | 2 dx + R ξ u α+2 u α+1 dx.
The other terms are calculated in a similar way. Hence, replacing in (3.3) and performing straightforward calculations we obtain

i ∂ t R ξ |u α | 2 dx + i β R ∂ 2 ξ u α u α+1 dx + 2 i β R ∂ξ |u α+1 | 2 dx + i β R ξ u α+2 u α+1 dx + i β R ∂ 2 ξ u α u α+1 dx + i β R ∂ξ |u α+1 | 2 dx -i β R ξ u α+1 u α+2 dx -ω R ∂ξ u α u α+1 dx -ω R ξ |u α+1 | 2 dx + ω R ∂ξ u α u α+1 dx + ω R ξ |u α+1 | 2 dx -i R ∂ t ξ |u α | 2 dx + 2 i Im R ξ (|u| 2 ) α u u α dx + 2 i α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 0 then ∂ t R ξ |u α | 2 dx -β R ∂ 3 ξ |u α | 2 dx + 3 β R ∂ξ |u α+1 | 2 dx -2 ω Im R ∂ξ u α u α+1 dx - R ∂ t ξ |u α | 2 dx + 2 Im R ξ (|u| 2 ) α u u α dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 0 hence ∂ t R ξ |u α | 2 dx -β R ∂ 3 ξ |u α | 2 dx + 3 β R ∂ξ |u α+1 | 2 dx + 2 Im R (|u| 2 ) α ξ u u α dx - R ∂ t ξ |u α | 2 dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 2 ω Im R ∂ξ u α u α+1 dx ≤ |ω| R ∂ξ |u α | 2 dx + |ω| R ∂ξ |u α+1 | 2 dx therefore ∂ t R ξ |u α | 2 dx + R [ 3 β -|ω| ] ∂ξ |u α+1 | 2 dx - R [ ∂ t ξ + β ∂ 3 ξ + |ω| ∂ξ ] |u α | 2 dx + 2 Im R (|u| 2 ) α ξ u u α dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx ≤ 0. (3.4) But (|u| 2 ) α = ( u u ) α = α k=0 α k u α-k u k = u u α + α-1 k=1 α k u α-k u k + u u α then (|u| 2 ) α u u α = |u| 2 |u α | 2 + α-1 k=1 α k u α-k u k u u α + u 2 u 2 α thus, 2 Im R ( |u| 2 ) α ξ u u α dx = 2 α-1 k=1 α k Im R ξ u α-k u k u u α dx + 2 Im R ξ u 2 u 2 α dx ≤ 2 α-1 k=1 α k R ξ |u α-k | |u k | |u| |u α |dx + 2 R ξ |u| 2 |u α | 2 dx ≤ 2 α-1 k=1 α k R ξ |u α-k | |u k | |u| |u α |dx + 2 ||u|| 2 L ∞ (R) R ξ |u α | 2 dx ≤ 2 ||u|| L ∞ (R) α-1 k=1 α k R ξ |u α-k | |u k | |u α |dx + 2 ||u|| 2 L ∞ (R) R ξ |u α | 2 dx (3.5)
hence, in (3.4) we have

∂ t R ξ |u α | 2 dx + R [3 β -|ω| ] ∂ξ |u α+1 | 2 dx - R [∂ t ξ + β ∂ 3 ξ + |ω| ∂ξ + c 0 ξ ] |u α | 2 dx -2 c α-1 k=1 α k R ξ |u α-k | |u k | |u α |dx -2 α-1 m=1 α m R ξ |(|u| 2 ) α-m | |u m | |u α |dx ≤ 0.
Therefore, using straightforward calculations we obtain the main inequality

∂ t R ξ |u α | 2 dx + R η |u α+1 | 2 dx + R θ |u α | 2 dx + R R α dx ≤ 0 where η = (3 β -|ω| ) ∂ξ for |ω| < 3 β θ = -[ ∂ t ξ + β ∂ 3 ξ + |ω| ∂ξ + c 0 ξ ] where c 0 = ||u|| 2 L ∞ (R) and R α = R α (|u α |, |u α-1 |, . . .).
Remark. In (3.4) using Young's estimate and assuming that β > 0 we have

2 ω Im R u α u α+1 dx ≤ |ω| 2 2 β R |u α | 2 dx + 2 β R |u α+1 | 2 dx.
Then, in (3.4) we obtain

∂ t R ξ |u α | 2 dx -β R ∂ 3 ξ |u α | 2 dx + β R ∂ξ |u α+1 | 2 dx + 2 Im R (|u| 2 ) α ξ u u α dx - R ∂ t ξ |u α | 2 dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 2 ω Im R ∂ξ u α u α+1 dx ≤ |ω| 2 2 β R |u α | 2 dx
and the assumption that |ω| < 3 β can be removed.

Lemma 3.2. For η ∈ W σ i k an arbitrary weight function and |ω| < 3 β, there exists ξ ∈ W σ, i+1, k that satisfies

η = (3 β -|ω|) ∂ξ f or |ω| < 3 β. (3.6)
Indeed, we have

ξ = 1 (3 β -|ω|) x -∞
η(y, t) dy.

(3.7)

Lemma 3.3. The expression R α in the inequality of Lemma 3.1 is a sum of terms of the form

ξ u ν1 u ν2 u α (3.8)
where 1 ≤ ν 1 ≤ ν 2 ≤ α and

ν 1 + ν 2 = α (3.9)
Proof. It follows from (3.5).

An a priori estimate

We show now a fundamental a priori estimate used for a basic local-in-time existence theorem. We construct a mapping Z :

L ∞ ([0, T ] : H s (R)) -→ L ∞ ([0, T ] : H s (R)) with the property: Given u (n) = Z(u (n-1) ) and essup t∈[0, T ] ||u (n-1) || s ≤ c 0 then essup t∈[0, T ] ||u (n) || s ≤ c 0 ,
where s and c 0 > 0 are constants. This property tells us that Z :

B c0 (0) -→ B c0 (0) where B c0 (0) = {v(x, t) : ||v( • , t)|| s ≤ c 0 } is a ball in L ∞ ([0, T ] : H s (R)).
To guarantee this property, we will appeal to an a priori estimate which is the main object of this section.

Differentiating (2.4) two times leads to

i ∂ t u 2 + i β u 5 + ω u 4 + (|u| 2 ) 2 u + 2 (|u| 2 ) 1 u 1 + |u| 2 u 2 = 0. (4.1) Let u = ∧v where ∧ = (I -∂ 2 ) -1 . Hence u = (I -∂ 2 ) -1 v then u -u 2 = v where ∂ t u 2 = -v t + u t .
Replacing in (4.1) we have

-i v t + i β ∧ v 5 + ω ∧ v 4 + (| ∧ v| 2 ) 2 ∧ v + 2 (| ∧ v| 2 ) 1 ∧ v 1 + | ∧ v| 2 ∧ v 2 -(i β ∧ v 3 + ω ∧ v 2 + | ∧ v| 2 ∧ v) = 0. ( 4.2) 
The (4.2) equation is linearized by substituting a new variable z in each coefficient:

-i v t + i β ∧ v 5 + ω ∧ v 4 + (| ∧ z| 2 ) 2 ∧ v + 2 (| ∧ z| 2 ) 1 ∧ v 1 + | ∧ z| 2 ∧ v 2 -(i β ∧ v 3 + ω ∧ v 2 + | ∧ z| 2 ∧ v) = 0. (4.3)
The linear equation which is to be solved at each iteration is of the form

i ∂ t v = i β ∧ v (n) 5 + ω ∧ v (n) 4 -i β ∧ v (n) 3 -ω ∧ v (n) 2 + b (1) (4.4) where b (1) = (| ∧ z| 2 ) 2 ∧ v + 2 (| ∧ z| 2 ) 1 ∧ v 1 + | ∧ z| 2 ∧ v 2 -| ∧ z| 2 ∧ v. Equation (4.4
) is a linear equation at each iteration which can be solved in any interval of time in which the coefficient is defined.

We consider the following lemma that will help us setting up the iteration scheme.

Lemma 4.1. Let |ω| < 3 β. Given initial data u 0 (x) ∈ H ∞ (R) = N ≥0 H N (R)
there exists a unique solution of (4.4) where b (1) is a smooth bounded coefficient with z ∈ H ∞ (R). The solution is defined in any time interval in which the coefficient is defined.

Proof. Let T > 0 be arbitrary and M > 0 a constant. Let

Γ = ξ ( i ∂ t -i β ∧ ∂ 5 -ω ∧ ∂ 4 + i β ∧ ∂ 3 + ω ∧ ∂ 2 )
then in (4.4) we have Γu = ξ b (1) . We consider the bilinear form B :

D × D -→ R, B(u, v) =< u, v >= Im T 0 R e -Mt u v dx dt where D = {u ∈ C ∞ 0 (R × [0, T ]) : u(x, 0) = 0 }. We have Γu • u = i ξ u u t -i β ξ u ∧ u 5 -ω ξ u ∧ u 4 + i β ξ u ∧ u 3 + ω ξ u ∧ u 2 Γu • u = -i ξ u u t + i β ξ u ∧ u 5 -ω ξ u ∧ u 4 -i β ξ u ∧ u 3 + ω ξ u ∧ u 2 . (applying conjugate)
Subtracting and integrating over x ∈ R we have

2 i Im R Γu • udx = i ∂ t R ξ |u| 2 dx -i R ∂ t ξ |u| 2 dx -i β R ξ u ∧ u 5 dx -i β R ξ u ∧ u 5 dx -ω R ξ u ∧ u 4 dx + ω R ξ u ∧ u 4 dx + i β R ξ u ∧ u 3 dx + i β R ξ u ∧ u 3 dx + ω R ξ u ∧ u 2 dx -ω R ξ u ∧ u 2 dx.
Each term is treated separately, integrating by parts

R ξ u ∧ u 5 dx = R ξ ∧ (I -∂ 2 )u ∧ u 5 dx = R ξ ∧ u ∧ u 5 dx - R ξ ∧ u 2 ∧ u 5 dx = R ∂ 4 ξ ∧ u ∧ u 1 dx + R ∂ 3 ξ | ∧ u 1 | 2 dx -3 R ∂ 2 ξ ∧ u 1 ∧ u 2 dx -2 R ∂ξ | ∧ u 2 | 2 dx + R ξ ∧ u 2 ∧ u 3 dx - R ∂ 2 ξ ∧ u 2 ∧ u 3 dx - R ∂ξ | ∧ u 3 | 2 dx + R ξ ∧ u 3 ∧ u 4 dx.
The other terms are calculates in a similar way. Then

2 i Im R Γu • udx = i ∂ t R ξ |u| 2 dx -i R ∂ t ξ |u| 2 dx -i β R ∂ 4 ξ ∧ u ∧ u 1 dx -i β R ∂ 3 ξ | ∧ u 1 | 2 dx + 3 i β R ∂ 2 ξ ∧ u 1 ∧ u 2 dx + 2 i β R ∂ξ | ∧ u 2 | 2 dx -i β R ξ ∧ u 2 ∧ u 3 dx + i β R ∂ 2 ξ ∧ u 2 ∧ u 3 dx + i β R ∂ξ | ∧ u 3 | 2 dx -i β R ξ ∧ u 3 ∧ u 4 dx -i β R ∂ 4 ξ ∧ u ∧ u 1 dx -i β R ∂ 3 ξ | ∧ u 1 | 2 dx + 3 i β R ∂ 2 ξ ∧ u 1 ∧ u 2 dx + 2 i β R ∂ξ | ∧ u 2 | 2 dx -i β R ξ ∧ u 2 ∧ u 3 dx + i β R ∂ 2 ξ ∧ u 2 ∧ u 3 dx + 2 i β R ∂ξ | ∧ u 3 | 2 dx + i β R ξ ∧ u 3 ∧ u 4 dx + ω R ∂ 3 ξ ∧ u ∧ u 1 dx + ω R ∂ 2 ξ | ∧ u 1 | 2 dx -2 ω R ∂ξ ∧ u 1 ∧ u 2 dx -ω R ξ | ∧ u 2 | 2 dx -ω R ∂ξ ∧ u 2 ∧ u 3 dx -ω R ξ | ∧ u 3 | 2 dx -ω R ∂ 3 ξ ∧ u ∧ u 1 dx -ω R ∂ 2 ξ | ∧ u 1 | 2 dx + 2 ω R ∂ξ ∧ u 1 ∧ u 2 dx + ω R ξ | ∧ u 2 | 2 dx + ω R ∂ξ ∧ u 2 ∧ u 3 dx + ω R ξ | ∧ u 3 | 2 dx + i β R ∂ 2 ξ ∧ u ∧ u 1 dx + i β R ∂ξ | ∧ u 1 | 2 dx -i β R ξ ∧ u 1 ∧ u 2 dx -i β R ξ ∧ u 2 ∧ u 3 dx + i β R ∂ 2 ξ ∧ u ∧ u 1 dx + i β R ∂ξ | ∧ u 1 | 2 dx -i β R ξ ∧ u 1 ∧ u 2 dx -i β R ξ ∧ u 2 ∧ u 3 dx -ω R ∂ξ ∧ u ∧ u 1 dx -ω R ξ | ∧ u 1 | 2 dx -ω R ξ | ∧ u 2 | 2 dx + ω R ∂ξ ∧ u ∧ u 1 dx + ω R ξ | ∧ u 1 | 2 dx + ω R ξ | ∧ u 2 | 2 dx hence 2 i Im R Γu • udx = i ∂ t R ξ |u| 2 dx -i R ∂ t ξ |u| 2 dx -i β R ∂ 4 ξ (| ∧ u| 2 ) 1 dx -2 i β R ∂ 3 ξ | ∧ u 1 | 2 dx + 3 i β R ∂ 2 ξ (| ∧ u 1 | 2 ) 1 dx + 4 i β R ∂ξ | ∧ u 2 | 2 dx -i β R ξ (| ∧ u 2 | 2 ) 1 dx + i β R ∂ 2 ξ (| ∧ u 2 | 2 ) 1 dx + 3 i β R ∂ξ | ∧ u 3 | 2 dx + 2 i ω Im R ∂ 3 ξ ∧ u ∧ u 1 dx -4 i ω Im R ∂ξ ∧ u 1 ∧ u 2 dx -2 i ω Im R ∂ξ ∧ u 2 ∧ u 3 dx + i β R ∂ 2 ξ (| ∧ u| 2 ) 1 dx + 2 i β R ∂ξ | ∧ u 1 | 2 dx -i β R ξ (| ∧ u 1 | 2 ) 1 dx -i β R ξ (| ∧ u 2 | 2 ) 1 dx -2 ω Im R ∂ξ ∧ u ∧ u 1 dx
then, adding similar terms and cutting the letter i we obtain

2 Im R Γu • u dx = ∂ t R ξ |u| 2 dx - R ∂ t ξ |u| 2 dx + β R ∂ 5 ξ | ∧ u| 2 dx -5 β R ∂ 3 ξ | ∧ u 1 | 2 dx + 6 β R ∂ξ | ∧ u 2 | 2 dx -β R ∂ 3 ξ | ∧ u 2 | 2 dx + 3 β R ∂ξ | ∧ u 3 | 2 dx + 2 ω Im R ∂ 3 ξ ∧ u ∧ u 1 dx -4 ω Im R ∂ξ ∧ u 1 ∧ u 2 dx -2 ω Im R ∂ξ ∧ u 2 ∧ u 3 dx -β R ∂ 3 ξ | ∧ u| 2 dx + 3 β R ∂ξ | ∧ u 1 | 2 dx -2 ω Im R ∂ξ ∧ u ∧ u 1 dx then |ω| R ∂ξ | ∧ u 3 | 2 dx + |ω| R ∂ξ | ∧ u 2 | 2 dx + 2 |ω| R ∂ξ | ∧ u 1 | 2 dx + 2 |ω| R ∂ξ | ∧ u 2 | 2 dx + |ω| R ∂ξ | ∧ u| 2 dx + |ω| R ∂ξ | ∧ u 1 | 2 dx + |ω| R |∂ 3 ξ| | ∧ u| 2 dx + |ω| R |∂ 3 ξ| | ∧ u 1 | 2 dx + R ∂ t ξ |u| 2 dx + 2 Im R Γu • udx ≥ ∂ t R ξ |u| 2 dx + 3 β R ∂ξ | ∧ u 3 | 2 dx -β R ∂ 3 ξ | ∧ u 2 | 2 dx + 6 β R ∂ξ | ∧ u 2 | 2 dx -5 β R ∂ 3 ξ | ∧ u 1 | 2 dx + 3 β R ∂ξ | ∧ u 1 | 2 dx + β R ∂ 5 ξ | ∧ u| 2 dx -β R ∂ 3 ξ | ∧ u| 2 dx where 3 |ω| R ∂ξ | ∧ u 2 | 2 dx + |ω| R [|∂ 3 ξ| + 3 ∂ξ] | ∧ u 1 | 2 dx + |ω| R [|∂ 3 ξ| + ∂ξ + ∂ t ξ] | ∧ u| 2 dx + 2 Im R Γu • udx ≥ ∂ t R ξ |u| 2 dx + R [3 β -|ω|] ∂ξ | ∧ u 3 | 2 dx -β R ∂ 3 ξ | ∧ u 2 | 2 dx + 6 β R ∂ξ | ∧ u 2 | 2 dx -5 β R ∂ 3 ξ | ∧ u 1 | 2 dx + 3 β R ∂ξ | ∧ u 1 | 2 dx + β R ∂ 5 ξ | ∧ u| 2 dx -β R ∂ 3 ξ | ∧ u| 2 dx ≥ ∂ t R ξ |u| 2 dx + β R [-∂ 3 ξ + 5∂ξ] | ∧ u 2 | 2 dx + β R [-5 ∂ 3 ξ + 3∂ξ] | ∧ u 1 | 2 dx + β R [∂ 3 ξ -∂ 3 ξ] | ∧ u| 2 dx using (2.3), ∧u n = (I -(I -∂ 2 )) ∧ u n-2 = ∧u n-2 -u n-2
for n a positive integer and standard estimates we obtain

Im R Γu • u dx ≥ ∂ t R ξ |u| 2 dx -c R ξ |u| 2 dx.
Multiply this equation by e -Mt , and integrate with respect to t for t ∈ [0, T ] and u ∈ D

Im T 0 R e -Mt Γu • u dx dt ≥ T 0 e -Mt ∂ t R ξ |u| 2 dx dt -c T 0 R ξ e -Mt |u| 2 dx dt = e -Mt R ξ |u| 2 dx T 0 + M T 0 R ξ e -Mt |u| 2 dx dt -c T 0 R ξ e -Mt |u| 2 dx dt = e -Mt R ξ(x, T ) |u(x, T )| 2 dx + M T 0 R ξ e -Mt |u| 2 dx dt -c T 0 R ξ e -Mt |u| 2 dx dt. Thus < Γu, u >= Im T 0 R e -Mt Γu • u dx dt ≥ e -Mt R ξ(x, T ) |u(x, T )| 2 dx + (M -c) T 0 R ξ e -Mt |u| 2 dx dt ≥ T 0 R ξ e -Mt |u| 2 dx dt
provided that M is chosen large enough. Then < Γu, u >≥< u, u >, for all u ∈ D. Let Γ * be the formal adjoint of Γ defined by

Γ * = ξ(-i ∂ t -i β ∧ ∂ 5 -ω ∧ ∂ 4 + i β ∧ ∂ 3 + ω ∧ ∂ 2 ). Let D * = {w ∈ C ∞ 0 (R × [0, T ]) : w(x, T ) = 0 }.
In a similar way we prove that

< Γ * w, w > ≥ < w, w >, ∀ w ∈ D * .
¿From this equation, we have that Γ * is one-one. Therefore, < Γ * w, Γ * v > is an inner product on D * . We denote by X the completion of D * with respect to this inner product. By Riesz's Representation Theorem, there exists a unique solution V ∈ X, such that for any w ∈ D * , < ξb (1) , w >=< Γ * V, Γ * w > where we use that ξ b (1) ∈ X. Then if v = Γ * V we have < v, Γ * w >=< ξb (1) , w > or < Γ * w, v >=< w, ξb (1) > .

Hence, v = Γ * V is a weak solution of Γv = ξb (1) 

with v ∈ L 2 (R × [0, T ]) ≃ L 2 ([0, T ] : L 2 (R)).
Remark. To obtain higher regularity of the solution, we repeat the proof with higher derivatives. It is a standard approximation procedure to obtain a result for general initial data.

The next step is to estimate the corresponding solutions v = v(x, t) of the equation (4.3) via the coefficients of that equation.

The following estimate is related to the existence of solutions theorem.

Lemma 4.2. Let |ω| < 3 β and 0 < γ 1 ≤ ξ ≤ γ 2 , with γ 2 , γ 2 real constants. Let v, z ∈ C k ([0, +∞) : H N (R)
) for all k, N which satisfy (4.3). For each integer α there exist positive nondecreasing functions G and F such that for all t ≥ 0

∂ t R ξ |v α | 2 dx ≤ G(||z|| λ ) ||v|| 2 α + F (||z|| α ) (4.5)
where || • || α is the norm in H α (R) and λ = max{1, α}.

Proof. Differentiating α-times the equation (4.3), for some α ≥ 0 we have

-i ∂ t v α + i β ∧ v α+5 + ω ∧ v α+4 -i β ∧ v α+3 + α+2 j=3 h (j) ∧ v j + (|z| 2 ) α+2 ∧ v + p(∧z α+1 , . . .) = 0 (4.6)
where h (j) is a smooth function depending on | ∧ z| 2 , . . . with i = 2 + α -j. For α ≥ 2, p(∧z α+1 , . . .) depends at most linearly on ∧z α+1 , while for α = 2, p(∧z α+1 , . . .) depends at most quadratically on ∧z α+1 . We multiply equation (4.6) by ξ v α and integrate over x ∈ R

-i R ξ v α ∂ t v α dx + i β R ξ v α ∧ v α+5 dx + ω R ξ v α ∧ v α+4 dx -i β R ξ v α ∧ v α+3 dx + α+2 j=3 h (j) R ξ v α ∧ v j dx + R ξ (|z| 2 ) α+2 v α ∧ vdx + R ξ v α p(∧z α+1 , . . .)dx = 0 and applying conjugate i R ξ v α ∂ t v α dx -i β R ξ v α ∧ v α+5 dx + ω R ξ v α ∧ v α+4 dx + i β R ξ v α ∧ v α+3 dx + α+2 j=3 h (j) R ξ v α ∧ v j dx + R ξ (|z| 2 ) α+2 v α ∧ vdx + R ξ v α p(∧z α+1 , . . .)dx = 0.
Subtracting, it follows that

-i ∂ t R ξ |v α | 2 dx + i R ∂ t ξ |v α | 2 dx + i β R ξ v α ∧ v α+5 dx + i β R ξ v α ∧ v α+5 dx + ω R ξ v α ∧ v α+4 dx -ω R ξ v α ∧ v α+4 dx -i β R ξ v α ∧ v α+3 dx -i β R ξ v α ∧ v α+3 dx + α+2 j=3 h (j) R ξ v α ∧ v j dx - α+2 j=3 h (j) R ξ v α ∧ v j dx + R ξ (|z| 2 ) α+2 v α ∧ vdx (4.7) - R ξ (|z| 2 ) α+2 v α ∧ v dx + R ξ v α p(∧z α+1 , . . .) dx - R ξ v α p(∧z α+1 , . . .)dx = 0.
Each term is treated separately, integrating by parts

R ξ v α ∧ v α+5 dx = R ξ ∧ (I -∂ 2 )v α ∧ v α+5 dx = R ξ ∧ v α ∧ v α+5 dx - R ξ ∧ v α+2 ∧ v α+5 dx = R ∂ 4 ξ ∧ v α ∧ v α+1 dx + R ∂ 3 ξ | ∧ v α+1 | 2 dx -3 R ∂ 2 ξ ∧ v α+1 ∧ v α+2 dx -2 R ∂ξ | ∧ v α+2 | 2 dx + R ξ ∧ v α+2 ∧ v α+3 dx - R ∂ 2 ξ ∧ v α+2 ∧ v α+3 dx -2 R ∂ξ | ∧ v α+3 | 2 dx - R ξ ∧ v α+4 ∧ v α+3 dx.
The other terms are calculated in a similar way. Hence in (4.7) we have performing straightforward calculations as above

-∂ t R ξ |v α | 2 dx + R ∂ t ξ |v α | 2 dx -β R ∂ 5 ξ | ∧ v α | 2 dx + 2 β R ∂ 3 ξ | ∧ v α+1 | 2 dx + 3 β R ∂ 3 ξ | ∧ v α+1 | 2 dx -4 β R ∂ξ | ∧ v α+2 | 2 dx -β R ∂ξ | ∧ v α+2 | 2 dx + β R ∂ 2 ξ | ∧ v α+2 | 2 dx -3 β R ∂ξ | ∧ v α+3 | 2 dx -2 ω Im R ∂ 3 ξ ∧ v α ∧ v α+1 dx + 4 ω Im R ∂ξ ∧ v α+1 ∧ v α+2 dx + 2 ω Im R ∂ξ ∧ v α+2 ∧ v α+3 dx + 2 β Im R ∂ξ ∧ v α ∧ v α+2 dx + 2 β Im R ξ ∧ v α+1 ∧ v α+2 dx -β R ∂ξ | ∧ v α+2 | 2 dx + 2 α+2 j=3 h (j) Im R ξ v α ∧ v j dx + 2 Im R ξ (|z| 2 ) α+2 v α ∧ vdx + 2 Im R ξ v α p(∧z α+1 , . . .) dx = 0 then -∂ t R ξ |v α | 2 dx + R ∂ t ξ |v α | 2 dx -3 β R ∂ξ | ∧ v α+3 | 2 dx + β R ∂ 2 ξ | ∧ v α+2 | 2 dx -6 β R ∂ξ | ∧ v α+2 | 2 dx + 5 β R ∂ 3 ξ | ∧ v α+1 | 2 dx -β R ∂ 5 ξ | ∧ v α | 2 dx = -2 ω Im R ∂ξ ∧ v α+2 ∧ v α+3 dx -4 ω Im R ∂ξ ∧ v α+1 ∧ v α+2 dx -2 β Im R ξ ∧ v α+1 ∧ v α+2 dx -2 β Im R ∂ξ ∧ v α ∧ v α+2 dx + 2 ω Im R ∂ 3 ξ ∧ v α ∧ v α+1 dx -2 α+2 j=3 h (j) Im R ξ v α ∧ v j dx -2 Im R ξ (|z| 2 ) α+2 v α ∧ vdx -2 Im R ξ v α p(∧z α+1 , . . .) dx hence, ∂ t R ξ |v α | 2 dx - R ∂ t ξ |v α | 2 dx + 3 β R ∂ξ | ∧ v α+3 | 2 dx -β R ∂ 2 ξ | ∧ v α+2 | 2 dx + 6 β R ∂ξ | ∧ v α+2 | 2 dx -5 β R ∂ 3 ξ | ∧ v α+1 | 2 dx + β R ∂ 5 ξ | ∧ v α | 2 dx = 2 ω Im R ∂ξ ∧ v α+2 ∧ v α+3 dx + 4 ω Im R ∂ξ ∧ v α+1 ∧ v α+2 dx + 2 β Im R ξ ∧ v α+1 ∧ v α+2 dx + 2 β Im R ∂ξ ∧ v α ∧ v α+2 dx -2 ω Im R ∂ 3 ξ ∧ v α ∧ v α+1 dx + 2 α+2 j=3 h (j) Im R ξ v α ∧ v j dx + 2 Im R ξ (|z| 2 ) α+2 v α ∧ vdx + 2 Im R ξ v α p(∧z α+1 , . . .) dx ≤ |ω| R ∂ξ | ∧ v α+2 | 2 dx + |ω| R ∂ξ| ∧ v α+3 | 2 dx + 2 |ω| R ∂ξ | ∧ v α+1 | 2 dx + 2 |ω| R ∂ξ| ∧ v α+2 | 2 dx + |β| R ξ | ∧ v α+1 | 2 dx + |β| R ξ | ∧ v α+2 | 2 dx + |β| R ∂ξ| ∧ v α | 2 dx + |β| R ∂ξ| ∧ v α+2 | 2 dx + |ω| R ∂ 3 ξ| ∧ v α | 2 dx + |ω| R ∂ 3 ξ| ∧ v α+1 | 2 dx + 2 α+2 j=3 h (j) R ξ v α ∧ v j dx + 2 R ξ (|z| 2 ) α+2 v α ∧ vdx + 2 R ξ v α p(∧z α+1 , . . .) dx where ∂ t R ξ |v α | 2 dx ≤ - R (3 β -|ω|)∂ξ | ∧ v α+3 | 2 dx + R [β ∂ 2 ξ -6 β ∂ξ + 3 |ω| ∂ξ + |β| ∂ξ + |β| ξ] | ∧ v α+2 | 2 dx + R [5β∂ 3 ξ + |ω|∂ 3 ξ + 2 |ω|∂ξ + |β| ξ] | ∧ v α+1 | 2 dx + R [∂ t ξ + β ∂ 5 ξ + |ω| ∂ 3 ξ + |β| ∂ξ] | ∧ v α | 2 dx + 2 α+2 j=3 h (j) R ξ v α ∧ v j dx + 2 R ξ (|z| 2 ) α+2 v α ∧ vdx + 2 R ξ v α p(∧z α+1 , . . .) dx .
using that |ω| < 3 β we have that the first term in the right hand side of the above expression is not positive. Hence,

∂ t R ξ |v α | 2 dx ≤ R [β ∂ 2 ξ -6 β ∂ξ + 3 |ω| ∂ξ + |β| ∂ξ + |β| ξ] | ∧ v α+2 | 2 dx + R [5 β ∂ 3 ξ + |ω| ∂ 3 ξ + 2 |ω| ∂ξ + |β| ξ] | ∧ v α+1 | 2 dx + R [∂ t ξ + β ∂ 5 ξ + |ω| ∂ 3 ξ + |β| ∂ξ] | ∧ v α | 2 dx + 2 α+2 j=3 h (j) R ξ v α ∧ v j dx + 2 R ξ (|z| 2 ) α+2 v α ∧ v dx + 2 R ξ v α p(∧z α+1 , . . .) dx .
Using that ∧v n = ∧v n-2 -v n-2 and a standard estimate, the lemma follows.

Uniqueness and Existence of a Local Solution

In this section, we study the uniqueness and the existence of local strong solutions in the Sobolev space H N (R) for N ≥ 3 for the problem (2.4). To establish the existence of strong solutions for (2.4) we use the a priori estimate together with an approximation procedure.

Theorem 5.1(Uniqueness). Let |ω| < 3 β, u 0 (x) ∈ H N (R) with N ≥ 3 and 0 < T < +∞. Then there is at most one strong solution u ∈ L ∞ ([0, T ] :

H N (R)) of (2.4) with initial data u(x, 0) = u 0 (x). Proof. Assume that u, v ∈ L ∞ ([0, T ] : H N (R)) are two solutions of (2.4) with u t , v t ∈ L ∞ ([0, T ] : H N -3 (R))
, and with the same initial data. Then

i (u -v) t + i β (u -v) 3 + ω (u -v) 2 + |u| 2 u -|v| 2 v = 0 (5.1)
with (u -v)(x, 0) = 0. By (5.1)

i (u -v) t + i β (u -v) 3 + ω (u -v) 2 + |u| 2 (u -v) + (|u| 2 -|v| 2 ) v = 0 or i (u -v) t + i β (u -v) 3 + ω (u -v) 2 + |u| 2 (u -v) + (|u| -|v|) (|u| + |v|) v = 0.
(5.2)

Multiplying (5.2) by ξ(u -v) we have i ξ (u -v) (u -v) t + i β ξ (u -v) (u -v) 3 + α ξ (u -v) (u -v) 2 + |u| 2 |u -v| 2 + ξ (u -v) (|u| -|v|) (|u| + |v|) v = 0. -i ξ (u -v) (u -v) t -i β ξ (u -v) (u -v) 3 + α ξ (u -v) (u -v) 2 + |u| 2 |u -v| 2 + ξ (u -v) (|u| -|v|) (|u| + |v|) v = 0. (applying conjugate)
Subtracting and integrating over x ∈ R we obtain

i ∂ t R ξ |u -v| 2 dx -i R ∂ t ξ |u -v| 2 dx + i β R ξ (u -v) (u -v) 3 dx + i β R ξ (u -v) (u -v) 3 dx + ω R ξ (u -v) (u -v) 2 dx -ω R ξ (u -v) (u -v) 2 dx + 2 i Im R ξ (u -v) (|u| -|v|) (|u| + |v|) v dx = 0 (5.3)
Each term is treated separately, integrating by parts

R ξ (u -v) (u -v) 3 dx = R ∂ 2 ξ (u -v) (u -v) 1 dx + 2 R ∂ξ |(u -v) 1 | 2 dx + R ξ (u -v) 1 (u -v) 2 dx.
The other terms are calculated in a similar way. Hence in (5.3) we have

i ∂ t R ξ |u -v| 2 dx -i R ∂ t ξ |u -v| 2 dx + i β R ∂ 2 ξ (u -v) (u -v) 1 dx + 2 i β R ∂ξ |(u -v) 1 | 2 dx + i β R ξ (u -v) 1 (u -v) 2 dx + i β R ∂ 2 ξ (u -v) (u -v) 1 dx + i β R ∂ξ |(u -v) 1 | 2 dx -i β R ξ (u -v) 1 (u -v) 2 dx -ω R ∂ξ (u -v) (u -v) 1 dx -ω R ξ |(u -v) 1 | 2 dx + ω R ∂ξ (u -v) (u -v) 1 dx + ω R ξ |(u -v) 1 | 2 dx + 2 i Im R ξ (u -v) (|u| -|v|) (|u| + |v|) v dx = 0 then i ∂ t R ξ |u -v| 2 dx -i R ∂ t ξ |u -v| 2 dx + i β R ∂ 2 ξ (|u -v| 2 ) 1 dx + 3 i β R ∂ξ |(u -v) 1 | 2 dx -2 i ω Im R ∂ξ (u -v) (u -v) 1 dx + 2 i Im R ξ (u -v) (|u| -|v|) (|u| + |v|) v dx = 0 if and only if ∂ t R ξ |u -v| 2 dx - R ∂ t ξ |u -v| 2 dx + β R ∂ 2 ξ (|u -v| 2 ) 1 dx + 3 β R ∂ξ |(u -v) 1 | 2 dx = 2 ω Im R ∂ξ (u -v) (u -v) 1 dx -2 Im R ξ (u -v) (|u| -|v|) (|u| + |v|) v dx ≤ |ω| R ∂ξ |u -v| 2 dx + |ω| R ∂ξ |(u -v) 1 | 2 dx + 2 R ξ |u -v| | |u| -|v| | (|u| + |v|) |v| dx. Using that | |u| -|v| | ≤ |u -v|, (2.
3) and standard estimates, we have

∂ t R ξ |u -v| 2 dx + R [3 β -|ω| ] ∂ξ |(u -v) 1 | 2 dx ≤ c R ξ |u -v| 2 dx.
Integrating in t ∈ [0, T ], using the fact that (u -v) vanishes at t = 0 and Gronwall's inequality it follows that u = v. This proves the uniqueness of the solution.

We construct the mapping Z :

L ∞ ([0, T ] : H s (R)) -→ L ∞ ([0, T ] : H s (R))
where the initial condition is given by u (n) (x, 0) = u 0 (x) and the first approximation is given by

u (0) = u 0 (x) u (n) = Z(u (n-1) ) n ≥ 1,
where u (n-1) is in place of z in equation ( 4.3) and u (n) is in place of v which is the solution of equation (4.3). That is

-i u (n) t + i β ∧ u (n) 5 + ω ∧ u (n) 4 + (| ∧ u (n-1) | 2 ) 2 ∧ u (n) + 2 (| ∧ u (n-1) | 2 ) 1 ∧ u (n) 1 + | ∧ u (n-1) | 2 ∧ u (n) 2 -(i β ∧ u (n) 3 + ω ∧ u (n) 2 + | ∧ u (n-1) | 2 ∧ u (n) ) = 0.
By Lemma 4.1, u (n) exists and is unique in C((0, +∞) : H N (R)). A choice of c 0 and the use of the a priori estimate in Section 4 shows that Z :

B c0 (0) -→ B c0 (0) where B c0 (0) is a bounded ball in L ∞ ([0, T ] : H s (R)).
Theorem 5.2(Local solution). Let |ω| < 3 β and N an integer ≥ 3. If u 0 (x) ∈ H N (R), then there is T > 0 and u such that u is a strong solution of (2.4), u ∈ L ∞ ([0, T ] : H N (R)) and u(x, 0) = u 0 (x).

Proof. We prove that for

u 0 (x) ∈ H ∞ (R) = k≥0 H k (R) there exists a solution u ∈ L ∞ ([0, T ] : H N (R))
with initial data u(x, 0) = u 0 (x) where the time of existence T > 0 only depends on the norm of u 0 (x). We define a sequence of approximations to equation (4.3) as i v

(n) t = i β ∧ v (n) 5 + ω ∧ v (n) 4 -i β ∧ v (n) 3 -ω ∧ v (n) 2 + | ∧ v (n-1) | 2 ∧ v (n) 2 + O[ (| ∧ v (n-1) | 2 ) 2 , (| ∧ v (n-1) | 2 ) 1 , . . .) ] (5.4)
where the initial condition is

v (n) (x, 0) = u 0 (x)-∂ 2 u 0 (x).
The first approximation is given by v (0) (x, 0) = u 0 (x) -∂ 2 u 0 (x). Equation (5.4) is a linear equation at each iteration which can be solved in any interval of time in which the coefficients are defined. This is shown in Lemma 4.1. By Lemma 4.2, it follows that

∂ t R ξ |v (n) α | 2 dx ≤ G(||v (n-1) || λ ) ||v (n) || 2 α + F (||v (n-1) || α ). (5.5) Choose α = 1 and let c ≥ ||u 0 -∂ 2 u 0 || 1 ≥ ||u 0 || 3 . For each iterate n, ||v (n) ( • , t)|| is continuous in t ∈ [0, T ] and ||v (n) ( • , 0)|| < c. Define c 0 = γ2 2 γ1 c 2 + 1. Let T (n) 0 be the maximum time such that ||v (k) ( • , t)|| 1 ≤ c 3 for 0 ≤ t ≤ T (n) 0 , 0 ≤ k ≤ n. Integrating (5.5) over [0, t] we have that for 0 ≤ t ≤ T (n) 0 and j = 0, 1 t 0 ∂ s R ξ |v (n) j | 2 dx ds ≤ t 0 G ||v (n-1) || 1 ||v (n) || 2 j ds + t 0 F ||v (n-1) || j ds. It follows that R ξ(x, t)|v (n) j (x, t)| 2 dx ≤ R ξ(x, 0)|v (n) j (x, 0)| 2 dx + t 0 G ||v (n-1) || 1 ||v (n) || 2 j ds + t 0 F ||v (n-1) || j ds hence γ 1 R |v (n) j (x, t)| 2 dx ≤ R ξ(x, t)|v (n) j (x, t)| 2 dx ≤ R ξ(x, 0)|v (n) j (x, 0)| 2 dx + t 0 G ||v (n-1) || 1 ||v (n) || 2 j ds + t 0 F ||v (n-1) || j ds and R |v (n) j | 2 dx ≤ γ 2 γ 1 R |v (n) j (x, 0)| 2 dx + G(c 3 ) γ 1 c 2 3 t + F (c 3 ) γ 1 t
and we obtain for j = 0, 1 that

||v (n) || 1 ≤ γ 2 γ 1 c 2 + G(c 0 ) γ 1 c 2 0 t + F (c 0 ) γ 1 t.

Claim. T (n) 0

does not approach to 0. On the contrary, assume that T

(n) 0 → 0. Since ||v (n) ( • , t)|| is continuous for t ≥ 0, there exists τ ∈ [0, T ] such that ||v (k) ( • , t)|| 1 = c 0 for 0 ≤ τ ≤ T (n) 0 , 0 ≤ k ≤ n. Then c 2 0 ≤ γ 2 γ 1 c 2 + G(c 0 ) γ 1 c 2 0 T (n) 0 + F (c 0 ) γ 1 T (n) 0 18
as n → ∞, we have

γ 2 2 γ 1 c 2 + 1 2 ≤ γ 2 γ 1 c 2 then γ 2 2 4 γ 2 1 c 4 + 1 ≤ 0 which is a contradiction. Consequently T (n) 0
→ 0. Choosing T = T (c) sufficiently small, and T not depending on n, one concludes that

||v (n) || 1 ≤ C (5.6)
for 0 ≤ t ≤ T. This shows that T

(n) 0 ≥ T. Hence, from (5.6) we imply that there exists a subsequence

v (nj ) ≡ v (n) such that v (n) * ⇀ v weakly on L ∞ ([0, T ] : H 1 (R)). (5.7) 
Claim. u = ∧v is a solution.

In the linearized equation ( 5.4) we have ∧v

(n) 5 = ∧(I -(I -∂ 2 ))v (n) 3 = ∧v (n) 3 -v (n) 3 = ∂ 2 ( ∧v (n) 1 ∈L 2 (R) ) -∂ 2 (v (n) 1 ) ∈H -2 (R) ∈ H -2 (R). Since ∧ = (I -∂ 2 ) -1 is bounded in H 1 (R), ∧v (n) 5 
belongs to

H -2 (R). v (n) is still bounded in L ∞ ([0, T ] : H 1 (R)) ֒→ L 2 ([0, T ] : H 1 (R)) and since ∧ : L 2 (R) → H 2 (R) is a bounded operator, || ∧ v (n) 1 || H 2 (R) ≤ c ||v (n) 1 || L 2 (R) ≤ c ||v (n) 1 || H 1 (R) . Consequently, ∧v (n) 1 is bounded in L 2 ([0, T ] : H 2 (R)) ֒→ L 2 ([0, T ] : L 2 (R)). It follows that ∂ 2 (∧v (n) 1 ) is bounded in L 2 ([0, T ] : H -2 (R)), and ∧ v (n) 5 is bounded in L 2 ([0, T ] : H -2 (R)).
(5.8)

Similarly, the other terms are bounded. By (5.4), v

(n) t is a sum of terms each of which is the product of a coefficient, uniformly bounded on n and a function in L 2 ([0, T ] :

H -2 (R)) uniformly bounded on n such that v (n) t is bounded in L 2 ([0, T ] : H -2 (R)). On the other hand, H 1 loc (R) c ֒→ H 1/2 loc (R) ֒→ H -4 (R)
. By Lions-Aubin's compactness Theorem [START_REF] Lions | Quelques méhodes de résolution des problemes aux limites non linéaires[END_REF] there is a subsequence v

(nj ) ≡ v (n) such that v (n) → v strongly on L 2 ([0, T ] : H 1/2 loc (R)). Hence, for a subsequence v (nj ) ≡ v (n) , we have v (n) → v a. e. in L 2 ([0, T ] : H 1/2 loc (R)). Moreover, from (5.8), ∧v (n) 5 ⇀ ∧v 5 weakly in L 2 ([0, T ] : H -2 (R)). Similarly, ∧v (n) 2 ⇀ ∧v 2 weakly in L 2 ([0, T ] : H -2 (R)). Since ||∧v (n) || H 2 (R) ≤ c ||v (n) || L 2 (R) ≤ c ||v (n) || H 1 (R) ≤ c ||v (n) || H 1/2 (R) and v (n) → v strongly on L 2 ([0, T ] : H 1/2 loc (R)) then ∧v (n) → ∧v strongly in L 2 ([0, T ] : H 2 loc (R))
. Thus, the fifth term on the right hand side of (5.4)

, | ∧ v (n-1) | 2 ∧ v (n) 2 ⇀ | ∧ v| 2 ∧ v 2 weakly in L 2 ([0, T ] : L 1 loc (R)) as ∧v (n) 2 ⇀ ∧v 2 weakly in L 2 ([0, T ] : H -2 (R)) and | ∧ v (n-1) | 2 → | ∧ v| 2 strongly on L 2 ([0, T ] : H 2 loc (R)).
Similarly, the other terms in (5.4) converge to their limits, implying v

(n) t ⇀ v t weakly in L 2 ([0, T ] : L 1 loc (R)). Passing to the limit i v t = ∂ 2 (i β ∧ v 3 + ω ∧ v 2 + | ∧ v| 2 ∧ v) -(i β ∧ v 3 + ω ∧ v 2 + | ∧ v| 2 ∧ v) = -(I -∂ 2 )(i β ∧ v 3 + ω ∧ v 2 + | ∧ v| 2 ∧ v). Thus i v t + (I -∂ 2 )(i β ∧ v 3 + ω ∧ v 2 + | ∧ v| 2 ∧ v) = 0.
This way, we have (2.4) for u = ∧v. Now, we prove that there exists a solution of (2.4) with u ∈ L ∞ ([0, T ] : H N (R)) and N ≥ 4, where T depends only on the norm of u 0 in H 3 (R). We already know that there is a solution u ∈ L ∞ ([0, T ] :

H 3 (R)).
It is suffices to show that the approximating sequence v

(n) is bounded in L ∞ ([0, T ] : H N -2 (R)). Taking α = N -2 and considering (5.5) for α ≥ 2, we define c N -2 = γ2 2 γ1 ||u 0 (•)|| N + 1. Let T (n) N -3 be the largest time such that ||v (k) ( • , t)|| α ≤ c N -3 for 0 ≤ t ≤ T (n) N -3 , 0 ≤ k ≤ n. Integrating (5.5) over [0, t], for 0 ≤ t ≤ T (n) N -3 , we have t 0 ∂ s R ξ |v (n) α | 2 dx ds ≤ t 0 G ||v (n-1) || α ||v (n) || 2 α ds + t 0 F ||v (n-1) || α ds. It follows that R ξ(x, t) |v (n) α | 2 dx ≤ R ξ(x, 0) |v (n) α (x, 0)| 2 dx + t 0 G ||v (n-1) || α ||v (n) || 2 α ds + t 0 F ||v (n-1) || α ds hence γ 1 R |v (n) α | 2 dx ≤ R ξ |v (n) α | 2 dx ≤ R ξ(x, 0) |v (n) α (x, 0)| 2 dx + t 0 G ||v (n-1) || α ||v (n) || 2 α ds + t 0 F ||v (n-1) || α ds then R |v (n) α | 2 dx ≤ γ 2 γ 1 R |v (n) α (x, 0)| 2 dx + G(c N -3 ) γ 1 c 2 N -3 t + F (c N -3 ) γ 1 t ≤ γ 2 γ 1 ||v (n) α (x, 0)|| 2 α + G(c N -3 ) γ 1 c 2 N -3 t + F (c N -3 ) γ 1 t ≤ γ 2 γ 1 ||u(x, 0)|| 2 N + G(c N -3 ) γ 1 c 2 N -3 t + F (c N -3 ) γ 1 t
and we obtain

||v (n) α ( • , t)|| 2 α dx ≤ γ 2 γ 1 ||u(x, 0)|| 2 N + G(c N -3 ) γ 1 c 2 N -3 t + F (c N -3 ) γ 1 t Claim. T (n) 
N -3 does not approach to 0. On the contrary, assume that T

(n) N -3 → 0. Since ||v (n) ( • , t)|| is continuous for t ≥ 0, there exists τ ∈ [0, T N -3 ] such that ||v (k) ( • , τ )|| α = c N -3 for 0 ≤ τ ≤ T (n) , 0 ≤ k ≤ n. Then c 2 N -3 ≤ γ 2 γ 1 ||u(x, 0)|| 2 N + G(c N -3 ) γ 1 c 2 N -3 T (n) N -3 + F (c N -3 ) γ 1 T (n) N -3
as n → +∞, and we have

γ 2 2 γ 1 ||u(x, 0)|| 2 N + 1 2 ≤ γ 2 γ 1 ||u(x, 0)|| 2 N then γ 2 2 4 γ 2 1 ||u(x, 0)|| 4 N + 1 ≤ 0 which is a contradiction. Then T (n) N -3 → 0. By choosing T N -3 = T N -3 (||u(x, 0)|| 2 N )
sufficiently small, and T N -3 not depending on n, we conclude that

||v (n) ( • , t)|| 2 α ≤ c 2 N -3 for all 0 ≤ t ≤ T N -3 . (5.9) 
This shows that T

(n)

N -3 ≥ T N -3 . Thus, v ∈ L ∞ ([0, T N -3 ] : H α (R)) ≡ L ∞ ([0, T N -3 ] : H N -2 (R)).
Now, denote by 0 ≤ T * N -3 ≤ +∞ the maximal number such that for all 0 < t ≤ T * N -3 , u = ∧v ∈ L ∞ ([0, t] : H N (R)). In particular, T N -3 ≤ T * N -3 for all N ≥ 4. Thus, T can be chosen depending only on the norm of u 0 in H 3 (R). Approximating u 0 by {u

(j) 0 } ∈ C ∞ 0 (R) such that ||u 0 -u (j)
0 || H N (R) → 0 as j → +∞. Let u j be a solution of (2.4) with u (j) (x, 0) = u (j) 0 . According to the above argument, there exists T which is independent on n but depending only on sup j ||u (j) 0 || such that u (j) there exists on [0, T ] and a subsequence u (j) j→+∞ -→ u in L ∞ ([0, T ] :

H N (R)).
As a consequence of Theorem 5.1 and 5.2 and its proof, one obtains the following result. → u 0 in H N (R). Let u and u (j) be the corresponding unique solutions given by Theorems 5.1 and 5.2 in L ∞ ([0, T ] : H N (R)) with T depending only on sup j ||u

(j) 0 || H 3 (R) such that u (j) * ⇀ u weakly on L ∞ ([0, T ] : H N (R)), u (j) → u strongly on L 2 ([0, T ] : H N +1 (R)).

Existence of Global Solutions

Here, we will try to extend the local solution u ∈ L ∞ ([0, T ] : H N (W 0 i 0 )) of (2.4) obtained in Theorem 5.2 to t ≥ 0. A standard way to obtain these extensions consists into deducing global estimations for the H N (W 0 i 0 )-norm of u in terms of the H N (W 0 i 0 )-norm of u(x, 0) = u 0 (x). These estimations are frequently based on conservation laws which contain the L 2 -norm of the solution and their spatial derivatives. It is not possible to do the same to give a solution of the problem of global existence because the difficulty here is that the weight depends on the x and t variables. To solve our problem we follow a different method using Leibniz's rule like in the proof of Theorem 3.1 of Bona and Saut [START_REF] Bona | Dispersive blow-up of solutions of generalized Korteweg -de Vries equation[END_REF]. Proof. The first part was proved in [START_REF] Bona | Dispersive blow-up of solutions of generalized Korteweg -de Vries equation[END_REF]. Differentiating (2.4) α-times (for α ≥ 0) over x ∈ R leads to

i u α t + i β u α+3 + ω u α+2 + (|u| 2 ) α u + α-1 m=1 α m (|u| 2 ) α-m u m + |u| 2 u α = 0. ( 6.1) 
Let ξ = ξ(x, t), then multiplying (6.1) by ξ u α we have

i ξ u α u α t + i β ξ u α u α+3 + ω ξ u α u α+2 + (|u| 2 ) α ξ u u α + α-1 m=1 α m (|u| 2 ) α-m ξ u m u α + ξ |u| 2 |u α | 2 = 0 and -i ξ u α u α t -i β ξ u α u α+3 + ω ξ u α u α+2 + (|u| 2 ) α ξ u u α + α-1 m=1 α m (|u| 2 ) α-m ξ u m u α + ξ |u| 2 |u α | 2 = 0. (applying conjugate)
Subtracting and integrating over x ∈ R we have

i ∂ t R ξ |u α | 2 dx + i β R ξ u α u α+3 dx + i β R ξ u α u α+3 dx + ω R ξ u α u α+2 dx (6.2) -ω R ξ u α u α+2 dx + 2 i Im R ξ (|u| 2 ) α u u α dx + 2 i α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 0.
Each term is calculated separately, integrating by parts in the second term we have

R ξ u α u α+3 dx = R ∂ 2 ξ u α u α+1 dx + 2 R ∂ξ |u α+1 | 2 dx + R ξ u α+2 u α+1 dx.
The other terms are calculated in a similar way. Hence in (6.2)

∂ t R ξ |u α | 2 dx -β R ∂ 3 ξ |u α | 2 dx + 3 β R ∂ξ |u α+1 | 2 dx -2 ω Im R ∂ξ u α u α+1 dx - R ∂ t ξ |u α | 2 dx + 2 Im R ξ (|u| 2 ) α u u α dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 0 such that ∂ t R ξ |u α | 2 dx -β R ∂ 3 ξ |u α | 2 dx + 3 β R ∂ξ |u α+1 | 2 dx + 2 Im R (|u| 2 ) α ξ u u α dx - R ∂ t ξ |u α | 2 dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx = 2 α Im R ∂ξ u α u α+1 dx ≤ |ω| R ∂ξ |u α | 2 dx + |ω| R ∂ξ |u α+1 | 2 dx. Hence ∂ t R ξ |u α | 2 dx + R [ 3 β -|ω| ] ∂ξ |u α+1 | 2 dx - R [ ∂ t ξ + β ∂ 3 ξ + |ω| ∂ξ ] |u α | 2 dx + 2 Im R (|u| 2 ) α ξ u u α dx + 2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx ≤ 0. (6.3) But (|u| 2 ) α = ( u u ) α = α k=0 α k u α-k u k = u u α + α-1 k=1 α k u α-k u k + u u α then (|u| 2 ) α u u α = |u| 2 |u α | 2 + α-1 k=1 α k u α-k u k u u α + u 2 u 2 α hence 2 Im R ( |u| 2 ) α ξ u u α dx = 2 α-1 k=1 α k Im R ξ u α-k u k u u α dx + 2 Im R ξ u 2 u 2 α dx ≤ 2 α-1 k=1 α k R ξ |u α-k | |u k | |u| |u α |dx + 2 R ξ |u| 2 |u α | 2 dx ≤ 2 α-1 k=1 α k R ξ |u α-k | |u k | |u| |u α |dx + 2 ||u|| 2 L ∞ (R) R ξ |u α | 2 dx ≤ 2 ||u|| L ∞ (R) α-1 k=1 α k R ξ |u α-k | |u k | |u α |dx + 2 ||u|| 2 L ∞ (R) R ξ |u α | 2 dx (6.4)
hence in (6.3) we have

∂ t R ξ |u α | 2 dx + R [3 β -|ω| ] ∂ξ |u α+1 | 2 dx ≤ R [∂ t ξ + β ∂ 3 ξ + |ω| ∂ξ + c ξ ] |u α | 2 dx + 2 c α-1 k=1 α k R ξ |u α-k | |u k | |u| |u α |dx -2 α-1 m=1 α m Im R ξ (|u| 2 ) α-m u m u α dx.
Using (2.3), Gagliardo-Nirenberg's inequality and standard estimates we get

∂ t R ξ |u α | 2 dx + [3 β -|ω| ] R ∂ξ |u α+1 | 2 dx ≤ c R ξ |u α | 2 dx. (6.5) Integrating (6.5) in t ∈ [0, T max = T ] we obtain R ξ |u α | 2 dx + [3 β -|ω| ] t 0 R ∂ξ |u α+1 | 2 dx ds ≤ ||u 0 (x)|| 2 α + t 0 c R ξ |u α | 2 dx ds, where R ξ |u α | 2 dx ≤ ||u 0 (x)|| 2 α + t 0 c R ξ |u α | 2 dx ds. Using Gronwall's inequality R ξ |u α | 2 dx ≤ ||u 0 (x)|| 2 α e c t ≤ ||u 0 (x)|| 2 α e c T it follows that R ξ |u α | 2 dx ≤ c = c(T, ||u 0 (x)|| 2 α ).
Then for any T = T max > 0 there exists c = c(T, ||u 0 (x)|| 2 α ) such that

||u|| 2 α + [3 β -|ω| ] t 0 R ∂ξ |u α+1 | 2 dx ds ≤ c.
This concludes the proof.

Persistence Theorem

As a starting point for the a priori gain of regularity results that will be discussed in the next section, we need to develop some estimates for solutions of the equation (2.4) in weighted Sobolev norms. The existence of these weighted estimates is often called the persistence of a property of the initial data u 0 . We show that if

u 0 ∈ H 3 (R) ∩ H L (W 0 i 0 ) for L ≥ 0, i ≥ 1, then the solution u( • , t) evolves in H L (W 0 i 0 ) for t ∈ [0, T ].
The time interval of that persistence is at least as long as the interval guaranteed by the existence Theorem 5.2.

Theorem 7.1 (Persistence). Let |ω| < 3 β and let i ≥ 1 and L ≥ 0 be non-negative integers, 0 < T < +∞. Assume that u is the solution to

(2.4) in L ∞ ([0, T ] : H 3 (R)) with initial data u 0 (x) = u(x, 0) ∈ H 3 (R). If u 0 (x) ∈ H L (W 0 i 0 ) then u ∈ L ∞ [0, T ] : H 3 (R) ∩ H L (W 0 i 0 ) (7.1) T 0 R |∂ L+1 u(x, t)| 2 η dx dt < +∞ (7.2)
where σ is arbitrary, η ∈ W σ i 0 for i ≥ 1.

Proof. We use induction on α. Let

u ∈ L ∞ [0, T ] : H 3 (R) ∩ H α (W 0 i 0 ) for 0 ≤ α ≤ L.
We derive formally some a priori estimate for the solution where the bound, involves only the norms of u in L ∞ ([0, T ] : H 3 (R)) and the norms of u 0 in H 3 (W 0 i 0 ). We do this by approximating u(x, t) through smooth solutions and the weight functions by smooth bounded functions. By Theorem 5.2, we have

u(x, t) ∈ L ∞ ([0, T ] : H N (R)) with N = max{L, 3}.
In particular, u j (x, t) ∈ L ∞ ([0, T ] × R) for 0 ≤ j ≤ N -1. To obtain (7.1) and (7.2) there are two ways of approximation. We approximate general solutions by smooth solutions, and we approximate general weight functions by bounded weight functions. The first of these procedure has already been discussed, so we shall concentrate on the second. Given a smooth weight function η(x) ∈ W σ, i-1, 0 with σ > 0, we take a sequence η ν (x) of smooth bounded weight functions approximating η(x) from below, uniformly on any half line (-∞, c). Define the weight functions for the α-th induction step as

ξ ν = 1 (3 β -|ω|) x -∞
η ν (y, t) dy then the ξ ν are bounded weight functions which approximate a desired weight function ξ ∈ W 0 i 0 from below, uniformly on a compact set. For α = 0, multiplying (2.4) by ξ ν u, we have

i ξ ν u u t + i β ξ ν u u 3 + ω ξ ν u u 2 + ξ ν |u| 4 = 0 -i ξ ν u u t -i β ξ ν u u 3 + ω ξ ν u u 2 + ξ ν |u| 4 = 0. (applying conjugate) Subtracting and integrating over x ∈ R we have i ∂ t R ξ ν |u| 2 dx -i R ∂ t ξ ν |u| 2 dx + i β R ξ ν u u 3 dx + i β R ξ ν u u 3 dx + ω R ξ ν u u 2 dx -ω R ξ ν u u 2 dx = 0. (7.3)
Each term is treated separately, integrating by parts in the third term we have

R ξ ν u u 3 dx = R ∂ 2 ξ ν u u 1 dx + 2 R ∂ξ ν |u 1 | 2 dx + R ξ ν u 2 u 1 dx.
The other terms are calculated in a similar way. Hence in (7.3) we have

∂ t R ξ ν |u| 2 dx - R ∂ t ξ ν |u| 2 dx -β R ∂ 3 ξ ν |u| 2 dx + 3 β R ∂ξ ν |u 1 | 2 dx = 2 ω Im R ∂ξ ν u u 1 dx ≤ |ω| R ∂ξ ν |u| 2 dx + |ω| R ∂ξ ν |u 1 | 2 dx.
Then, using (2.3) we obtain

∂ t R ξ ν |u| 2 dx + R [3 β -|ω|] ∂ξ ν |u 1 | 2 dx ≤ R [∂ t ξ ν + β ∂ 3 ξ ν + |ω| ∂ξ ν ] |u| 2 dx ≤ c R ξ ν |u| 2 dx thus ∂ t R ξ ν |u| 2 dx ≤ c R ξ ν |u| 2 dx.
We apply Gronwall's Lemma to conclude that

∂ t R ξ ν |u| 2 dx ≤ c(T, ||u 0 ||). (7.4) 
for 0 ≤ t ≤ T, and c not depending on β > 0, the weighted estimate remains true for β → 0. Now, we assume that the result is true for (α -1) and we prove that it is true for α. To prove this, we start from the main inequality (3.1) with ξ and η given by ξ ν and η ν respectively.

∂ t R ξ ν |u α | 2 dx + R η ν |u α+1 | 2 dx + R θ ν |u α | 2 dx + R R α dx ≤ 0 where η ν = (3β -|ω| ) ∂ξ ν for |ω| < 3 β θ ν = -[ ∂ t ξ ν + β ∂ 3 ξ ν + |ω| ∂ξ ν + c 0 ξ ν ]
where

c 0 = ||u|| 2 L ∞ (R) R α = R α (|u α |, |u α-1 |, . . . ) then ∂ t R ξ ν |u α | 2 dx + R η ν |u α+1 | 2 dx ≤ - R θ ν |u α | 2 dx - R R α dx ≤ - R θ ν |u α | 2 dx - R R α dx ≤ R |θ ν | |u α | 2 dx + R |R α |dx.
Using (2.3) in the first part of the right hand side we obtain We estimate the term

R θ ν |u α | 2 dx ≤ c R ξ ν |u α | 2 dx thus ∂ t R ξ ν |u α | 2 dx + R η ν |u α+1 | 2 dx ≤ c R ξ ν |u α | 2 dx + R |R α |dx. ( 7 
R ξ ν u ν1 u ν2 u α dx for ν 1 + ν 2 = α. (7.7) Let ν 2 ≤ α -2.
Integrating by parts one time in (7.7) we have

R ξ ν u ν1 u ν2 u α dx = - R ∂ξ ν u ν1 u ν2 u α-1 dx - R ξ ν u ν1+1 u ν2 u α-1 dx - R ξ ν u ν1 u ν2+1 u α-1 dx.
We estimates the first term in the right hand side in (7.7). Using Holder's inequality and standard estimates we obtain where ||u α-1 || L ∞ (R) is bounded by hypothesis, and the estimate is complete. In a similar way we estimate all the other terms of R α . Using these estimates in (7.5) and applying Gronwall's argument, we obtain for 0

≤ t ≤ T ∂ t R ξ ν |u α | 2 dx + R η ν |u α+1 | 2 dx ≤ c 0 e c1 t R ξ ν |∂ α u 0 (x)| 2 dx + 1
where c 0 and c 1 are independent of ν and such that letting the parameter ν → 0 the desired estimate (7.2) is obtained.

Main Theorem

In this section we state and prove our main theorem, which states that if the initial data u(x, 0) decays faster than polynomially on R + = {x ∈ R : x > 0} and possesses certain initial Sobolev regularity, then the solution u(x, t) ∈ C ∞ for all t > 0.

If η is an arbitrary weight function in W σ i k , then by Lemma 3.2, there exists ξ ∈ W σ, i+1, k which satisfies (3.1). For the main theorem, we take 4 ≤ α ≤ L + 2. For α ≤ L + 4, we take and the same with ν 2 replaced by α. It suffices to check the powers to t, the powers of x as x → +∞ and the exponential of x as x → -∞.

For x > 1. In the (8.3) term, the factor ξ contributed according to (8.1) ξ(x, t) = t α-3 x (L-α+3) t -(α-3) x -(L-α+3) ξ(x, t) ≤ c 2 t α-3 x (L-α+3) (using(2. Now, we study the behavior as x → -∞. Since each factor u νj (j = 1, 2) must grow slower that an exponential e σ ′ |x| and ξ decays as an exponential e -σ |x| , we simply need to choose the appropriate relationship σ and σ ′ at each induction step. The analysis will be completed with the case where ν 1 ≥ α -1. Then, in (3.9), if 2(α -1) ≤ α, but α ≥ 3. So this possibility is impossible. For x < 1 the estimate is similar, except for an exponential weight. The analysis of all terms of R α is estimated in a similar form. This completes the estimate of R α . Now, we estimate the term θ |u α | 2 where θ is given in (3.1). We have that θ involves derivatives of u only up to order one, and hence, θ |u α | 2 is a sum of terms of the same type which we have already encountered in R α . So, its integral can be bounded in the same type. Indeed, (3.1) shows that θ depends on ξ t , ∂ 3 ξ and derivatives of lower order. By using (3.6) we have the claim. 

Corollary 5 . 3 .

 53 Let |ω| < 3 β and let u 0 ∈ H N (R) with N ≥ 3 such that u (j) 0

Theorem 6 . 1 .

 61 For |ω| < 3 β there exists a global solution to (2.4) in the space H s (R) ∩ H N (W 0 i 0 ) with N integer ≥ 3 and s ≥ 2.

. 5 )

 5 According to (3.8), R R α dx contains a term of the form R ξ ν u ν1 u ν2 u α dx.(7.6) 

8 ) 2 R ξ ν |u α | 2 dx 1 / 2

 8212 is bounded by hypothesis. The other terms are estimates in a similar way. Now suppose thatν 1 = ν 2 = α -1, then in (7.7) we have R ξ ν u α-1 u α-1 u α dx, hence R ξ ν |u α-1 | 2 u α dx ≤ ||u α-1 || L ∞ (R) R ξ ν |u α-1 | 2 dx 1/

η. 1 ) 8 . 1 (

 181 ∈ W σ, L-α-2, α-3 =⇒ ξ ∈ W σ, L-α-3, α-3 . (8Lemma Estimate of error terms). Let 4 ≤ α ≤ L + 2 and the weight functions be chosen as in (8.1), thenT 0 R (θ |u α | 2 + R α )dx dt ≤ c,(8.2)where c depends only on the norms of u inL ∞ ([0, T ] : H β (W σ, L-β+3, β-3 )) ∩ L 2 ([0, T ] : H β+1 (W σ, L-β+2, β-3 )) for 3 ≤ β ≤ α -1, and the norms of u in L ∞ ([0, T ] : H 3 (W 0 L 0 )).Proof. We must estimate both R α and θ. We begin with a term in R α of the formξ |u ν1 | |u ν2 | |u α | (8.3) assuming that ν 1 ≤ α -2.By the induction hypothesis, u is bounded inL ∞ ([0, T ] : H β (W σ, L-(β-3) + , (β-3) + )) for 0 ≤ β ≤ αβ ≤ α -2 and ζ ∈ W σ, L-(β-2) + , (β-2) + . We estimate |u ν1 | using (8.4). We estimate |u ν2 | and |u α | using the weighted L 2 bounds T 0 R ζ |u ν2 | 2 dx dt < +∞ for ζ ∈ W σ, L-(ν2-3) + , (ν2-4) + (8.5)

ξ-ν 1 - 2 ) 2 =

 122 3)) then ξ |u ν1 | |u ν2 | |u α | ≤ c 2 t α-3 x (L-α+3) |u ν1 | |u ν2 | |u α |. Moreover |u ν1 | |u ν2 | |u α | = t |u ν1 | |u ν2 | |u α | ≤ c 2 t M x T t + ).Claim. M ≥ 0 is large enough, that the extra power of t can be omitted2 M = 2 α -6 -(ν 1 -2) + -(ν 2 -4) + -(α -4) + = α -2 -(ν 1 -2) + -(ν 2 -4) + = α -2 -ν 1 + 2 -ν 2 + 4 = α + 4 -(ν 1 + ν 2 ) = α + 4 -α = 4 ≥ 0.Claim. T ≤ 0 is such that the extra power of t can be omitted.2 T = 2 L -2 α + 6 -L + (α -3) + -L + (ν 2 -3) + -L + (ν 1 -2) + = -L -α + ν 1 + ν 2 -2 = -L -α + α --(L + 2) ≤ 0.

Theorem 8 . 2 (

 82 Main Theorem). Let |ω| < 3 β, T > 0 and u(x, t) be a solution of(2.4) in the region R × [0, T ] such that u ∈ L ∞ ([0, T ] : H 3 (W 0 L 0 )) (8.7)

for some L ≥ 2. Then u ∈ L ∞ ([0, T ] : H 3+l (W σ, L-l, l )) ∩ L 2 ([0, T ] : H 4+l (W σ, L-l-1, l )) (8.8) for all 0 ≤ l ≤ L -1 and all σ > 0.

Remark. If the assumption (8.7) holds for all L ≥ 2, the solution is infinitely differentiable in the xvariable. ¿From (2.4) we have that the solution is C ∞ in both variables. We are also quantifying the gain of each derivative by the degree of vanishing of the initial data at infinity.

Proof. We use induction on α. For α = 3, let u be a solution of (2.4) satisfying (8.7). Therefore,

Then by Theorem 5.1 and 5.2, there exists u in a time interval [t 0 , t 0 + δ] where δ > 0 does not depend on n and u is a unique solution of (2.4),

with a bound that depends only on the norm of u

for each n, k and α. The main inequality (3.1) and the estimate (8.2) are therefore valid for each u (n) in the interval [t 0 , t 0 + δ]. η may be chosen arbitrarily in its weight class (8.1) and then ξ is defined by (3.7) and the constant c 1 , c 2 , c 3 , c 4 are independent of n. From (3.1) and (8.1) we have sup

where by (8.2), c is independent of n. The estimate (8.9) is proved by induction for α = 3, 4, 5, . . . Thus u (n) is also bounded in

for α ≥ 3. Since u (n) → u in L ∞ ([t 0 , t 0 + δ] : H 3 (W 0 L 0 )). By Corollary 5.3 it follows that u belongs to the space (8.10). Since δ is fixed, this result is valid over the whole interval [0, T ].