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Smoothing properties for the higher order nonlinear
Schrodinger equation with constant coefficients

Mauricio Septilveda *  Octavio Vera Villagran.

Abstract

We study local and global existence and smoothing properties for the initial value problem associated
to a higher order nonlinear Schrédinger equation with constant coefficients which appears as a model
for propagation of pulse in optical fiber.
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1 Introduction
We consider the initial value problem

P) iU+ W Ugy + 8 B Uz + |u|?u =0 z,teR
u(z, 0) = up(x)

where w, € R, f # 0 and u = u(z,t) is a complex valued function. The above equation is a particular
case of the equation

Q) iU+ WUy + 5 BUzer + v ul?u+i8|u? uy +ieuu, =0 r,teR
u(z, 0) = up(x)

where w, 3, v, 0 are real numbers with 5 # 0. This equation was first proposed by A. Hasegawa and Y.
Kodama [[LJ] as a model for the propagation of a signal in an optic fiber (see also [R0]). The equation
(Q) can be reduced to other well known equations. For instance, setting w =1, 6 =0 =¢=101in (Q) we
have the semilinear Schrédinger equation, i. e.,

iut+uzz+7|u|2u:0' (Ql)
If welet 3=+ =0and w=1in (Q), we obtain the derivative nonlinear Schrédinger equation
iut+umm+i5|u|2um+ieu26z:0. (Q2)

Letting @« = v = € = 0 in (Q), the equation that arises is the complex modified Korteweg-de Vries
equation,

iut+i6umm+i5|u|2uz:0. (Qs3)

The initial value problem for the equations (Q1), (Q2) and (Q3) has been extensively studied in the last
few years. See, for instance, , B, B, 8, E, E, , , @, @] and references therein. In 1992, C. Laurey
[@] considered the equation (Q) and proved local well-posedness of the initial value problem associated
for data in H*(R), s > 3/4, and global well-posedness in H*(R), s > 1. In 1997, G. Staffilani [P§ for (Q)
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established local well-posedness for data in H*(R), s > 1/4 improving Laurey’s result. A similar result
was given in [f, [] with w(t), 5(t) real functions.

Our aim in this paper, is to study gain in regularity for the equation (P). Specifically, we prove conditions
on (P) for which initial data ug possessing sufficient decay at infinity and minimal amount of regularity
will lead to a unique solution u(t) € C*°(R) for 0 < ¢ < T, where T is the existence time of the solution.
We are not considering the equation (Q) because of the technique used here, we shall see that the last
two terms in (Q)) are not outstanding in the main inequality, indeed the two last terms are observed in
the last two terms in the main inequality.

In 1986, N. Hayashi et al. [[J] showed that for the nonlinear Schrodinger equation (NLS): iwu; +
Uge = MulP7lu, (z,t) € R x R with initial condition u(z, 0) = ug(z), z € R and a certain assump-
tion on A and p, all solutions of finite energy are smooth for ¢ # 0 provided the initial functions in
H'(R)(or on L?(R)) decay sufficiently fast as |z| — oo. The main tool is the operator J defined by
Ju = e /4 (2it) Oy (e P /4T u) = (z + 20t dy)u which has the remarkable property that it commutes
with the operator L defined by L = (i 9; + 92), namely LJ — JL = [L, J] = 0.

For the Korteweg-de Vries type equation (KdV), J. C. Saut and M. Temam [@] remarked that a so-
lution u cannot gain or lose regularity. They showed that if u(z, 0) = ug(z) € H*(R) for s > 2, then
u(-,t) € H*(R) for all t > 0. For the KdV equation on the line, Kato [[[7] motivated by work of Cohen
[ showed that if u(z, 0) = ug(x) € L} = H*(R) N L?(e*® dx)(b > 0) then the solution u(z, t) of the
KdV equation becomes C* for all t > 0. A main ingredient in the proof was the fact that formally the
semi-group S(t) = e~ % in L2(R) is equivalent to Sy(t) = e~ 1= in [2(R) when t > 0. One would be
inclined to believe that this was a special property of the KdV equation. However, his is not the case.
The effect is due to the dispersive nature of the linear part of the equation. Kruzkov and Faminskii [@]
proved that u(z, 0) = ug(z) € L?(R) such that % ug(z) € L?((0, +00)), the weak solution of the KAV
equation, has [-continuous space derivatives for all ¢ > 0 if [ < 2. The proof of this result is based on
the asymptotic behavior of the Airy function and its derivatives, and on the smoothing effect of the KdV
equation which was found in , @] While the proof of Kato appears to depend on special a priori
estimates, some of this mystery has been solved by the result of local gain of finite regularity for various
others linear and nonlinear dispersive equations due to Ginibre and Velo @] and others. However, all of
them require growth conditions on the nonlinear term.

In 1992, W. Craig, T. Kappeler and W. Strauss [E, E] proved for the fully nonlinear KdV equation
urt f(Upgrs Ugz, Uz, U, 2, 1) = 0, € R, ¢t > 0 and certain additional assumption over f that C*°
solutions u(z, t) are obtained for all ¢ > 0 if the initial data ug(z) decays faster than polynomially on
RT = {z € R: z > 0} and has certain initial Sobolev regularity. Following this idea, H. Cai [[f] stud-
ied the nonlinear equation of KdV-type of the form u; + uzer + alx, ,t) f(Uge, g, u, x, t) = 0, where
a(x, t) is positive and bounded, obtaining the same conclusion. Subsequent works were given by O. Vera
[, @, @, @] for a nonlinear dispersive evolution equation, a KdV-Burgers type equation and for KdV-
Kawahara type equation, respectively. In more than one spatial dimension, J. Levandosky [@], proved
infinite gain in regularity results for nonlinear third-order equations. While [H] included local smoothing
results for some mth-order dispersive equation in n spatial dimension, their results and the techniques are
different from those presented by Levandosky. First, they consider equations with only a mild solution
and Levandosky considers equations with very general nonlinearities including a fully nonlinear equation
of the form

us + f(D3u, D*u, Du, u, x, t) = 0,
’U,(LL', Y, 0) = ’LLO(ZL', y)
Secondly, they indicate local gain in finite regularity and Levandosky proved complementary results
showing the relationship between the decay at infinity of the initial data and the amount of gain in
regularity. More specifically, it is proved a condition under which an equation of the form
Ut + AUz + DUy + CUzyy + dtyyy + f(D*u, Du, u, x, t) =0,
U(ZL', Y, 0) = ’LLO(ZL', y)v

where a, b, ¢, d are assumed constant. Indeed, Levandosky proved sufficient conditions on this equation
for which a solution u will experience an infinite gain in regularity. Specifically, prove conditions for



which initial data ug(z, y) possessing sufficient decay at infinity and a minimal amount of regularity will
lead to a unique solution u(t) € C>°(R?) for T* where T* is the existence time of solutions. According
to the characteristics of equations (P) and considering the particular cases (@Q1) and (Q2) we could hope
that Et]he (P) equation have gain in regularity following the steps of N. Hayashi et al. [LJ] or W. Craig et
al. [§.

In our problem, the initial idea is to apply the technique given by N. Hayashi et al. [E, to obtain gain
in regularity. Firstly, using straightforward calculus we can see that the equation (P) has conservation of
the energy, i. e., ||u|[z2(r) = ||uo||£2(r). On the other hand, we look for estimates for u, that will help to
obtain a priori estimates, basically to obtain estimates in L>°(R). Indeed, differentiating in the a-variable
the equation (P) we have

and multiplying (.1)) by @

1Ugp Uzt + 1 BUg Upprr + WUg Ugppr + (|u|2)gcuﬂz + |u|2 |ugc|2 =0

— iUy Ugt — @ B Uy Upgwew + WUy Ugpr + (|u|2)mﬂuz + |u|2 |ugc|2 = 0. (applying conjugate)

Subtracting and integrating over z € R, we have

d
z—/ |ugﬁ|2dz+i6/ﬂz ummderiﬂ/uzﬂmmdz
dt Jr R R

+ inlm/ Uy UgpprdT + 21’]m/(|u|2)muﬂzdx =0.
R R
Performing integration by parts and straightforward calculations we obtain
d 2 2
— [ Jugl*dz +2Im [ (Jul*)s ulgdr =0 (E1)
where
d 2 22
E||um||L2(R)+21m Ru uydr =0 (E9)
or integrating by parts the second term in (E7) we obtain
d 2 2,
EHUzHLZ(]R) —2Im R|u| UTUgpdr = 0. (E3)

Thus it is not possible to estimate in H!(R), because it appears a second term with two derivatives. The
reason of having an estimate in the derivative is related to Sobolev embedding. In one spatial dimension
we have the embedding H!(R) < L*>(R). It seems that the term i 3 uz., is crucial. It makes the two
”top” terms look like KdV equation; that is, us + tzzz + - - .. Of course, the solution is complex, so that
the equation is like two coupled real KdV equations.

This was our motivation to obtain gain in regularity using the idea of W. Craig et al. . We prove
conditions on (P) for which initial data ug(x) possessing sufficient decay at infinity and a minimal amount
of regularity will lead to a unique solution u(t) € C°(R) for ¢ > 0. We use a technique of nonlinear
multipliers, generalizing Kato’s original method, together with ideas of Craig and Goodman [ﬂ] All the
physically significant dispersive equations and systems known to us have linear parts displaying this local
smoothing property. To mention only a few, the KdV, Benjamin-Ono, intermediate long wave, various
Boussinesq, and Schrodinger equation are included. This paper is organized as follows: Section 2 outlines
briefly the notation and terminology to be used subsequently. In section 3 we prove the main inequality.
In section 4 we prove an important a priori estimate. In section 5 we prove a basic-local-in-time existence
and uniqueness theorem. In section 6 we prove a basic global existence theorem. In section 7 we develop
a series of estimates for solutions of equations (P) in weighted Sobolev norms. These provide a starting
point for the a priori gain of regularity. In section 8 we prove the following theorem:



Theorem 1.1(Main Theorem). Let |w| < 38, T > 0 and u(x, t) be a solution of (P) in the region
R x [0, T such that

ue L0, T]: H*(Wo 1,o)) (1.2)
for some L > 2. Then
we L0, T): H3 ' (W, 1_1.)) N L2([0, T) : H*™'(W,.1_1-1.1)) (1.3)
forall0<I<L-—1 and all o > 0.
Remark. We consider the Gauge transformation
u(z, t) = etrtidstyp_dit t)=ev(n, € (1.4)
where 6 =idex +idst, n=x —dyt and £ =t. Then
Ut :idgeev—dleevn+eev§ D Uy :idgeeereevn
Upy = — d%e‘gv +2id269vn +€9’U7777 D Uppr = — idgeev —3d§eevn +3id269v,m —l—e‘gvmm.
Replacing in (Q) we have

—dgeev—idleevnqLieevg—wd%eev+2iwd260vn+weevnn

Bdgeev—i’)iﬁd%eevn—3Bdgeevnn+iﬁeevnnn+7|v|260v
2

—dda [v*e? v +id v el v, +edye® VT +ieel v v, =0
where
ive + (W —3Bda) vy + i Bogyy + (2iwds —3iBds —idy +i8v]* +iev?) v,
(Bds —wdi —dz +~y[v)*> —6da|v|*)v+edav®*B =0
then
dy = % dy = % ds = %gj (1.5)

This way in (Q) we obtain

6 5
Ve + i Boggy +1 (8 v + €v?) vy, + ('y g—ﬁ) [v|?v + ;—ﬁv26: 0,

but v27 = v = |v|?v, then using the Gauge transformation we have the equivalent problem to (Q)
){ Vg + 0 By + 10020, +ievivo, + (74— % - %) [v]2v =0 n, £ eR

v(n, 0) = e~ 35 Tug().
Here, rescaling the equation, we take g = 1.

(@) ivt+ivmmmfb§5|v|2vz+iev21)m+('y+%f%5)|v|21):0 r,teR
v(x, 0) = e~ "3 Tup(z).

The above Gauge transformation is a bicontinuous map from L?([0, T] : H*(W,;)) to itself, as far as
0< T < +4ooand p, s, 0, i, k used in this paper. With this, the assumption |w| < 3 3 imposed in Theorem
1.1 can be removed.



2 Preliminaries
We consider the initial value problem

P) iU+ WUy + 8 B Uz + |ul?u =0, z,teR
u(x, 0) = up(x)

where w, f € R, 8 # 0 and u = u(z, t) is a complex valued function.
Notation. We write & = 0/0x, 0, = 0/0t and we abbreviate u; = d7u.

Definition 2.1. A function & = £(z, t) belongs to the weight class W, ;& if it is a positive C*° func-
tion on R x [0, T], 9§ > 0 and there are constant ¢;, 0 < j < 5 such that

0<c <t Fe 7%¢(x, t) < e Ve< -1, 0<t<T. (2.1)
0<e3<t Faié(x, t)<c Ve>1, 0<t<T.
(t] & |+ 107¢]) J€<es V(x,t)eRx[0,T],VjeN. (2.3)

Remark. We shall always take 0 > 0,47 > 1 and k£ > 0.

Ezxample. Let
[ 14e T for >0
5(x){l for z <0

then £ € Wy 0.
Definition 2.2. Let N be a positive integer. By HY (W, ;1) we denote the Sobolev space on R with

a weight; that is, with the norm

N
ol s =3 / @0(@) €(e, 1) de < + o0
§=0

forany £ € W, ; r and 0 < t < T., Even though the norm depends on &, all such choices leads to equivalent
norms.

Remark. H*(W, ;1) depends on t (because & = &(z, t)).

Lemma 2.1. (See [f]) For & € W, ;0 and 0 > 0,47 > 0, there exists a constant ¢ > 0 such that,
for u € Hl(ngo),

suplléa?]| < [ (JuP + jouP) ¢do

z€R R

Lemma 2.2(The Gagliardo-Nirenberg inequality). Let ¢, 7 be any real numbers satisfying 1 < ¢, r < o0
and let 5 and m be nonnegative integers such that 7 < m. Then

107l oy < e 0™ a1 gy IlullLa,

where £ = j+a (% — m) + (1%!‘1) for all a in the interval #
depending only on m, j, ¢, r and a.

< a <1, and M is a positive constant

Definition 2.3. By L*([0,T] : HN(W, ;1)) we denote the space of functions v(x, t) with the norm
(N integer positive)

T
R — / oG, )2y, , ot < + 00



Remark. The usual Sobolev space is HY (R) = HY (Wy o) without a weight.

Remark. We shall derive the a priori estimates assuming that the solution is C'*°, bounded as * — — o0,
and rapidly decreasing as x — + oo, together with all of its derivatives.

Considering the above notation, the higher order nonlinear Schrédinger equation can be written as

iug +iBuz +wus + uPu=0, x,tcR (2.4)
where w, € R, 8 # 0 and u = u(z, t) is a complex valued function.
Throughout this paper ¢ is a generic constant, not necessarily the same at each occasion(it will change

from line to line), which depends in an increasing way on the indicated quantities. In this part, we only
consider the case ¢t > 0. The case ¢t < 0 can be treated analogously.

3 Main Inequality

Lemma 3.1. Let |w| < 3 3. Let u be a solution of (P-4) with enough Sobolev regularity (for instance,
ue HY(R), N > a+3), then

8t/§|ua|2d$+/77|ua+1|2dx+/9|ua|2dac+/RadeO (3.1)
R R R R
where

n = @BB—-|w)og  for |w[ <38
0 — [0+ B+ w06+ co&] where  co = ||u]|7 < g

and Ry = Ro(|tal, [ta-1], ---)-

Proof. Differentiating (R.4) a-times (for a > 0) over z € R leads to

a—1
. . 2 «a 2 2
a a a a a—m Um a = 0. 3.2
PUat + 1 Buars +wuare + (Jul?) u—i—mz_:l(m)(w) U + |ul” u (3.2)
Let & = &(x, t), then multiplying (B.2) by ¢4, we have
0 €T Ut + 1 BEUn Uars + W ETg Uara + ([u|?)a & Uiy

a—1
@ 2 — 2 2
a—m m Yo o :0
£ 3 () (Do € T €
— iU Tt — 1 BE U Tt 3 + W EUaTars + (|U]?)a ET U
a—1
@ 2 - 2 2 . .
a—m m Yo « =0. 1 t
£ 3 () (Do € € (applying conjugate)
Subtracting and integrating over x € R we have

z‘at/§|ua|2dx+zﬂ/faaua+3dz+i6/fuaaa+3dx—z'/ft 1o [2da
R R R R

+w/§ﬂaua+2dz—w/&uaﬂaJrgdaerQiIm/§(|u|2)auﬂadas
R R R

a—1

+2i ) <§‘l) Im/RguuF)a,m U Tadz = 0. (3.3)

m=1



We estimate the second term integrating by parts

/fﬂauaJrgdx:/82§Uaua+1dac+2/8§|ua+1|2dac+/fﬂa+2ua+1dm.
R R R R

The other terms are calculated in a similar way. Hence, replacing in (E) and performing straightforward
calculations we obtain

i@t/£|ua|2d$+iﬁ/82£ﬂaua+1dx+2iﬁ/8£|ua+1|2dx
R R R
Jriﬂ/éﬂcwrz Ua+1d95+iﬂ/32§uaﬂa+1dz+i5/3§|Ua+1|2d95
R R R
*Zﬂ/éuaﬂ ﬂoﬂrzdﬂffw/afﬂa Ua+1d$*w/§|ua+1|2dx
R R R

+w/8§uaﬂa+1dz+w/§|ua+1|2d:c—i/8t§|ua|2d:c
R R R

a—1
+ 21]m/§(|u|2)auﬂadz+2i Z <Q>Im/§(|u|2)amumﬂadz =0
R m R

m=1

then

at/§|ua|2dac—ﬁ/83§|ua|2d$+35/8§|ua+1|2dx—2wlm/afﬂauaﬂdx
R R R R

a—1
= [t ualdn+20m [ € umads +2 3 (a)fm [ €Qul) ot Tz =0
R R 1\ R

hence

8t/§|ua|2d:c—ﬂ/83§|ua|2dz+3ﬂ/8§|ua+1|2dz+21m/(|u|2)a§uﬂadz
R R R R

a—1
—/8t§|ua|2dz+ 2 Z <a>lm/§(|u|2)amumﬂadz 2wlm/8fﬂaua+1dx
R ey N7 R R

< |w|/Ra§|ua|2dx+|w|/ﬂ{8§|ua+1|2d:c

therefore
0 [ €lualdu+ [ (36~ 1)) 06 luasaPds — [ (816 + %€ + 1] O] Jua P
R R R
a—1
+ 2[m/(|u|2)a£uﬂadx +2 Z (a>lm/ € ([ul*)a—m Um Tadz < 0. (3.4)
R m=1 m R
But
[e% o a—1 a
([ul)a = (ub)a=) (k)ua_mk =Tua+ Y (k)ua_mk + Ul
k=0 k=1
then

a—1
a
(Ju?) o v T = |u*lua|* + Z (k>ua_kﬂkuﬂa +u?
k=1



thus,

a—1
2Im/(|u|2)a€uﬂadx:2z (Z)Im/ﬁua—kﬂkuﬂadx+2Im/quEde
R k=1 R R

a—1
«
23 () [ sl b ol +2 [ €JuP uo o
k=

[0
2" (1) [ €luamsl sl ul e + 2l | € oo
R R

k=1

a—1
(67
2[ullpoom Y € [ua—| [ur| lualdz +2|ullFwm) | €lual’dz
k R R
k=1

hence, in (B.4) we have

IN

IN

at/§|ua|2d:c+/[3ﬂ— |w|]as|ua+1|2d:c—/[amﬁasu 0] 9 + co €] [ua2da
R R R

a—1 a—1
~26 3 () [ emasllunlualde ~2 37 () [ €luf)amltnl ol <0

Therefore, using straightforward calculations we obtain the main inequality

8t/§|ua|2d$+/77|ua+1|2dx+/9|ua|2dac+/RadeO
R R R R

where

n = (Bf—-|w)og for |w[<3p
0 = —[0E+BE+ w0+ co€] where co = ||ul|7m

and Ry = Ro(Jual, |ua-1l, --.)-

Remark. In (@) using Young’s estimate and assuming that 8 > 0 we have

2
2w Im/%uaﬂdacg &/|ua|2dﬂc+26/ [Ua 1| d.
R 28 Jr R

Then, in (B.4) we obtain

O / £ |ua|2dx — ﬁ/ 93¢ |ua|2d$ + 6/ o0& |ua+1|2d$ + 2[m/(|u|2)a§uﬂadx
R R R R

a—1
—/3t§|ua|2d$+ 2 Z (a)lm/£(|u|2)a_mumﬂad$: 2wlm/8§ﬂaua+1dx
R 1\ R R

and the assumption that |w| < 3 8 can be removed.

(3.5)

Lemma 3.2. Forn € Wy, an arbitrary weight function and |w| < 33, there exists & € Wy it1, k

that satisfies
n=@p—|w)og  for |w[<3p.

Indeed, we have

1 T
= Ermmn L 0

(3.6)

(3.7)



Lemma 3.3. The expression R, in the inequality of Lemma 3.1 is a sum of terms of the form

E Uy, Ty, Ug (3.8)
where 1 < vy < vy <« and

v+ =« (3.9)

Proof. Tt follows from (B.3).

4 An a priori estimate

We show now a fundamental a priori estimate used for a basic local-in-time existence theorem. We con-
struct a mapping Z : L>([0, T]: H*(R)) — L*°([0, T] : H*(R)) with the property:

Given u™ = Z(u(=Y) and essupieo, )| |u n=D|, < ¢ then GSSUpte[o,T]HU(")Hs < ¢p, where s and
co > 0 are constants. This property tells us that Z : B, (0) — B, (0) where B, (0) = {v(z, t) :
[lo(-, t)|ls < co}isaballin L>®([0, T]: H*(R)). To guarantee this property, we will appeal to an a priori
estimate which is the main object of this section.

Differentiating (R.4) two times leads to

i Opug + i Bus +wug + ([u)®)2u + 2 (Ju*)1 ur + |u|? uz = 0. (4.1)
Let u = Av where A = (I — 8%)71. Hence u = (I — 0%)"'v then u —up =v where dyus = — vy + uy.
Replacing in ([L.1]) we have

—iv+iB Avs+w Ava+ ([Av*)2 Av+2(| Av]?) Avy
+ | Av2 Avg— (I8 Avs +w Avg + | Av2 Av) = 0. (4.2)

The ([£3) equation is linearized by substituting a new variable z in each coefficient:

—ive+iB Avs+w Avg+ ([AzP)2 Av+2(A 2?1 Avy
+Az> Ava—(iB Avs+w Ava+ [ Az]* Av)=0. (4.3)
The linear equation which is to be solved at each iteration is of the form
(n

10w =10 /\Uén)—i—w Ay ) _ip /\v3n)—w /\v2")+b(1) (4.4)

where b0 = (| A 22 Av+2(|Az|?)1 Ave+|Az2 Avy— | Az2 Av. Equation ([L4) is a linear equation
at each iteration which can be solved in any interval of time in which the coefficient is defined.

We consider the following lemma that will help us setting up the iteration scheme.

Lemma 4.1. Let |w| < 3. Given initial data ug(z) € H®(R) = Ny HY (R) there exists a unique

solution of (Q) where b is a smooth bounded coefficient with z € H®(R). The solution is defined in
any time interval in which the coefficient is defined.

Proof. Let T > 0 be arbitrary and M > 0 a constant. Let
D=¢(i0—if NP —w AN +iB NP +w AD?)

then in (Q) we have T'u = £ b)), We consider the bilinear form B : D x D — R,

T
B(u, v) =< u, v >= Im/ /e_Mtuidzdt
o Jr



where D = {u € C§°(R x [0, T1) : u(z, 0) =0}. We have

lTu-w = ifuu—iPBEu Nus —wéu ANug+18ET ANug +wéu Aus
Tu-uw = —ifum+ifluNus—wlu AUy —if&u ANus+wu ATs. (applying conjugate)

Subtracting and integrating over x € R we have
2i[m/1"u-ﬂdx:i8t/§|u|2dx—i/8t£|u|2dac—iﬁ/§ﬂ /\U5d$—iﬁ/§u Nusdx
R R R R R
—w/fU /\mdm—l—w/«su /\U4dx+iﬁ/£ﬂ /\Ug,dx—i—iﬁ/«fu Auzdx
R R R R
—l—w/fﬂ /\qu:C—w/«Eu A uadx.
R R
Each term is treated separately, integrating by parts
/ga /\usdas:/§ A —0%)T Au5dz:/§ AT /\U5dzf/§ ATy A usdx
R R R R
= /845 AT /\uldas+/83§|/\u1|2dz73/82§ ATy /\u2das—2/8§|/\u2|2dz
R R R R

+/§ AUz /\U3das—/82§ ATa /\U3das—/8§|/\U3|2dz+/§ ATz A ugdx.
R R R R
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The other terms are calculates in a similar way. Then
2iIm/1"u-ﬂdx
R
= i@t/§|u|2dx—i/8t£|u|2d$—iﬁ/84§/\ﬂ /\uldx—iﬁ/83§|/\u1|2d$
R R R R
+3iﬁ/82£ ATy /\qux—l—Qiﬁ/5£|/\uQ|2dx—iﬁ/£ ATa A usdz
R R R
+iﬁ/82§ ATy /\u3d;c+z‘ﬁ/a§|Au3|2dx—w/§ ATz A ugdz
R R R
—iﬁ/84§/\u /\Uldac—iﬁ/83§|/\u1|2dx+31'5/82§/\u1 A Tsdx
R R R
+2iﬁ/8§|/\uQ|2d$—iﬁ/§ Aus /\%dmﬂ‘ﬁ/&% Aug Auzda
R R R
+2i6/8§|AU3|2dz+i6/§ ATs AU4dz+w/83§ AT Auide
R R R
+W/(92§|/\u1|2d:c—2w/8§/\ﬂ1 /\uzdsz/§|/\u2|2d:c
R R R
fw/ﬁf/\ﬂg /\ugdx—w/§|/\U3|2dz—w/83§ Au Aupde
R R R
fw/82§|/\u1|2dz+2w/8§ A uq Aﬂgdx+w/§|/\u2|2dz
R R R
+w/8§/\u2 Aﬂgdx+w/§|AU3|2dz+z‘ﬂ/82§ AT Aurde
R R R
+i6/8§|Au1|2dx—w/§ ATy /\u2d:c—iﬂ/§ ATs A ugdz
R R R
+i6/82§ Au Aﬂldz+iﬂ/8§|/\u1|2dx—iﬂ/§ Aui ATadx
R R R
—iﬁ/f/\uQ /\ﬂgdm—w/af AT /\uldac—w/£|/\u1|2dx—w/§|/\uQ|2dac
R R R R
—l—w/@f/\u Aﬂ1d$+w/£|/\u1|2dx+w/§|/\uQ|2d$
R R R
hence
2iIm/Fu~ﬂdz:iat/§|u|2dzfi/8t§|u|2d:c—iﬂ/84§(|/\u|2)1d:c
R R R R
72i6/83§|/\u1|2da§+3iﬂ/82§(|/\u1|2)1dz+4iﬂ/8§|/\u2|2d35
R R R
~if [ € nuaPhde+ip [ P nuaPids+ 315 [ 06| nusfs
R R R
+2iw[m/83§ AT /\uldz—4iwlm/8§ AU Ausdzx
R R
72iwlm/8§ ATz /\ugdz+i6/82§(|/\u|2)1dz+2i6/8§|/\u1|2dx
R R R

fiﬂ/}R§(|/\u1|2)1da§—iﬂ/R§(|/\u2|2)1dx—2wlm/R<9§ AT A urde
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then, adding similar terms and cutting the letter ¢ we obtain
2Im/1"u-Ud:c:8t/§|u|2dx—/8t£|u|2dx+ﬁ/85£|/\u|2d:v—5ﬁ/83£|/\u1|2dx
R R R R R
+6ﬁ/8£|/\uQ|2dx—ﬁ/83§|/\uQ|2dx+36/8§|/\U3|2dx
R R R
+2wlm/83£ AT /\uldm—4wlm/8§ Ay /\qu:C—2wIm/8£ Ay A uzdx
R R R
—5/83§|/\u|2dz+35/8§|/\u1|2dx72wlm/8§ AT Aurde
R R R
then
|w|/8§|/\U3|2dz+|w|/8§|/\u2|2dz+2|w|/8§|/\u1|2d:c+2|w|/8§|/\u2|2dz
R R R R
+ |w|/8§|/\u|2d:c+|w|/8§|/\u1|2dx+|w|/ |03¢] | A ul?da
R R R

+|w|/|83§||/\u1|2da§+/8t§|u|2dz+2lm/Fu~ﬂdz
R R R

Y]

8,5/§|u|2d:c+36/8§|/\U3|2dx—ﬂ/83§|/\u2|2dz+65/8§|/\u2|2dz
R R R R
f55/33§|/\ul|2dx+36/8§|/\u1|2daz+6/85§|/\u|2dx76/83§|/\u|2dz
R R R R
where
3|w|/ag|Au2|2dz+|w|/[|a3g|+3ag]|Au1|2dx
R R

+ |uJ|/[|83§|+8§+8t§]|/\u|2dz+21m/Fu~ﬂdx
R R

> 8t/£|u|2dx+/[3ﬁ—|w|]8§|/\U3|2dm—ﬁ/83£|/\uQ|2dx
R R R
+6ﬁ/8£|/\uQ|2dx—5ﬁ/83£|/\u1|2d$—|— 35/8£|/\u1|2dx
R R R
+ﬁ/05§|/\u|2dx—ﬁ/83£|/\u|2dac
R R
>

9, / € [ul2dz + 5/[-@35 + 50€] | A uada
R R
+0 [ [-50%+30¢) | nwrfPda + 5 [ (0%~ 0%€] | AuPda
R R
using (R.3), Aun, = (I — (I — 0%)) Attn_2 = Atiy_o — Up_o for n a positive integer and standard estimates

we obtain
Im/Fu~ﬂdz28t/§|u|2d:c—c/§|u|2dz.
R R R

M

Multiply this equation by e=*? and integrate with respect to t for ¢ € [0, T] and u € D

T T T
Im/ /ethszﬂdxdtZ/ e Mt <8t/§|u|2d:c) dt—c/ /feth |u|?dx dt
o Jr 0 R o Jr

T T
efMt/§|u|2dx /g +M/ /fefMt |u|?dx dt — c/ /fefMt |ul?da dt
R 0 R 0 R
T T
= e o D) e D0t [ [ e uPasa—c [ [ e P
R 0 R 0 R
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Thus

T
<Fu,u>:1m/ /ethFu~ﬂdzdt
0o JR

Y

T
e Mt /R«E(:E, T) Ju(z, T)|*dx + (M — c)/0 /Rfe_Mt |u|?dx dt

T
/ /éefMt |u|?da dt
o Jr

provided that M is chosen large enough. Then < I'u, u >>< u, u >, for all u € D. Let I'* be the
formal adjoint of " defined by I'* = £(—idy — i3 AND° —w ANO* +i NO®> +w AD?). Let D* = {w €
CPR %[0, T)): w(x, T)=0}. In a similar way we prove that

Y

<T*w,w>><w,w> VYweD".

(From this equation, we have that I'* is one-one. Therefore, < I'*w, I'*v > is an inner product on D*. We
denote by X the completion of D* with respect to this inner product. By Riesz’s Representation Theo-
rem, there exists a unique solution V € X, such that for any w € D*, < &bV, w >=< I'*V, I'"w > where
we use that £b) € X. Then if v = I'*V we have < v, T*w >=< W, w > or < ["w, v >=< w, &M > .
Hence, v = T*V is a weak solution of Tw = ¢b(Y) with v € L*(R x [0, T]) ~ L?([0, T] : L*(R)).

Remark. To obtain higher regularity of the solution, we repeat the proof with higher derivatives. It
is a standard approximation procedure to obtain a result for general initial data.

The next step is to estimate the corresponding solutions v = v(z, t) of the equation ([.3) via the coeffi-
cients of that equation.

The following estimate is related to the existence of solutions theorem.
Lemma 4.2. Let |w| < 38 and 0 < v, < & < 7o, with ¥, Yo real constants. Let v, z € C*([0, +o0) :

HN(R)) for all k, N which satisfy (@) For each integer o there exist positive nondecreasing functions
G and F such that for allt >0

O, /Ré [val?dz < G(||2lIx) lIVIIZ + F(|]2]]a) (4.5)

where || - ||o is the norm in H*(R) and A = max{1, a}.

Proof. Differentiating a-times the equation (), for some o > 0 we have

a+2
— i 0o+ B AVass +wAVars —iBAvVats+ Y h9 Av; + (21)ar2 Av+p(Azatt, ...) =0 (4.6)
j=3
where ) is a smooth function depending on | A z|?, ... with i = 2+ a — j. For a > 2, p(Azat1, --.)
depends at most linearly on Az,41, while for @ = 2, p(Azq41, ...) depends at most quadratically on

/\ZaJrl.
We multiply equation @) by £v,, and integrate over z € R

—i/fﬁa&gvadm—i—iﬁ/fﬁa/\Ua+5dx+w/fﬁa /\va+4d$—iﬁ/§ﬂa/\va+3d$
R R R R
a+2

—I—Zh(j)/Eia/\Ujdx+/«£(|z|2)a+25a/\de—i—/«sﬁap(/\zaﬂ, ..)dx =0
= R R R
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and applying conjugate

i/{vaaﬁadx—iﬁ/fva/\5a+5dx+w/§va/\ﬁa+4d$+iﬁ/fva/\ﬁa+3d$
R R R R
a+2

+y hY / Ev ATjda + / € (|21 ag2va A Tdz + / ETap(Azatts --.)dz = 0.
= R R R
Subtracting, it follows that
—i@t/ € |val?de +i / O |va|?dx —l—iﬁ/ Vo A Voysdr —H’ﬁ/ Vo NUgysdr
R R R R

+w/fUa/\va+4dx—w/£va/\Ea+4d$—iﬁ/{ﬁa/\vwrgdac—iﬁ/fva/\ﬁaﬁdm
R R R R
a+2 a+2

+ Z h) / Vo Nvjde — Z h) / Eva NV dz + / €(|121*)ar2va AVdz (4.7)
= R = R R
- / 5 (|Z|2)a+25a ANvdr + / gaap(/\za-i-la . ) dr — / gvozp(/\za-i-la . )dl‘ =0.
R R R
Each term is treated separately, integrating by parts
/ Vo N Vgpsdr = / ENT — 0*)To A Vaysdr
R R
= / & NUy N vggsdr — / ENTVyqo A Voysdr
R R
= / DY NTy N vgrrdr + / D3| AN vy |Pde — 3/ %€ ANTgq1 A Vo yodr
R R R
— 2/ OE| A Tgyo|?dx + / ENTaga A Vgpsds — / %€ NTgyo A Vaysdr
R R R
- 2/ O | A voys|Pdr — / & NTqqa A Voysde.
R R

The other terms are calculated in a similar way. Hence in @) we have performing straightforward
calculations as above

~0r [ €laPdo+ [ 0 loalds =5 [ €| AvaPido+26 [ 06| Nvasa P
R R R R
430 [ 06| NvasalPde ~ 49 [ 0] A vasalido — B [ 06| A vasalds
R R R
+ﬂ/32§|/\va+2|2dz735/8§|/\va+3|2dz72wlm/83§ ATVq A Vg y1de
R R R
+4wlm/8§/\5a+1 /\va+2dz+2wlm/8{/\5a+2/\va+3dz
R R

+26Im/8§AﬁaAva+2dI+261m/§/\6a+1 A Vgyodx
R R
a+2

76/]1%8§|/\m+2|2dz+2 th Im/Réﬁa/\vjdx
j=3

Jr2[m/§(|z|2)a+gva/\Ed:chQIm/fiap(/\zaJrl, ...)dz =0
R R
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then

fat/§|va|2dz+/at§|va|2dxf36/as|Ava+3|2dx+6/82§|Ava+2|2dz
R R R R
—66/8&m+2|2dz+55/835|Ava+1|2dz—ﬂ/a5g|Avaﬁdz
R R R
= —2w[m/8§ /\5&+2/\va+3dz74wlm/85/\5a+1/\va+2dx
R R

—QQIm/f/\ﬁa_H/\Ua+2dac—261m/afAﬁa/\vaJrgd:C
R R

a+2

+2wlm/83§/\ﬁa/\va+1dxf2 Zh(j) Im/gaamjdz
R =3 R

—2[m/§(|z|2)a+2va/\ﬁdzfQIm/§6ap(/\za+1, .. dx
i R

hence,
0 [ €lualds — [ DigfvaPdo+35 [ 06| hvasalds - 5 [ 5] Avasalde
R R R R
00 [ 06| ATasaPds —55 [ 0%€| A vasalPdn + 5 [ 5] Avafdo
R R R
= 2wlm/8§ /\5a+2/\va+3dx+4wlm/8§/\5a+1 A Vgyodx
R R
+26[m/£/\5a+1/\Ua+2dx+261m/afAﬁa/\vaJrgdx
R R
a+2
72w1m/83§/\6a/\va+1dx+2 Zh(j)lm/gﬁa/\vjdx
R s R
Jr2[m/§(|z|2)a+gva/\Ed:chQIm/fiap(/\zthl, ..o dx
R R
< |w|/8£|/\va+2|2dac+|w|/8§|/\va+3|2dx+2|w|/8§|/\va+1|2dx
R R R
+ 200 [ 96 A vasalPds + 18] [ €] AvanPdo+1] [ €]A vasaPds
R R R
+|B|/8£|/\va|2d:c+|ﬁ|/8§|/\va+2|2dx+|w|/83§|/\va|2dx
R R R
a+2 .
+ |w|/83§|/\va+1|2dx+2 Zh@/@amjdz +2 }/§(|z|2)a+gva/\5d:c
R i3 R R
+ 2 /fiap(/\za+1, .. dx
R
where

< */(35*|W|)3§|/\Ua+3|2dz+/[532§*653§+3|W|3§+|5|a§+|5|§]|/\va+2|2dﬂc
R R

+/R[5683§+ w[0%¢ + 2 |w|OE + |81 €] | Ava+1l2dx+4[8t§+6855+ w| %€ + |8 0€] | A vo|*da

a+2

+2 th/@amjdx +2’/§(|z|2)0¢+2 Vo A Tdz
i3 R R

+2’/£5ap(/\2a+1, )d(L‘ .
R
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using that |w| < 38 we have that the first term in the right hand side of the above expression is not

positive. Hence,

at/£|va|2dac
R

< /}R[ﬁ@%—w@er?»IWI@H|ﬁ|3£+|ﬁ|§]|Ava+2|2dw

+/[5563£+ 0] %€ + 20| 9E + 18] €] | A vy [ + /[ats 18O + |w| 8% + 18] 9] | A valPda
R R

a+2

+2 ZhU)/Rgaamjdz +2‘/}R§(|z|2)a+gva/\5d:c
j=3

+2‘/§5ap(/\za+1, )das .
R

Using that Av, = Av,_2 — v,_2 and a standard estimate, the lemma follows.

5 Uniqueness and Existence of a Local Solution

In this section, we study the uniqueness and the existence of local strong solutions in the Sobolev space
HYN(R) for N > 3 for the problem (@) To establish the existence of strong solutions for (@) we use

the a priori estimate together with an approximation procedure.

Theorem 5.1(Uniqueness). Let |w| < 383, up(x) € HY(R) with N > 3 and 0 < T < +oo. Then
there is at most one strong solution u € L>([0, T] : HN(R)) of (.A4) with initial data u(zx, 0) = ug(z).

Proof. Assume that u, v € L>([0, T] : HN(R)) are two solutions of (R.4) with u;, v; € L>=([0, T :

HN=3(R)), and with the same initial data. Then
i(u—v)+ifBu—v)3+w(u—v)+uu—|vPv=0
with (u — v)(x, 0) = 0. By (.1))
i(u—v)+iBu—v)3+wu—v)+u@w—o)+ (Ju?-[v?*)v=0
or
i(u=v)e+if(u—v)s+wu—v)2+uf (w—0)+ (lul = |v]) (Jul + [v]) v = 0.
Multiplying (F-3) by &(u — v) we have
ifm(u—v)t+i@(u—v)3 +af(u—v)(u—uv)
+lul* fu = vf* + € (u—v) (Jul = |v]) (Jul + |v])v = 0.
—i€(u—v) (u—v), =i fE(u—0v)(u—0);+af(u—v)(u—"u),
+[ul? [u = vf? + € (u—v) (Ju| = Jv]) (Jul + [v]) T = 0. (applying conjugate)

Subtracting and integrating over x € R we obtain
i@t/£|u—v|2dac—i/8t§|u—v|2dac+iﬁ/f(u—v)(u—v)gdac
R R R
+iﬂ/§(ufv)(ufv)3dx+ w/{(u—v)(u—v)gdz
R R

fw/§(u—v)(ufv)2das+22'1m/§(ufv)(|u|f|v|)(|u|+|v|)vdz:0
R i
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Each term is treated separately, integrating by parts
/Rf(u—v) (u—v)sdx
/82§(ufv) (ufv)lderQ/8§|(ufv)1|2d:c+/§(ufv)1(ufv)de.
R R R
The other terms are calculated in a similar way. Hence in (f.d) we have
i@t/R£|u—v|2d:C—i/}R@t§|u—v|2d$+iﬁ/R@2§(u—v)(u—v)ldm
+2iﬁ/8§|(u—v)1|2dx+iﬁ/f(u—v)l(u—v)Qd:U—i—iﬁ/82§(u—v)(u—v)1dx
+zﬁ/8§|u—v)|dm—zﬁ/£ u—v) (u—v)ydr —w /85 (u—v)(u—v)dz
—w/R§|(U—U)1|2d$+w/ﬂ{8£(u—v) (u—v)1d$+w/ﬂ{§|(u—v)1|2d$
+2itm | €G] (ful ~ [ol) ul + o]) vz =0
R
then
i@t/Rﬂu—v|2dx—i/R@tﬂu—v|2d$+iﬁ/ﬂ{82§(|u—v|2)1d$+3iﬁ/R@§|(u—U)1|2dx
—inlm/aé(u—v) (ufv)lderQiIm/§(ufv)(|u|—|v|)(|u|+|v|)vdz:0
R R
if and only if
atA§|u—v|2d$—/R@tﬂu—v|2dx+ﬁ/ﬂ§02§(|u—v|2)1dx—|—3B/R@£|(u—v)1|2d$
= 2wlm/8§(u—v) (ufv)ldx—QIm/f(u—v)(|u|f|v|)(|u|+|v|)vd:c
R R

IN

IWI/3§IU*v|2dI+IWI/35|(U*U)1|2dw+2/§lufv|| ul = [of | (fu] + [v]) o] dz.
R R R

Using that | [u| — |v| | < |u—v|, (£.3) and standard estimates, we have

8,5/R§|ufv|2dz+/ﬂ{[3ﬂ—|w|]8§|(ufv)1|2d:c§C/R§|ufv|2dz.

Integrating in ¢ € [0, T, using the fact that (u — v) vanishes at ¢ = 0 and Gronwall’s inequality it follows
that v = v. This proves the uniqueness of the solution.

We construct the mapping Z : L*([0, T] : H*(R)) — L*([0, T] : H*(R)) where the initial condi-
tion is given by u(™(x, 0) = ug(z) and the first approximation is given by

u® = ug(x)

u™ = Z@hD) n>1,

where u(™~1) is in place of z in equation (@) and u(™ is in place of v which is the solution of equation

(.3). That is

—iu{™ +i8 Al +w AUl + (| AuTIR) Au™ 42 (| A D 2); A u(™
+ [ AuY? /\ug") — @B A ugn) +w A ug") + | A a2 Au™) = 0.
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By Lemma 4.1, (™) exists and is unique in C((0, +00) : HN(R)). A choice of ¢y and the use of the
a priori estimate in Section 4 shows that Z : B, (0) — B, (0) where B, (0) is a bounded ball in
L>=([0, T] : H*(R)).

Theorem 5.2(Local solution). Let |w| < 38 and N an integer > 3. If uo(x) € HY(R), then there
is T >0 and u such that u is a strong solution of [R4), u € L>([0, T]: HN(R)) and u(z, 0) = ug(z).

Proof. We prove that for ug(z) € H*(R) = (5, H"(R) there exists a solution u € L>([0, T] : HV(R))
with initial data u(z, 0) = ug(x) where the time of existence T' > 0 only depends on the norm of ug(x).
We define a sequence of approximations to equation (@) as

zvt(") = z’ﬁ/\v5 +w/\v —zﬁ/\v —w/\vén)+|/\v("_1)|2/\v§")
+O[(| A, (| A0 2)g, )] (5.4)

where the initial condition is v(™) (z, 0) = ug(x) —0%ue(x). The first approximation is given by v(9) (z, 0) =
uo(x) — 0%ug(x). Equation (F.4) is a linear equation at each iteration which can be solved in any interval
of time in which the coefficients are defined. This is shown in Lemma 4.1. By Lemma 4.2, it follows that

O / & loiPde < Gl V) (012 + E(llo™ o). (5:5)
R

Choose a = 1 and let ¢ > ||u0782u0||1 > ||ug||3. For each iterate n, ||v(™)( -, t)|| is continuous in ¢ € [0, T’
and [[v(™ (-, 0)|| < c. Define ¢y = 7= c?+1. Let T( ™ be the maximum time such that v (-, )] < e3

for0<t< TO("), 0<k<n. Integratmg (5.5) over [0, t] we have that for 0 < ¢ < TO(") and 7 =0, 1

t () t t
(o [erpas)as< [ () 1o Bas + [ £ (1o-21) as
0 R 0 0

It follows that

t
/R &, o) (@, DPde < / &G, 0oy (x, 0)dr + / G (=D ) 1o 2ds

+/OtF(||v<"—1>||j) ds

hence
71/|’U§-n)(l‘, t)2dr < /{:I: )™ (z, t)2dx
R
(n) t
< [ e 0w 0Pdzt [ 6 (oI o ds
R 0
t
+/ F (|0 Y));) ds
 F (0 =21)
and

n n F
/|v( |Pde < = /|’U )x 0)|?dx + Gles) cat+ (03)15
M

ga!

and we obtain for j =0, 1 that

G F
oy < 22 2 4 Gl) a2y, Floo),
M 1 !
Claim. To(n) does not approach to 0.
On the contrary, assume that TO(") — 0. Since |[v™ (-, t)|| is continuous for t > 0, there exists 7 € [0, T

such that |[v®) (-, t)|]1 = ¢o for 0 < 7 < T(") 0 <k <n. Then

2§202+G( 0) QT(n) F(co )T(n)

4t 4t 1
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as n — 00, we have

2 2
<£02+1) SECQ then /7—2204+1§0
2m M 47

which is a contradiction. Consequently TO(") +# 0. Choosing T' = T'(c¢) sufficiently small, and T not
depending on n, one concludes that

™| <C (5.6)

for 0 < t < T. This shows that TO(") > T. Hence, from (E) we imply that there exists a subsequence
v() = v(™ such that

o™ Xy weakly on  L°([0, T] : H'(R)). (5.7)
Claim. u = Av is a solution.
In the linearized equation (f.4) we have

/\’Uén) =ANI-(- 82))U§n) = /\vé") - vé") = 82(/\v§")) - 82(U§")) € H3(R).
€L2(R)  €H 2(R)

Since A = (I —8%)~! is bounded in H'(R), /\v5n) belongs to H~2(R). v is still bounded in
L>([0, T): HY(R)) — L2([0, T]: H'(R)) and since A : L?(R) — H?(R) is a bounded operator,

A O™ 2@y < ellvi™ 2@ < llvi™]]mw)-

Consequently, /\’Uin) is bounded in L2([0, T]: H*(R)) — L2([0, T] : L?(R)). It follows that 82(/\0571)) is
bounded in L?([0, T]: H~%(R)), and

Avi™ is bounded in  L3([0, T]: H2(R)). (5.8)

Similarly, the other terms are bounded. By (@), vt(") is a sum of terms each of which is the product of a
coefficient, uniformly bounded on n and a function in L?([0, 7] : H~2(R)) uniformly bounded on n such
that v\™ is bounded in L2([0, T] : H~2(R)). On the other hand, HL (R) < H./*(R) — H~4(R). By
Lions-Aubin’s compactness Theorem [@] there is a subsequence v(") = v(" such that v(") — v strongly
on L2([0, T : Hllo/f(R)). Hence, for a subsequence v(") = v we have (") — v a. e. in L([0, T] :
Hllo/f(R)). Moreover, from (B8), Avl™ — Avs weakly in L2([0, T] : H~2(R)). Similarly, AvS™ — Av,
weakly in L2([0, T] : H~2(R)). Since ||/\v(”)||Hz(R) <™ 2@y < e|v™|| g1 w) < c||v(”)||H1/2(R) and
o™ — o strongly on L2([0, T] : H/*(R)) then Av(™ — Av strongly in L2([0, T] : H2(R)). Thus, the
fifth term on the right hand side of (54), | Av™=1[2 Avl™ — | Av|? A vy weakly in L2([0, T] : LL_(R))
as AvS™ — Ay weakly in L2([0, T] : H=2(R)) and | Av™=D[2 — | Av|? strongly on L2([0, T] : H2,_(R)).
Similarly, the other terms in (5.4) converge to their limits, implying vt(") — v, weakly in L%([0, T] :
L} .(R)). Passing to the limit

ivy = O0(if Avs+w Ava+|Av]2 Av) = (i Avs +w Ava + | Av]? Av)
—(I=0%(iB Avs+w Ava+ | Av]? Av).

Thus ive + (I —9%)(i 8 Avs+w Avs+ | Av|2 Av) =0. This way, we have (2.4) for u = Av.
Now, we prove that there exists a solution of (R.4) with v € L>([0, T] : HY(R)) and N > 4, where T de-

pends only on the norm of ug in H3(R). We already know that there is a solution u € L>°([0, T] : H3(R)).
It is suffices to show that the approximating sequence v("™) is bounded in L*([0, T] : HY~2(R)). Taking
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a = N — 2 and considering (.5) for a > 2, we define cy_o = 7= [|uo()[|v + 1. Let T](V"_)3 be the largest

time such that |[v®) (-, £)|la < en_3 for 0 < ¢t < TW,, 0 < k < n. Integrating (F5) over [0, ], for
0<t< T](\,nzg, we have

t t t
(o [ crpac)as < [ 6 (1o 1) 1o 1Eas + [ F (1o 1L) ds
0 R 0 0
It follows that
[e@onrar < [ g0l @ 0Pds+ [ 6 (001 [0 2ds
R R

t
0
t
+/ F (|l Y1, ) ds
0

hence

[ WPde < [ elPae < [ g 0) o 0P de+ [ 6 (01 10 s
R R R

t
0
+/OtF (||v<"*1>||a) ds

then

— F _
/ |’U£¢n)|2d$ < E/ |Ugn) (:c7 0)|2d1' + M C?Vfg t+ M t
R 7 JR M

Y1
Glen— Fllen_
< 20O, o) + G0 p gy Flon-s)
st Y1 Y1
Glen_ Fl(en_
< 2, 03+ Gev2) 2y Flova),
ga! 71 71
and we obtain
G _ Fen_
(- Dlf2de < 2 o>||%+mc%_3t+%t
1 1

Claim. TZ(\,"_)3 does not approach to 0.

On the contrary, assume that T](V"_)3 — 0. Since |[v™) (-, t)|| is continuous for ¢ > 0, there exists 7 €
[0, Ty_3] such that |[v*) (-, 7)||a = cny_3 for 0 <7 < T, 0 <k <n. Then

G(cn-3) 2

Y2 n F CN-3 n
G s < 2 ue, 0)3 + E=8) 2 o Flen-s) po
Y1 Y1 Y1

as n — +00, and we have
2 2
Y2 2 72 2 72 4
— ||u(x, O +1) <—lu(x, 0 then —= |ju(z, 0 +1<0
(52 e OB +1) = 2 e 0 then 25 e, )

which is a contradiction. Then T](\,nzg +» 0. By choosing Ty —3 = Ty —3(||u(z, 0)||%) sufficiently small, and
T'n—3 not depending on n, we conclude that

o™ (0|2 <&y forall 0<t<Ty_ 3. (5.9)
This shows that TJ(\,"Zg > Tn_s3. Thus,

v e L2([0, Ty-s] : H*(R)) = L([0, Tv—s] : HY72(R)).
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Now, denote by 0 < T _5 < 400 the maximal number such that for all 0 < t < TR _5, u = Av €
L>=([0, t] : HN(R)). In particular, Ty_3 < T% _5 for all N > 4. Thus, T can be chosen depending only
on the norm of ug in H3(R). Approximating ug by {ugj)} € C§°(R) such that |Jug — U(()j)”HN(]R) — 0 as
j — +o0o. Let u’ be a solution of (@) with ) (x, 0) = uéj). According to the above argument, there
exists 7' which is independent on n but depending only on sup; ||ugj ) || such that u(7) there exists on [0, T

i too

and a subsequence u9) 75 4 in L([0, T] : HN(R)).
As a consequence of Theorem 5.1 and 5.2 and its proof, one obtains the following result.

Corollary 5.3. Let |w| < 33 and let up € HY(R) with N > 3 such that ugj) — ug in HY(R). Let
u and u) be the corresponding unique solutions given by Theorems 5.1 and 5.2 in L>=([0, T] : HY(R))

with T' depending only on sup; ||u8j)||H3 () such that

u) By weakly on  L=([0, T]: HY(R)),
u) —u  strongly on  L2([0, T] : HNTY(R)).

6 Existence of Global Solutions

Here, we will try to extend the local solution u € L°([0, T] : HN(Wy,0)) of (-4) obtained in Theo-
rem 5.2 to ¢t > 0. A standard way to obtain these extensions consists into deducing global estimations
for the HY (Wy ;¢)-norm of u in terms of the H™ (W ;o)-norm of u(z, 0) = ug(z). These estimations
are frequently based on conservation laws which contain the L?-norm of the solution and their spatial
derivatives. It is not possible to do the same to give a solution of the problem of global existence because
the difficulty here is that the weight depends on the x and t variables. To solve our problem we follow a
different method using Leibniz’s rule like in the proof of Theorem 3.1 of Bona and Saut [E]

Theorem 6.1. For |w| < 33 there exists a global solution to (BA4) in the space H*(R)NHN (Wy ;o) with
N integer > 3 and s > 2.

Proof. The first part was proved in [f]. Differentiating (R.4) a-times (for a > 0) over 2 € R leads
to

a—1
. . 2 «Q 2 2
a a a a a—m Um a — 0. 6.1
TUat + 1 Buars +wuare + (Jul?) u—l—mz_:l(m)ﬂu“ U + |ul” u (6.1)
Let & = &(z, t), then multiplying (p.1]) by £ @, we have
i €Ty Uyt 41 BE Ty Uyt 3 + W E T Uapo + (Ju?)a E Uiy
a—1
« 2 — 2 2
a—m m Yo o :0
£ 3 () )om € Ta € o
and

— i €U Unt — 1 BE UG TUar3 + WE U Tats + (|u|2)afﬂua

a—1
Q
A3 () amm ETm ua + € Jul® [ua> = 0. (applying conjugate)
m=1 m
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Subtracting and integrating over x € R we have

i@t/§|ua|2dz+i6/§ﬂaua+3dx+iﬂ/§uaﬂa+3dxer/{ﬂauaJrgdx (6.2)
R R R R

a—1
- w/ € Ug Ugtodr + 2iIm/ € (|ul*)a ulndz + 21 Z (a)lm/ € (|ul*)a—m tm Todr = 0.
R R 1\ R
Each term is calculated separately, integrating by parts in the second term we have

/éﬂaua+3dx:/82§ﬂa ua+1dz+2/8§|ua+1|2dz+/§ﬂa+2ua+1dz.
R R R R

The other terms are calculated in a similar way. Hence in (.9)

8t/§|ua|2dzfﬂ/83§|ua|2dz+3ﬂ/8§|ua+1|2dxwiIm/ﬁfﬂauaJrldx
R R R R

a—1
—/8t£|ua|2dx+2[m/§(|u|2)auﬂadx+2 Z (a)lm/§(|u|2)a_mumﬂadx:0
R R 1\ R

such that
8,5/§|ua|2d$—6/83£|ua|2dx+36/8£|ua+1|2dx+2[m/(|u|2)a£uﬂadx
R R R R
a—1
o
— | 8 |ual?dz +2 < )Im/§ w?) o—m Uin U d
JL o hualtae 237 (1 )im [ €Gur)
= 2a[m/8§ﬂaua+1d$§ |w|/8£|ua|2dx+|w|/8§|ua+1|2d$.
R R R
Hence
0 [ €lualdo -+ [ (35~ 161106 lunsalPds — [ [0+ 50% + 1] 06 [uafd
R R R
a—1
o
+2Im/ ul? a&utgdr + 2 ( )Im/§ W) o—mtm Tadr < 0. 6.3
R(| %) mZ:1 m A (Jul®) (6.3)
But
[e% o a—1 o
(e = (ui)a=Y (k>uakakaua+z <k>ua+m
k=0 k=1
then
a—1 o
2 — 2 2 — — 22
(|u|*)a ule = |ul” |ual +; (k)uakukuuaJru U-,
hence

a—1
2Im/(|u|2)a€uﬂadx:2z <2>1m/£“a—kﬂkUﬂad$+21m/quUidx
R k=1 R R

a—1
«
237 (1) [ €hua-sllallllaaldz +2 [ €JuP ua o
k=

[0
< 23 (3) [ €luoclunlul ke + 2l | € ol
R R

k=1

a—1
(67
2Jul ooy Y € [ua—k] u| [ualde + 2 ||ul[Zo @) | &lual*de (6.4)
k R R
k=1

_

IN
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hence in (f.3) we have

at/§|ua|2dx+/[3ﬁ— 0] 06 s [Pd < /[atawagu 0] 9€ + €] [ua*de
R

+2c < ) [ €l k||Uk||u||ua|dx22< Jim [ o)

Using (R.3)), Gagliardo-Nirenberg’s inequality and standard estimates we get

2 B 2 2
at/ng de + (38 |w|]/}R@§|ua+1| dxgc/R§|ua| da. (6.5)

Integrating (6.5) in t € [0, Trnax = T] we obtain

t t
/R € ualPdz + (36 — ] / / OF 1t [2de: ds < [Juo()|12 + / ( / «s|ua|2dx) s
/§|ua|2d$<||uo( 2 + /(/auwdx)

Using Gronwall’s inequality

where

[ €luaPde < @) e < [funfa)| e
R
it follows that
[ €luado < c= (2 Juo(a)|2).
R

Then for any T' = Tynaq > 0 there exists ¢ = (T, ||ug(x)||2) such that

t
||u||i+[36—|w|1/ /8§|ua+1|2dzdséa
0 R

This concludes the proof.

7 Persistence Theorem

As a starting point for the a priori gain of regularity results that will be discussed in the next section,
we need to develop some estimates for solutions of the equation (@) in weighted Sobolev norms. The
existence of these weighted estimates is often called the persistence of a property of the initial data wuy.
We show that if ug € H3(R)NHE (W ;o) for L > 0, i > 1, then the solution u( -, t) evolves in HX(Wj ; o)
for t € [0, T]. The time interval of that persistence is at least as long as the interval guaranteed by the
existence Theorem 5.2.

Theorem 7.1 (Persistence). Let |w| < 38 and leti > 1 and L > 0 be non-negative integers, 0 < T < +o0.
Assume that u is the solution to (R.4) in L>=([0, T : H3(R)) with initial data uo(x) = u(x, 0) € H3(R).
If Uo(l') € HL(WO i 0) then

ue L= ([0, 7] : H*R)NH"*(Wo o)) (7.1)

T
/0 /R|8L+1u(:13, )2 ndxdt < 400 (7.2)
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where o is arbitrary, n € W, ;o fori > 1.

Proof. We use induction on «. Let

uwe L™ ([0,T): H*(R)NH*(Wy o)) for 0<a<L.
We derive formally some a priori estimate for the solution where the bound, involves only the norms of «
in L>([0, T] : H3(R)) and the norms of ug in H3(Wp ;o). We do this by approximating u(x, t) through
smooth solutions and the weight functions by smooth bounded functions. By Theorem 5.2, we have

u(z, t) € L°°([0, T]: HY(R)) with N = max{L, 3}.

In particular, u;(z, t) € L>([0, T] x R) for 0 < j < N — 1. To obtain (F.1) and (f.4) there are two ways
of approximation. We approximate general solutions by smooth solutions, and we approximate general
weight functions by bounded weight functions. The first of these procedure has already been discussed,
so we shall concentrate on the second.

Given a smooth weight function n(x) € W, ,—1 ¢ with ¢ > 0, we take a sequence 7”(x) of smooth
bounded weight functions approximating n(z) from below, uniformly on any half line (—oo, ¢). Define
the weight functions for the a-th induction step as

1 R
&m/mn (y, t) dy

then the &, are bounded weight functions which approximate a desired weight function £ € Wy, ¢ from
below, uniformly on a compact set. For o = 0, multiplying @) by &, u, we have

i&Tu+iBG Tus +w&Uug + & ful* =0
—i&uTy —iB& ulis +wé, ully + &, |u/* =0.  (applying conjugate)

Subtracting and integrating over x € R we have
104 / &, lulde — z/ 0:&, |ul*dx + Zﬂ/ &, Tugdx +16/ &, uTzdx
R R R R
er/ & Uuadr — w/ & uTadx = 0. (7.3)
R R

Each term is treated separately, integrating by parts in the third term we have

/@ﬂl@daz = /82§Vﬂu1dz+2/8§,, |u1|2dz+/§yﬂ2u1das.
R R R R

The other terms are calculated in a similar way. Hence in ([.J) we have
O / & lulde — / 0:&, uldx — 6/ 03¢, lul*dx + 35/ &, luy |*dx
R R R R
= 2wlm/8§l,ﬂu1dz < |w|/8§,, |u|2das+|w|/8§,, luy|?de.
R R R
Then, using (R.J) we obtain
O / & |ul?dx + / 38 — |w|] 0&, |u1|>dx
R R
< [0+ 99%, + 10|06 uPds < [ & luPds
R i
thus

(%/5,, |u|2dx < c/ & |u|2das.
R R
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We apply Gronwall’s Lemma to conclude that

@/mesmwwu
R

for 0 < ¢ < T, and ¢ not depending on 3 > 0, the weighted estimate remains true for g — 0.

(7.4)

Now, we assume that the result is true for (« — 1) and we prove that it is true for . To prove this, we

start from the main inequality @I) with ¢ and 7 given by &, and 7, respectively.

8t/§v |Ua|2dz+/77u |Ua+1|2das+/9u |ua|2dz+/Radz§0
R R R R

where
n = (38— |w|)dE for lw] <30
91/ = - [8t§1/ + 683511 + |w| 851/ + co fu] where Co = ||u||%°°(]R)
R, = Ru(|ual, lua=1l,--.)

then

a/@wwM+/mmMﬁmsf/%mwmf/sz
R R R R

< ’-/eu |ua|2dx—/Radx §/|9V||ua|2dx+/|Ra|dx.
R R R R

Using (R.3) in the first part of the right hand side we obtain

/ 0, |ua|*dr < c/ & |ua > de
R R

thus

8,5/@ |ua|2d$+/771, |ua+1|2dx§c/§u |ua|2dx+/ |Rq|dx.
R R R R

According to (B.§), [, Ra dz contains a term of the form

/ & Uy, Uy, Ugdz.
R
We estimate the term
/ Uy, Ty, Ugdr for v 4+vo=a.
R
Let 1o < o — 2. Integrating by parts one time in (7.7) we have
/ & Uy, TUpy Ugdr = — / 0&y Uy, Ty, Ug—1 dT — / & Upy 41 Uy, Ug—1 dx
R R R

*/guuul ﬂ1/2+1ﬂ0¢71 dx.
R

(7.6)

(7.7)

We estimates the first term in the right hand side in (m) Using Holder’s inequality and standard

estimates we obtain
1/2 1/2 1/2
CK/@m%ﬁ@)4(/@mﬁw>]</@mlmﬁ
R R R
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where ([7.§) is bounded by hypothesis. The other terms are estimates in a similar way. Now suppose that
vi = vy = a— 1, then in (.7) we have

/ 51/ Ua—1 ﬂa—l Uozdxa
R

1/2 1/2
’/ f,/ |Ua_1|2ﬂadl‘ S ||ua_1||Loc(R) (/ &, |ua_1|2d,’1)) (/ EV |ua|2d$)
R R R

where ||to—1|[ L (r) is bounded by hypothesis, and the estimate is complete. In a similar way we estimate
all the other terms of R,. Using these estimates in (E) and applying Gronwall’s argument, we obtain
for0<t<T

hence

Oy / & |ua|2dz + / Ny |ua+1|2das < ¢pett (/ & |8°‘u0(z)|2dx + 1)
R R R

where ¢y and ¢; are independent of v and such that letting the parameter v — 0 the desired estimate
(F.9) is obtained.

8 Main Theorem

In this section we state and prove our main theorem, which states that if the initial data u(x, 0) decays
faster than polynomially on RT = {z € R: z > 0} and possesses certain initial Sobolev regularity, then
the solution u(z, t) € C* for all ¢ > 0.

If n is an arbitrary weight function in W, ;j, then by Lemma 3.2, there exists & € Wy 41, r which
satisfies (Ell) For the main theorem, we take 4 < a < L + 2. For a < L + 4, we take

ne WO’, L—a-2,a-3 — 6 € Wa’,L—oz—3,a—3- (81)

Lemma 8.1(Estimate of error terms). Let 4 < o < L+ 2 and the weight functions be chosen as in (@),

then
T
/ /(9 (| + Ro)dz dt
0 R

where ¢ depends only on the norms of u in

<eg, (8.2)

L([0, T): H(Wo, —p43,5-3)) N L([0, T) : HP* (W, 1-p12,5-3))
for 3 < B8 <a—1, and the norms of u in L>=([0, T] : H3*(Wo 1o))-
Proof. We must estimate both R, and . We begin with a term in R, of the form
&, | fuw, | |ual (8.3)

assuming that v; < a — 2.

By the induction hypothesis, u is bounded in L>([0, T : H*(W,, 1_(5_3)+, (5-3)+)) for 0 < 3 < a — 1.
By Lemma 2.1,

sup sup ( |ug|® < +oo (8.4)
t>0 zeR

for 0 <3 <a—2and (€W, (-9 5-2+ We estimate |u,,| using (8.4). We estimate |u,,| and
|uo| using the weighted L? bounds

T
/ /C|uy2|2dz dt < +oo for (€ Wy 1_(ua—s)t, (va—a)t (8.5)
0 R
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and the same with v replaced by «. It suffices to check the powers to ¢, the powers of x as x — 400 and
the exponential of z as x — —oo.

For z > 1. In the (B.d) term, the factor ¢ contributed according to (B.1])
f(.’L‘, t) — toz—3 x(L—a+3) t—(oz—3) .’L'_(L_a+3)§(l', t) < ¢y toz—3 x(L—a+3) (usmg())

then & [uy, | |uw,| [ua] < cat® 3 2= |y, | Uy, | [1ue]. Moreover

-2t -t —e-2t E--2h)
Uy | [uns | Jua] = t77 2 E t2 z 2 up, | x
wo—0T  Lo(p-3T —@e-nt (@E-(mp-3)
EE A t— 7 2 [ty | X
(=t L-(e=3)FT —(a—)t (L-(a—3)
T 2 tT T x z [te-
tt follows that
& [, |, | ual
< oM T ST G ERIT gt BT et et (8.6)
where
1 1 1
M:a—3—§(1/1—2)"'—5(1/2—4)"‘—5(@—4)"'
and
1 n 1 n 1 I
T=(L-a+3)-5(L—(a=3") - 5(L— -3 - 3L -n-2)")
Claim. M > 0 is large enough, that the extra power of ¢ can be omitted
2M = 2a—-6— (11 —2)"T — (-4 — (a—4)7T
= O(—2—(V1—2)+—(V2—4)+
= a—-2-1n+2—mt+d=a+4— (11 +12)
= a+4—-—a=4>0.
Claim. T < 0 is such that the extra power of ¢ can be omitted.
2T = 2L—-2a+6—L+(a—3)"T—L+(n—-3)"—L+ (1 —2)"
= —L-a+r+mrnw-2=—-L-a+a—-2
= —(L+2)<0.

Now, we study the behavior as  — —oo. Since each factor w,,(j = 1, 2) must grow slower that an
exponential e 17l and ¢ decays as an exponential e~ %!, we simply need to choose the appropriate rela-
tionship o and ¢’ at each induction step. The analysis will be completed with the case where 14 > o — 1.
Then, in (@), if 2(a — 1) < @, but o > 3. So this possibility is impossible. For z < 1 the estimate is
similar, except for an exponential weight. The analysis of all terms of R, is estimated in a similar form.
This completes the estimate of R,,.

Now, we estimate the term 6 [uy|? where 6 is given in (B.1)). We have that 6 involves derivatives of u only
up to order one, and hence, 6 |u,|? is a sum of terms of the same type which we have already encountered
in R,. So, its integral can be bounded in the same type. Indeed, (@) shows that 6 depends on &, 93¢
and derivatives of lower order. By using (B.6) we have the claim.

Theorem 8.2(Main Theorem). Let |w| < 38, T > 0 and u(z, t) be a solution of (R4) in the region
R x [0, T such that

uwe L0, T]: H*(Wo o)) (8.7)
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for some L > 2. Then
we L([0, T) : H¥ (W, 1)) NLA([0, T : H* (W, 1-1-1.1)) (8.8)

for all 0 <1< L -1 and all ¢ > 0.

Remark. If the assumption @) holds for all L > 2, the solution is infinitely differentiable in the z-
variable. ;From (2.4) we have that the solution is C in both variables. We are also quantifying the
gain of each derivative by the degree of vanishing of the initial data at infinity.

Proof. We use induction on o. For a = 3, let u be a solution of (R.4) satisfying (B.7). Therefore,
ug € L([0, T] : L?*(Wy o)) where u € L>([0,T] : H3(Wy o)) and us € L>([0,T] : L2 (Wo o))
Then u € C([O, T] : L2(W0L0)) n Cw([O, T] : Hs(WOLo)). Hence, u [0, T] [ — HS(WOL()) is
a weakly continuous function. In particular, u(-,t) € H*(Wpy o) for all t. Let t, € (0,7T) and
u(-, to) € H*(Wo o), then there are {ugn)} C C§°(R) such that ugn)(-) — u(-, to) in H3(Wy o).
Let u(™(z, t) be a unique solution of (B.4) with u(™ (z, to) = ug"). Then by Theorem 5.1 and 5.2, there
exists w in a time interval [to, to + 0] where § > 0 does not depend on n and u is a unique solution of
(R2), u™ € L*([to, to + 6] : H3(Wo 1. 0)) with u™ (z, to) = ul (x) — u(z, to) = uo(x) in H3(Wy 1)
Now, by Theorem 7.1, we have

u(") S Lm([to, to +(5] : HS(WO LO)) ﬂL2([t0, to +(5] : H4(WU,L_170))

with a bound that depends only on the norm of ug") in H3(Wjy 1, o). Furthermore, Theorem 7.1 guarantees
the non-uniform bounds

sup  sup (1 + |z, |)F|9%u™ (z, t)| < 400
[to,to+0] =

for each n, k and . The main inequality (B.1]) and the estimate (B.2) are therefore valid for each u(™ in
the interval [to, to + d]. 7 may be chosen arbitrarily in its weight class (B.]) and then ¢ is defined by (B.7)
(B-1)

and the constant ¢y, co, c3, ¢4 are independent of n. From () and we have
to+0
sup /£|ug")|2dx+/ /77|ug:21|2dx <c (8.9)
[to, to+d] JR to R

where by (@), ¢ is independent of n. The estimate (@) is proved by induction for o = 3, 4, 5,... Thus
u(™ is also bounded in

L ([to, to + 0] : H*(Wy, —a+3,a—-3)) N L*([to, to + 8] : H*T Wy, 1—a42,a-3)) (8.10)

for a > 3. Since u™ — w in L>®([ty, to + 6] : H*(Wp 1. o)). By Corollary 5.3 it follows that u belongs to
the space (B.10). Since 4 is fixed, this result is valid over the whole interval [0, T7.
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