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Abstract. Philippeet al. [9], [10] introduced two distinct time-varying mutually invertible fractionally inte-

grated filters A(d),B(d) depending on an arbitrary sequence d = (dt )t∈Z of real numbers; if the parameter

sequence is constant dt ≡ d , then both filters A(d) and B(d) reduce to the usual fractional integration oper-

ator (1−L)−d . They also studied partial sums limits of filtered white noise nonstationary processesA(d)εt

and B(d)εt for certain classes of deterministic sequences d. The present paper discusses the randomly frac-

tionally integrated stationary processes XA
t = A(d)εt and XB

t = B(d)εt by assuming that d = (dt , t ∈ Z)

is a random iid sequence, independent of the noise (εt ). In the case where the mean d̄ = Ed0 ∈ (0, 1/2),

we show that large sample properties of XA and XB are similar to FARIMA(0, d̄, 0) process; in particular,

their partial sums converge to a fractional Brownian motion with parameter d̄ + (1/2). The most techni-

cal part of the paper is the study and characterization of limit distributions of partial sums for nonlinear

functions h(XA
t ) of a randomly fractionally integrated process XA

t with Gaussian noise. We prove that the

limit distribution of those sums is determined by a conditional Hermite rank of h. For the special case

of a constant deterministic sequence dt , this reduces to the standard Hermite rank used in Dobrushin and

Major [2].

Keywords: first keyword, second keyword, third keyword, very long keyword, very long keyword, very

long keyword.

Received 05 02 2007

1. INTRODUCTION

Philippe et al. [9] introduced time-varying fractional filters A(d),B(d) defined by

A(d)xt =
∞
∑

j=0

aj (t)xt−j , B(d)xt =
∞
∑

j=0

bj (t)xt−j , (1.1)

1The research was partially supported by the bilateral France–Lithuania scientific project Gilibert and

the Lithuanian State Science and Studies Foundation, grant no.T-10/06.
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where d = (dt , t ∈ Z) is a given function of t ∈ Z, and a0(t) = b0(t) := 1,

aj(t) :=
(dt−1

1

)(dt−2 + 1

2

)(dt−3 + 2

3

)

· · ·
(dt−j + j − 1

j

)

, (1.2)

bj(t) :=
(dt−1

1

)(dt−j + 1

2

)(dt−j+1 + 2

3

)

· · ·
(dt−2 + j − 1

j

)

, j � 1. (1.3)

If dt ≡ d is a constant, then A(d) = B(d) = (I − L)−d is the usual fractional inte-

gration operator (Lxt := xt−1 is the backward shift). Let a−
j (t), b−

j (t) be defined as

in (1.2), (1.3), with d = (dt)t∈Z replaced by −d = (−dt)t∈Z. For arbitrary sequence

d = (dt)t∈Z such that dt �∈ Z (∀t ∈ Z), the coefficients in (1.2), (1.3) satisfy the ortho-

gonality relation

n
∑

j=0

b−
j (t)an−j (t − j) =

n
∑

j=0

a−
j (t)bn−j (t − j) = δn.

In other words, the filters A(d),B(−d) are mutually inverse: A(d)−1 = B(−d),

B(d)−1 = A(−d) (see Philippe et al. [9], [10]). The above mentioned papers stu-

died long memory behavior and partial sums limits of nonstationary processes XA
t =

A(d)εt , XB
t = B(d)εt , where (εt) is a white noise, for certain classes of deterministic

sequences d admitting (possibly different) Cesaro limits d+, d− at +∞,−∞, respec-

tively, and showed that the limit behavior of partial sums of XA
t and XB

t essentially

depends on the limits d+, d− alone.

The present paper studies long-memory properties of the randomly fractionally in-

tegrated processes

XA
t :=

∞
∑

j=0

aj (t)εt−j , XB
t :=

∞
∑

j=0

bj (t)εt−j , (1.4)

where (εt , t ∈ Z) is an iid white noise, aj (t), bj (t) are given in (1.2)–(1.3), and

d = (dt ,∈ Z) is an iid sequence with mean d̄ = Ed0 ∈ (0,1/2) and finite variance

(the sequences (εt , t ∈ Z) and d = (dt ,∈ Z) are assumed mutually independent). Then

(XA
t ), (XB

t ) in (1.4) are well-defined, strictly stationary, and ergodic processes. We

show in Section 1 that long-memory properties of XA and XB are very similar to

FARIMA(0, d̄ ,0); in particular, partial sums of XA and XB converge to a fractional

Brownian motion with Hurst parameter H = d̄ + (1/2) ∈ (1/2,1).

The main objective of the present paper is to study long-memory properties of non-

linear functionals (h(XA
t ))t∈Z, (h(XB

t )t∈Z of stationary processes in (1.4). There is a

large literature concerning limit theorems for instanteneous nonlinear functionals of

Gaussian and linear processes with long memory, see, e.g., Dobrushin and Major [2],

Taqqu [15], Ho and Hsing [6], Surgailis [13], and the references therein. Consider
a linear process Yt =

∑∞
j=0 ajεt−j with slowly decaying coefficients aj ∼ c0j

d−1
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(c0 �= 0, d ∈ (0,1/2) and iid innovations (εt) ∼ iid(0,1). It was shown in these papers

that the limit distribution of suitably normalized partial sums processes
∑[Nτ ]

t=1 h(Yt ) is
determined by the Appell rank of the nonlinear function h, or the integer

k∗ := min
{

k � 1:
dk

Eh(Y0 + x)

dxk

∣

∣

∣

x=0
�= 0

}

, (1.5)

under some additional moment and regularity conditions on h and ε0.
Note that, for Gaussian processes (Yt ) (with Y0 ∼ N(0,1)), the Appell rank in (1.5)

coincides with the Hermite rank, or the smallest k � 1 with ck �= 0 in the Hermite
expansion h(x) =

∑∞
k=0 ckHk(x)/k!. Under the long memory condition k∗(2d − 1) <

1, the limit of partial sums of h(Yt ) is a so-called Hermite process of order k∗ (see
Section 2 for definition).

To study the asymptotic behavior of nonlinear functionals of “random FARIMA”
processes in (1.4), we assume that the iid sequence (dt) is bounded and the iid sequence
(εt ) is Gaussian; moreover, our discussion is limited to the process (XA

t ). Extensions to

more general (dt), (εt ), and the filter (XB
t ) are possible but not easy. The assumption of

conditional gaussianity allows us to use conditional Hermite expansions and simplifies
estimation of remainder terms. Our main result, Theorem 3.1, states that the limit

distribution of partial sums
∑[Nτ ]

t=1 h(XA
t ) is determined by the integer kA

∗ := min{k �

1: βk �= 0}, where βk’s are defined via conditional Hermite expansion of h; it turns out
that, under certain regularity conditions, the integer kA

∗ can also be defined as

kA
∗ = min

{

k � 1:
dk

Eh(XA
0 + xQ(0))

dxk

∣

∣

∣

x=0
�= 0

}

, (1.6)

where Q(0) := limj→∞ aj (0)/ψj (d̄), and
∑∞

j=0 ψj(d̄)Lj = (1 − L)−d̄ is

FARIMA(0, d̄ ,0) filter. While k∗ in (1.5) and kA
∗ in (1.6) look similarly, the former

quantity is expressed via the marginal distribution of (Yt ) at t = 0 alone, and the latter
involves the joint distribution (XA

0 ,Q(0)); moreover, the derivative in (1.6) does not
seem to be related to any polynomial expansion of h.

2. LINEAR FUNCTIONALS

Everywhere below, (εt , t ∈ Z) ∼ iid(0,1) is a standard iid sequence of rv’s with
zero mean and unit variance, and d = (dt ,∈ Z) is another sequence of iid rv’s, with
mean d̄ = Ed0 and variance σ 2 := E(d0 − Ed0)

2 < ∞; the sequences (εt)t∈Z and
d = (dt)t∈Z are assumed mutually independent. Let δt := dt −Edt denote the centered
iid rv’s. We also assume that dt �∈ Z− := {0,−1,−2, . . .} a.s.

Let ψj(d), j � 0, be the FARIMA(0, d,0) coefficients defined by (1 − z)−d =
∑∞

j=0 ψj (d)zj . Recall that, for 0 < d < 1/2, the autocovariance of the process Yt :=
(1 − L)−dεt decays as t2d−1, more precisely,

EY0Yt =
∞
∑

j=0

ψj(d)ψt+j (d) = Ŵ(1 − 2d)

Ŵ(d)Ŵ(1 − d)
t2d−1

(

1 + O(t−1)
)

(2.1)
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(see Hosking [7] and Kokoszka and Taqqu [8]). Introduce the Hermite process of order

k = 1,2, . . .:

Jk(τ) :=
1

Ŵ(d)k

∫

Rk

{

∫ τ

0

k
∏

i=1

(t − ui)
d−1
+ dt

}

W(du1) . . .W(duk), (2.2)

given by a k-tuple Itô-Wiener integral with respect to a standard Gaussian white noise

W(ds) with zero mean and variance ds; ud−1
+ := ud−1 for u > 0, := 0 otherwise. The

process Jk in (2.2) is well defined for 1 � k < 1/(1 − 2d) and is self-similar with

index H = 1 − (1 − 2d̄)k/2. The process J1 is a fractional Brownian motion (up to

the constant E
1/2J 2

1 (1)). Other properties of Jk in (2.2) including the expressions for

EJ 2
k (1) can be found in Taqqu [15].

THEOREM 2.1. (i) Let d̄ < 1/2. Then the series XA
t ,XB

t in (1.4) converge a.s. and

in L2 for all t ∈ Z and define strictly stationary and ergodic processes with zero mean

EXA
t = EXB

t = 0 and respective covariances

EXA
0 XA

t =
∞
∑

j=0

Eajat+j , EXB
0 XB

t =
∞
∑

j=0

Ebjbt+j .

(ii) Let 0 < d̄ < 1/2. Then

EXA
0 XA

t = EY0Yt

(

1 + O(t−1 log t)
)

, EXB
0 XB

t = c2
BEY0Yt

(

1 + O(t−d̄ )
)

(2.3)

as t → ∞, where EY0Yt is the autocovariance of FARIMA(0, d̄,0) (see (2.1)), and the

constant c2
B is given in (2.8) below. Moreover,

N−d̄−(1/2)

[Nτ ]
∑

t=1

XA
t →D[0,1] c(d̄)J1(τ), (2.4)

N−d̄−(1/2)

[Nτ ]
∑

t=1

XB
t →D[0,1] c(d̄)cBJ1(τ), (2.5)

where (J1(τ), τ � 0) is a fractional Brownian motion with (Hurst) parameter H =
(1/2) + d̄ (see (2.2)).

Proof. (i) Assume first that d̄ �∈ Z−. Define

QA(s, t) :=
at−s(t)

ψt−s(d̄)
=

∏

s�u<t

(

1 +
δu

d̄ + t − u − 1

)

(s < t), (2.6)



LMR lmr v.2004/01/22 Prn:8/02/2007; 11:29 F:LMR122.tex; (RRR) p. 5

Randomly fractionally integrated processes 5

QB(s, t) :=
d̄ bt−s(t)

dt−1ψt−s(d̄)
=

∏

s�u<t−1

(

1 +
δu

d̄ + u − s + 1

)

(s < t − 1), (2.7)

QB(s, s + 1) := 1. The expectations

EQ2
A(s, t) =

∏

s�u<t

(

1 + σ 2

(d̄ + t − u − 1)2

)

� c2
A,

EQ2
B(s, t) =

∏

s�u<t−1

(

1 +
σ 2

(d̄ + u − s + 1)2

)

� c2
B

are uniformly bounded in s < t by finite constants

c2
A :=

∏

i�0

(

1 +
σ 2

(d̄ + i)2

)

, c2
B :=

∏

i�1

(

1 +
σ 2

(d̄ + i)2

)

, (2.8)

respectively. Therefore,

Ea2
t−s(t) = ψ2

t−s(d̄)EQ2
A(s, t) � c2

Aψ2(d̄),

Eb2
t−s(t) = ψ2

t−s(d̄)
(Ed2

t−1

d̄2

)

EQ2
B(s, t) � c2

B

d̄2 + σ 2

d̄2
ψ2

t−s(d̄),

implying
∑∞

j=0 Ea2
j (t) < ∞ and

∑∞
j=0 Eb2

j (t) < ∞ by the well-known property of

FARIMA coefficients and, thus, the convergences of the series in (1.4). The stationarity
and ergodicity properties of these series are easy. This proves part (i) for d̄ �∈ Z−. In
the case d̄ ∈ Z−, the above argument requires minor modifications.

(ii) Consider the covariance of XA. Using EQA(s, t) = 1, similarly as in the proof
of (i), one has

EXA
0 XA

t =
∑

s�0

ψ−s(d̄)ψt−s(d̄)EQA(s,0)QA(s, t) = EY0Yt + RA
t ,

where

RA
t :=

∞
∑

j=t+1

ψj(d̄)ψt+j (d̄)�A
j (t), �A

j (t):=
j

∏

i=1

(

1+
σ 2

(d̄+i−1)(d̄+t+i−1)

)

− 1.

Note that supj>t |�A
j
(t)| = O(t−1 log t); indeed,

1 � 1 + �A
j (t) � exp

{ j
∑

i=1

log
(

1 +
σ 2

(d̄ + i − 1)(d̄ + t + i − 1)

)

}
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� exp

{ j
∑

i=1

σ 2

(d̄ + i − 1)(d̄ + t + i − 1)

}

� exp

{

C

∞
∑

i=1

σ 2

i(t + i)

}

= exp
{

O(log t/t)
}

= 1 + O
( log t

t

)

.

Then RA
t = O(t2d̄−2 log t) (see (2.1)), proving the first asymptotic in (2.3). Next,

EXB
0 XB

t =
∑

s�−1

ψ−s(d̄)ψt−s(d̄)EQB(s,0)QB (s, t)
d−1dt−1

d̄2
+ ψ0(d̄)ψt(d̄)

= c2
B EY0Yt + RB

t ,

where RB
t :=

∑∞
j=0 ψj(d̄)ψt+j(d̄)�B

j and

�B
j :=

j−1
∏

k=1

(

1 +
σ 2

(d̄ + k)2

)

{

(

1 +
σ 2

d̄(d̄ + j)

)

∞
∏

p=j

(

1 +
σ 2

(d̄ + p)2

)

− 1

}

(j � 1),

�B
0 := 1− c2

B , satisfy �B
j = O(j−1). From this RB

t = O(t d̄−1) easily follows, proving

the second asymptotic in (2.3).
To show (2.4), decompose XA

t = Yt + ZA
t , where

ZA
t :=

∞
∑

j=0

ψj (d̄)(QA(t − j, t) − EQA(t − j, t))εt−j

is a short-memory process satisfying
∑N

t=1 ZA
t = OP(N1/2), which follows by eval-

uating the covariance cov(QA(s,0),QA(s, t)) (s � 0 � t) similarly as above. Then
the convergence of finite-dimensional distributions in (2.4) is immediate from the cor-

responding convergence of FARIMA process (Yt ), and the tightness follows by the
Kolmogorov criterion using the fact about the covariance of (XA

t ) in (2.3). The proof

of the tightness part in (2.5) is completely analogous; however, the convergence of
finite-dimensional distributions is a little more complicated. Namely, one represents

XB
t as XB

t = YB
t + ZB

t , where YB
t =

∑

s�t ψt−s(d̄)εB
s is FARIMA(0, d̄ ,0) process in

strictly stationary backward martingale difference innovations (εB
s ) defined by

εB
s := εsQB(s,∞) = εs

∏

j�1

(

1 +
δs+j−1

d̄ + j

)

,

with variance E(εB
s )2 = c2

B given in (2.8). The fact that finite-dimensional ditributions

of partial sums of (YB
t ) tend to those of the limit process in (2.5) can be easily proved
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using the scheme of discrete stochastic integrals as in Philippe et al. [9], [10]. The
“remainder term” ZB

t in the above decomposition of XB
t is given by

ZB
t := (εB

t −εt)+
δt

d̄

∑

s<t

ψt−s(d̄)QB(s, t)εs +
∑

s<t

ψt−s(d̄)(QB(s, t)−QB (s,∞))εs .

The proof of the relation
∑N

t=1 ZB
t = OP(N1/2) follows using similar argument as in

the proof of (2.3), and we omit the details for the sake of brevity. This completes the
proof of Theorem 2.1.

3. NONLINEAR FUNCTIONALS

In this section, we study long-memory properties of nonlinear processes (h(XA
t ))t∈Z,

where h is a real function such that Eh2(XA
0 ) < ∞. As noted in Introduction, the

discussion is limited to the process (XA
t ) in (1.4), so we omit the superscript “A" in

the following notation, i.e., we write Xt ≡ XA
t ,Q(s, t) ≡ QA(s, t), etc. Because of the

difficulty of dealing with nonlinear functionals, the assumptions on (dt) and (εt ) now
are strenghtened as follows.

Assumption 1. The sequence (εt ) is iid N(0,1)-distributed.
Assumption 2. The sequence (dt) is iid, independent of (εt), with mean d̄ ∈

(0,1/2) and finite variance σ 2 = var(d0) < ∞; moreover, there is a constant D < ∞
such that

|δt | � D a.s. (3.1)

We use the following notation: ψj := ψj(d̄),

Q(t) := Q(−∞, t) =
∞
∏

i=1

(

1 + δt−i

d̄ + i − 1

)

, (3.2)

A2(t) :=
∞
∑

j=0

a2
j (t) =

∞
∑

j=0

Q2(t − j, t)ψ2
j =

∞
∑

j=0

ψ2
j

j
∏

i=1

(

1 +
δt−i

d̄ + i − 1

)2

. (3.3)

Also, let Dt := σ {ds: s � t} and D :=
∨

t Dt denote the sigma-algebras generated
by the iid sequence (dt). From Assumptions 1 and 2 it follows that the process (Xt )

in (1.4) is a conditionally Gaussian process given the sigma-algebra D, with zero
conditional mean and the conditional variance A2(t), i.e.,

E[Xt |D] = 0, E[X2
t |D] = A2(t).

For any A > 0 and any real function h(x), x ∈ R, with Eh2(X) < ∞ (X ∼ N(0,A2)),
we can write the Hermite expansion

h(x) =
∞
∑

k=0

gk(A)

k!
Hk(x;A), (3.4)
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where

gk(A) := A−2k
E
[

h(X)Hk(X;A)
]

= 1
√

2πA1+2k

∫

R

h(x)Hk(x;A)e−x2/2A2

dx, (3.5)

and Hk(x;A) := AkHk(x/A), k � 0, are Hermite polynomials with standard devia-

tion A > 0; Hk(x), k � 0, are standard Hermite polynomials with generating function
∑∞

k=0 zkHk(x)/k! = ezx−z2/2. Finally,

βk := E
[

gk(A(0))Qk(0)
]

, k = 0,1, . . . , (3.6)

where gk(·),A(0), and Q(0) are defined in (3.5), (3.3), and (3.2), respectively.

THEOREM 3.1. Let Assumptions 1 and 2 be fullfilled. Let h: R → R be a measur-

able function such that

E|h(BX0)|a < ∞ (3.7)

for some B > 1 and a > 2. Let kA
∗ be the smallest integer k � 1 such that βk �= 0:

kA
∗ := min

{

k � 1: βk �= 0
}

, (3.8)

and let (1 − 2d̄)kA
∗ < 1. Then

N (1−2d̄)(kA
∗ /2)−1

[Nτ ]
∑

t=1

(h(Xt ) − Eh(Xt )) →D[0,1]
βkA∗

kA
∗ !

JkA∗
(τ), (3.9)

where Jk(τ) is a kth order Hermite process given in (2.2) with d = d̄ .

Remark 3.1. We show in the proof of Theorem 3.1 below that the coefficients

βk (3.6) are well defined for any k � 1. Moreover, as noted in Introduction, under
additional conditions on the function h(·), these coefficients can be identified with the

derivatives in (1.6), i.e.,

βk =
dk

Eh(X0 + wQ(0))

dwk

∣

∣

∣

w=0
. (3.10)

Indeed, X0 =law A(0)Z, where Z ∼ N(0,1) does not depend on (A(0),Q(0)) ≡
(A,Q). Then, assuming that the differentiations and integrations by parts below are
legitim, we can rewrite the right-hand side of (3.10) as

(∫

R+×R

1
√

2π

∫

R

h(Az + wQ)e−z2/2 dzP(dA, dQ)

)(k)∣
∣

∣

w=0
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=
∫

R+×R

Qk

√
2π

∫

R

h(k)(Az)e−z2/2 dzP(dA, dQ)

=
∫

R+×R

Qk

√
2πAk

∫

R

h(Az)Hk(z)e
−z2/2 dzP(dA, dQ) = βk;

see definitions (3.6), (3.5).

Remark 3.2. Condition E|h(BX0)|a < ∞ (B > 1) entails E|h(X0)|a < ∞. In-

deed,

E|h(BX0)|a = E
1√

2πA(0)

∫

∣

∣h(BA(0)x)
∣

∣

a
e−x2/2A2(0) dx

= E
1

√
2πBA(0)

∫

∣

∣h(A(0)x)
∣

∣

a
e−x2/2B2A2(0) dx

� B−1
E

1√
2πA(0)

∫

∣

∣h(A(0)x)
∣

∣

a
e−x2/2A2(0) dx = B−1

E|h(X0)|a

or E|h(X0)|a � BE|h(BX0)|a < ∞.

The proof of Theorem 3.1 follows technical lemmas discussed in the following
section. In these lemmas, Assumptions 1 and 2 are imposed without explicit reference

to them. On the other hand, some of these statements hold under weaker conditions
without the assumption of gaussianity of (εt) or boundedness of (dt ).

4. SOME TECHNICAL LEMMAS

Recall from (2.6) the definition Q(t − j, t) ≡ Qj (t), i.e.,

Qj (t) = aj(t)/ψj =
j

∏

i=1

(

1 + δt−i

d̄ + i − 1

)

(j � 1), Q0(t) := 1.

LEMMA 4.1. For any t ∈ Z, Qj (t) → Q(t) (j → ∞) a.s. Moreover, for any p � 2,

there exists a constant C = Cp such that, for any t ∈ Z and j � 0,

E|Qj (t)|p � C, EA2p(t) � C (4.1)

and such that

E
∣

∣Qj (t) − Q(t)
∣

∣

p
� Cj−p/2. (4.2)

Proof. Denote

ξj := Qj+1(t) − Qj (t) = Qj (t)
δt−j−1

d̄ + j
.
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Note that the random variables (ξj )j�1 are orthogonal (in fact, they are martingale

differences) and, therefore,

Qj+1(t) = 1 +
j

∑

i=0

ξi (4.3)

is the sum of orthogonal rv’s. According to a result of Stout [11], the series (4.3)

converges a.s., provided that

∞
∑

j=1

log2(j )Eξ 2
j < ∞. (4.4)

In our case,

Eξ 2
j =

σ 2

(d̄ + j)2
EQ2

j (t), (4.5)

where

EQ2
j (t) =

j
∏

i=1

E

(

1 + δt−i

d̄ + i − 1

)2
=

j
∏

i=1

(

1 + σ 2

(d̄ + i − 1)2

)

< C (4.6)

is bounded. Therefore, (4.4) holds implying the first part of the lemma.

Let us prove the first bound in (4.1). We shall need the following general inequality:

for any p � 2,0 < δ < 1, and any rv δ with Eδ = 0, E|δ|p < ∞, there exists a constant

C = Cp such that

E|1 + aδ|p � 1 + Ca2. (4.7)

Indeed, write E|1 + aδ|p =
∑4

k=1 Jk , where J1 := E|1 + aδ|pI (aδ � −1), J2 :=
E(1 + aδ)pI (−1 < aδ � −1/2), J3 := E(1 + aδ)pI (|aδ| < 1/2), and J4 := E(1 +
aδ)pI (aδ > 1/2). Then J1 E|aδ|p � Ca2, J2 � P(|aδ| > 1/2) � 4a2

Eδ2 �

Ca2,J4 � CE|aδ|p � Ca2, and

J3 = 1+paEδI (|aδ| < 1/2)+O(a2) = 1−paEδI (|aδ| � 1/2)+O(a2) = 1+O(a2),

since E|δ|I (|aδ| � 1/2) � CaEδ2 � Ca2. This proves (4.7).

Applying (4.7) with a = 1
d+i−1 , δ = δt−i, we obtain

E|Qj (t)|p =
j

∏

i=1

E

∣

∣

∣1 + δt−i

d̄ + i − 1

∣

∣

∣

p
�

j
∏

i=1

(

1 + C

i2

)

� C

and, thus, prove the first bound in (4.1).
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Consider the second bound in (4.1). Since A2(t) =
∑∞

j=0 Q2
j (t)ψ

2
j , the Minkowski

inequality and the previous bound together yield

(

E[A2p(t)]
)1/p

�

∞
∑

j=0

ψ2
j

(

E[Q2p
j (t)]

)1/p
� C

∞
∑

j=0

ψ2
j < C.

It remains to prove (4.2). In the case p = 2, we immediately get

E
(

Q(t) − Qj (t)
)2 = E

(

∞
∑

i=j

ξi

)2
=

∞
∑

i=j

Eξ 2
i � C

∞
∑

i=j

j−2
� Cj−1

due to (3.5) and (3.6).

Let p > 2. Since (ξj ) is a martingale difference sequence, by the Bürkholder in-

equality we have

E|Q(t) − Qj (t)|p = E

∣

∣

∣

∞
∑

i=j

ξi

∣

∣

∣

p
� CpE

(

∞
∑

i=j

ξ 2
i

)p/2
.

By the Hölder inequality, we have

∞
∑

i=j

ξ 2
i =

∞
∑

i=j

(i + d̄)−1(i + d̄)−1δ2
t−i−1Q

2
i (t)

�

(

∞
∑

i=j

(i + d̄)−p/(p−2)
)(p−2)/p(

∞
∑

i=j

(i + d̄)−p/2|δt−i−1|p|Qi(t)|p
)2/p

� Cj−2/p
(

∞
∑

i=j

(i + d̄)−p/2|δt−i−1|p|Qi(t)|p
)2/p

.

Therefore, using (4.1), we get

E
∣

∣Q(t) − Qj (t)
∣

∣

p
� Cj−1

∞
∑

i=j

(i + d̄)−p/2
E|δt−i−1|p|Qi(t)|p

� Cj−1
∞
∑

i=j

(i + d̄)−p/2
� Cj−p/2,

proving the lemma.
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LEMMA 4.2. Let pi, ki � 0, qi ∈ Z, i = 1,2, be given integers, and let

φi(t) := Aqi (t)Q
pi

ji
(t)Mi(A(t)), (4.8)

where

Mi(A) :=
∫

R

h(x)xkie−x2/2A2

dx. (4.9)

Then there exists a constant C = C(ki ,pi, qi , i = 1,2) < ∞ such that, for any t ∈
Z, j1, j2 � 0,

∣

∣cov(φ1(t),φ2(0))
∣

∣ � Ct−1 log t.

Proof. Write the telescoping expansion

φi(t) − Eφi(t) =
∞
∑

j=1

Ui(t, j ), (4.10)

where

Ui(t, j ) := E
[

φi(t)|Dt−j

]

− E
[

φi(t) |Dt−j−1

]

=
∫

R

h(x)xki dx
(

E
[

Aqi (t)Qpi (t)e−x2/2A2(t)
∣

∣Dt−j

]

− E
[

Aqi (t)Qpi (t)e−x2/2A2(t)
∣

∣Dt−j−1

]

)

.

By orthogonality,

∣

∣cov(φ1(t),φ2(0))
∣

∣ =
∣

∣

∣

∞
∑

j=1

E
[

U1(t, t + j)U2(0, j )
]

∣

∣

∣

�

∞
∑

j=1

(

EU2
1 (t, t + j)

)1/2(
EU2

2 (0, j )
)1/2

.

Thus, the lemma follows from the bound

EU2
i (t, j ) � Cj−2. (4.11)

Fix t, j, i; then with k = ki,p = pi, q = qi , U(t, j ) = Ui(t, j ), by definition we have

U(t, j ) = E
[

V (t, j )|Dt−j

]

, (4.12)
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where

V (t, j ) :=
∫

R

h(x)xk dx
(

Aq(t)Qp(t)e−x2/2A2(t)

− E
[

Aq(t)Qp(t)e−x2/2A2(t)
∣

∣Ft−j

]

)

(4.13)

and Fs = σ {δu: u �= s}. With δ := δt−j , write also

A2(t) =
j−1
∑

k=0

ψ2
k

k
∏

i=1

(

1 + δt−i

d̄ + i − 1

)2

+
(

1 +
δ

d̄ + j − 1

)2
∞
∑

k=j

ψ2
k

k
∏

i=1,i �=j

(

1 +
δt−i

d̄ + i − 1

)2

=: α2
1 +

(

1 + δ

d̄ + j − 1

)2
α2

2 , (4.14)

Ã2(t) := A2(t)
∣

∣

δ=0
= α2

1 + α2
2, (4.15)

Q̃(t) := Q(t)
∣

∣

δ=0
=

∞
∏

i=1,i �=j

(

1 +
δt−i

d̄ + i − 1

)

, (4.16)

where α1 is σ {du: u > t − j }-measurable, and α2 is σ {du: u < t − j }-measurable.

Then

θ(x, j ) := Aq(t)Qp(t)e−x2/2A2(t) − E
[

Aq(t)Qp(t)e−x2/2A2(t)
∣

∣Ft−j

]

= θ ′(x, j ) − θ ′′(x, j ),

where

θ ′(x, j ) := Aq(t)Qp(t)e−x2/2A2(t) − Ãq(t)Q̃p(t)e−x2/2Ã2(t),

θ ′′(x, j ) := E
[

Aq(t)Qp(t)e−x2/2A2(t) − Ãq(t)Q̃p(t)e−x2/2Ã2(t)
∣

∣Ft−j

]

.

We shall prove the bound

|θ(x, j )| � Cj−1(1 + x2)Ãq(t)|Q̃(t)|pe−(x/B)2/2Ã2(t). (4.17)

It suffices to prove (4.17) for θ ′(x, j ) only, as then the corresponding bound for
θ ′′(x, j ) is immediate. Clearly, (4.17) follows from

∣

∣e−x2/2A2(t) − e−x2/2Ã2(t)
∣

∣ � Cj−1x2e−(x/B)2/2Ã2(t), (4.18)
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∣

∣Aq(t) − Ãq(t)
∣

∣ � Cj−1Ãq(t), (4.19)
∣

∣Qp(t) − Q̃p(t)
∣

∣ � Cj−1|Q̃p(t)|, (4.20)

which will be shown below.

According to (3.1), for any B > 1 (arbitrary close to 1), we can find j0 � 0 such

that, for any j > j0,

B−2
� inf

|u|�D/j
(1 + u)2

� sup
|u|�D/j

(1 + u)2
� B2. (4.21)

Clearly, this implies

sup
|u|�D/j

e−x2/2(α2
1
+(1+u)2α2

2
)
� e−(x/B)2/2Ã2(t) (4.22)

and

B−2Ã2(t) � A2(t) � B2Ã2(t), B−1|Q̃(t)| � |Q(t)| � B|Q̃(t)|. (4.23)

Let us prove (4.18). We have

∣

∣

∣e
−x2/2A2(t) − e−x2/2Ã2(t)

∣

∣

∣ =
∣

∣

∣ exp
{

−
x2

2(α2
1 + (1 + z)2α2

2)

}

− exp
{

−
x2

2(α2
1 + α2

2)

}∣

∣

∣

=
∣

∣

∣

∫ z

0

(

exp
{

−
x2

2(α2
1 + (1 + u)2α2

2)

})′

u
du

∣

∣

∣,

where z := δ/(d̄ + j − 1). Using the expression of the derivative

(

exp{− x2

2(α2
1 + (1 + u)2α2

2)
}
)′

u
= exp

{

− x2

2(α2
1 + (1 + u)2α2

2)

} α2
2x2(1 + u)

(α2
1 + (1 + u)2α2

2)2

and estimating the right-hand side of the last equation by means of (4.22) and (4.23),

relation (4.18) easily follows.

Next, with z = δ/(d̄ + j − 1),

Aq(t) − Ãq(t) =
(

α2
1 + (1 + z)2α2

2

)q/2 − (α2
1 + α2

2)
q/2

= (q − 2)α2
2

∫ z

0

(

α2
2 + (1 + u)2α2

2

)(q−2)/2
(1 + u)du,

and so (4.19) easily follows from (4.23). Finally, since Q(t) = Q̃(t)(1 + z), (4.20) is

immediate from (4.23). This proves (4.17).
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Next, from (4.17) and (4.13) we obtain

|V (t, j )| � Cj−1Ãq(t)|Q̃(t)|p
∫

R

|h(x)|
(

1 + |x|k+2
)

e−(x/B)2/2Ã2(t) dx,

and so

EU2(t, j ) � EV 2(t, j )

� Cj−2
E

[

A2q(t)|Q̃(t)|2p
(

∫

R

|h(x)|
(

1 + |x|k+2
)

e−(x/B)2/2A2(t) dx
)2

]

,

where we used the fact that, for all sufficiently large j � j0, one has Ã2(t) � A2(t) by
(4.14)–(4.15).

Let 1/a + 1/a′ = 1, where a > 2 is from (3.7) of Theorem 1. By the Hölder in-

equality, I :=
∫

|h(x)|(1 + |x|k+2)e−(x/B)2/2Ã2(t) dx � I
1/a
1 I

1/a′

2 , where

I1 :=
1

√
2πA(t)B

∫

|h(x)|ae−x2/2A2(t)B2

dx = E
[

|h(BX)|a |D
]

,

I2 :=
(
√

2πA(t)B
)a′/a

∫

(

1 + |x|k+2
)a′

e−x2/2A2(t)B2

dx,

and I2 � CAr(t) for suitable r > 0 (r can be explicitly found). Therefore (with q̃ =
2q + 2r/a′),

E
[

A2q(t)
∣

∣ Q̃(t)
∣

∣

2p
I2

]

� E
[

Aq̃(t)
∣

∣Q̃(t)
∣

∣

2p
I

2/a
1

]

� (EI1)
2/a

(

E
[(

Aq̃(t)
∣

∣ Q̃(t)
∣

∣

2p)(a/(a−2)
)(a−2)/a

,

where the last expectation is finite by Lemma 4.1, and EI1 < ∞ by condition (3.7).
Lemma 4.2 is proved.

LEMMA 4.3. For any ǫ > 0 and r > 0, there exist N0 > 0 and r0 > 0 such that, for

all N > N0, the inequalities

∣

∣aj (t)
∣

∣ � j (d̄+ǫ)−1, ∀1 � t � N, ∀j > (logN)r0, (4.24)

∞
∑

j=0

∣

∣aj (t)aj+s−t(s)
∣

∣ � |s − t |2(d̄+ǫ)−1, ∀1�t�s�N, s−t> (logN)r0 (4.25)

hold with probability not less than 1 − Ne−(log N)r .

Proof. Let ǫ′ := ǫ/2, ǫ′′ := ǫ′/2, ψ̄j := ψj(d̄ + ǫ′), and Q̄j (t) := aj (t)/ψ̄j =
∏j

i=1(1+(δt−i −ǫ′)/(d̄ +ǫ′+i−1)). In view of the assumption that |dt | � D, one can



LMR lmr v.2004/01/22 Prn:8/02/2007; 11:29 F:LMR122.tex; (RRR) p. 16

16 P. Doukhan, G. Lang, D. Surgailis

choose a (nonrandom) j0 � 1 large enough so that |(δt−i − ǫ′)/(d̄ + ǫ′ + i − 1)| < 3/2

a.s. for all i > j0 and t ∈ Z. Then, using the trivial bound |aj (t)| � Dj a.s., one obtains

|Q̄j (t)| = |Q̄j0
(t)|

j
∏

i=j0+1

(

1 +
δt−i − ǫ′

d̄ + ǫ′ + i − 1

)

� Cj0
exp

{

j
∑

i=j0+1

δt−i − ǫ′

d̄ + ǫ′ + i − 1

}

, (4.26)

where Cj0
:= Dj0/|ψ̄j0

|. Introduce the following notation:

Sj0,j :=
j

∑

i=j0+1

δt−i − ǫ′

d̄ + ǫ′ + i − 1
,

Tj0,j :=
j

∑

i=j0+1

1

d̄ + ǫ′ + i − 1
,

αt,j :=
j

∑

i=1

(δt−i − ǫ′′).

Thus, |Q̄j (t)| � Cj0
eSj0,j . We want to evalute the probability of the event

⋂

1�t�N

⋂

j>K0
{Sj0,j � 0} or the probability of

⋂

1�t�N

⋂

j>K0
{|Q̄j (t)| � Cj0

}.
Let j > K0 (for K0 � 1 specified below). Then

Sj0,j = −ǫ′′Tj0,j + Sj0,K0
+

j
∑

i=K0+1

αt,i − αt,i−1

d̄ + ǫ + i − 1
,

where the last sum equals
αt,j

d̄+ǫ′+j−1
− αt,K0

d̄+ǫ′+K0
+

∑j−1
i=K0+1

αt,i

(d̄+ǫ′+i−1)(d̄+ǫ′+i)
. There-

fore, Sj0,j = S′
j0,j

+ S′′
j0,j , where

S′
j0,j := −ǫ′′Tj0,j + Sj0,K0

−
αt,K0

d̄ + ǫ′ + K0

,

S′′
j0,j :=

αt,j

d̄ + ǫ′ + j − 1
+

j−1
∑

i=K0+1

αt,i

(d̄ + ǫ′ + i − 1)(d̄ + ǫ′ + i)
.
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Let

�ǫ,K0,N :=
⋂

1�t�N

⋂

j>K0

{

∣

∣

∣j
−1

j
∑

i=1

δt−i

∣

∣

∣ � ǫ′′
}

. (4.27)

By Bernstein’s inequality for sums of bounded iid rv’s, for any ǫ > 0, one can find

c0 > 0 and j0 such that P(|j−1
∑j

i=1 δt−i | > ǫ′′) � e−c0j holds for all j � j0 and,

therefore,

P(�ǫ,K0,N ) > 1 − Ne−c1K0 (4.28)

holds for all N > N0 and K0 large enough and some c1 > 0 independent of N,K .

By the definition of αt,j , on the set �ǫ,K0,N , one has αt,j � 0 (for all j > K0

and 1 � t � N ) and, therefore, on the same set �ǫ,K0,N , one has S′′
j0,j � 0 for all

1 � t � N . It remains to evaluate S′
j0,j (on the set �ǫ,K0,N ). Clearly, |Sj0,K0

| �

C
∑K0

i=j0+1 i−1 � C logK0 a.s. and | αt,K0

d̄+ǫ+K0
| � C a.s. for some (nonrandom) constant

C independent of K0,N . Also, Tj0,j �
∫ j

j0
x−1 dx = log j − log j0 (j > j0), and we

obtain

S′′
j0,j � −ǫ′′ logj + C logK0 + C � 0 (4.29)

whenever j � (eK0)
C/ǫ′′

. Let r0 := 2rC/ǫ′′ and

K0(N) :=
[

(logN)r/c1

]

.

Then j � (eK0(N))C/ǫ′′
holds for j > (logN)r0 and, moreover, c1K0(N) > (logN)r

holds for all N > N0 large enough. We just proved that the inequality

P

(

|aj (t)| < Cj0
|ψ̄j | ∀1 � t � N,∀j > (logN)r0

)

> 1 − Ne−(log N)r (4.30)

holds for all N > N0 large enough. The statement of the lemma concerning the event

(4.24) now follows from the fact that Cj0
ψ̄j = Cj0

|ψj (d̄ + (ǫ/2))| < j d̄+ǫ−1 for all

j > j0(d̄, ǫ,Cj0
) large enough.

Next, consider the probability of (4.25). By (4.30), for s − t > (logN)r0 and N >

N0, the probability that the following inequalities hold

∞
∑

j=0

∣

∣aj (t)aj+s−t(s)
∣

∣

� Cj0

∑

0�j�(logN)r0

∣

∣aj(t)ψ̄j+s−t

∣

∣ + C2
j0

∑

j>(logN)r0

|ψ̄j ψ̄j+s−t | (4.31)
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is not less than 1 − Ne−(log N)r . Using the trivial bound |aj (t)| � C2j
C3 a.s. for some

(nonrandom) C2,C3 > 0, we see that the right-hand side of (4.31) does not exceed

C4

(

(logN)r0(1+C3)|s − t |d̄+ǫ−1 + |s − t |2(d̄+ǫ)−1
)

� 2C4|s − t |2(d̄+ǫ)−1

for some (nonrandom) C4 < ∞ and all |t − s| > (logN)r
′
0 , r ′

0 := r0(1 +C3)/d̄ . To get

the final bound as in (4.25), we replace the previous r0 by r ′
0. Lemma 4.3 is proved.

5. PROOF OF THEOREM 3.1

Without loss of generality, assume that Eh(Xt ) = 0. Recall the Hermite expansion in

(3.4). Accordingly, we write the conditional Hermite expansion

h(Xt ) =
∞
∑

k=0

hk(t), hk(t) :=
1

k!
gk(A(t))Hk(Xt ;A(t)) (k � 0), (5.1)

which converges conditionally in L2 (i.e., with respect to the conditional probability

PD[·] = P[·|D]) a.s. and, therefore, also unconditionally in L2 for all t ∈ Z. By the

orthogonality property of Hermite polynomials and using the fact that A2(t) � 1 a.s.,

we have

varD(h(Xt )) =
∞
∑

k=1

1

k!
g2

k(A(t))A2(t) �

∞
∑

k=1

1

k!
g2

k(A(t)), (5.2)

covD
(

h(Xt ),h(Xt ′ )
)

=
∞
∑

k=1

1

k!
gk(A(t))gk(A(t ′))

(

∞
∑

j=0

aj (t)aj+t ′−t(t
′)
)k

. (5.3)

Split h(Xt ) = h′
t + h′′

t , where

h′
t :=

∑

0�k�k0

hk(t), h′′
t :=

∑

k>k0

hk(t). (5.4)

Let us show that there exist (nonrandom) k0 � 1 and r > 0 such that

E

(

N
∑

t=1

h′′
t

)2
= O

(

N(logN)r
)

. (5.5)

In other words, we want to show that partial sums of (h′′
t ) are negligible with respect

to partial sums of (h′
t ) which will be shown below to give the limit law of partial sums

of (h(Xt )) as in Theorem 3.1.
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To prove (5.5), split E(
∑N

t=1 h′′
t )

2 = �1(N) + 2�2(N), where

�1(N) :=
∑

1�t,s�N,|s−t|�(logN)r0

Eh′′
t h

′′
s , �2(N) :=

∑

1�t<s�N,s−t>(logN)r0

Eh′′
t h

′′
s ,

and where r0 > 0 will be determined below. Clearly, |�1(N)| � N(logN)r0E(h′′(0))2

� N(logN)r0Eh2(X0). Let us prove �2(N) = O(N(log N)r ). Since kA
∗ � 1,0 < d̄ <

1/2, and (1 − 2d̄)kA
∗ < 1, one can take ǫ > 0 small enough so that 0 < d̄ + ǫ < 1/2.

Choose k0 > kA
∗ such that

(

1 − 2(d̄ + ǫ)
)

k0 > 1. (5.6)

Let

ρN (τ) := sup
1 � t < s � N

s − t = τ

∞
∑

j=0

∣

∣aj (t)aj+s−t(s)
∣

∣.

By Lemma 4.3, for all ǫ > 0 and r > 0, there exist r0 > 0 and N0 > 0 such that, for

any N � N0,

P(�ǫ,N,r ) := P
(

ρN (τ) � τ 2(d̄+ǫ)−1, ∀τ > (logN)r0
)

� 1 − Ne−(log N)r . (5.7)

By the orthogonality property,

�2(N) =
∑

s−t>(logN)r

∑

k>k0

1

k!
EGk(s, t),

Gk(s, t) := gk(A(s))gk(A(t))
(

∞
∑

j=0

aj(t)aj+s−t(s)
)k

.

By the Cauchy–Schwarz inequality,

|Gk(s, t)| �
∣

∣gk(A(s))Ak(t)gk(A(s))Ak(t)
∣

∣

�
1

2

(

g2
k(A(s))A2k(s) + g2

k(A(t))A2k(t)
)

and, therefore, by (5.2)

∑

k>k0

E|Gk(s, t)|I (�c
ǫ,N,r )

�
1

2
E

(

∑

k>k0

g2
k(A(s))A2k(s)

k! +
∑

k>k0

g2
k(A(t))A2k(t)

k!

)

I (�c
ǫ,N,r )
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�
1

2
E
(

varD(h(Xt )) + varD(h(Xt ))
)

I (�c
ǫ,N,r ).

Next, by using (5.7), E|h(X0)|a < ∞ (a > 2), and the Hölder inequality, we have

EvarD(h(Xt ))I (�c
ǫ,N,r ) � E

2/a(EDh(Xt ))
a(P(�c

ǫ,N,r ))
a/(a−2)

� E
2/a|h(X0)|a

(

Ne−(log N)r
)a/(a−2)

,

implying

∑

k>k0

∑

1�t,s�N

1

k!
E|Gk(s, t)|I (�c

ǫ,N,r ) � CN2+a/(a−2)e−c2(logN)r = O(N)

provided that r > 1 + a/(a − 2) was chosen large enough; c2 := a/(a − 2) > 0.

Finally, by the definition of �ǫ,N,r , for s − t > (logN)r0 > 1, we obtain

∑

k>k0

1

k!
E
[

Gk(s, t)I (�ǫ,N,r

]

�
∑

k>k0

1

k!
E
∣

∣gk(A(s))gk(A(t))
∣

∣ρk
N (s − t)I (�ǫ,N,r )

�
(

|s − t |2(d̄+ǫ)−1
)k0

∑

k>k0

1

k!
E
∣

∣gk(A(s))gk(A(t))
∣

∣

� C
(

|s − t |2(d̄+ǫ)−1
)k0

∑

k>k0

1

k!
E
(

g2
k(A(s)) + g2

k(A(t))
)

� C|s − t |−(1−2(d̄+ǫ))k0Eh2(X0)

� C|s − t |−(1−2(d̄+ǫ))k0 ,

where we recall that k0 was chosen so that (1 − 2(d̄ + ǫ))k0 > 1. Hence,

∑

1�s,t�N,s−t>(logN)r0

∑

k>k0

1

k!
E
[

Gk(s, t)I (�ǫ,N,r

]

= O(N),

thereby proving (5.5).

Let us prove that

N (1−2d̄)(kA
∗ /2)−1

[Nτ ]
∑

t=1

h′
t →fidi

βkA
∗

kA
∗ !

JkA
∗
(τ), (5.8)
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E

(

N
∑

t=1

h′
t

)2
= O

(

N2−(1−2d̄)kA
∗
)

. (5.9)

From (5.1), using the properties and notation of Wick products (see Surgailis [12]), we
have

h′
t =

k0
∑

k=0

gk(A(t))

k!
∑

aj1
(t) · · · ajk

(t) :εt−j1
· · ·εt−jk

:≡
k0

∑

k=0

1

k!Zk(t), (5.10)

where the middle sum is taken over all j1, . . . , jk = 0,1, . . .. Next, we decompose each

of the “chaotic” terms Zk(t) as

Zk(t) = Z0k(t) + Z1k(t) + Z2k(t), (5.11)

where

Z0k(t) := E[gk(A(0))Qk(0)]Hk(Yt ,�), (5.12)

Z1k(t) := (gk(A(t))Qk(t) − E[gk(A(t))Qk(t)])Hk(Yt ,�), (5.13)

Z2k(t) := gk(A(t))
∑

(

aj1
(t) · · · ajk

(t)−Qk(t)ψj1
· · ·ψjk

):εt−j1
· · ·εt−jk

: , (5.14)

where we used the fact that

∑

ψj1
· · ·ψjk

:εt−j1
· · · εt−jk

:= Hk(Yt ,�)

is a Hermite polynomial in the Gaussian FARIMA(0, d̄ ,0) process Yt :=
∑∞

j=0 ψjεt−j

with variance �2 := EY 2
0 =

∑∞
j=0 ψ2

j . Note that Z0k(t) = βkHk(Yt ,�) ≡ 0 for

k < kA
∗ , according to the definitions of kA

∗ in (3.8) and βk in (3.6). By (5.10) and

(5.11), the proof of (5.8) and (5.9) reduces to

N (1−2d̄)(k/2)−1

[Nτ ]
∑

t=1

Hk(Yt ;�) →fdd Jk(τ), 1 � k <
1

1 − 2d̄
, (5.15)

E

(

N
∑

t=1

Hk(Yt ;�)
)2

= O
(

N2−(1−2d̄)k
)

, 1 � k <
1

1 − 2d̄
, (5.16)

E

(

N
∑

t=1

Hk(Yt ;�)
)2

= O(N logN), k �
1

1 − 2d̄
, (5.17)

E

(

N
∑

t=1

Z1k(t)
)2

= O(N logN), k � 0, (5.18)
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E

(

N
∑

t=1

Z2k(t)
)2

= O(N logN), k � 0, (5.19)

in view of the fact that kA
∗ < 1/(1 − 2d̄).

Relations (5.15)–(5.17)are well known (see Taqqu [14]). Consider (5.18). Let φt :=
gk(A(t))Qk(t); then, by independence of (dt) and (εt),

cov
(

Z1k(0),Z1k(t)
)

= cov(φ0,φt )cov
(

Hk(Y0,�),Hk(Yt ,�)
)

.

Clearly, the above φt is a particular case of (4.8) in Lemma 4.2 yielding cov(φ0,φt ) =
O(t−1 log t), hence, also cov(Z1k(0),Z1k(t)) = O(t−1 log t) for all k � 0, thus proving

(5.18).

Consider (5.19), which obviously follows from rk(t) := cov(Z2k(0),Z2k(t)) =
O(t−1 log t). We have

rk(t) = k!Egk(A(0))gk(A(t))
∑

j1,...,jk�0

(

aj1
(0) · · · ajk

(0) − Qk(0)ψj1
· · ·ψjk

)

×
(

at+j1
(t) · · · at+jk

(t) − Qk(t)ψt+j1
· · ·ψt+jk

)

.

For simplicity, we consider the case k = 2. Let Q̃j (t) := Qj (t)−Q(t) so that aj (t) =
(Q(t) + Q̃j (t))ψj . Then r2(t) can be rewritten as

r2(t) = 2
∑

j1,j2

ψj1
ψj2

ψt+j1
ψt+j2

�t,j1,j2
,

where

|�t,j1,j2
| :=

∣

∣

∣

∣

E

[

g2(A(0))g2(A(t))
(

Q(0)Q̃j1
(0) + Q(0)Q̃j2

(0) + Q̃j1
(0)Q̃j2

(0)
)

×
(

Q(t)Q̃t+j1
(t) + Q(t)Q̃t+j2

(t) + Q̃t+j1
(t)Q̃t+j2

(t)
)

]

∣

∣

∣

∣

� ‖g2(A(0)‖b‖g2(A(t))‖b

∥

∥Q(0)Q̃j1
(0)+Q(0)Q̃j2

(0)+Q̃j1
(0)Q̃j2

(0))
∥

∥

b′

×
∥

∥Q(t)Q̃t+j1
(t) + Q(t)Q̃t+j2

(t) + Q̃t+j1
(t)Q̃t+j2

(t)
∥

∥

b′

and where b > 2, 1/b + 1/b′ = 1/2. Let us check that there exists b > 2 such

that E|gk(A(0)|b < ∞(∀k � 1). Let 2 < b < a, where a > 2 is the same as in
the formulation of Theorem 3.1. By the Hölder inequality, |EDh(X)Hk(X,A)|b �

E
b/a
D

|h(X)|a E
b/a′

D
|Hk(X,A)|a′

(1/a + 1/a′ = 1) and then

E
∣

∣gk(A(0))
∣

∣

b = EA−2kb|EDh(X)Hk(X,A)|b
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� EA−2kb
E

b/a

D
|h(X)|aE

b/a′

D
|Hk(X,A)|a′

� E
b/a|h(X)|aE

(a−b)/a
(

A−2kb
E

b/a′|Hk(X;A)|a′)a/(a−b)
,

where the first expectation on the last line is finite because of condition (3.7) of Theo-

rem 3.1 (see also Remark 3.1), and the last expectation is dominated by E|A|q for suit-
able q < ∞ and, therefore, is also finite by Lemma 4.1. From Eqs. (4.2) and (4.1), we

have that ‖Q̃j(t)‖p � Cj−1/2 and ‖Q(t)‖p � C for all j,p > 1; hence, the Cauchy–
Schwarz inequality yields

∥

∥Q(0)Q̃j1
(0) + Q(0)Q̃j2

(0) + Q̃j1
(0)Q̃j2

(0))
∥

∥

b′ � C
(

j
−1/2
1 + j

−1/2
2

)

,

∥

∥Q(t)Q̃t+j1
(t)+Q(t)Q̃t+j2

(t)+Q̃t+j1
(t)Q̃t+j2

(t))
∥

∥

b′ �C
(

(t+j1)
−1/2+(t+j2)

−1/2
)

,

and using arguments as in the proof of relation (4.25) and
∑

j>0 |ψjψt+j | < ∞, we
finally obtain

|r2(t)| � C
∑

j1,j2�0

∣

∣ψj1
ψj2

ψt+j1
ψt+j2

∣

∣

(

j
−1/2
1 + j

−1/2
2

)(

(t + j1)
−1/2 + (t + j2)

−1/2
)

= o(t−1),

proving (5.19) for k = 2.

The case k � 2 is considered similarly, but now one needs to use the Hölder in-

equality for products of k factors. Now we have

rk(t) = k!
∑

j1,...,jk

ψj1
· · ·ψjk

ψt+j1
· · ·ψt+jk

�t,j1,...,jk
,

where �t,j1,...,jk
is controlled as above:

�t,j1,...,jk
� ‖g2(A(0))‖b‖g2(A(t))‖b‖S(0)‖b′‖S(t)‖b′ .

The two first factors were already estimated. In the last expression, S(t) is a sum of

products of Q(t) and Q̃j (t) for j = t + j1, . . . , t + jk , in which some Q̃j (t) appears at

least once by using the elementary identity xk − yk = (x − y)(xk−1 + · · · + yk−1).
Exactly the same arguments thus yield this more general result, since ‖S(t)‖b′ �

C{(t + j1)
−1/2 + · · · + (t + jk)

−1/2}. Now we have

|rk(t)| � C
∑

j1,...,jk�0

|ψj1
· · ·ψjk

ψt+j1
· · ·ψt+jk

|

×
(

j
−1/2
1 + · · · + j

−1/2
k

)(

(t + j1)
−1/2 + · · · + (t + jk)

−1/2
)

= o(t−1).
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The proof of the finite-dimensional convergence in Theorem 3.1 (3.9) follows from
(5.8) and (5.4), (5.5), (5.9). The tightness in Theorem 3.1 (3.9) follows by the Kol-

morogov’s criterion, or E(
∑[N(τ+h)]

[N(τ)] Xt)
2 � CN1+γ , γ := 1− (1−2d̄)kA

∗ > 0, which

follows from (5.4), (5.5), (5.9), and the stationarity of (Xt ). This completes the proof
of Theorem 3.1.

We end the paper with few examples of nonlinear functions h in which the limit
process in Theorem 3.1 (3.9) is identified.

Example 1. Let h(x) = x2. Then H2(x;A) = x2 − A2,g2(A) = 2,g0(A) = A2,
β0 = EA2(0),β1 = 0, and β2 = 2EQ2(0). The same coefficients can be obtain

by differentiating the function Eh(X0 + wQ(0)) = E(X0 + wQ(0))2 = EA2(0) +
w2

EQ2(0) (see (3.10)). From Theorem 3.1 we obtain that, for 1/4 < d̄ < 1/2,

N−2d̄

[Nτ ]
∑

t=1

(X2
t − EX2

t ) →D[0,1] E[Q2(0)]J2(τ),

where J2 is the Rosenblatt process.

Example 2. Let h(x) = x3. Then H3(x;A) = x3 − 3xA2, g3(A) = 6, g2(A) = 0,

g1(A) = 3A2, g0(A) = 0, β0 = 0, β1 = 3EA2(0)Q(0), β2 = 0, and β3 = 6EQ3(0).
From Theorem 3.1 we obtain that, for 0 < d̄ < 1/2,

N−d̄−(1/2)

[Nτ ]
∑

t=1

X3
t →D[0,1] 3 E

[

A2(0)Q(0)
]

J1(τ),

where J1 is a fractional Brownian motion. Moreover, if β1 = 3EA2(0)Q(0) = 0 and
1/3 < d̄ < 1/2, then

N−3d̄+(1/2)

[Nτ ]
∑

t=1

X3
t →D[0,1] E

[

Q3(0)
]

J3(τ),

where J3 is a Hermite process of order 3.

Example 3. Let h(x) = I (x � y) be the indicator function. Then

I (x � y) =
∞
∑

k=0

F (k)(y/A)

Akk!
Hk(x;A),

where F(x) = P(Z � x),Z ∼ N(0,1), and

βk = 1
√

2π
E

[

e−y2/2A(0)Qk(0)A−k(0)Hk(y/A(0))
]

(k � 1).
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In particular, β1 ≡ β1(y) := (2π)−1/2
E[e−y2/2A2(0)Q(0)/A2(0)]. From Theorem 3.1

we obtain that, for any 0 < d̄ < 1/2,

N−d̄−(1/2)
N

∑

t=1

(

I (Xt � y) − P(Xt � y)
)

→fdd β1(y)J1(1), (5.20)

where J1(1) is a normal random variable. It seems that the convergence in (5.20) can

be extended to a functional convergence in the Skorohod space D(R̄) with the sup-

topology, using the argument of Dehling and Taqqu [1]. Note that the limit process in

the above equation is degenerate, similarly as in other papers on empirical processes

under long memory (see Dehling and Taqqu [1], Ho and Hsing [6], Giraitis and Sur-
gailis [5], Doukhan et al. [3], [4], and the references therein).
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