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INTRODUCTION

Philippe et al. [START_REF] Philippe | Invariance principle for a class of non stationary processes with long memory[END_REF] introduced time-varying fractional filters A(d), B(d) defined by

A(d)x t = ∞ j =0 a j (t)x t-j ,B ( d)x t = ∞ j =0 b j (t)x t-j , (1.1) 
where d = (d t ,t ∈ Z) is a given function of t ∈ Z,anda 0 (t) = b 0 (t) := 1,

a j (t) := d t-1 1 d t-2 + 1 2 d t-3 + 2 3 ••• d t-j + j -1 j , (1.2) 
b j (t) := d t-1

1 d t-j + 1 2 d t-j +1 + 2 3 ••• d t-2 + j -1 j ,j 1. (1.3) If d t ≡ d is a constant, then A(d) = B(d) = (I -L) -d
is the usual fractional integration operator (Lx t := x t-1 is the backward shift). Let a - j (t), b - j (t) be defined as in (1.2), (1.3), with d = (d t ) t∈Z replaced by -d = (-d t ) t∈Z . For arbitrary sequence d = (d t ) t∈Z such that d t ∈ Z (∀t ∈ Z), the coefficients in (1.2), (1.3) satisfy the orthogonality relation

n j =0 b - j (t)a n-j (t -j)= n j =0
a - j (t)b n-j (tj)= δ n .

In other words, the filters A(d), B(-d) are mutually inverse: A(d) -1 = B(-d), B(d) -1 = A(-d) (see Philippe et al. [START_REF] Philippe | Invariance principle for a class of non stationary processes with long memory[END_REF], [START_REF] Philippe | Almost periodically correlated processes with longmemory[END_REF]). The above mentioned papers studied long memory behavior and partial sums limits of nonstationary processes X A t = A(d)ε t , X B t = B(d)ε t ,where(ε t ) is a white noise, for certain classes of deterministic sequences d admitting (possibly different) Cesaro limits d + ,d -at +∞, -∞, respectively, and showed that the limit behavior of partial sums of X A t and X B t essentially depends on the limits d + ,d -alone.

The present paper studies long-memory properties of the randomly fractionally integrated processes

X A t := ∞ j =0 a j (t)ε t-j ,X B t := ∞ j =0 b j (t)ε t-j , (1.4) 
where (ε t ,t ∈ Z) is an iid white noise, a j (t), b j (t) are given in (1.2)-(1.3), and d = (d t , ∈ Z) is an iid sequence with mean d = Ed 0 ∈ (0, 1/2) and finite variance (the sequences (ε t ,t ∈ Z) and d = (d t , ∈ Z) are assumed mutually independent). Then (X A t ), (X B t ) in (1.4) are well-defined, strictly stationary, and ergodic processes. We show in Section 1 that long-memory properties of X A and X B are very similar to FARIMA(0, d,0); in particular, partial sums of X A and X B converge to a fractional Brownian motion with Hurst parameter H = d + (1/2) ∈ (1/2, 1).

The main objective of the present paper is to study long-memory properties of nonlinear functionals (h(X A t )) t∈Z ,(h(X B t ) t∈Z of stationary processes in (1.4). There is a large literature concerning limit theorems for instanteneous nonlinear functionals of Gaussian and linear processes with long memory, see, e.g., Dobrushin and Major [START_REF] Dobrushin | Non-central limit theorems for non-linear functions of Gaussian fields[END_REF], Taqqu [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF], Ho and Hsing [START_REF] Ho | On the asymptotic expansion of the empirical process of long memory moving averages[END_REF], Surgailis [START_REF] Surgailis | Stable limits of sums of bounded functions of long-memory moving averages with infinite variance[END_REF], and the references therein. Consider a linear process Y t = ∞ j =0 a j ε t-j with slowly decaying coefficients a j ∼ c 0 j d-1

(c 0 = 0, d ∈ (0, 1/2) and iid innovations (ε t ) ∼ iid(0, 1). It was shown in these papers that the limit distribution of suitably normalized partial sums processes [Nτ] t=1 h(Y t ) is determined by the Appell rank of the nonlinear function h, or the integer

k * := min k 1: d k Eh(Y 0 + x) dx k x=0 = 0 , (1.5) 
under some additional moment and regularity conditions on h and ε 0 . Note that, for Gaussian processes (Y t ) (with Y 0 ∼ N(0, 1)), the Appell rank in (1.5) coincides with the Hermite rank, or the smallest k 1 with c k = 0i nt h eH e r m i t e expansion h(x) = ∞ k=0 c k H k (x)/k!. Under the long memory condition k * (2d -1)< 1, the limit of partial sums of h(Y t ) is a so-called Hermite process of order k * (see Section 2 for definition).

To study the asymptotic behavior of nonlinear functionals of "random FARIMA" processes in (1.4), we assume that the iid sequence (d t ) is bounded and the iid sequence (ε t ) is Gaussian; moreover, our discussion is limited to the process (X A t ). Extensions to more general (d t ), (ε t ), and the filter (X B t ) are possible but not easy. The assumption of conditional gaussianity allows us to use conditional Hermite expansions and simplifies estimation of remainder terms. Our main result, Theorem 3.1, states that the limit distribution of partial sums [Nτ] t=1 h(X A t ) is determined by the integer k A * := min{k 1: β k = 0},whereβ k 's are defined via conditional Hermite expansion of h; it turns out that, under certain regularity conditions, the integer k A * can also be defined as

k A * = min k 1: d k Eh(X A 0 + xQ(0)) dx k x=0 = 0 , (1.6) 
where Q(0) := lim j →∞ a j (0)/ψ j ( d),a n d

∞ j =0 ψ j ( d)L j = (1 -L) -d is FARIMA(0, d,0) filter. While k * in (1.

5) and k A

* in (1.6) look similarly, the former quantity is expressed via the marginal distribution of (Y t ) at t = 0 alone, and the latter involves the joint distribution (X A 0 ,Q(0)); moreover, the derivative in (1.6) does not seem to be related to any polynomial expansion of h.

LINEAR FUNCTIONALS

Everywhere below, (ε t ,t ∈ Z) ∼ iid(0, 1) is a standard iid sequence of rv's with zero mean and unit variance, and d = (d t , ∈ Z) is another sequence of iid rv's, with mean d = Ed 0 and variance σ 2 := E(d 0 -Ed 0 ) 2 < ∞; the sequences (ε t ) t∈Z and d = (d t ) t∈Z are assumed mutually independent. Let δ t := d t -Ed t denote the centered iid rv's. We also assume that d t ∈ Z -:= {0, -1, -2,...} a.s.

Let ψ j (d), j 0, be the FARIMA(0,d,0) coefficients defined by

(1 -z) -d = ∞ j =0 ψ j (d)z j .
Recall that, for 0 <d<1/2, the autocovariance of the process Y t := (1 -L) -d ε t decays as t 2d-1 , more precisely, (see Hosking [START_REF] Hosking | Fractional differencing[END_REF] and Kokoszka and Taqqu [START_REF] Kokoszka | Fractional ARIMA with stable innovations[END_REF]). Introduce the Hermite process of order k = 1, 2,...:

EY 0 Y t = ∞ j =0 ψ j (d)ψ t+j (d) = Ŵ(1 -2d) Ŵ(d)Ŵ(1 -d) t 2d-1 1 + O(t -1 ) (2.
J k (τ ) := 1 Ŵ(d) k R k τ 0 k i=1 (t -u i ) d-1 + dt W(du 1 )...W(du k ), (2.2) 
givenbyak-tuple Itô-Wiener integral with respect to a standard Gaussian white noise W(ds) with zero mean and variance ds; 

u d-1 + := u d-1 for u>0, := 0otherwise.The process J k in (2.2) is well defined for 1 k<1/(1 -2d) and is self-similar with index H = 1 -(1 -2 d)k/2.
EX A 0 X A t = ∞ j =0 Ea j a t+j , EX B 0 X B t = ∞ j =0
Eb j b t+j .

(ii) Let 0 < d<1/2.Then

EX A 0 X A t = EY 0 Y t 1 + O(t -1 log t) , EX B 0 X B t = c 2 B EY 0 Y t 1 + O(t -d ) (2.3)
as t →∞,whereEY 0 Y t is the autocovariance of FARIMA(0, d, 0)(see(2.1)), and the constant c 2 B is given in (2.8) below. Moreover,

N -d-(1/2) [Nτ] t=1 X A t → D[0,1] c( d)J 1 (τ ), (2.4 
)

N -d-(1/2) [Nτ] t=1 X B t → D[0,1] c( d)c B J 1 (τ ), (2.5) 
where

(J 1 (τ ), τ 0) is a fractional Brownian motion with (Hurst) parameter H = (1/2) + d (see (2.2)). Proof. (i) Assume first that d ∈ Z -.Define Q A (s, t) := a t-s (t) ψ t-s ( d) = s u<t 1 + δ u d + t -u -1 (s < t), (2.6) 
Q B (s, t) := db t-s (t) d t-1 ψ t-s ( d) = s u<t-1 1 + δ u d + u -s + 1 (s < t -1), (2.7) Q B (s, s + 1) := 1. The expectations EQ 2 A (s, t) = s u<t 1 + σ 2 ( d + t -u -1) 2 c 2 A , EQ 2 B (s, t) = s u<t-1 1 + σ 2 ( d + u -s + 1) 2 c 2 B
are uniformly bounded in s<tby finite constants

c 2 A := i 0 1 + σ 2 ( d + i) 2 ,c 2 B := i 1 1 + σ 2 ( d + i) 2 , (2.8) 
respectively. Therefore,

Ea 2 t-s (t) = ψ 2 t-s ( d)EQ 2 A (s, t) c 2 A ψ 2 ( d), Eb 2 t-s (t) = ψ 2 t-s ( d) Ed 2 t-1 d2 EQ 2 B (s, t) c 2 B d2 + σ 2 d2 ψ 2 t-s ( d),
implying ∞ j =0 Ea 2 j (t) < ∞ and ∞ j =0 Eb 2 j (t) < ∞ by the well-known property of FARIMA coefficients and, thus, the convergences of the series in (1.4). The stationarity and ergodicity properties of these series are easy. This proves part (i) for d ∈ Z -.I n the case d ∈ Z -, the above argument requires minor modifications.

(ii) Consider the covariance of X A .UsingEQ A (s, t) = 1, similarly as in the proof of (i), one has

EX A 0 X A t = s 0 ψ -s ( d)ψ t-s ( d)EQ A (s, 0)Q A (s, t) = EY 0 Y t + R A t ,
where

R A t := ∞ j =t+1 ψ j ( d)ψ t+j ( d) A j (t), A j (t):= j i=1 1+ σ 2 ( d +i -1)( d +t +i -1) -1.
Note that sup j>t | A j (t)|=O(t -1 log t); indeed,

1 1 + A j (t) exp j i=1 log 1 + σ 2 ( d + i -1)( d + t + i -1) P. Doukhan, G. Lang, D. Surgailis exp j i=1 σ 2 ( d + i -1)( d + t + i -1) exp C ∞ i=1 σ 2 i(t + i) = exp O(log t/t) = 1 + O log t t .
Then R A t = O(t 2 d-2 log t) (see (2.1)), proving the first asymptotic in (2.3). Next,

EX B 0 X B t = s -1 ψ -s ( d)ψ t-s ( d)EQ B (s, 0)Q B (s, t) d -1 d t-1 d2 + ψ 0 ( d)ψ t ( d) = c 2 B EY 0 Y t + R B t ,
where

R B t := ∞ j =0 ψ j ( d)ψ t+j ( d) B j and B j := j -1 k=1 1 + σ 2 ( d + k) 2 1 + σ 2 d( d + j) ∞ p=j 1 + σ 2 ( d + p) 2 -1 (j 1), B 0 := 1 -c 2 B , satisfy B j = O(j -1 ).FromthisR B t = O(t d -1
) easily follows, proving the second asymptotic in (2.3).

To show (2.4), decompose

X A t = Y t + Z A t ,
where

Z A t := ∞ j =0 ψ j ( d)(Q A (t -j,t) -EQ A (t -j, t))ε t-j is a short-memory process satisfying N t=1 Z A t = O P (N 1/2
), which follows by evaluating the covariance cov(Q A (s, 0), Q A (s, t)) (s 0 t) similarly as above. Then the convergence of finite-dimensional distributions in (2.4) is immediate from the corresponding convergence of FARIMA process (Y t ), and the tightness follows by the Kolmogorov criterion using the fact about the covariance of (X A t ) in (2.3). The proof of the tightness part in (2.5) is completely analogous; however, the convergence of finite-dimensional distributions is a little more complicated. Namely, one represents

X B t as X B t = Y B t + Z B t ,whereY B t = s t ψ t-s ( d)ε B s is FARIMA(0, d,0) process in strictly stationary backward martingale difference innovations (ε B s ) defined by ε B s := ε s Q B (s, ∞) = ε s j 1 1 + δ s+j -1 d + j , with variance E(ε B s ) 2 = c 2 B given in (2.8
). The fact that finite-dimensional ditributions of partial sums of (Y B t ) tend to those of the limit process in (2.5) can be easily proved using the scheme of discrete stochastic integrals as in Philippe et al. [START_REF] Philippe | Invariance principle for a class of non stationary processes with long memory[END_REF], [START_REF] Philippe | Almost periodically correlated processes with longmemory[END_REF]. The "remainder term" Z B t in the above decomposition of X B t is given by

Z B t := (ε B t -ε t ) + δ t d s<t ψ t-s ( d)Q B (s, t)ε s + s<t ψ t-s ( d )(Q B (s, t) -Q B (s, ∞))ε s .
The proof of the relation N t=1 Z B t = O P (N 1/2 ) follows using similar argument as in the proof of (2.3), and we omit the details for the sake of brevity. This completes the proof of Theorem 2.1.

NONLINEAR FUNCTIONALS

In this section, we study long-memory properties of nonlinear processes (h(X A t )) t∈Z , where h is a real function such that Eh 2 (X A 0 )<∞. As noted in Introduction, the discussion is limited to the process (X A t ) in (1.4), so we omit the superscript "A"i n the following notation, i.e., we write X t ≡ X A t ,Q(s,t)≡ Q A (s, t), etc. Because of the difficulty of dealing with nonlinear functionals, the assumptions on (d t ) and (ε t ) now are strenghtened as follows.

Assumption 1. The sequence (ε t ) is iid N(0, 1)-distributed. Assumption 2. The sequence (d t ) is iid, independent of (ε t ), with mean d ∈ (0, 1/2) and finite variance σ 2 = var(d 0 )<∞; moreover, there is a constant D<∞ such that

|δ t | D a.s. ( 3.1) 
We use the following notation: ψ j := ψ j ( d),

Q(t) := Q(-∞,t)= ∞ i=1 1 + δ t-i d + i -1 , (3.2) 
A 2 (t) := ∞ j =0 a 2 j (t) = ∞ j =0 Q 2 (t -j,t)ψ 2 j = ∞ j =0 ψ 2 j j i=1 1 + δ t-i d + i -1 2 . (3.3)
Also, let D t := σ {d s : s t} and D := t D t denote the sigma-algebras generated by the iid sequence (d t ). From Assumptions 1 and 2 it follows that the process (X t ) in (1.4) is a conditionally Gaussian process given the sigma-algebra D, with zero conditional mean and the conditional variance

A 2 (t), i.e., E[X t |D]=0, E[X 2 t |D]=A 2 (t).
For any A>0 and any real function

h(x), x ∈ R, with Eh 2 (X) < ∞ (X ∼ N(0,A 2 )),
we can write the Hermite expansion

h(x) = ∞ k=0 g k (A) k! H k (x; A), (3.4) 
where

g k (A) := A -2k E h(X)H k (X; A) = 1 √ 2πA 1+2k R h(x)H k (x; A)e -x 2 /2A 2 dx, (3.5) 
and H k (x; A) := A k H k (x/A), k 0, are Hermite polynomials with standard deviation A>0; H k (x), k 0, are standard Hermite polynomials with generating function

∞ k=0 z k H k (x)/k!=e zx-z 2 /2
. Finally,

β k := E g k (A(0))Q k (0) ,k = 0, 1,..., (3.6) 
where g k (•), A(0), and Q(0) are defined in (3.5), (3.3), and (3.2), respectively. THEOREM 3.1. Let Assumptions 1 and 2 be fullfilled. Let h: R → R be a measurable function such that

E|h(BX 0 )| a < ∞ (3.7)
for some B>1 and a>2.Letk A * be the smallest integer k 1 such that β k = 0:

k A * := min k 1: β k = 0 , (3.8) 
and let (1

-2 d)k A * < 1.
Then

N (1-2 d)(k A * /2)-1 [Nτ] t=1 (h(X t ) -Eh(X t )) → D[0,1] β k A * k A * ! J k A * (τ ), (3.9) 
where J k (τ ) is a kth order Hermite process given in (2.2) with d = d.

Remark 3.1. We show in the proof of Theorem 3.1 below that the coefficients β k (3.6) are well defined for any k 1. Moreover, as noted in Introduction, under additional conditions on the function h(•), these coefficients can be identified with the derivatives in (1.6), i.e.,

β k = d k Eh(X 0 + wQ(0)) dw k w=0 . (3.10)
Indeed, X 0 = law A(0)Z,w h e r eZ ∼ N(0, 1) does not depend on (A(0), Q(0)) ≡ (A, Q). Then, assuming that the differentiations and integrations by parts below are legitim, we can rewrite the right-hand side of (3.10) as

R + ×R 1 √ 2π R h(Az + wQ)e -z 2 /2 dzP( dA, dQ) (k) = R + ×R Q k √ 2π R h (k) (Az)e -z 2 /2 dzP( dA, dQ) = R + ×R Q k √ 2πA k R h(Az)H k (z)e -z 2 /2 dzP( dA, dQ) = β k ; see definitions (3.6), (3.5). Remark 3.2. Condition E|h(BX 0 )| a < ∞ (B>1) entails E|h(X 0 )| a < ∞.I n - deed, E|h(BX 0 )| a = E 1 √ 2πA(0) h(BA(0)x) a e -x 2 /2A 2 (0) dx = E 1 √ 2πBA(0) h(A(0)x) a e -x 2 /2B 2 A 2 (0) dx B -1 E 1 √ 2πA(0) h(A(0)x) a e -x 2 /2A 2 (0) dx = B -1 E|h(X 0 )| a or E|h(X 0 )| a BE|h(BX 0 )| a < ∞.
The proof of Theorem 3.1 follows technical lemmas discussed in the following section. In these lemmas, Assumptions 1 and 2 are imposed without explicit reference to them. On the other hand, some of these statements hold under weaker conditions without the assumption of gaussianity of (ε t ) or boundedness of (d t ).

SOME TECHNICAL LEMMAS

Recall from (2.6) the definition Q(tj,t) ≡ Q j (t), i.e.,

Q j (t) = a j (t)/ψ j = j i=1 1 + δ t-i d + i -1 (j 1), Q 0 (t) := 1.
LEMMA 4.1. For any t ∈ Z, Q j (t) → Q(t) (j →∞) a.s. Moreover, for any p 2, there exists a constant C = C p such that, for any t ∈ Z and j 0,

E|Q j (t)| p C, EA 2p (t) C (4.1)
and such that

E Q j (t) -Q(t) p Cj -p/2 . (4.2)
Proof. Denote

ξ j := Q j +1 (t) -Q j (t) = Q j (t) δ t-j -1 d + j . P. Doukhan, G. Lang, D. Surgailis
Note that the random variables (ξ j ) j 1 are orthogonal (in fact, they are martingale differences) and, therefore,

Q j +1 (t) = 1 + j i=0 ξ i (4.3)
is the sum of orthogonal rv's. According to a result of Stout [START_REF] Stout | Almost Sure Convergence[END_REF], the series (4.3) converges a.s., provided that

∞ j =1 log 2 (j )Eξ 2 j < ∞. (4.4) 
In our case,

Eξ 2 j = σ 2 ( d + j) 2 EQ 2 j (t), (4.5) 
where

EQ 2 j (t) = j i=1 E 1 + δ t-i d + i -1 2 = j i=1 1 + σ 2 ( d + i -1) 2 <C (4.6)
is bounded. Therefore, (4.4) holds implying the first part of the lemma.

Let us prove the first bound in (4.1). We shall need the following general inequality: for any p 2, 0 <δ<1, and any rv δ with Eδ = 0, E|δ| p < ∞, there exists a constant C = C p such that

E|1 + aδ| p 1 + Ca 2 .
(4.7)

Indeed, write E|1 + aδ| p = 4 k=1 J k ,w h e r eJ 1 := E|1 + aδ| p I(aδ -1), J 2 := E(1 + aδ) p I(-1 <aδ -1/2), J 3 := E(1 + aδ) p I(|aδ| < 1/2), and J 4 := E(1 + aδ) p I(aδ > 1/2).T h e nJ 1 E|aδ| p Ca 2 , J 2 P(|aδ| > 1/2) 4a 2 Eδ 2 Ca 2 ,J 4 CE|aδ| p Ca 2 ,and

J 3 = 1+paEδI(|aδ| < 1/2)+O(a 2 ) = 1-paEδI(|aδ| 1/2)+O(a 2 ) = 1+O(a 2 ),
since E|δ|I(|aδ| 1/2) CaEδ 2 Ca 2 . This proves (4.7).

Applying (4.7) with a = 1 d+i-1 ,δ= δ t-i , we obtain

E|Q j (t)| p = j i=1 E 1 + δ t-i d + i -1 p j i=1 1 + C i 2 C
and, thus, prove the first bound in (4.1).

Consider the second bound in (4.1). Since A 2 (t) = ∞ j =0 Q 2 j (t)ψ 2 j , the Minkowski inequality and the previous bound together yield

E[A 2p (t)] 1/p ∞ j =0 ψ 2 j E[Q 2p j (t)] 1/p C ∞ j =0 ψ 2 j <C.
It remains to prove (4.2). In the case p = 2, we immediately get

E Q(t) -Q j (t) 2 = E ∞ i=j ξ i 2 = ∞ i=j Eξ 2 i C ∞ i=j j -2 Cj -1
due to (3.5) and (3.6). Let p>2. Since (ξ j ) is a martingale difference sequence, by the Bürkholder inequality we have

E|Q(t) -Q j (t)| p = E ∞ i=j ξ i p C p E ∞ i=j ξ 2 i p/2 .
By the Hölder inequality, we have

∞ i=j ξ 2 i = ∞ i=j (i + d) -1 (i + d) -1 δ 2 t-i-1 Q 2 i (t) ∞ i=j (i + d) -p/(p-2) (p-2)/p ∞ i=j (i + d) -p/2 |δ t-i-1 | p |Q i (t)| p 2/p Cj -2/p ∞ i=j (i + d) -p/2 |δ t-i-1 | p |Q i (t)| p 2/p .
Therefore, using (4.1), we get

E Q(t) -Q j (t) p Cj -1 ∞ i=j (i + d) -p/2 E|δ t-i-1 | p |Q i (t)| p Cj -1 ∞ i=j (i + d) -p/2 Cj -p/2 ,
proving the lemma. P. Doukhan, G. Lang, D. Surgailis LEMMA 4.2. Let p i ,k i 0, q i ∈ Z, i = 1, 2, be given integers, and let

φ i (t) := A q i (t)Q p i j i (t)M i (A(t)), (4.8) 
where

M i (A) := R h(x)x k i e -x 2 /2A 2 dx. (4.9)
Then there exists a constant C = C(k i ,p i ,q i ,i = 1, 2)<∞ such that, for any t ∈ Z,j 1 ,j 2 0, cov(φ 1 (t), φ 2 (0)) Ct -1 log t.

Proof. Write the telescoping expansion

φ i (t) -Eφ i (t) = ∞ j =1 U i (t, j ), (4.10) 
where

U i (t, j ) := E φ i (t)|D t-j -E φ i (t) | D t-j -1 = R h(x)x k i dx E A q i (t)Q p i (t)e -x 2 /2A 2 (t) D t-j -E A q i (t)Q p i (t)e -x 2 /2A 2 (t) D t-j -1 .
By orthogonality,

cov(φ 1 (t), φ 2 (0)) = ∞ j =1 E U 1 (t, t + j)U 2 (0,j) ∞ j =1 EU 2 1 (t, t + j) 1/2 EU 2 2 (0,j) 1/2 .
Thus, the lemma follows from the bound

EU 2 i (t, j ) Cj -2 . (4.11)
Fix t,j,i; then with k = k i ,p = p i ,q = q i , U(t,j) = U i (t, j ), by definition we have

U(t,j) = E V(t,j)|D t-j , (4.12) 
where

V(t,j):= R h(x)x k dx A q (t)Q p (t)e -x 2 /2A 2 (t) -E A q (t)Q p (t)e -x 2 /2A 2 (t) F t-j (4.13) 
and F s = σ {δ u : u = s}. With δ := δ t-j , write also

A 2 (t) = j -1 k=0 ψ 2 k k i=1 1 + δ t-i d + i -1 2 + 1 + δ d + j -1 2 ∞ k=j ψ 2 k k i=1,i =j 1 + δ t-i d + i -1 2 =: α 2 1 + 1 + δ d + j -1 2 α 2 2 , (4.14) 
Ã2 (t) := A 2 (t) δ=0 = α 2 1 + α 2 2 , (4.15) 
Q(t ) := Q(t) δ=0 = ∞ i=1,i =j 1 + δ t-i d + i -1 , (4.16) 
where α 1 is σ {d u : u>t-j }-measurable, and α 2 is σ {d u : u<t-j }-measurable. Then θ(x,j) := A q (t)Q p (t)e -x 2 /2A 2 (t) -E A q (t)Q p (t)e -x 2 /2A 2 (t) F t-j = θ ′ (x, j )θ ′′ (x, j ), where

θ ′ (x, j ) := A q (t)Q p (t)e -x 2 /2A 2 (t) -Ãq (t) Qp (t)e -x 2 /2 Ã2 (t) , θ ′′ (x, j ) := E A q (t)Q p (t)e -x 2 /2A 2 (t) -Ãq (t) Qp (t)e -x 2 /2 Ã2 (t) F t-j .
We shall prove the bound

|θ(x,j)| Cj -1 (1 + x 2 ) Ãq (t)| Q(t)| p e -(x/B) 2 /2 Ã2 (t) . ( 4 

.17)

It suffices to prove (4.17) for θ ′ (x, j ) only, as then the corresponding bound for θ ′′ (x, j ) is immediate. Clearly, (4.17) follows from e -x 2 /2A 2 (t)e -x 2 /2 Ã2 (t) Cj -1 x 2 e -(x/B) 2 /2 Ã2 (t) , (4.18)

A q (t) -Ãq (t) Cj -1 Ãq (t), (4.19)

Q p (t) -Qp (t) Cj -1 | Qp (t)|, (4.20) 
which will be shown below.

According to (3.1), for any B>1 (arbitrary close to 1), we can find j 0 0s u c h that, for any j>j 0 ,

B -2 inf |u| D/j (1 + u) 2 sup |u| D/j (1 + u) 2 B 2 . (4.21)
Clearly, this implies

sup |u| D/j e -x 2 /2(α 2 1 +(1+u) 2 α 2 2 )
e -(x/B) 2 /2 Ã2 (t) (4.22) and

B -2 Ã2 (t) A 2 (t) B 2 Ã2 (t), B -1 | Q(t)| |Q(t)| B| Q(t)|. (4.23)
Let us prove (4.18). We have

e -x 2 /2A 2 (t) -e -x 2 /2 Ã2 (t) = exp - x 2 2(α 2 1 + (1 + z) 2 α 2 2 ) -exp - x 2 2(α 2 1 + α 2 2 ) = z 0 exp - x 2 2(α 2 1 + (1 + u) 2 α 2 2 ) ′ u du ,
where z := δ/( d + j -1). Using the expression of the derivative exp{-

x 2 2(α 2 1 + (1 + u) 2 α 2 2 ) } ′ u = exp - x 2 2(α 2 1 + (1 + u) 2 α 2 2 ) α 2 2 x 2 (1 + u) (α 2 1 + (1 + u) 2 α 2 2 ) 2
and estimating the right-hand side of the last equation by means of (4.22) and (4.23), relation (4.18) easily follows.

Next, with z = δ/( d + j -1),

A q (t) -Ãq (t) = α 2 1 + (1 + z) 2 α 2 2 q/2 -(α 2 1 + α 2 2 ) q/2 = (q -2)α 2 2 z 0 α 2 2 + (1 + u) 2 α 2 2 (q-2)/2 (1 + u) du,
and so (4.19) easily follows from (4.23). Finally, since Q(t) = Q(t)(1 + z), (4.20) is immediate from (4.23). This proves (4.17).

Next, from (4.17) and (4.13) we obtain

|V(t,j)| Cj -1 Ãq (t)| Q(t)| p R |h(x)| 1 +|x| k+2 e -(x/B) 2 /2 Ã2 (t) dx,
and so

EU 2 (t, j ) EV 2 (t, j ) Cj -2 E A 2q (t)| Q(t)| 2p R |h(x)| 1 +|x| k+2 e -(x/B) 2 /2A 2 (t) dx 2 ,
where we used the fact that, for all sufficiently large j j 0 , one has Ã2 (t) A 

I := |h(x)|(1 +|x| k+2 )e -(x/B) 2 /2 Ã2 (t) dx I 1/a 1 I 1/a ′ 2
,where

I 1 := 1 √ 2π A(t)B |h(x)| a e -x 2 /2A 2 (t)B 2 dx = E |h(BX)| a | D , I 2 := √ 2πA(t)B a ′ /a 1 +|x| k+2 a ′ e -x 2 /2A 2 (t)B 2 dx,
and I 2 CA r (t) for suitable r>0(r can be explicitly found). Therefore (with q = 2q + 2r/a ′ ),

E A 2q (t) Q(t) 2p I 2 E A q (t) Q(t) 2p I 2/a 1 (EI 1 ) 2/a E A q (t) Q(t) 2p (a/(a-2) (a-2)/a ,
where the last expectation is finite by Lemma 4.1, and EI 1 < ∞ by condition (3.7). Lemma 4.2 is proved.

LEMMA 4.3. For any ǫ>0 and r>0,thereexistN 0 > 0 and r 0 > 0 such that, for all N>N 0 , the inequalities

a j (t) j ( d+ǫ)-1 , ∀1 t N, ∀j>( log N) r 0 , (4.24) ∞ j =0
a j (t)a j +s-t (s) |s -t| 2( d +ǫ)-1 , ∀1 t s N, s-t>(log N) r 0 (4.25) hold with probability not less than 1 -Ne -(log N) r .

Proof. Let ǫ ′ := ǫ/2, ǫ ′′ := ǫ ′ /2, ψj := ψ j ( d + ǫ ′ ), and Qj (t) := a j (t)/ ψj = j i=1 (1+(δ t-i -ǫ ′ )/( d +ǫ ′ +i -1)). In view of the assumption that |d t | D, one can P. Doukhan, G. Lang, D. Surgailis choose a (nonrandom) j 0 1 large enough so that |(δ t-iǫ ′ )/( d + ǫ ′ + i -1)| < 3/2 a.s. for all i>j 0 and t ∈ Z. Then, using the trivial bound |a j (t)| D j a.s., one obtains

| Qj (t)|=| Qj 0 (t)| j i=j 0 +1 1 + δ t-i -ǫ ′ d + ǫ ′ + i -1 C j 0 exp j i=j 0 +1 δ t-i -ǫ ′ d + ǫ ′ + i -1 , (4.26) 
where C j 0 := D j 0 /| ψj 0 |. Introduce the following notation:

S j 0 ,j := j i=j 0 +1 δ t-i -ǫ ′ d + ǫ ′ + i -1 , T j 0 ,j := j i=j 0 +1 1 d + ǫ ′ + i -1 , α t,j := j i=1 (δ t-i -ǫ ′′ ).
Thus, | Qj (t)| C j 0 e S j 0 ,j . We want to evalute the probability of the event 1 t N j>K 0 {S j 0 ,j 0} or the probability of 1 t N j>K 0 {| Qj (t)| C j 0 }. Let j>K 0 (for K 0 1 specified below). Then S j 0 ,j =-ǫ ′′ T j 0 ,j + S j 0 ,K 0 +

j i=K 0 +1 α t,i -α t,i-1 d + ǫ + i -1 ,
where the last sum equals

α t,j d+ǫ ′ +j -1 - α t,K 0 d+ǫ ′ +K 0 + j -1 i=K 0 +1 α t,i
( d+ǫ ′ +i-1)( d+ǫ ′ +i) .Therefore, S j 0 ,j = S ′ j 0 ,j + S ′′ j 0 ,j ,where

S ′ j 0 ,j := -ǫ ′′ T j 0 ,j + S j 0 ,K 0 - α t,K 0 d + ǫ ′ + K 0 , S ′′ j 0 ,j := α t,j d + ǫ ′ + j -1 + j -1 i=K 0 +1 α t,i ( d + ǫ ′ + i -1)( d + ǫ ′ + i) .
Let ǫ,K 0 ,N :=

1 t N j>K 0 j -1 j i=1 δ t-i ǫ ′′ . (4.27)
By Bernstein's inequality for sums of bounded iid rv's, for any ǫ>0, one can find c 0 > 0a n dj 0 such that P(|j -1 j i=1 δ t-i | >ǫ ′′ ) e -c 0 j holds for all j j 0 and, therefore,

P( ǫ,K 0 ,N )>1 -Ne -c 1 K 0 (4.28)
holds for all N>N 0 and K 0 large enough and some c 1 > 0 independent of N,K.

By the definition of α t,j ,o nt h es e t ǫ,K 0 ,N , one has α t,j 0 (for all j>K 0 and 1 t N ) and, therefore, on the same set ǫ,K 0 ,N , one has S ′′ j 0 ,j 0f o ra l l 1 t N . It remains to evaluate S ′ j 0 ,j (on the set ǫ,K 0 ,N ). Clearly,

|S j 0 ,K 0 | C K 0 i=j 0 +1 i -1 C log K 0 a.s. and | α t,K 0 d+ǫ+K 0 | C a.
s. for some (nonrandom) constant independent of K 0 ,N.A l s o ,T j 0 ,j j j 0 x -1 dx = log jlog j 0 (j>j 0 ), and we obtain

S ′′ j 0 ,j -ǫ ′′ log j + C log K 0 + C 0 (4.29)
whenever j (eK 0 ) C/ǫ ′′ .Letr 0 := 2rC/ǫ ′′ and K 0 (N ) := (log N) r /c 1 .

Then j (eK 0 (N )) C/ǫ ′′ holds for j>( log N) r 0 and, moreover, c 1 K 0 (N ) > (log N) r holds for all N>N 0 large enough. We just proved that the inequality

P |a j (t)| <C j 0 | ψj |∀1 t N,∀j>( log N) r 0 > 1 -Ne -(log N) r (4.30) 
holds for all N>N 0 large enough. The statement of the lemma concerning the event (4.24) now follows from the fact that C j 0 ψj = C j 0 |ψ j ( d + (ǫ/2))| <j d+ǫ-1 for all j>j 0 ( d,ǫ,C j 0 ) large enough. Next, consider the probability of (4.25). By (4.30), for s -t>( log N) r 0 and N> N 0 , the probability that the following inequalities hold

∞ j =0 a j (t)a j +s-t (s) C j 0 0 j (log N) r 0 a j (t) ψj+s-t + C 2 j 0 j>(log N) r 0 | ψj ψj+s-t | (4.31)
is not less than 1 -Ne -(log N) r . Using the trivial bound |a j (t)| C 2 j C 3 a.s. for some (nonrandom) C 2 ,C 3 > 0, we see that the right-hand side of (4.31) does not exceed

C 4 (log N) r 0 (1+C 3 ) |s -t| d+ǫ-1 +|s -t| 2( d+ǫ)-1 2C 4 |s -t| 2( d +ǫ)-1
for some (nonrandom) C 4 < ∞ and all |t -s| >(log N) r ′ 0 , r ′ 0 := r 0 (1 + C 3 )/ d.Toget the final bound as in (4.25), we replace the previous r 0 by r ′ 0 . Lemma 4.3 is proved.

PROOF OF THEOREM 3.1

Without loss of generality, assume that Eh(X t ) = 0. Recall the Hermite expansion in (3.4). Accordingly, we write the conditional Hermite expansion

h(X t ) = ∞ k=0 h k (t), h k (t) := 1 k! g k (A(t))H k (X t ; A(t)) (k 0), (5.1) 
which converges conditionally in L 2 (i.e., with respect to the conditional probability

P D [•] = P[•|D]) a.
s. and, therefore, also unconditionally in L 2 for all t ∈ Z.B yt h e orthogonality property of Hermite polynomials and using the fact that A 2 (t) 1 a.s., we have

var D (h(X t )) = ∞ k=1 1 k! g 2 k (A(t))A 2 (t) ∞ k=1 1 k! g 2 k (A(t)), (5.2) 
cov D h(X t ), h(X t ′ ) = ∞ k=1 1 k! g k (A(t))g k (A(t ′ )) ∞ j =0 a j (t)a j +t ′ -t (t ′ ) k . (5.3) Split h(X t ) = h ′ t + h ′′ t ,
where

h ′ t := 0 k k 0 h k (t), h ′′ t := k>k 0 h k (t). (5.4) 
Let us show that there exist (nonrandom) k 0 1andr>0 such that

E N t=1 h ′′ t 2 = O N(log N) r . (5.5) 
In other words, we want to show that partial sums of (h ′′ t ) are negligible with respect to partial sums of (h ′ t ) which will be shown below to give the limit law of partial sums of (h(X t )) as in Theorem 3.1.

To prove (5.5), split E( N t=1 h ′′ t ) 2 = 1 (N ) + 2 2 (N ),where

1 (N ) := 1 t,s N,|s-t| (log N) r 0 Eh ′′ t h ′′ s , 2 (N ) := 1 t<s N,s-t>(logN) r 0 Eh ′′ t h ′′ s ,
and where r 0 > 0 will be determined below. Clearly,

| 1 (N )| N(log N) r 0 E(h ′′ (0)) 2 N(log N) r 0 Eh 2 (X 0 ). Let us prove 2 (N ) = O(N (log N) r ).Sincek A * 1, 0 < d< 1/2, and (1 -2 d)k A
* < 1, one can take ǫ>0 small enough so that 0

< d + ǫ<1/2. Choose k 0 >k A * such that 1 -2( d + ǫ) k 0 > 1. (5.6) Let ρ N (τ ) := sup 1 t<s N s -t = τ ∞ j =0
a j (t)a j +s-t (s) .

By Lemma 4.3, for all ǫ>0a n dr>0, there exist r 0 > 0a n dN 0 > 0s uc ht ha t ,for any N N 0 ,

P( ǫ,N,r ) := P ρ N (τ ) τ 2( d+ǫ)-1 , ∀τ>( log N) r 0 1 -Ne -(log N) r . (5.7) 
By the orthogonality property,

2 (N ) = s-t>(log N) r k>k 0 1 k! EG k (s, t), G k (s, t) := g k (A(s))g k (A(t)) ∞ j =0
a j (t)a j +s-t (s) k .

By the Cauchy-Schwarz inequality,

|G k (s, t)| g k (A(s))A k (t)g k (A(s))A k (t) 1 2 g 2 k (A(s))A 2k (s) + g 2 k (A(t))A 2k (t)
and, therefore, by (5.2)

k>k 0 E|G k (s, t)|I( c ǫ,N,r ) 1 2 E k>k 0 g 2 k (A(s))A 2k (s) k! + k>k 0 g 2 k (A(t))A 2k (t) k! I( c ǫ,N,r ) 1 2 E var D (h(X t )) + var D (h(X t )) I( c ǫ,N,r ).
Next, by using (5.7), E|h(X 0 )| a < ∞ (a>2), and the Hölder inequality, we have

E var D (h(X t ))I ( c ǫ,N,r ) E 2/a (E D h(X t )) a (P( c ǫ,N,r )) a/(a-2)
E 2/a |h(X 0 )| a Ne -(log N) r a/(a-2) , implying

k>k 0 1 t,s N 1 k! E|G k (s, t)|I( c ǫ,N,r ) CN 2+a/(a-2) e -c 2 (log N) r = O(N )
provided that r>1 + a/(a -2) was chosen large enough; c 2 := a/(a -2)>0. Finally, by the definition of ǫ,N,r ,fors -t>( log N) r 0 > 1, we obtain

k>k 0 1 k! E G k (s, t)I ( ǫ,N,r k>k 0 1 k! E g k (A(s))g k (A(t)) ρ k N (s -t)I( ǫ,N,r ) |s -t| 2( d+ǫ)-1 k 0 k>k 0 1 k! E g k (A(s))g k (A(t)) C |s -t| 2( d +ǫ)-1 k 0 k>k 0 1 k! E g 2 k (A(s)) + g 2 k (A(t)) C|s -t| -(1-2( d+ǫ))k 0 Eh 2 (X 0 ) C|s -t| -(1-2( d+ǫ))k 0 ,
where we recall that k 0 was chosen so that (1

-2( d + ǫ))k 0 > 1. Hence, 1 s,t N,s-t>(log N) r 0 k>k 0 1 k! E G k (s, t)I ( ǫ,N,r = O(N ),
thereby proving (5.5).

Let us prove that

N (1-2 d)(k A * /2)-1 [Nτ] t=1 h ′ t → fidi β k A * k A * ! J k A * (τ ), (5.8) 
E N t=1 h ′ t 2 = O N 2-(1-2 d)k A * .
(5.9)

From (5.1), using the properties and notation of Wick products (see Surgailis [START_REF] Surgailis | Long-range dependence and Appell rank[END_REF]), we have

h ′ t = k 0 k=0 g k (A(t)) k! a j 1 (t) •••a j k (t) :ε t-j 1 •••ε t-j k :≡ k 0 k=0 1 k! Z k (t), (5.10) 
where the middle sum is taken over all j 1 ,...,j k = 0, 1,.... Next, we decompose each of the "chaotic" terms k (t) as

Z k (t) = Z 0k (t) + Z 1k (t) + Z 2k (t), (5.11) 
where

Z 0k (t) := E[g k (A(0))Q k (0)]H k (Y t , ), (5.12) 
Z 1k (t) := (g k (A(t))Q k (t) -E[g k (A(t))Q k (t)])H k (Y t , ), (5.13) 
Z 2k (t) := g k (A(t)) a j 1 (t) •••a j k (t)-Q k (t)ψ j 1 •••ψ j k ):ε t-j 1 •••ε t-j k : , (5.14) 
where we used the fact that

ψ j 1 •••ψ j k :ε t-j 1 •••ε t-j k := H k (Y t , )
is a Hermite polynomial in the Gaussian FARIMA(0, d,0) process Y t := ∞ j =0 ψ j ε t-j with variance 2 := EY 2 0 = ∞ j =0 ψ 2 j . Note that Z 0k (t) = β k H k (Y t , ) ≡ 0f o r k<k A * , according to the definitions of k A * in (3.8) and k in (3.6). By (5.10) and (5.11), the proof of (5.8) and (5.9) reduces to in view of the fact that k A * < 1/(1 -2 d). Relations (5.15)-(5.17) are well known (see Taqqu [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF]). Consider (5.18). Let φ t := g k (A(t))Q k (t); then, by independence of (d t ) and (ε t ),

N (1-2 d)(k/2)-1 [Nτ] t=1 H k (Y t ; ) → fdd J k (τ ), 1 k< 1 1 -2 d , (5.15) 
E N t=1 H k (Y t ; ) 2 = O N 2-(1-2 d)k , 1 k< 1 1 -2 d , (5.16) 
E N t=1 H k (Y t ; ) 2 = O(N log N), k 1 1 -2 d , (5.17) 
E N t=1 Z 1k (t) 2 = O(N log N), k 0, ( 5 
cov Z 1k (0), Z 1k (t) = cov(φ 0 ,φ t )cov H k (Y 0 , ),H k (Y t , ) .
Clearly, the above φ t is a particular case of (4.8) in Lemma 4.2 yielding cov(φ 0 ,φ t ) = O(t -1 log t), hence, also cov(Z 1k (0), Z 1k (t)) = O(t -1 log t) for all k 0, thus proving (5.18). Consider (5.19), which obviously follows from r k (t)

:= cov(Z 2k (0), Z 2k (t)) = O(t -1 log t).W ehave r k (t) = k! Eg k (A(0))g k (A(t)) j 1 ,...,j k 0 a j 1 (0) •••a j k (0) -Q k (0)ψ j 1 •••ψ j k × a t+j 1 (t) •••a t+j k (t) -Q k (t)ψ t+j 1 •••ψ t+j k .
For simplicity, we consider the case k = 2. Let Qj (t) := Q j (t) -Q(t) so that a j (t) = (Q(t) + Qj (t))ψ j .Thenr 2 (t) can be rewritten as

r 2 (t) = 2 j 1 ,j 2 ψ j 1 ψ j 2 ψ t+j 1 ψ t+j 2 t,j 1 ,j 2 , where | t,j 1 ,j 2 |:= E g 2 (A(0))g 2 (A(t)) Q(0) Qj 1 (0) + Q(0) Qj 2 (0) + Qj 1 (0) Qj 2 (0) × Q(t) Qt+j 1 (t) + Q(t) Qt+j 2 (t) + Qt+j 1 (t) Qt+j 2 (t) g 2 (A(0) b g 2 (A(t)) b Q(0) Qj 1 (0)+Q(0) Qj 2 (0)+ Qj 1 (0) Qj 2 (0)) b ′ × Q(t) Qt+j 1 (t) + Q(t) Qt+j 2 (t) + Qt+j 1 (t) Qt+j 2 (t) b ′
and where b>2, 1/b + 1/b ′ = 1/2. Let us check that there exists b>2s u c h that E|g k (A(0)| b < ∞(∀k 1).L e t2<b<a,w h e r ea>2i st h es a m ea si n the formulation of Theorem 3.1. By the Hölder inequality,

|E D h(X)H k (X, A)| b E b/a D |h(X)| a E b/a ′ D |H k (X, A)| a ′ (1/a + 1/a ′ = 1) and then E g k (A(0)) b = EA -2kb |E D h(X)H k (X, A)| b EA -2kb E b/a D |h(X)| a E b/a ′ D |H k (X, A)| a ′ E b/a |h(X)| a E (a-b)/a A -2kb E b/a ′ |H k (X; A)| a ′ a/(a-b) ,
where the first expectation on the last line is finite because of condition (3.7) of Theorem 3.1 (see also Remark 3.1), and the last expectation is dominated by E|A| q for suitable q<∞ and, therefore, is also finite by Lemma 4.1. From Eqs. (4.2) and (4.1), we have that Qj (t) p Cj -1/2 and Q(t) p C for all j,p > 1; hence, the Cauchy-Schwarz inequality yields

Q(0) Qj 1 (0) + Q(0) Qj 2 (0) + Qj 1 (0) Qj 2 (0)) b ′ C j -1/2 1 + j -1/2 2 , Q(t) Qt+j 1 (t)+Q(t) Qt+j 2 (t)+ Qt+j 1 (t) Qt+j 2 (t)) b ′ C (t +j 1 ) -1/2 +(t +j 2 ) -1/2 ,
and using arguments as in the proof of relation (4.25) and j>0 |ψ j ψ t+j | < ∞,w e finally obtain

|r 2 (t)| C j 1 ,j 2 0 ψ j 1 ψ j 2 ψ t+j 1 ψ t+j 2 j -1/2 1 + j -1/2 2 (t + j 1 ) -1/2 + (t + j 2 ) -1/2 = o(t -1 ), proving (5.19) for k = 2.
The case k 2 is considered similarly, but now one needs to use the Hölder inequality for products of k factors. Now we have r k (t) = k! j 1 ,...,j k ψ j 1 •••ψ j k ψ t+j 1 •••ψ t+j k t,j 1 ,...,j k , where t,j 1 ,...,j k is controlled as above: The two first factors were already estimated. In the last expression, S(t) is a sum of products of Q(t) and Qj (t) for j = t + j 1 ,...,t+ j k ,inwhichsome Qj (t) appears at least once by using the elementary identity x ky k = (xy)(x k-1 + ••• + y k-1 ). Exactly the same arguments thus yield this more general result, since S(t) b ′ C{(t + j 1 ) -1/2 +•••+(t + j k ) -1/2 }. Now we have k (t)| C j 1 ,...,j k 0

|ψ j 1 •••ψ j k ψ t+j 1 •••ψ t+j k | × j -1/2 1 +•••+j -1/2 k (t + j 1 ) -1/2 +•••+(t + j k ) -1/2
= o(t -1 ). P. Doukhan, G. Lang, D. Surgailis

The proof of the finite-dimensional convergence in Theorem 3.1 (3.9) follows from (5.8) and (5.4), (5.5), (5.9). The tightness in Theorem 3.1 (3.9) follows by the Kolmorogov's criterion, or E( [N(τ+h)] [N(τ)] X t ) 2 CN 1+γ ,γ := 1 -(1 -2 d)k A * > 0, which follows from (5.4), (5.5), (5.9), and the stationarity of (X t ). This completes the proof of Theorem 3.1.

We end the paper with few examples of nonlinear functions h in which the limit process in Theorem 3.1 (3.9) is identified.

Example 1. Let h(x) = x 2 .T h e nH 2 (x; A) = x 2 -A 2 ,g 2 (A) = 2,g 0 (A) = A 2 , β 0 = EA 2 (0), β 1 = 0, and β 2 = 2EQ 2 (0). The same coefficients can be obtain by differentiating the function Eh(X 0 + wQ(0)) = E(X 0 + wQ(0)) 2 = EA 2 (0) + w 2 EQ 2 (0) (see (3.10)). From Theorem 3.1 we obtain that, for 1/4 < d<1/2,

N -2 d [Nτ] t=1 (X 2 t -EX 2 t ) → D[0,1] E[Q 2 (0)]J 2 (τ ),
where J 2 is the Rosenblatt process.

Example 2. Let h(x) = x 3 .ThenH 3 (x; A) = x 3 -3xA 2 ,g 3 (A) = 6,g 2 (A) = 0, g 1 (A) = 3A 2 ,g 0 (A) = 0,β 0 = 0,β 1 = 3EA 2 (0)Q(0), β 2 = 0, and β 3 = 6EQ 3 (0). From Theorem 3.1 we obtain that, for 0 < d<1/2,

N -d-(1/2) [Nτ] t=1 X 3 t → D[0,1] 3 E A 2 (0)Q(0) J 1 (τ ),
where J 1 is a fractional Brownian motion. Moreover, if β 1 = 3EA 2 (0)Q(0) = 0a n d 1/3 < d<1/2, then

N -3 d+(1/2) [Nτ] t=1 X 3 t → D[0,1] E Q 3 (0) J 3 (τ ),
where J 3 is a Hermite process of order 3. where F(x)= P(Z x),Z ∼ N(0, 1),and

β k = 1 √ 2π
E e -y 2 /2A(0) Q k (0)A -k (0)H k (y/A(0)) (k 1).

In particular, β 1 ≡ β 1 (y) := (2π) -1/2 E[e -y 2 /2A 2 (0) Q(0)/A 2 (0)]. From Theorem 3.1 we obtain that, for any 0 < d<1/2,

N -d-(1/2) N t=1
I(X t y) -P(X t y) → fdd β 1 (y)J 1 (1), (5.20) where J 1 (1) is a normal random variable. It seems that the convergence in (5.20) can be extended to a functional convergence in the Skorohod space D( R) with the suptopology, using the argument of Dehling and Taqqu [START_REF] Dehling | The empirical process of some long-range dependent sequences with an application to U -statistics[END_REF]. Note that the limit process in the above equation is degenerate, similarly as in other papers on empirical processes under long memory (see Dehling and Taqqu [START_REF] Dehling | The empirical process of some long-range dependent sequences with an application to U -statistics[END_REF], Ho and Hsing [START_REF] Ho | On the asymptotic expansion of the empirical process of long memory moving averages[END_REF], Giraitis and Surgailis [START_REF] Giraitis | Central limit theorem for the empirical process of a linear sequence with long memory[END_REF], Doukhan et al. [START_REF] Doukhan | Asymptotics of weighted empirical processes of linear fields with long-range dependence[END_REF], [START_REF] Doukhan | Functional limit theorem for the empirical process of a class of Bernoulli shifts with long memory[END_REF], and the references therein).

2 =

 2 .18) P. Doukhan, G. Lang, D. Surgailis E O(N log N), k 0, (5.19)

t,j 1

 1 ,...,j k g 2 (A(0)) b g 2 (A(t)) b S(0) b ′ S(t) b ′ .

Example 3 .

 3 Let h(x) = I(x y) be the indicator function. Then

  The process J 1 is a fractional Brownian motion (up to the constant E 1/2 J 2 1 (1)).

	Other properties of J k in (2.2) including the expressions for
	EJ 2 k (1) can be found in Taqqu [15].
	THEOREM 2.1. (i) Let d<1/2. Then the series X A t ,X B t in (1.4) converge a.s. and in L 2 for all t ∈ Z and define strictly stationary and ergodic processes with zero mean EX A t = EX B t = 0 and respective covariances
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